xref: /linux/drivers/spi/spi-atmel.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /*
2  * Driver for Atmel AT32 and AT91 SPI Controllers
3  *
4  * Copyright (C) 2006 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/clk.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/slab.h>
22 #include <linux/platform_data/atmel.h>
23 
24 #include <asm/io.h>
25 #include <asm/gpio.h>
26 #include <mach/cpu.h>
27 
28 /* SPI register offsets */
29 #define SPI_CR					0x0000
30 #define SPI_MR					0x0004
31 #define SPI_RDR					0x0008
32 #define SPI_TDR					0x000c
33 #define SPI_SR					0x0010
34 #define SPI_IER					0x0014
35 #define SPI_IDR					0x0018
36 #define SPI_IMR					0x001c
37 #define SPI_CSR0				0x0030
38 #define SPI_CSR1				0x0034
39 #define SPI_CSR2				0x0038
40 #define SPI_CSR3				0x003c
41 #define SPI_RPR					0x0100
42 #define SPI_RCR					0x0104
43 #define SPI_TPR					0x0108
44 #define SPI_TCR					0x010c
45 #define SPI_RNPR				0x0110
46 #define SPI_RNCR				0x0114
47 #define SPI_TNPR				0x0118
48 #define SPI_TNCR				0x011c
49 #define SPI_PTCR				0x0120
50 #define SPI_PTSR				0x0124
51 
52 /* Bitfields in CR */
53 #define SPI_SPIEN_OFFSET			0
54 #define SPI_SPIEN_SIZE				1
55 #define SPI_SPIDIS_OFFSET			1
56 #define SPI_SPIDIS_SIZE				1
57 #define SPI_SWRST_OFFSET			7
58 #define SPI_SWRST_SIZE				1
59 #define SPI_LASTXFER_OFFSET			24
60 #define SPI_LASTXFER_SIZE			1
61 
62 /* Bitfields in MR */
63 #define SPI_MSTR_OFFSET				0
64 #define SPI_MSTR_SIZE				1
65 #define SPI_PS_OFFSET				1
66 #define SPI_PS_SIZE				1
67 #define SPI_PCSDEC_OFFSET			2
68 #define SPI_PCSDEC_SIZE				1
69 #define SPI_FDIV_OFFSET				3
70 #define SPI_FDIV_SIZE				1
71 #define SPI_MODFDIS_OFFSET			4
72 #define SPI_MODFDIS_SIZE			1
73 #define SPI_LLB_OFFSET				7
74 #define SPI_LLB_SIZE				1
75 #define SPI_PCS_OFFSET				16
76 #define SPI_PCS_SIZE				4
77 #define SPI_DLYBCS_OFFSET			24
78 #define SPI_DLYBCS_SIZE				8
79 
80 /* Bitfields in RDR */
81 #define SPI_RD_OFFSET				0
82 #define SPI_RD_SIZE				16
83 
84 /* Bitfields in TDR */
85 #define SPI_TD_OFFSET				0
86 #define SPI_TD_SIZE				16
87 
88 /* Bitfields in SR */
89 #define SPI_RDRF_OFFSET				0
90 #define SPI_RDRF_SIZE				1
91 #define SPI_TDRE_OFFSET				1
92 #define SPI_TDRE_SIZE				1
93 #define SPI_MODF_OFFSET				2
94 #define SPI_MODF_SIZE				1
95 #define SPI_OVRES_OFFSET			3
96 #define SPI_OVRES_SIZE				1
97 #define SPI_ENDRX_OFFSET			4
98 #define SPI_ENDRX_SIZE				1
99 #define SPI_ENDTX_OFFSET			5
100 #define SPI_ENDTX_SIZE				1
101 #define SPI_RXBUFF_OFFSET			6
102 #define SPI_RXBUFF_SIZE				1
103 #define SPI_TXBUFE_OFFSET			7
104 #define SPI_TXBUFE_SIZE				1
105 #define SPI_NSSR_OFFSET				8
106 #define SPI_NSSR_SIZE				1
107 #define SPI_TXEMPTY_OFFSET			9
108 #define SPI_TXEMPTY_SIZE			1
109 #define SPI_SPIENS_OFFSET			16
110 #define SPI_SPIENS_SIZE				1
111 
112 /* Bitfields in CSR0 */
113 #define SPI_CPOL_OFFSET				0
114 #define SPI_CPOL_SIZE				1
115 #define SPI_NCPHA_OFFSET			1
116 #define SPI_NCPHA_SIZE				1
117 #define SPI_CSAAT_OFFSET			3
118 #define SPI_CSAAT_SIZE				1
119 #define SPI_BITS_OFFSET				4
120 #define SPI_BITS_SIZE				4
121 #define SPI_SCBR_OFFSET				8
122 #define SPI_SCBR_SIZE				8
123 #define SPI_DLYBS_OFFSET			16
124 #define SPI_DLYBS_SIZE				8
125 #define SPI_DLYBCT_OFFSET			24
126 #define SPI_DLYBCT_SIZE				8
127 
128 /* Bitfields in RCR */
129 #define SPI_RXCTR_OFFSET			0
130 #define SPI_RXCTR_SIZE				16
131 
132 /* Bitfields in TCR */
133 #define SPI_TXCTR_OFFSET			0
134 #define SPI_TXCTR_SIZE				16
135 
136 /* Bitfields in RNCR */
137 #define SPI_RXNCR_OFFSET			0
138 #define SPI_RXNCR_SIZE				16
139 
140 /* Bitfields in TNCR */
141 #define SPI_TXNCR_OFFSET			0
142 #define SPI_TXNCR_SIZE				16
143 
144 /* Bitfields in PTCR */
145 #define SPI_RXTEN_OFFSET			0
146 #define SPI_RXTEN_SIZE				1
147 #define SPI_RXTDIS_OFFSET			1
148 #define SPI_RXTDIS_SIZE				1
149 #define SPI_TXTEN_OFFSET			8
150 #define SPI_TXTEN_SIZE				1
151 #define SPI_TXTDIS_OFFSET			9
152 #define SPI_TXTDIS_SIZE				1
153 
154 /* Constants for BITS */
155 #define SPI_BITS_8_BPT				0
156 #define SPI_BITS_9_BPT				1
157 #define SPI_BITS_10_BPT				2
158 #define SPI_BITS_11_BPT				3
159 #define SPI_BITS_12_BPT				4
160 #define SPI_BITS_13_BPT				5
161 #define SPI_BITS_14_BPT				6
162 #define SPI_BITS_15_BPT				7
163 #define SPI_BITS_16_BPT				8
164 
165 /* Bit manipulation macros */
166 #define SPI_BIT(name) \
167 	(1 << SPI_##name##_OFFSET)
168 #define SPI_BF(name,value) \
169 	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
170 #define SPI_BFEXT(name,value) \
171 	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
172 #define SPI_BFINS(name,value,old) \
173 	( ((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
174 	  | SPI_BF(name,value))
175 
176 /* Register access macros */
177 #define spi_readl(port,reg) \
178 	__raw_readl((port)->regs + SPI_##reg)
179 #define spi_writel(port,reg,value) \
180 	__raw_writel((value), (port)->regs + SPI_##reg)
181 
182 
183 /*
184  * The core SPI transfer engine just talks to a register bank to set up
185  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
186  * framework provides the base clock, subdivided for each spi_device.
187  */
188 struct atmel_spi {
189 	spinlock_t		lock;
190 
191 	void __iomem		*regs;
192 	int			irq;
193 	struct clk		*clk;
194 	struct platform_device	*pdev;
195 	struct spi_device	*stay;
196 
197 	u8			stopping;
198 	struct list_head	queue;
199 	struct spi_transfer	*current_transfer;
200 	unsigned long		current_remaining_bytes;
201 	struct spi_transfer	*next_transfer;
202 	unsigned long		next_remaining_bytes;
203 
204 	void			*buffer;
205 	dma_addr_t		buffer_dma;
206 };
207 
208 /* Controller-specific per-slave state */
209 struct atmel_spi_device {
210 	unsigned int		npcs_pin;
211 	u32			csr;
212 };
213 
214 #define BUFFER_SIZE		PAGE_SIZE
215 #define INVALID_DMA_ADDRESS	0xffffffff
216 
217 /*
218  * Version 2 of the SPI controller has
219  *  - CR.LASTXFER
220  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
221  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
222  *  - SPI_CSRx.CSAAT
223  *  - SPI_CSRx.SBCR allows faster clocking
224  *
225  * We can determine the controller version by reading the VERSION
226  * register, but I haven't checked that it exists on all chips, and
227  * this is cheaper anyway.
228  */
229 static bool atmel_spi_is_v2(void)
230 {
231 	return !cpu_is_at91rm9200();
232 }
233 
234 /*
235  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
236  * they assume that spi slave device state will not change on deselect, so
237  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
238  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
239  * controllers have CSAAT and friends.
240  *
241  * Since the CSAAT functionality is a bit weird on newer controllers as
242  * well, we use GPIO to control nCSx pins on all controllers, updating
243  * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
244  * support active-high chipselects despite the controller's belief that
245  * only active-low devices/systems exists.
246  *
247  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
248  * right when driven with GPIO.  ("Mode Fault does not allow more than one
249  * Master on Chip Select 0.")  No workaround exists for that ... so for
250  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
251  * and (c) will trigger that first erratum in some cases.
252  *
253  * TODO: Test if the atmel_spi_is_v2() branch below works on
254  * AT91RM9200 if we use some other register than CSR0. However, don't
255  * do this unconditionally since AP7000 has an errata where the BITS
256  * field in CSR0 overrides all other CSRs.
257  */
258 
259 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
260 {
261 	struct atmel_spi_device *asd = spi->controller_state;
262 	unsigned active = spi->mode & SPI_CS_HIGH;
263 	u32 mr;
264 
265 	if (atmel_spi_is_v2()) {
266 		/*
267 		 * Always use CSR0. This ensures that the clock
268 		 * switches to the correct idle polarity before we
269 		 * toggle the CS.
270 		 */
271 		spi_writel(as, CSR0, asd->csr);
272 		spi_writel(as, MR, SPI_BF(PCS, 0x0e) | SPI_BIT(MODFDIS)
273 				| SPI_BIT(MSTR));
274 		mr = spi_readl(as, MR);
275 		gpio_set_value(asd->npcs_pin, active);
276 	} else {
277 		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
278 		int i;
279 		u32 csr;
280 
281 		/* Make sure clock polarity is correct */
282 		for (i = 0; i < spi->master->num_chipselect; i++) {
283 			csr = spi_readl(as, CSR0 + 4 * i);
284 			if ((csr ^ cpol) & SPI_BIT(CPOL))
285 				spi_writel(as, CSR0 + 4 * i,
286 						csr ^ SPI_BIT(CPOL));
287 		}
288 
289 		mr = spi_readl(as, MR);
290 		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
291 		if (spi->chip_select != 0)
292 			gpio_set_value(asd->npcs_pin, active);
293 		spi_writel(as, MR, mr);
294 	}
295 
296 	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
297 			asd->npcs_pin, active ? " (high)" : "",
298 			mr);
299 }
300 
301 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
302 {
303 	struct atmel_spi_device *asd = spi->controller_state;
304 	unsigned active = spi->mode & SPI_CS_HIGH;
305 	u32 mr;
306 
307 	/* only deactivate *this* device; sometimes transfers to
308 	 * another device may be active when this routine is called.
309 	 */
310 	mr = spi_readl(as, MR);
311 	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
312 		mr = SPI_BFINS(PCS, 0xf, mr);
313 		spi_writel(as, MR, mr);
314 	}
315 
316 	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
317 			asd->npcs_pin, active ? " (low)" : "",
318 			mr);
319 
320 	if (atmel_spi_is_v2() || spi->chip_select != 0)
321 		gpio_set_value(asd->npcs_pin, !active);
322 }
323 
324 static inline int atmel_spi_xfer_is_last(struct spi_message *msg,
325 					struct spi_transfer *xfer)
326 {
327 	return msg->transfers.prev == &xfer->transfer_list;
328 }
329 
330 static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer)
331 {
332 	return xfer->delay_usecs == 0 && !xfer->cs_change;
333 }
334 
335 static void atmel_spi_next_xfer_data(struct spi_master *master,
336 				struct spi_transfer *xfer,
337 				dma_addr_t *tx_dma,
338 				dma_addr_t *rx_dma,
339 				u32 *plen)
340 {
341 	struct atmel_spi	*as = spi_master_get_devdata(master);
342 	u32			len = *plen;
343 
344 	/* use scratch buffer only when rx or tx data is unspecified */
345 	if (xfer->rx_buf)
346 		*rx_dma = xfer->rx_dma + xfer->len - *plen;
347 	else {
348 		*rx_dma = as->buffer_dma;
349 		if (len > BUFFER_SIZE)
350 			len = BUFFER_SIZE;
351 	}
352 	if (xfer->tx_buf)
353 		*tx_dma = xfer->tx_dma + xfer->len - *plen;
354 	else {
355 		*tx_dma = as->buffer_dma;
356 		if (len > BUFFER_SIZE)
357 			len = BUFFER_SIZE;
358 		memset(as->buffer, 0, len);
359 		dma_sync_single_for_device(&as->pdev->dev,
360 				as->buffer_dma, len, DMA_TO_DEVICE);
361 	}
362 
363 	*plen = len;
364 }
365 
366 /*
367  * Submit next transfer for DMA.
368  * lock is held, spi irq is blocked
369  */
370 static void atmel_spi_next_xfer(struct spi_master *master,
371 				struct spi_message *msg)
372 {
373 	struct atmel_spi	*as = spi_master_get_devdata(master);
374 	struct spi_transfer	*xfer;
375 	u32			len, remaining;
376 	u32			ieval;
377 	dma_addr_t		tx_dma, rx_dma;
378 
379 	if (!as->current_transfer)
380 		xfer = list_entry(msg->transfers.next,
381 				struct spi_transfer, transfer_list);
382 	else if (!as->next_transfer)
383 		xfer = list_entry(as->current_transfer->transfer_list.next,
384 				struct spi_transfer, transfer_list);
385 	else
386 		xfer = NULL;
387 
388 	if (xfer) {
389 		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
390 
391 		len = xfer->len;
392 		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
393 		remaining = xfer->len - len;
394 
395 		spi_writel(as, RPR, rx_dma);
396 		spi_writel(as, TPR, tx_dma);
397 
398 		if (msg->spi->bits_per_word > 8)
399 			len >>= 1;
400 		spi_writel(as, RCR, len);
401 		spi_writel(as, TCR, len);
402 
403 		dev_dbg(&msg->spi->dev,
404 			"  start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
405 			xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
406 			xfer->rx_buf, xfer->rx_dma);
407 	} else {
408 		xfer = as->next_transfer;
409 		remaining = as->next_remaining_bytes;
410 	}
411 
412 	as->current_transfer = xfer;
413 	as->current_remaining_bytes = remaining;
414 
415 	if (remaining > 0)
416 		len = remaining;
417 	else if (!atmel_spi_xfer_is_last(msg, xfer)
418 			&& atmel_spi_xfer_can_be_chained(xfer)) {
419 		xfer = list_entry(xfer->transfer_list.next,
420 				struct spi_transfer, transfer_list);
421 		len = xfer->len;
422 	} else
423 		xfer = NULL;
424 
425 	as->next_transfer = xfer;
426 
427 	if (xfer) {
428 		u32	total;
429 
430 		total = len;
431 		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
432 		as->next_remaining_bytes = total - len;
433 
434 		spi_writel(as, RNPR, rx_dma);
435 		spi_writel(as, TNPR, tx_dma);
436 
437 		if (msg->spi->bits_per_word > 8)
438 			len >>= 1;
439 		spi_writel(as, RNCR, len);
440 		spi_writel(as, TNCR, len);
441 
442 		dev_dbg(&msg->spi->dev,
443 			"  next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
444 			xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
445 			xfer->rx_buf, xfer->rx_dma);
446 		ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES);
447 	} else {
448 		spi_writel(as, RNCR, 0);
449 		spi_writel(as, TNCR, 0);
450 		ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES);
451 	}
452 
453 	/* REVISIT: We're waiting for ENDRX before we start the next
454 	 * transfer because we need to handle some difficult timing
455 	 * issues otherwise. If we wait for ENDTX in one transfer and
456 	 * then starts waiting for ENDRX in the next, it's difficult
457 	 * to tell the difference between the ENDRX interrupt we're
458 	 * actually waiting for and the ENDRX interrupt of the
459 	 * previous transfer.
460 	 *
461 	 * It should be doable, though. Just not now...
462 	 */
463 	spi_writel(as, IER, ieval);
464 	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
465 }
466 
467 static void atmel_spi_next_message(struct spi_master *master)
468 {
469 	struct atmel_spi	*as = spi_master_get_devdata(master);
470 	struct spi_message	*msg;
471 	struct spi_device	*spi;
472 
473 	BUG_ON(as->current_transfer);
474 
475 	msg = list_entry(as->queue.next, struct spi_message, queue);
476 	spi = msg->spi;
477 
478 	dev_dbg(master->dev.parent, "start message %p for %s\n",
479 			msg, dev_name(&spi->dev));
480 
481 	/* select chip if it's not still active */
482 	if (as->stay) {
483 		if (as->stay != spi) {
484 			cs_deactivate(as, as->stay);
485 			cs_activate(as, spi);
486 		}
487 		as->stay = NULL;
488 	} else
489 		cs_activate(as, spi);
490 
491 	atmel_spi_next_xfer(master, msg);
492 }
493 
494 /*
495  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
496  *  - The buffer is either valid for CPU access, else NULL
497  *  - If the buffer is valid, so is its DMA address
498  *
499  * This driver manages the dma address unless message->is_dma_mapped.
500  */
501 static int
502 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
503 {
504 	struct device	*dev = &as->pdev->dev;
505 
506 	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
507 	if (xfer->tx_buf) {
508 		/* tx_buf is a const void* where we need a void * for the dma
509 		 * mapping */
510 		void *nonconst_tx = (void *)xfer->tx_buf;
511 
512 		xfer->tx_dma = dma_map_single(dev,
513 				nonconst_tx, xfer->len,
514 				DMA_TO_DEVICE);
515 		if (dma_mapping_error(dev, xfer->tx_dma))
516 			return -ENOMEM;
517 	}
518 	if (xfer->rx_buf) {
519 		xfer->rx_dma = dma_map_single(dev,
520 				xfer->rx_buf, xfer->len,
521 				DMA_FROM_DEVICE);
522 		if (dma_mapping_error(dev, xfer->rx_dma)) {
523 			if (xfer->tx_buf)
524 				dma_unmap_single(dev,
525 						xfer->tx_dma, xfer->len,
526 						DMA_TO_DEVICE);
527 			return -ENOMEM;
528 		}
529 	}
530 	return 0;
531 }
532 
533 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
534 				     struct spi_transfer *xfer)
535 {
536 	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
537 		dma_unmap_single(master->dev.parent, xfer->tx_dma,
538 				 xfer->len, DMA_TO_DEVICE);
539 	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
540 		dma_unmap_single(master->dev.parent, xfer->rx_dma,
541 				 xfer->len, DMA_FROM_DEVICE);
542 }
543 
544 static void
545 atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as,
546 		struct spi_message *msg, int status, int stay)
547 {
548 	if (!stay || status < 0)
549 		cs_deactivate(as, msg->spi);
550 	else
551 		as->stay = msg->spi;
552 
553 	list_del(&msg->queue);
554 	msg->status = status;
555 
556 	dev_dbg(master->dev.parent,
557 		"xfer complete: %u bytes transferred\n",
558 		msg->actual_length);
559 
560 	spin_unlock(&as->lock);
561 	msg->complete(msg->context);
562 	spin_lock(&as->lock);
563 
564 	as->current_transfer = NULL;
565 	as->next_transfer = NULL;
566 
567 	/* continue if needed */
568 	if (list_empty(&as->queue) || as->stopping)
569 		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
570 	else
571 		atmel_spi_next_message(master);
572 }
573 
574 static irqreturn_t
575 atmel_spi_interrupt(int irq, void *dev_id)
576 {
577 	struct spi_master	*master = dev_id;
578 	struct atmel_spi	*as = spi_master_get_devdata(master);
579 	struct spi_message	*msg;
580 	struct spi_transfer	*xfer;
581 	u32			status, pending, imr;
582 	int			ret = IRQ_NONE;
583 
584 	spin_lock(&as->lock);
585 
586 	xfer = as->current_transfer;
587 	msg = list_entry(as->queue.next, struct spi_message, queue);
588 
589 	imr = spi_readl(as, IMR);
590 	status = spi_readl(as, SR);
591 	pending = status & imr;
592 
593 	if (pending & SPI_BIT(OVRES)) {
594 		int timeout;
595 
596 		ret = IRQ_HANDLED;
597 
598 		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
599 				     | SPI_BIT(OVRES)));
600 
601 		/*
602 		 * When we get an overrun, we disregard the current
603 		 * transfer. Data will not be copied back from any
604 		 * bounce buffer and msg->actual_len will not be
605 		 * updated with the last xfer.
606 		 *
607 		 * We will also not process any remaning transfers in
608 		 * the message.
609 		 *
610 		 * First, stop the transfer and unmap the DMA buffers.
611 		 */
612 		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
613 		if (!msg->is_dma_mapped)
614 			atmel_spi_dma_unmap_xfer(master, xfer);
615 
616 		/* REVISIT: udelay in irq is unfriendly */
617 		if (xfer->delay_usecs)
618 			udelay(xfer->delay_usecs);
619 
620 		dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n",
621 			 spi_readl(as, TCR), spi_readl(as, RCR));
622 
623 		/*
624 		 * Clean up DMA registers and make sure the data
625 		 * registers are empty.
626 		 */
627 		spi_writel(as, RNCR, 0);
628 		spi_writel(as, TNCR, 0);
629 		spi_writel(as, RCR, 0);
630 		spi_writel(as, TCR, 0);
631 		for (timeout = 1000; timeout; timeout--)
632 			if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
633 				break;
634 		if (!timeout)
635 			dev_warn(master->dev.parent,
636 				 "timeout waiting for TXEMPTY");
637 		while (spi_readl(as, SR) & SPI_BIT(RDRF))
638 			spi_readl(as, RDR);
639 
640 		/* Clear any overrun happening while cleaning up */
641 		spi_readl(as, SR);
642 
643 		atmel_spi_msg_done(master, as, msg, -EIO, 0);
644 	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
645 		ret = IRQ_HANDLED;
646 
647 		spi_writel(as, IDR, pending);
648 
649 		if (as->current_remaining_bytes == 0) {
650 			msg->actual_length += xfer->len;
651 
652 			if (!msg->is_dma_mapped)
653 				atmel_spi_dma_unmap_xfer(master, xfer);
654 
655 			/* REVISIT: udelay in irq is unfriendly */
656 			if (xfer->delay_usecs)
657 				udelay(xfer->delay_usecs);
658 
659 			if (atmel_spi_xfer_is_last(msg, xfer)) {
660 				/* report completed message */
661 				atmel_spi_msg_done(master, as, msg, 0,
662 						xfer->cs_change);
663 			} else {
664 				if (xfer->cs_change) {
665 					cs_deactivate(as, msg->spi);
666 					udelay(1);
667 					cs_activate(as, msg->spi);
668 				}
669 
670 				/*
671 				 * Not done yet. Submit the next transfer.
672 				 *
673 				 * FIXME handle protocol options for xfer
674 				 */
675 				atmel_spi_next_xfer(master, msg);
676 			}
677 		} else {
678 			/*
679 			 * Keep going, we still have data to send in
680 			 * the current transfer.
681 			 */
682 			atmel_spi_next_xfer(master, msg);
683 		}
684 	}
685 
686 	spin_unlock(&as->lock);
687 
688 	return ret;
689 }
690 
691 static int atmel_spi_setup(struct spi_device *spi)
692 {
693 	struct atmel_spi	*as;
694 	struct atmel_spi_device	*asd;
695 	u32			scbr, csr;
696 	unsigned int		bits = spi->bits_per_word;
697 	unsigned long		bus_hz;
698 	unsigned int		npcs_pin;
699 	int			ret;
700 
701 	as = spi_master_get_devdata(spi->master);
702 
703 	if (as->stopping)
704 		return -ESHUTDOWN;
705 
706 	if (spi->chip_select > spi->master->num_chipselect) {
707 		dev_dbg(&spi->dev,
708 				"setup: invalid chipselect %u (%u defined)\n",
709 				spi->chip_select, spi->master->num_chipselect);
710 		return -EINVAL;
711 	}
712 
713 	if (bits < 8 || bits > 16) {
714 		dev_dbg(&spi->dev,
715 				"setup: invalid bits_per_word %u (8 to 16)\n",
716 				bits);
717 		return -EINVAL;
718 	}
719 
720 	/* see notes above re chipselect */
721 	if (!atmel_spi_is_v2()
722 			&& spi->chip_select == 0
723 			&& (spi->mode & SPI_CS_HIGH)) {
724 		dev_dbg(&spi->dev, "setup: can't be active-high\n");
725 		return -EINVAL;
726 	}
727 
728 	/* v1 chips start out at half the peripheral bus speed. */
729 	bus_hz = clk_get_rate(as->clk);
730 	if (!atmel_spi_is_v2())
731 		bus_hz /= 2;
732 
733 	if (spi->max_speed_hz) {
734 		/*
735 		 * Calculate the lowest divider that satisfies the
736 		 * constraint, assuming div32/fdiv/mbz == 0.
737 		 */
738 		scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz);
739 
740 		/*
741 		 * If the resulting divider doesn't fit into the
742 		 * register bitfield, we can't satisfy the constraint.
743 		 */
744 		if (scbr >= (1 << SPI_SCBR_SIZE)) {
745 			dev_dbg(&spi->dev,
746 				"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
747 				spi->max_speed_hz, scbr, bus_hz/255);
748 			return -EINVAL;
749 		}
750 	} else
751 		/* speed zero means "as slow as possible" */
752 		scbr = 0xff;
753 
754 	csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8);
755 	if (spi->mode & SPI_CPOL)
756 		csr |= SPI_BIT(CPOL);
757 	if (!(spi->mode & SPI_CPHA))
758 		csr |= SPI_BIT(NCPHA);
759 
760 	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
761 	 *
762 	 * DLYBCT would add delays between words, slowing down transfers.
763 	 * It could potentially be useful to cope with DMA bottlenecks, but
764 	 * in those cases it's probably best to just use a lower bitrate.
765 	 */
766 	csr |= SPI_BF(DLYBS, 0);
767 	csr |= SPI_BF(DLYBCT, 0);
768 
769 	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
770 	npcs_pin = (unsigned int)spi->controller_data;
771 	asd = spi->controller_state;
772 	if (!asd) {
773 		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
774 		if (!asd)
775 			return -ENOMEM;
776 
777 		ret = gpio_request(npcs_pin, dev_name(&spi->dev));
778 		if (ret) {
779 			kfree(asd);
780 			return ret;
781 		}
782 
783 		asd->npcs_pin = npcs_pin;
784 		spi->controller_state = asd;
785 		gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
786 	} else {
787 		unsigned long		flags;
788 
789 		spin_lock_irqsave(&as->lock, flags);
790 		if (as->stay == spi)
791 			as->stay = NULL;
792 		cs_deactivate(as, spi);
793 		spin_unlock_irqrestore(&as->lock, flags);
794 	}
795 
796 	asd->csr = csr;
797 
798 	dev_dbg(&spi->dev,
799 		"setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
800 		bus_hz / scbr, bits, spi->mode, spi->chip_select, csr);
801 
802 	if (!atmel_spi_is_v2())
803 		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
804 
805 	return 0;
806 }
807 
808 static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg)
809 {
810 	struct atmel_spi	*as;
811 	struct spi_transfer	*xfer;
812 	unsigned long		flags;
813 	struct device		*controller = spi->master->dev.parent;
814 	u8			bits;
815 	struct atmel_spi_device	*asd;
816 
817 	as = spi_master_get_devdata(spi->master);
818 
819 	dev_dbg(controller, "new message %p submitted for %s\n",
820 			msg, dev_name(&spi->dev));
821 
822 	if (unlikely(list_empty(&msg->transfers)))
823 		return -EINVAL;
824 
825 	if (as->stopping)
826 		return -ESHUTDOWN;
827 
828 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
829 		if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
830 			dev_dbg(&spi->dev, "missing rx or tx buf\n");
831 			return -EINVAL;
832 		}
833 
834 		if (xfer->bits_per_word) {
835 			asd = spi->controller_state;
836 			bits = (asd->csr >> 4) & 0xf;
837 			if (bits != xfer->bits_per_word - 8) {
838 				dev_dbg(&spi->dev, "you can't yet change "
839 					 "bits_per_word in transfers\n");
840 				return -ENOPROTOOPT;
841 			}
842 		}
843 
844 		/* FIXME implement these protocol options!! */
845 		if (xfer->speed_hz) {
846 			dev_dbg(&spi->dev, "no protocol options yet\n");
847 			return -ENOPROTOOPT;
848 		}
849 
850 		/*
851 		 * DMA map early, for performance (empties dcache ASAP) and
852 		 * better fault reporting.  This is a DMA-only driver.
853 		 *
854 		 * NOTE that if dma_unmap_single() ever starts to do work on
855 		 * platforms supported by this driver, we would need to clean
856 		 * up mappings for previously-mapped transfers.
857 		 */
858 		if (!msg->is_dma_mapped) {
859 			if (atmel_spi_dma_map_xfer(as, xfer) < 0)
860 				return -ENOMEM;
861 		}
862 	}
863 
864 #ifdef VERBOSE
865 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
866 		dev_dbg(controller,
867 			"  xfer %p: len %u tx %p/%08x rx %p/%08x\n",
868 			xfer, xfer->len,
869 			xfer->tx_buf, xfer->tx_dma,
870 			xfer->rx_buf, xfer->rx_dma);
871 	}
872 #endif
873 
874 	msg->status = -EINPROGRESS;
875 	msg->actual_length = 0;
876 
877 	spin_lock_irqsave(&as->lock, flags);
878 	list_add_tail(&msg->queue, &as->queue);
879 	if (!as->current_transfer)
880 		atmel_spi_next_message(spi->master);
881 	spin_unlock_irqrestore(&as->lock, flags);
882 
883 	return 0;
884 }
885 
886 static void atmel_spi_cleanup(struct spi_device *spi)
887 {
888 	struct atmel_spi	*as = spi_master_get_devdata(spi->master);
889 	struct atmel_spi_device	*asd = spi->controller_state;
890 	unsigned		gpio = (unsigned) spi->controller_data;
891 	unsigned long		flags;
892 
893 	if (!asd)
894 		return;
895 
896 	spin_lock_irqsave(&as->lock, flags);
897 	if (as->stay == spi) {
898 		as->stay = NULL;
899 		cs_deactivate(as, spi);
900 	}
901 	spin_unlock_irqrestore(&as->lock, flags);
902 
903 	spi->controller_state = NULL;
904 	gpio_free(gpio);
905 	kfree(asd);
906 }
907 
908 /*-------------------------------------------------------------------------*/
909 
910 static int atmel_spi_probe(struct platform_device *pdev)
911 {
912 	struct resource		*regs;
913 	int			irq;
914 	struct clk		*clk;
915 	int			ret;
916 	struct spi_master	*master;
917 	struct atmel_spi	*as;
918 
919 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
920 	if (!regs)
921 		return -ENXIO;
922 
923 	irq = platform_get_irq(pdev, 0);
924 	if (irq < 0)
925 		return irq;
926 
927 	clk = clk_get(&pdev->dev, "spi_clk");
928 	if (IS_ERR(clk))
929 		return PTR_ERR(clk);
930 
931 	/* setup spi core then atmel-specific driver state */
932 	ret = -ENOMEM;
933 	master = spi_alloc_master(&pdev->dev, sizeof *as);
934 	if (!master)
935 		goto out_free;
936 
937 	/* the spi->mode bits understood by this driver: */
938 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
939 
940 	master->bus_num = pdev->id;
941 	master->num_chipselect = 4;
942 	master->setup = atmel_spi_setup;
943 	master->transfer = atmel_spi_transfer;
944 	master->cleanup = atmel_spi_cleanup;
945 	platform_set_drvdata(pdev, master);
946 
947 	as = spi_master_get_devdata(master);
948 
949 	/*
950 	 * Scratch buffer is used for throwaway rx and tx data.
951 	 * It's coherent to minimize dcache pollution.
952 	 */
953 	as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
954 					&as->buffer_dma, GFP_KERNEL);
955 	if (!as->buffer)
956 		goto out_free;
957 
958 	spin_lock_init(&as->lock);
959 	INIT_LIST_HEAD(&as->queue);
960 	as->pdev = pdev;
961 	as->regs = ioremap(regs->start, resource_size(regs));
962 	if (!as->regs)
963 		goto out_free_buffer;
964 	as->irq = irq;
965 	as->clk = clk;
966 
967 	ret = request_irq(irq, atmel_spi_interrupt, 0,
968 			dev_name(&pdev->dev), master);
969 	if (ret)
970 		goto out_unmap_regs;
971 
972 	/* Initialize the hardware */
973 	clk_enable(clk);
974 	spi_writel(as, CR, SPI_BIT(SWRST));
975 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
976 	spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
977 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
978 	spi_writel(as, CR, SPI_BIT(SPIEN));
979 
980 	/* go! */
981 	dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
982 			(unsigned long)regs->start, irq);
983 
984 	ret = spi_register_master(master);
985 	if (ret)
986 		goto out_reset_hw;
987 
988 	return 0;
989 
990 out_reset_hw:
991 	spi_writel(as, CR, SPI_BIT(SWRST));
992 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
993 	clk_disable(clk);
994 	free_irq(irq, master);
995 out_unmap_regs:
996 	iounmap(as->regs);
997 out_free_buffer:
998 	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
999 			as->buffer_dma);
1000 out_free:
1001 	clk_put(clk);
1002 	spi_master_put(master);
1003 	return ret;
1004 }
1005 
1006 static int atmel_spi_remove(struct platform_device *pdev)
1007 {
1008 	struct spi_master	*master = platform_get_drvdata(pdev);
1009 	struct atmel_spi	*as = spi_master_get_devdata(master);
1010 	struct spi_message	*msg;
1011 
1012 	/* reset the hardware and block queue progress */
1013 	spin_lock_irq(&as->lock);
1014 	as->stopping = 1;
1015 	spi_writel(as, CR, SPI_BIT(SWRST));
1016 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1017 	spi_readl(as, SR);
1018 	spin_unlock_irq(&as->lock);
1019 
1020 	/* Terminate remaining queued transfers */
1021 	list_for_each_entry(msg, &as->queue, queue) {
1022 		/* REVISIT unmapping the dma is a NOP on ARM and AVR32
1023 		 * but we shouldn't depend on that...
1024 		 */
1025 		msg->status = -ESHUTDOWN;
1026 		msg->complete(msg->context);
1027 	}
1028 
1029 	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1030 			as->buffer_dma);
1031 
1032 	clk_disable(as->clk);
1033 	clk_put(as->clk);
1034 	free_irq(as->irq, master);
1035 	iounmap(as->regs);
1036 
1037 	spi_unregister_master(master);
1038 
1039 	return 0;
1040 }
1041 
1042 #ifdef	CONFIG_PM
1043 
1044 static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg)
1045 {
1046 	struct spi_master	*master = platform_get_drvdata(pdev);
1047 	struct atmel_spi	*as = spi_master_get_devdata(master);
1048 
1049 	clk_disable(as->clk);
1050 	return 0;
1051 }
1052 
1053 static int atmel_spi_resume(struct platform_device *pdev)
1054 {
1055 	struct spi_master	*master = platform_get_drvdata(pdev);
1056 	struct atmel_spi	*as = spi_master_get_devdata(master);
1057 
1058 	clk_enable(as->clk);
1059 	return 0;
1060 }
1061 
1062 #else
1063 #define	atmel_spi_suspend	NULL
1064 #define	atmel_spi_resume	NULL
1065 #endif
1066 
1067 
1068 static struct platform_driver atmel_spi_driver = {
1069 	.driver		= {
1070 		.name	= "atmel_spi",
1071 		.owner	= THIS_MODULE,
1072 	},
1073 	.suspend	= atmel_spi_suspend,
1074 	.resume		= atmel_spi_resume,
1075 	.probe		= atmel_spi_probe,
1076 	.remove		= __exit_p(atmel_spi_remove),
1077 };
1078 module_platform_driver(atmel_spi_driver);
1079 
1080 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1081 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1082 MODULE_LICENSE("GPL");
1083 MODULE_ALIAS("platform:atmel_spi");
1084