1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for Atmel AT32 and AT91 SPI Controllers 4 * 5 * Copyright (C) 2006 Atmel Corporation 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/clk.h> 10 #include <linux/module.h> 11 #include <linux/platform_device.h> 12 #include <linux/delay.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/dmaengine.h> 15 #include <linux/err.h> 16 #include <linux/interrupt.h> 17 #include <linux/spi/spi.h> 18 #include <linux/slab.h> 19 #include <linux/of.h> 20 21 #include <linux/io.h> 22 #include <linux/gpio/consumer.h> 23 #include <linux/pinctrl/consumer.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/iopoll.h> 26 #include <trace/events/spi.h> 27 28 /* SPI register offsets */ 29 #define SPI_CR 0x0000 30 #define SPI_MR 0x0004 31 #define SPI_RDR 0x0008 32 #define SPI_TDR 0x000c 33 #define SPI_SR 0x0010 34 #define SPI_IER 0x0014 35 #define SPI_IDR 0x0018 36 #define SPI_IMR 0x001c 37 #define SPI_CSR0 0x0030 38 #define SPI_CSR1 0x0034 39 #define SPI_CSR2 0x0038 40 #define SPI_CSR3 0x003c 41 #define SPI_FMR 0x0040 42 #define SPI_FLR 0x0044 43 #define SPI_VERSION 0x00fc 44 #define SPI_RPR 0x0100 45 #define SPI_RCR 0x0104 46 #define SPI_TPR 0x0108 47 #define SPI_TCR 0x010c 48 #define SPI_RNPR 0x0110 49 #define SPI_RNCR 0x0114 50 #define SPI_TNPR 0x0118 51 #define SPI_TNCR 0x011c 52 #define SPI_PTCR 0x0120 53 #define SPI_PTSR 0x0124 54 55 /* Bitfields in CR */ 56 #define SPI_SPIEN_OFFSET 0 57 #define SPI_SPIEN_SIZE 1 58 #define SPI_SPIDIS_OFFSET 1 59 #define SPI_SPIDIS_SIZE 1 60 #define SPI_SWRST_OFFSET 7 61 #define SPI_SWRST_SIZE 1 62 #define SPI_LASTXFER_OFFSET 24 63 #define SPI_LASTXFER_SIZE 1 64 #define SPI_TXFCLR_OFFSET 16 65 #define SPI_TXFCLR_SIZE 1 66 #define SPI_RXFCLR_OFFSET 17 67 #define SPI_RXFCLR_SIZE 1 68 #define SPI_FIFOEN_OFFSET 30 69 #define SPI_FIFOEN_SIZE 1 70 #define SPI_FIFODIS_OFFSET 31 71 #define SPI_FIFODIS_SIZE 1 72 73 /* Bitfields in MR */ 74 #define SPI_MSTR_OFFSET 0 75 #define SPI_MSTR_SIZE 1 76 #define SPI_PS_OFFSET 1 77 #define SPI_PS_SIZE 1 78 #define SPI_PCSDEC_OFFSET 2 79 #define SPI_PCSDEC_SIZE 1 80 #define SPI_FDIV_OFFSET 3 81 #define SPI_FDIV_SIZE 1 82 #define SPI_MODFDIS_OFFSET 4 83 #define SPI_MODFDIS_SIZE 1 84 #define SPI_WDRBT_OFFSET 5 85 #define SPI_WDRBT_SIZE 1 86 #define SPI_LLB_OFFSET 7 87 #define SPI_LLB_SIZE 1 88 #define SPI_PCS_OFFSET 16 89 #define SPI_PCS_SIZE 4 90 #define SPI_DLYBCS_OFFSET 24 91 #define SPI_DLYBCS_SIZE 8 92 93 /* Bitfields in RDR */ 94 #define SPI_RD_OFFSET 0 95 #define SPI_RD_SIZE 16 96 97 /* Bitfields in TDR */ 98 #define SPI_TD_OFFSET 0 99 #define SPI_TD_SIZE 16 100 101 /* Bitfields in SR */ 102 #define SPI_RDRF_OFFSET 0 103 #define SPI_RDRF_SIZE 1 104 #define SPI_TDRE_OFFSET 1 105 #define SPI_TDRE_SIZE 1 106 #define SPI_MODF_OFFSET 2 107 #define SPI_MODF_SIZE 1 108 #define SPI_OVRES_OFFSET 3 109 #define SPI_OVRES_SIZE 1 110 #define SPI_ENDRX_OFFSET 4 111 #define SPI_ENDRX_SIZE 1 112 #define SPI_ENDTX_OFFSET 5 113 #define SPI_ENDTX_SIZE 1 114 #define SPI_RXBUFF_OFFSET 6 115 #define SPI_RXBUFF_SIZE 1 116 #define SPI_TXBUFE_OFFSET 7 117 #define SPI_TXBUFE_SIZE 1 118 #define SPI_NSSR_OFFSET 8 119 #define SPI_NSSR_SIZE 1 120 #define SPI_TXEMPTY_OFFSET 9 121 #define SPI_TXEMPTY_SIZE 1 122 #define SPI_SPIENS_OFFSET 16 123 #define SPI_SPIENS_SIZE 1 124 #define SPI_TXFEF_OFFSET 24 125 #define SPI_TXFEF_SIZE 1 126 #define SPI_TXFFF_OFFSET 25 127 #define SPI_TXFFF_SIZE 1 128 #define SPI_TXFTHF_OFFSET 26 129 #define SPI_TXFTHF_SIZE 1 130 #define SPI_RXFEF_OFFSET 27 131 #define SPI_RXFEF_SIZE 1 132 #define SPI_RXFFF_OFFSET 28 133 #define SPI_RXFFF_SIZE 1 134 #define SPI_RXFTHF_OFFSET 29 135 #define SPI_RXFTHF_SIZE 1 136 #define SPI_TXFPTEF_OFFSET 30 137 #define SPI_TXFPTEF_SIZE 1 138 #define SPI_RXFPTEF_OFFSET 31 139 #define SPI_RXFPTEF_SIZE 1 140 141 /* Bitfields in CSR0 */ 142 #define SPI_CPOL_OFFSET 0 143 #define SPI_CPOL_SIZE 1 144 #define SPI_NCPHA_OFFSET 1 145 #define SPI_NCPHA_SIZE 1 146 #define SPI_CSAAT_OFFSET 3 147 #define SPI_CSAAT_SIZE 1 148 #define SPI_BITS_OFFSET 4 149 #define SPI_BITS_SIZE 4 150 #define SPI_SCBR_OFFSET 8 151 #define SPI_SCBR_SIZE 8 152 #define SPI_DLYBS_OFFSET 16 153 #define SPI_DLYBS_SIZE 8 154 #define SPI_DLYBCT_OFFSET 24 155 #define SPI_DLYBCT_SIZE 8 156 157 /* Bitfields in RCR */ 158 #define SPI_RXCTR_OFFSET 0 159 #define SPI_RXCTR_SIZE 16 160 161 /* Bitfields in TCR */ 162 #define SPI_TXCTR_OFFSET 0 163 #define SPI_TXCTR_SIZE 16 164 165 /* Bitfields in RNCR */ 166 #define SPI_RXNCR_OFFSET 0 167 #define SPI_RXNCR_SIZE 16 168 169 /* Bitfields in TNCR */ 170 #define SPI_TXNCR_OFFSET 0 171 #define SPI_TXNCR_SIZE 16 172 173 /* Bitfields in PTCR */ 174 #define SPI_RXTEN_OFFSET 0 175 #define SPI_RXTEN_SIZE 1 176 #define SPI_RXTDIS_OFFSET 1 177 #define SPI_RXTDIS_SIZE 1 178 #define SPI_TXTEN_OFFSET 8 179 #define SPI_TXTEN_SIZE 1 180 #define SPI_TXTDIS_OFFSET 9 181 #define SPI_TXTDIS_SIZE 1 182 183 /* Bitfields in FMR */ 184 #define SPI_TXRDYM_OFFSET 0 185 #define SPI_TXRDYM_SIZE 2 186 #define SPI_RXRDYM_OFFSET 4 187 #define SPI_RXRDYM_SIZE 2 188 #define SPI_TXFTHRES_OFFSET 16 189 #define SPI_TXFTHRES_SIZE 6 190 #define SPI_RXFTHRES_OFFSET 24 191 #define SPI_RXFTHRES_SIZE 6 192 193 /* Bitfields in FLR */ 194 #define SPI_TXFL_OFFSET 0 195 #define SPI_TXFL_SIZE 6 196 #define SPI_RXFL_OFFSET 16 197 #define SPI_RXFL_SIZE 6 198 199 /* Constants for BITS */ 200 #define SPI_BITS_8_BPT 0 201 #define SPI_BITS_9_BPT 1 202 #define SPI_BITS_10_BPT 2 203 #define SPI_BITS_11_BPT 3 204 #define SPI_BITS_12_BPT 4 205 #define SPI_BITS_13_BPT 5 206 #define SPI_BITS_14_BPT 6 207 #define SPI_BITS_15_BPT 7 208 #define SPI_BITS_16_BPT 8 209 #define SPI_ONE_DATA 0 210 #define SPI_TWO_DATA 1 211 #define SPI_FOUR_DATA 2 212 213 /* Bit manipulation macros */ 214 #define SPI_BIT(name) \ 215 (1 << SPI_##name##_OFFSET) 216 #define SPI_BF(name, value) \ 217 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET) 218 #define SPI_BFEXT(name, value) \ 219 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1)) 220 #define SPI_BFINS(name, value, old) \ 221 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \ 222 | SPI_BF(name, value)) 223 224 /* Register access macros */ 225 #define spi_readl(port, reg) \ 226 readl_relaxed((port)->regs + SPI_##reg) 227 #define spi_writel(port, reg, value) \ 228 writel_relaxed((value), (port)->regs + SPI_##reg) 229 #define spi_writew(port, reg, value) \ 230 writew_relaxed((value), (port)->regs + SPI_##reg) 231 232 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and 233 * cache operations; better heuristics consider wordsize and bitrate. 234 */ 235 #define DMA_MIN_BYTES 16 236 237 #define AUTOSUSPEND_TIMEOUT 2000 238 239 struct atmel_spi_caps { 240 bool is_spi2; 241 bool has_wdrbt; 242 bool has_dma_support; 243 bool has_pdc_support; 244 }; 245 246 /* 247 * The core SPI transfer engine just talks to a register bank to set up 248 * DMA transfers; transfer queue progress is driven by IRQs. The clock 249 * framework provides the base clock, subdivided for each spi_device. 250 */ 251 struct atmel_spi { 252 spinlock_t lock; 253 unsigned long flags; 254 255 phys_addr_t phybase; 256 void __iomem *regs; 257 int irq; 258 struct clk *clk; 259 struct clk *gclk; 260 struct platform_device *pdev; 261 unsigned long spi_clk; 262 263 struct spi_transfer *current_transfer; 264 int current_remaining_bytes; 265 int done_status; 266 dma_addr_t dma_addr_rx_bbuf; 267 dma_addr_t dma_addr_tx_bbuf; 268 void *addr_rx_bbuf; 269 void *addr_tx_bbuf; 270 271 struct completion xfer_completion; 272 273 struct atmel_spi_caps caps; 274 275 bool use_dma; 276 bool use_pdc; 277 278 bool keep_cs; 279 280 u32 fifo_size; 281 bool last_polarity; 282 u8 native_cs_free; 283 u8 native_cs_for_gpio; 284 }; 285 286 /* Controller-specific per-slave state */ 287 struct atmel_spi_device { 288 u32 csr; 289 }; 290 291 #define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */ 292 #define INVALID_DMA_ADDRESS 0xffffffff 293 294 /* 295 * This frequency can be anything supported by the controller, but to avoid 296 * unnecessary delay, the highest possible frequency is chosen. 297 * 298 * This frequency is the highest possible which is not interfering with other 299 * chip select registers (see Note for Serial Clock Bit Rate configuration in 300 * Atmel-11121F-ATARM-SAMA5D3-Series-Datasheet_02-Feb-16, page 1283) 301 */ 302 #define DUMMY_MSG_FREQUENCY 0x02 303 /* 304 * 8 bits is the minimum data the controller is capable of sending. 305 * 306 * This message can be anything as it should not be treated by any SPI device. 307 */ 308 #define DUMMY_MSG 0xAA 309 310 /* 311 * Version 2 of the SPI controller has 312 * - CR.LASTXFER 313 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero) 314 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs) 315 * - SPI_CSRx.CSAAT 316 * - SPI_CSRx.SBCR allows faster clocking 317 */ 318 static bool atmel_spi_is_v2(struct atmel_spi *as) 319 { 320 return as->caps.is_spi2; 321 } 322 323 /* 324 * Send a dummy message. 325 * 326 * This is sometimes needed when using a CS GPIO to force clock transition when 327 * switching between devices with different polarities. 328 */ 329 static void atmel_spi_send_dummy(struct atmel_spi *as, struct spi_device *spi, int chip_select) 330 { 331 u32 status; 332 u32 csr; 333 334 /* 335 * Set a clock frequency to allow sending message on SPI bus. 336 * The frequency here can be anything, but is needed for 337 * the controller to send the data. 338 */ 339 csr = spi_readl(as, CSR0 + 4 * chip_select); 340 csr = SPI_BFINS(SCBR, DUMMY_MSG_FREQUENCY, csr); 341 spi_writel(as, CSR0 + 4 * chip_select, csr); 342 343 /* 344 * Read all data coming from SPI bus, needed to be able to send 345 * the message. 346 */ 347 spi_readl(as, RDR); 348 while (spi_readl(as, SR) & SPI_BIT(RDRF)) { 349 spi_readl(as, RDR); 350 cpu_relax(); 351 } 352 353 spi_writel(as, TDR, DUMMY_MSG); 354 355 readl_poll_timeout_atomic(as->regs + SPI_SR, status, 356 (status & SPI_BIT(TXEMPTY)), 1, 1000); 357 } 358 359 360 /* 361 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby 362 * they assume that spi slave device state will not change on deselect, so 363 * that automagic deselection is OK. ("NPCSx rises if no data is to be 364 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer 365 * controllers have CSAAT and friends. 366 * 367 * Even controller newer than ar91rm9200, using GPIOs can make sens as 368 * it lets us support active-high chipselects despite the controller's 369 * belief that only active-low devices/systems exists. 370 * 371 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work 372 * right when driven with GPIO. ("Mode Fault does not allow more than one 373 * Master on Chip Select 0.") No workaround exists for that ... so for 374 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH, 375 * and (c) will trigger that first erratum in some cases. 376 * 377 * When changing the clock polarity, the SPI controller waits for the next 378 * transmission to enforce the default clock state. This may be an issue when 379 * using a GPIO as Chip Select: the clock level is applied only when the first 380 * packet is sent, once the CS has already been asserted. The workaround is to 381 * avoid this by sending a first (dummy) message before toggling the CS state. 382 */ 383 static void cs_activate(struct atmel_spi *as, struct spi_device *spi) 384 { 385 struct atmel_spi_device *asd = spi->controller_state; 386 bool new_polarity; 387 int chip_select; 388 u32 mr; 389 390 if (spi_get_csgpiod(spi, 0)) 391 chip_select = as->native_cs_for_gpio; 392 else 393 chip_select = spi_get_chipselect(spi, 0); 394 395 if (atmel_spi_is_v2(as)) { 396 spi_writel(as, CSR0 + 4 * chip_select, asd->csr); 397 /* For the low SPI version, there is a issue that PDC transfer 398 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS 399 */ 400 spi_writel(as, CSR0, asd->csr); 401 402 mr = spi_readl(as, MR); 403 mr = SPI_BFINS(PCS, ~(0x01 << chip_select), mr); 404 spi_writel(as, MR, mr); 405 406 /* 407 * Ensures the clock polarity is valid before we actually 408 * assert the CS to avoid spurious clock edges to be 409 * processed by the spi devices. 410 */ 411 if (spi_get_csgpiod(spi, 0)) { 412 new_polarity = (asd->csr & SPI_BIT(CPOL)) != 0; 413 if (new_polarity != as->last_polarity) { 414 /* 415 * Need to disable the GPIO before sending the dummy 416 * message because it is already set by the spi core. 417 */ 418 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), 0); 419 atmel_spi_send_dummy(as, spi, chip_select); 420 as->last_polarity = new_polarity; 421 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), 1); 422 } 423 } 424 } else { 425 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0; 426 int i; 427 u32 csr; 428 429 /* Make sure clock polarity is correct */ 430 for (i = 0; i < spi->controller->num_chipselect; i++) { 431 csr = spi_readl(as, CSR0 + 4 * i); 432 if ((csr ^ cpol) & SPI_BIT(CPOL)) 433 spi_writel(as, CSR0 + 4 * i, 434 csr ^ SPI_BIT(CPOL)); 435 } 436 437 mr = spi_readl(as, MR); 438 mr = SPI_BFINS(PCS, ~(1 << chip_select), mr); 439 spi_writel(as, MR, mr); 440 } 441 442 dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr); 443 } 444 445 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi) 446 { 447 int chip_select; 448 u32 mr; 449 450 if (spi_get_csgpiod(spi, 0)) 451 chip_select = as->native_cs_for_gpio; 452 else 453 chip_select = spi_get_chipselect(spi, 0); 454 455 /* only deactivate *this* device; sometimes transfers to 456 * another device may be active when this routine is called. 457 */ 458 mr = spi_readl(as, MR); 459 if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) { 460 mr = SPI_BFINS(PCS, 0xf, mr); 461 spi_writel(as, MR, mr); 462 } 463 464 dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr); 465 466 if (!spi_get_csgpiod(spi, 0)) 467 spi_writel(as, CR, SPI_BIT(LASTXFER)); 468 } 469 470 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock) 471 { 472 spin_lock_irqsave(&as->lock, as->flags); 473 } 474 475 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock) 476 { 477 spin_unlock_irqrestore(&as->lock, as->flags); 478 } 479 480 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer) 481 { 482 return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf); 483 } 484 485 static inline bool atmel_spi_use_dma(struct atmel_spi *as, 486 struct spi_transfer *xfer) 487 { 488 return as->use_dma && xfer->len >= DMA_MIN_BYTES; 489 } 490 491 static bool atmel_spi_can_dma(struct spi_controller *host, 492 struct spi_device *spi, 493 struct spi_transfer *xfer) 494 { 495 struct atmel_spi *as = spi_controller_get_devdata(host); 496 497 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) 498 return atmel_spi_use_dma(as, xfer) && 499 !atmel_spi_is_vmalloc_xfer(xfer); 500 else 501 return atmel_spi_use_dma(as, xfer); 502 503 } 504 505 static int atmel_spi_dma_slave_config(struct atmel_spi *as, u8 bits_per_word) 506 { 507 struct spi_controller *host = platform_get_drvdata(as->pdev); 508 struct dma_slave_config slave_config; 509 int err = 0; 510 511 if (bits_per_word > 8) { 512 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 513 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 514 } else { 515 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 516 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 517 } 518 519 slave_config.dst_addr = (dma_addr_t)as->phybase + SPI_TDR; 520 slave_config.src_addr = (dma_addr_t)as->phybase + SPI_RDR; 521 slave_config.src_maxburst = 1; 522 slave_config.dst_maxburst = 1; 523 slave_config.device_fc = false; 524 525 /* 526 * This driver uses fixed peripheral select mode (PS bit set to '0' in 527 * the Mode Register). 528 * So according to the datasheet, when FIFOs are available (and 529 * enabled), the Transmit FIFO operates in Multiple Data Mode. 530 * In this mode, up to 2 data, not 4, can be written into the Transmit 531 * Data Register in a single access. 532 * However, the first data has to be written into the lowest 16 bits and 533 * the second data into the highest 16 bits of the Transmit 534 * Data Register. For 8bit data (the most frequent case), it would 535 * require to rework tx_buf so each data would actually fit 16 bits. 536 * So we'd rather write only one data at the time. Hence the transmit 537 * path works the same whether FIFOs are available (and enabled) or not. 538 */ 539 if (dmaengine_slave_config(host->dma_tx, &slave_config)) { 540 dev_err(&as->pdev->dev, 541 "failed to configure tx dma channel\n"); 542 err = -EINVAL; 543 } 544 545 /* 546 * This driver configures the spi controller for host mode (MSTR bit 547 * set to '1' in the Mode Register). 548 * So according to the datasheet, when FIFOs are available (and 549 * enabled), the Receive FIFO operates in Single Data Mode. 550 * So the receive path works the same whether FIFOs are available (and 551 * enabled) or not. 552 */ 553 if (dmaengine_slave_config(host->dma_rx, &slave_config)) { 554 dev_err(&as->pdev->dev, 555 "failed to configure rx dma channel\n"); 556 err = -EINVAL; 557 } 558 559 return err; 560 } 561 562 static int atmel_spi_configure_dma(struct spi_controller *host, 563 struct atmel_spi *as) 564 { 565 struct device *dev = &as->pdev->dev; 566 int err; 567 568 host->dma_tx = dma_request_chan(dev, "tx"); 569 if (IS_ERR(host->dma_tx)) { 570 err = PTR_ERR(host->dma_tx); 571 dev_dbg(dev, "No TX DMA channel, DMA is disabled\n"); 572 goto error_clear; 573 } 574 575 host->dma_rx = dma_request_chan(dev, "rx"); 576 if (IS_ERR(host->dma_rx)) { 577 err = PTR_ERR(host->dma_rx); 578 /* 579 * No reason to check EPROBE_DEFER here since we have already 580 * requested tx channel. 581 */ 582 dev_dbg(dev, "No RX DMA channel, DMA is disabled\n"); 583 goto error; 584 } 585 586 err = atmel_spi_dma_slave_config(as, 8); 587 if (err) 588 goto error; 589 590 dev_info(&as->pdev->dev, 591 "Using %s (tx) and %s (rx) for DMA transfers\n", 592 dma_chan_name(host->dma_tx), 593 dma_chan_name(host->dma_rx)); 594 595 return 0; 596 error: 597 if (!IS_ERR(host->dma_rx)) 598 dma_release_channel(host->dma_rx); 599 if (!IS_ERR(host->dma_tx)) 600 dma_release_channel(host->dma_tx); 601 error_clear: 602 host->dma_tx = host->dma_rx = NULL; 603 return err; 604 } 605 606 static void atmel_spi_stop_dma(struct spi_controller *host) 607 { 608 if (host->dma_rx) 609 dmaengine_terminate_all(host->dma_rx); 610 if (host->dma_tx) 611 dmaengine_terminate_all(host->dma_tx); 612 } 613 614 static void atmel_spi_release_dma(struct spi_controller *host) 615 { 616 if (host->dma_rx) { 617 dma_release_channel(host->dma_rx); 618 host->dma_rx = NULL; 619 } 620 if (host->dma_tx) { 621 dma_release_channel(host->dma_tx); 622 host->dma_tx = NULL; 623 } 624 } 625 626 /* This function is called by the DMA driver from tasklet context */ 627 static void dma_callback(void *data) 628 { 629 struct spi_controller *host = data; 630 struct atmel_spi *as = spi_controller_get_devdata(host); 631 632 if (is_vmalloc_addr(as->current_transfer->rx_buf) && 633 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 634 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf, 635 as->current_transfer->len); 636 } 637 complete(&as->xfer_completion); 638 } 639 640 /* 641 * Next transfer using PIO without FIFO. 642 */ 643 static void atmel_spi_next_xfer_single(struct spi_controller *host, 644 struct spi_transfer *xfer) 645 { 646 struct atmel_spi *as = spi_controller_get_devdata(host); 647 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes; 648 649 dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_pio\n"); 650 651 /* Make sure data is not remaining in RDR */ 652 spi_readl(as, RDR); 653 while (spi_readl(as, SR) & SPI_BIT(RDRF)) { 654 spi_readl(as, RDR); 655 cpu_relax(); 656 } 657 658 if (xfer->bits_per_word > 8) 659 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos)); 660 else 661 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos)); 662 663 dev_dbg(host->dev.parent, 664 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n", 665 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf, 666 xfer->bits_per_word); 667 668 /* Enable relevant interrupts */ 669 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES)); 670 } 671 672 /* 673 * Next transfer using PIO with FIFO. 674 */ 675 static void atmel_spi_next_xfer_fifo(struct spi_controller *host, 676 struct spi_transfer *xfer) 677 { 678 struct atmel_spi *as = spi_controller_get_devdata(host); 679 u32 current_remaining_data, num_data; 680 u32 offset = xfer->len - as->current_remaining_bytes; 681 const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset); 682 const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset); 683 u16 td0, td1; 684 u32 fifomr; 685 686 dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_fifo\n"); 687 688 /* Compute the number of data to transfer in the current iteration */ 689 current_remaining_data = ((xfer->bits_per_word > 8) ? 690 ((u32)as->current_remaining_bytes >> 1) : 691 (u32)as->current_remaining_bytes); 692 num_data = min(current_remaining_data, as->fifo_size); 693 694 /* Flush RX and TX FIFOs */ 695 spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR)); 696 while (spi_readl(as, FLR)) 697 cpu_relax(); 698 699 /* Set RX FIFO Threshold to the number of data to transfer */ 700 fifomr = spi_readl(as, FMR); 701 spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr)); 702 703 /* Clear FIFO flags in the Status Register, especially RXFTHF */ 704 (void)spi_readl(as, SR); 705 706 /* Fill TX FIFO */ 707 while (num_data >= 2) { 708 if (xfer->bits_per_word > 8) { 709 td0 = *words++; 710 td1 = *words++; 711 } else { 712 td0 = *bytes++; 713 td1 = *bytes++; 714 } 715 716 spi_writel(as, TDR, (td1 << 16) | td0); 717 num_data -= 2; 718 } 719 720 if (num_data) { 721 if (xfer->bits_per_word > 8) 722 td0 = *words++; 723 else 724 td0 = *bytes++; 725 726 spi_writew(as, TDR, td0); 727 num_data--; 728 } 729 730 dev_dbg(host->dev.parent, 731 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n", 732 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf, 733 xfer->bits_per_word); 734 735 /* 736 * Enable RX FIFO Threshold Flag interrupt to be notified about 737 * transfer completion. 738 */ 739 spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES)); 740 } 741 742 /* 743 * Next transfer using PIO. 744 */ 745 static void atmel_spi_next_xfer_pio(struct spi_controller *host, 746 struct spi_transfer *xfer) 747 { 748 struct atmel_spi *as = spi_controller_get_devdata(host); 749 750 if (as->fifo_size) 751 atmel_spi_next_xfer_fifo(host, xfer); 752 else 753 atmel_spi_next_xfer_single(host, xfer); 754 } 755 756 /* 757 * Submit next transfer for DMA. 758 */ 759 static int atmel_spi_next_xfer_dma_submit(struct spi_controller *host, 760 struct spi_transfer *xfer, 761 u32 *plen) 762 { 763 struct atmel_spi *as = spi_controller_get_devdata(host); 764 struct dma_chan *rxchan = host->dma_rx; 765 struct dma_chan *txchan = host->dma_tx; 766 struct dma_async_tx_descriptor *rxdesc; 767 struct dma_async_tx_descriptor *txdesc; 768 dma_cookie_t cookie; 769 770 dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_dma_submit\n"); 771 772 /* Check that the channels are available */ 773 if (!rxchan || !txchan) 774 return -ENODEV; 775 776 777 *plen = xfer->len; 778 779 if (atmel_spi_dma_slave_config(as, xfer->bits_per_word)) 780 goto err_exit; 781 782 /* Send both scatterlists */ 783 if (atmel_spi_is_vmalloc_xfer(xfer) && 784 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 785 rxdesc = dmaengine_prep_slave_single(rxchan, 786 as->dma_addr_rx_bbuf, 787 xfer->len, 788 DMA_DEV_TO_MEM, 789 DMA_PREP_INTERRUPT | 790 DMA_CTRL_ACK); 791 } else { 792 rxdesc = dmaengine_prep_slave_sg(rxchan, 793 xfer->rx_sg.sgl, 794 xfer->rx_sg.nents, 795 DMA_DEV_TO_MEM, 796 DMA_PREP_INTERRUPT | 797 DMA_CTRL_ACK); 798 } 799 if (!rxdesc) 800 goto err_dma; 801 802 if (atmel_spi_is_vmalloc_xfer(xfer) && 803 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 804 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len); 805 txdesc = dmaengine_prep_slave_single(txchan, 806 as->dma_addr_tx_bbuf, 807 xfer->len, DMA_MEM_TO_DEV, 808 DMA_PREP_INTERRUPT | 809 DMA_CTRL_ACK); 810 } else { 811 txdesc = dmaengine_prep_slave_sg(txchan, 812 xfer->tx_sg.sgl, 813 xfer->tx_sg.nents, 814 DMA_MEM_TO_DEV, 815 DMA_PREP_INTERRUPT | 816 DMA_CTRL_ACK); 817 } 818 if (!txdesc) 819 goto err_dma; 820 821 dev_dbg(host->dev.parent, 822 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 823 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma, 824 xfer->rx_buf, (unsigned long long)xfer->rx_dma); 825 826 /* Enable relevant interrupts */ 827 spi_writel(as, IER, SPI_BIT(OVRES)); 828 829 /* Put the callback on the RX transfer only, that should finish last */ 830 rxdesc->callback = dma_callback; 831 rxdesc->callback_param = host; 832 833 /* Submit and fire RX and TX with TX last so we're ready to read! */ 834 cookie = rxdesc->tx_submit(rxdesc); 835 if (dma_submit_error(cookie)) 836 goto err_dma; 837 cookie = txdesc->tx_submit(txdesc); 838 if (dma_submit_error(cookie)) 839 goto err_dma; 840 rxchan->device->device_issue_pending(rxchan); 841 txchan->device->device_issue_pending(txchan); 842 843 return 0; 844 845 err_dma: 846 spi_writel(as, IDR, SPI_BIT(OVRES)); 847 atmel_spi_stop_dma(host); 848 err_exit: 849 return -ENOMEM; 850 } 851 852 static void atmel_spi_next_xfer_data(struct spi_controller *host, 853 struct spi_transfer *xfer, 854 dma_addr_t *tx_dma, 855 dma_addr_t *rx_dma, 856 u32 *plen) 857 { 858 *rx_dma = xfer->rx_dma + xfer->len - *plen; 859 *tx_dma = xfer->tx_dma + xfer->len - *plen; 860 if (*plen > host->max_dma_len) 861 *plen = host->max_dma_len; 862 } 863 864 static int atmel_spi_set_xfer_speed(struct atmel_spi *as, 865 struct spi_device *spi, 866 struct spi_transfer *xfer) 867 { 868 u32 scbr, csr; 869 unsigned long bus_hz; 870 int chip_select; 871 872 if (spi_get_csgpiod(spi, 0)) 873 chip_select = as->native_cs_for_gpio; 874 else 875 chip_select = spi_get_chipselect(spi, 0); 876 877 /* v1 chips start out at half the peripheral bus speed. */ 878 bus_hz = as->spi_clk; 879 if (!atmel_spi_is_v2(as)) 880 bus_hz /= 2; 881 882 /* 883 * Calculate the lowest divider that satisfies the 884 * constraint, assuming div32/fdiv/mbz == 0. 885 */ 886 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz); 887 888 /* 889 * If the resulting divider doesn't fit into the 890 * register bitfield, we can't satisfy the constraint. 891 */ 892 if (scbr >= (1 << SPI_SCBR_SIZE)) { 893 dev_err(&spi->dev, 894 "setup: %d Hz too slow, scbr %u; min %ld Hz\n", 895 xfer->speed_hz, scbr, bus_hz/255); 896 return -EINVAL; 897 } 898 if (scbr == 0) { 899 dev_err(&spi->dev, 900 "setup: %d Hz too high, scbr %u; max %ld Hz\n", 901 xfer->speed_hz, scbr, bus_hz); 902 return -EINVAL; 903 } 904 csr = spi_readl(as, CSR0 + 4 * chip_select); 905 csr = SPI_BFINS(SCBR, scbr, csr); 906 spi_writel(as, CSR0 + 4 * chip_select, csr); 907 xfer->effective_speed_hz = bus_hz / scbr; 908 909 return 0; 910 } 911 912 /* 913 * Submit next transfer for PDC. 914 * lock is held, spi irq is blocked 915 */ 916 static void atmel_spi_pdc_next_xfer(struct spi_controller *host, 917 struct spi_transfer *xfer) 918 { 919 struct atmel_spi *as = spi_controller_get_devdata(host); 920 u32 len; 921 dma_addr_t tx_dma, rx_dma; 922 923 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 924 925 len = as->current_remaining_bytes; 926 atmel_spi_next_xfer_data(host, xfer, &tx_dma, &rx_dma, &len); 927 as->current_remaining_bytes -= len; 928 929 spi_writel(as, RPR, rx_dma); 930 spi_writel(as, TPR, tx_dma); 931 932 if (xfer->bits_per_word > 8) 933 len >>= 1; 934 spi_writel(as, RCR, len); 935 spi_writel(as, TCR, len); 936 937 dev_dbg(&host->dev, 938 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 939 xfer, xfer->len, xfer->tx_buf, 940 (unsigned long long)xfer->tx_dma, xfer->rx_buf, 941 (unsigned long long)xfer->rx_dma); 942 943 if (as->current_remaining_bytes) { 944 len = as->current_remaining_bytes; 945 atmel_spi_next_xfer_data(host, xfer, &tx_dma, &rx_dma, &len); 946 as->current_remaining_bytes -= len; 947 948 spi_writel(as, RNPR, rx_dma); 949 spi_writel(as, TNPR, tx_dma); 950 951 if (xfer->bits_per_word > 8) 952 len >>= 1; 953 spi_writel(as, RNCR, len); 954 spi_writel(as, TNCR, len); 955 956 dev_dbg(&host->dev, 957 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 958 xfer, xfer->len, xfer->tx_buf, 959 (unsigned long long)xfer->tx_dma, xfer->rx_buf, 960 (unsigned long long)xfer->rx_dma); 961 } 962 963 /* REVISIT: We're waiting for RXBUFF before we start the next 964 * transfer because we need to handle some difficult timing 965 * issues otherwise. If we wait for TXBUFE in one transfer and 966 * then starts waiting for RXBUFF in the next, it's difficult 967 * to tell the difference between the RXBUFF interrupt we're 968 * actually waiting for and the RXBUFF interrupt of the 969 * previous transfer. 970 * 971 * It should be doable, though. Just not now... 972 */ 973 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES)); 974 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN)); 975 } 976 977 /* 978 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma: 979 * - The buffer is either valid for CPU access, else NULL 980 * - If the buffer is valid, so is its DMA address 981 */ 982 static int 983 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer) 984 { 985 struct device *dev = &as->pdev->dev; 986 987 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS; 988 if (xfer->tx_buf) { 989 /* tx_buf is a const void* where we need a void * for the dma 990 * mapping */ 991 void *nonconst_tx = (void *)xfer->tx_buf; 992 993 xfer->tx_dma = dma_map_single(dev, 994 nonconst_tx, xfer->len, 995 DMA_TO_DEVICE); 996 if (dma_mapping_error(dev, xfer->tx_dma)) 997 return -ENOMEM; 998 } 999 if (xfer->rx_buf) { 1000 xfer->rx_dma = dma_map_single(dev, 1001 xfer->rx_buf, xfer->len, 1002 DMA_FROM_DEVICE); 1003 if (dma_mapping_error(dev, xfer->rx_dma)) { 1004 if (xfer->tx_buf) 1005 dma_unmap_single(dev, 1006 xfer->tx_dma, xfer->len, 1007 DMA_TO_DEVICE); 1008 return -ENOMEM; 1009 } 1010 } 1011 return 0; 1012 } 1013 1014 static void atmel_spi_dma_unmap_xfer(struct spi_controller *host, 1015 struct spi_transfer *xfer) 1016 { 1017 if (xfer->tx_dma != INVALID_DMA_ADDRESS) 1018 dma_unmap_single(host->dev.parent, xfer->tx_dma, 1019 xfer->len, DMA_TO_DEVICE); 1020 if (xfer->rx_dma != INVALID_DMA_ADDRESS) 1021 dma_unmap_single(host->dev.parent, xfer->rx_dma, 1022 xfer->len, DMA_FROM_DEVICE); 1023 } 1024 1025 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as) 1026 { 1027 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 1028 } 1029 1030 static void 1031 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer) 1032 { 1033 u8 *rxp; 1034 u16 *rxp16; 1035 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes; 1036 1037 if (xfer->bits_per_word > 8) { 1038 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos); 1039 *rxp16 = spi_readl(as, RDR); 1040 } else { 1041 rxp = ((u8 *)xfer->rx_buf) + xfer_pos; 1042 *rxp = spi_readl(as, RDR); 1043 } 1044 if (xfer->bits_per_word > 8) { 1045 if (as->current_remaining_bytes > 2) 1046 as->current_remaining_bytes -= 2; 1047 else 1048 as->current_remaining_bytes = 0; 1049 } else { 1050 as->current_remaining_bytes--; 1051 } 1052 } 1053 1054 static void 1055 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer) 1056 { 1057 u32 fifolr = spi_readl(as, FLR); 1058 u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr); 1059 u32 offset = xfer->len - as->current_remaining_bytes; 1060 u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset); 1061 u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset); 1062 u16 rd; /* RD field is the lowest 16 bits of RDR */ 1063 1064 /* Update the number of remaining bytes to transfer */ 1065 num_bytes = ((xfer->bits_per_word > 8) ? 1066 (num_data << 1) : 1067 num_data); 1068 1069 if (as->current_remaining_bytes > num_bytes) 1070 as->current_remaining_bytes -= num_bytes; 1071 else 1072 as->current_remaining_bytes = 0; 1073 1074 /* Handle odd number of bytes when data are more than 8bit width */ 1075 if (xfer->bits_per_word > 8) 1076 as->current_remaining_bytes &= ~0x1; 1077 1078 /* Read data */ 1079 while (num_data) { 1080 rd = spi_readl(as, RDR); 1081 if (xfer->bits_per_word > 8) 1082 *words++ = rd; 1083 else 1084 *bytes++ = rd; 1085 num_data--; 1086 } 1087 } 1088 1089 /* Called from IRQ 1090 * 1091 * Must update "current_remaining_bytes" to keep track of data 1092 * to transfer. 1093 */ 1094 static void 1095 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer) 1096 { 1097 if (as->fifo_size) 1098 atmel_spi_pump_fifo_data(as, xfer); 1099 else 1100 atmel_spi_pump_single_data(as, xfer); 1101 } 1102 1103 /* Interrupt 1104 * 1105 */ 1106 static irqreturn_t 1107 atmel_spi_pio_interrupt(int irq, void *dev_id) 1108 { 1109 struct spi_controller *host = dev_id; 1110 struct atmel_spi *as = spi_controller_get_devdata(host); 1111 u32 status, pending, imr; 1112 struct spi_transfer *xfer; 1113 int ret = IRQ_NONE; 1114 1115 imr = spi_readl(as, IMR); 1116 status = spi_readl(as, SR); 1117 pending = status & imr; 1118 1119 if (pending & SPI_BIT(OVRES)) { 1120 ret = IRQ_HANDLED; 1121 spi_writel(as, IDR, SPI_BIT(OVRES)); 1122 dev_warn(host->dev.parent, "overrun\n"); 1123 1124 /* 1125 * When we get an overrun, we disregard the current 1126 * transfer. Data will not be copied back from any 1127 * bounce buffer and msg->actual_len will not be 1128 * updated with the last xfer. 1129 * 1130 * We will also not process any remaning transfers in 1131 * the message. 1132 */ 1133 as->done_status = -EIO; 1134 smp_wmb(); 1135 1136 /* Clear any overrun happening while cleaning up */ 1137 spi_readl(as, SR); 1138 1139 complete(&as->xfer_completion); 1140 1141 } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) { 1142 atmel_spi_lock(as); 1143 1144 if (as->current_remaining_bytes) { 1145 ret = IRQ_HANDLED; 1146 xfer = as->current_transfer; 1147 atmel_spi_pump_pio_data(as, xfer); 1148 if (!as->current_remaining_bytes) 1149 spi_writel(as, IDR, pending); 1150 1151 complete(&as->xfer_completion); 1152 } 1153 1154 atmel_spi_unlock(as); 1155 } else { 1156 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending); 1157 ret = IRQ_HANDLED; 1158 spi_writel(as, IDR, pending); 1159 } 1160 1161 return ret; 1162 } 1163 1164 static irqreturn_t 1165 atmel_spi_pdc_interrupt(int irq, void *dev_id) 1166 { 1167 struct spi_controller *host = dev_id; 1168 struct atmel_spi *as = spi_controller_get_devdata(host); 1169 u32 status, pending, imr; 1170 int ret = IRQ_NONE; 1171 1172 imr = spi_readl(as, IMR); 1173 status = spi_readl(as, SR); 1174 pending = status & imr; 1175 1176 if (pending & SPI_BIT(OVRES)) { 1177 1178 ret = IRQ_HANDLED; 1179 1180 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) 1181 | SPI_BIT(OVRES))); 1182 1183 /* Clear any overrun happening while cleaning up */ 1184 spi_readl(as, SR); 1185 1186 as->done_status = -EIO; 1187 1188 complete(&as->xfer_completion); 1189 1190 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) { 1191 ret = IRQ_HANDLED; 1192 1193 spi_writel(as, IDR, pending); 1194 1195 complete(&as->xfer_completion); 1196 } 1197 1198 return ret; 1199 } 1200 1201 static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as) 1202 { 1203 struct spi_delay *delay = &spi->word_delay; 1204 u32 value = delay->value; 1205 1206 switch (delay->unit) { 1207 case SPI_DELAY_UNIT_NSECS: 1208 value /= 1000; 1209 break; 1210 case SPI_DELAY_UNIT_USECS: 1211 break; 1212 default: 1213 return -EINVAL; 1214 } 1215 1216 return (as->spi_clk / 1000000 * value) >> 5; 1217 } 1218 1219 static void initialize_native_cs_for_gpio(struct atmel_spi *as) 1220 { 1221 int i; 1222 struct spi_controller *host = platform_get_drvdata(as->pdev); 1223 1224 if (!as->native_cs_free) 1225 return; /* already initialized */ 1226 1227 if (!host->cs_gpiods) 1228 return; /* No CS GPIO */ 1229 1230 /* 1231 * On the first version of the controller (AT91RM9200), CS0 1232 * can't be used associated with GPIO 1233 */ 1234 if (atmel_spi_is_v2(as)) 1235 i = 0; 1236 else 1237 i = 1; 1238 1239 for (; i < 4; i++) 1240 if (host->cs_gpiods[i]) 1241 as->native_cs_free |= BIT(i); 1242 1243 if (as->native_cs_free) 1244 as->native_cs_for_gpio = ffs(as->native_cs_free); 1245 } 1246 1247 static int atmel_spi_setup(struct spi_device *spi) 1248 { 1249 struct atmel_spi *as; 1250 struct atmel_spi_device *asd; 1251 u32 csr; 1252 unsigned int bits = spi->bits_per_word; 1253 int chip_select; 1254 int word_delay_csr; 1255 1256 as = spi_controller_get_devdata(spi->controller); 1257 1258 /* see notes above re chipselect */ 1259 if (!spi_get_csgpiod(spi, 0) && (spi->mode & SPI_CS_HIGH)) { 1260 dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n"); 1261 return -EINVAL; 1262 } 1263 1264 /* Setup() is called during spi_register_controller(aka 1265 * spi_register_master) but after all membmers of the cs_gpiod 1266 * array have been filled, so we can looked for which native 1267 * CS will be free for using with GPIO 1268 */ 1269 initialize_native_cs_for_gpio(as); 1270 1271 if (spi_get_csgpiod(spi, 0) && as->native_cs_free) { 1272 dev_err(&spi->dev, 1273 "No native CS available to support this GPIO CS\n"); 1274 return -EBUSY; 1275 } 1276 1277 if (spi_get_csgpiod(spi, 0)) 1278 chip_select = as->native_cs_for_gpio; 1279 else 1280 chip_select = spi_get_chipselect(spi, 0); 1281 1282 csr = SPI_BF(BITS, bits - 8); 1283 if (spi->mode & SPI_CPOL) 1284 csr |= SPI_BIT(CPOL); 1285 if (!(spi->mode & SPI_CPHA)) 1286 csr |= SPI_BIT(NCPHA); 1287 1288 if (!spi_get_csgpiod(spi, 0)) 1289 csr |= SPI_BIT(CSAAT); 1290 csr |= SPI_BF(DLYBS, 0); 1291 1292 word_delay_csr = atmel_word_delay_csr(spi, as); 1293 if (word_delay_csr < 0) 1294 return word_delay_csr; 1295 1296 /* DLYBCT adds delays between words. This is useful for slow devices 1297 * that need a bit of time to setup the next transfer. 1298 */ 1299 csr |= SPI_BF(DLYBCT, word_delay_csr); 1300 1301 asd = spi->controller_state; 1302 if (!asd) { 1303 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL); 1304 if (!asd) 1305 return -ENOMEM; 1306 1307 spi->controller_state = asd; 1308 } 1309 1310 asd->csr = csr; 1311 1312 dev_dbg(&spi->dev, 1313 "setup: bpw %u mode 0x%x -> csr%d %08x\n", 1314 bits, spi->mode, spi_get_chipselect(spi, 0), csr); 1315 1316 if (!atmel_spi_is_v2(as)) 1317 spi_writel(as, CSR0 + 4 * chip_select, csr); 1318 1319 return 0; 1320 } 1321 1322 static void atmel_spi_set_cs(struct spi_device *spi, bool enable) 1323 { 1324 struct atmel_spi *as = spi_controller_get_devdata(spi->controller); 1325 /* the core doesn't really pass us enable/disable, but CS HIGH vs CS LOW 1326 * since we already have routines for activate/deactivate translate 1327 * high/low to active/inactive 1328 */ 1329 enable = (!!(spi->mode & SPI_CS_HIGH) == enable); 1330 1331 if (enable) { 1332 cs_activate(as, spi); 1333 } else { 1334 cs_deactivate(as, spi); 1335 } 1336 1337 } 1338 1339 static int atmel_spi_one_transfer(struct spi_controller *host, 1340 struct spi_device *spi, 1341 struct spi_transfer *xfer) 1342 { 1343 struct atmel_spi *as; 1344 u8 bits; 1345 u32 len; 1346 struct atmel_spi_device *asd; 1347 int timeout; 1348 int ret; 1349 unsigned int dma_timeout; 1350 long ret_timeout; 1351 1352 as = spi_controller_get_devdata(host); 1353 1354 asd = spi->controller_state; 1355 bits = (asd->csr >> 4) & 0xf; 1356 if (bits != xfer->bits_per_word - 8) { 1357 dev_dbg(&spi->dev, 1358 "you can't yet change bits_per_word in transfers\n"); 1359 return -ENOPROTOOPT; 1360 } 1361 1362 /* 1363 * DMA map early, for performance (empties dcache ASAP) and 1364 * better fault reporting. 1365 */ 1366 if (as->use_pdc) { 1367 if (atmel_spi_dma_map_xfer(as, xfer) < 0) 1368 return -ENOMEM; 1369 } 1370 1371 atmel_spi_set_xfer_speed(as, spi, xfer); 1372 1373 as->done_status = 0; 1374 as->current_transfer = xfer; 1375 as->current_remaining_bytes = xfer->len; 1376 while (as->current_remaining_bytes) { 1377 reinit_completion(&as->xfer_completion); 1378 1379 if (as->use_pdc) { 1380 atmel_spi_lock(as); 1381 atmel_spi_pdc_next_xfer(host, xfer); 1382 atmel_spi_unlock(as); 1383 } else if (atmel_spi_use_dma(as, xfer)) { 1384 len = as->current_remaining_bytes; 1385 ret = atmel_spi_next_xfer_dma_submit(host, 1386 xfer, &len); 1387 if (ret) { 1388 dev_err(&spi->dev, 1389 "unable to use DMA, fallback to PIO\n"); 1390 as->done_status = ret; 1391 break; 1392 } else { 1393 as->current_remaining_bytes -= len; 1394 if (as->current_remaining_bytes < 0) 1395 as->current_remaining_bytes = 0; 1396 } 1397 } else { 1398 atmel_spi_lock(as); 1399 atmel_spi_next_xfer_pio(host, xfer); 1400 atmel_spi_unlock(as); 1401 } 1402 1403 dma_timeout = msecs_to_jiffies(spi_controller_xfer_timeout(host, xfer)); 1404 ret_timeout = wait_for_completion_timeout(&as->xfer_completion, dma_timeout); 1405 if (!ret_timeout) { 1406 dev_err(&spi->dev, "spi transfer timeout\n"); 1407 as->done_status = -EIO; 1408 } 1409 1410 if (as->done_status) 1411 break; 1412 } 1413 1414 if (as->done_status) { 1415 if (as->use_pdc) { 1416 dev_warn(host->dev.parent, 1417 "overrun (%u/%u remaining)\n", 1418 spi_readl(as, TCR), spi_readl(as, RCR)); 1419 1420 /* 1421 * Clean up DMA registers and make sure the data 1422 * registers are empty. 1423 */ 1424 spi_writel(as, RNCR, 0); 1425 spi_writel(as, TNCR, 0); 1426 spi_writel(as, RCR, 0); 1427 spi_writel(as, TCR, 0); 1428 for (timeout = 1000; timeout; timeout--) 1429 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY)) 1430 break; 1431 if (!timeout) 1432 dev_warn(host->dev.parent, 1433 "timeout waiting for TXEMPTY"); 1434 while (spi_readl(as, SR) & SPI_BIT(RDRF)) 1435 spi_readl(as, RDR); 1436 1437 /* Clear any overrun happening while cleaning up */ 1438 spi_readl(as, SR); 1439 1440 } else if (atmel_spi_use_dma(as, xfer)) { 1441 atmel_spi_stop_dma(host); 1442 } 1443 } 1444 1445 if (as->use_pdc) 1446 atmel_spi_dma_unmap_xfer(host, xfer); 1447 1448 if (as->use_pdc) 1449 atmel_spi_disable_pdc_transfer(as); 1450 1451 return as->done_status; 1452 } 1453 1454 static void atmel_spi_cleanup(struct spi_device *spi) 1455 { 1456 struct atmel_spi_device *asd = spi->controller_state; 1457 1458 if (!asd) 1459 return; 1460 1461 spi->controller_state = NULL; 1462 kfree(asd); 1463 } 1464 1465 static inline unsigned int atmel_get_version(struct atmel_spi *as) 1466 { 1467 return spi_readl(as, VERSION) & 0x00000fff; 1468 } 1469 1470 static void atmel_get_caps(struct atmel_spi *as) 1471 { 1472 unsigned int version; 1473 1474 version = atmel_get_version(as); 1475 1476 as->caps.is_spi2 = version > 0x121; 1477 as->caps.has_wdrbt = version >= 0x210; 1478 as->caps.has_dma_support = version >= 0x212; 1479 as->caps.has_pdc_support = version < 0x212; 1480 } 1481 1482 static void atmel_spi_init(struct atmel_spi *as) 1483 { 1484 u32 mr = 0; 1485 1486 spi_writel(as, CR, SPI_BIT(SWRST)); 1487 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1488 1489 /* It is recommended to enable FIFOs first thing after reset */ 1490 if (as->fifo_size) 1491 spi_writel(as, CR, SPI_BIT(FIFOEN)); 1492 1493 /* 1494 * If GCLK is selected as the source clock for the bit rate generation 1495 * Enable the BRSRCCLK/FDIV/DIV32 bit 1496 */ 1497 if (as->gclk) 1498 mr |= SPI_BIT(FDIV); 1499 1500 if (as->caps.has_wdrbt) 1501 mr |= SPI_BIT(WDRBT); 1502 1503 spi_writel(as, MR, mr | SPI_BIT(MODFDIS) | SPI_BIT(MSTR)); 1504 1505 if (as->use_pdc) 1506 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 1507 spi_writel(as, CR, SPI_BIT(SPIEN)); 1508 } 1509 1510 static int atmel_spi_probe(struct platform_device *pdev) 1511 { 1512 struct resource *regs; 1513 int irq; 1514 struct clk *clk; 1515 int ret; 1516 struct spi_controller *host; 1517 struct atmel_spi *as; 1518 1519 /* Select default pin state */ 1520 pinctrl_pm_select_default_state(&pdev->dev); 1521 1522 irq = platform_get_irq(pdev, 0); 1523 if (irq < 0) 1524 return irq; 1525 1526 clk = devm_clk_get(&pdev->dev, "spi_clk"); 1527 if (IS_ERR(clk)) 1528 return PTR_ERR(clk); 1529 1530 /* setup spi core then atmel-specific driver state */ 1531 host = spi_alloc_host(&pdev->dev, sizeof(*as)); 1532 if (!host) 1533 return -ENOMEM; 1534 1535 /* the spi->mode bits understood by this driver: */ 1536 host->use_gpio_descriptors = true; 1537 host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 1538 host->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16); 1539 host->dev.of_node = pdev->dev.of_node; 1540 host->bus_num = pdev->id; 1541 host->num_chipselect = 4; 1542 host->setup = atmel_spi_setup; 1543 host->flags = (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX | 1544 SPI_CONTROLLER_GPIO_SS); 1545 host->transfer_one = atmel_spi_one_transfer; 1546 host->set_cs = atmel_spi_set_cs; 1547 host->cleanup = atmel_spi_cleanup; 1548 host->auto_runtime_pm = true; 1549 host->max_dma_len = SPI_MAX_DMA_XFER; 1550 host->can_dma = atmel_spi_can_dma; 1551 platform_set_drvdata(pdev, host); 1552 1553 as = spi_controller_get_devdata(host); 1554 1555 spin_lock_init(&as->lock); 1556 1557 as->pdev = pdev; 1558 as->regs = devm_platform_get_and_ioremap_resource(pdev, 0, ®s); 1559 if (IS_ERR(as->regs)) { 1560 ret = PTR_ERR(as->regs); 1561 goto out_unmap_regs; 1562 } 1563 as->phybase = regs->start; 1564 as->irq = irq; 1565 as->clk = clk; 1566 as->gclk = devm_clk_get_optional(&pdev->dev, "spi_gclk"); 1567 if (IS_ERR(as->gclk)) { 1568 ret = PTR_ERR(as->gclk); 1569 goto out_unmap_regs; 1570 } 1571 1572 init_completion(&as->xfer_completion); 1573 1574 atmel_get_caps(as); 1575 1576 as->use_dma = false; 1577 as->use_pdc = false; 1578 if (as->caps.has_dma_support) { 1579 ret = atmel_spi_configure_dma(host, as); 1580 if (ret == 0) { 1581 as->use_dma = true; 1582 } else if (ret == -EPROBE_DEFER) { 1583 goto out_unmap_regs; 1584 } 1585 } else if (as->caps.has_pdc_support) { 1586 as->use_pdc = true; 1587 } 1588 1589 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 1590 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev, 1591 SPI_MAX_DMA_XFER, 1592 &as->dma_addr_rx_bbuf, 1593 GFP_KERNEL | GFP_DMA); 1594 if (!as->addr_rx_bbuf) { 1595 as->use_dma = false; 1596 } else { 1597 as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev, 1598 SPI_MAX_DMA_XFER, 1599 &as->dma_addr_tx_bbuf, 1600 GFP_KERNEL | GFP_DMA); 1601 if (!as->addr_tx_bbuf) { 1602 as->use_dma = false; 1603 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER, 1604 as->addr_rx_bbuf, 1605 as->dma_addr_rx_bbuf); 1606 } 1607 } 1608 if (!as->use_dma) 1609 dev_info(host->dev.parent, 1610 " can not allocate dma coherent memory\n"); 1611 } 1612 1613 if (as->caps.has_dma_support && !as->use_dma) 1614 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n"); 1615 1616 if (as->use_pdc) { 1617 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt, 1618 0, dev_name(&pdev->dev), host); 1619 } else { 1620 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt, 1621 0, dev_name(&pdev->dev), host); 1622 } 1623 if (ret) 1624 goto out_unmap_regs; 1625 1626 /* Initialize the hardware */ 1627 ret = clk_prepare_enable(clk); 1628 if (ret) 1629 goto out_free_irq; 1630 1631 /* 1632 * In cases where the peripheral clock is higher,the FLEX_SPI_CSRx.SCBR 1633 * exceeds the threshold (SCBR ≤ 255), the GCLK is used as the source clock 1634 * for the SPCK (SPI Serial Clock) bit rate generation 1635 */ 1636 if (as->gclk) { 1637 ret = clk_prepare_enable(as->gclk); 1638 if (ret) 1639 goto out_disable_clk; 1640 as->spi_clk = clk_get_rate(as->gclk); 1641 } else { 1642 as->spi_clk = clk_get_rate(clk); 1643 } 1644 1645 as->fifo_size = 0; 1646 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size", 1647 &as->fifo_size)) { 1648 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size); 1649 } 1650 1651 atmel_spi_init(as); 1652 1653 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT); 1654 pm_runtime_use_autosuspend(&pdev->dev); 1655 pm_runtime_set_active(&pdev->dev); 1656 pm_runtime_enable(&pdev->dev); 1657 1658 ret = devm_spi_register_controller(&pdev->dev, host); 1659 if (ret) 1660 goto out_free_dma; 1661 1662 /* go! */ 1663 dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n", 1664 atmel_get_version(as), (unsigned long)regs->start, 1665 irq); 1666 1667 return 0; 1668 1669 out_free_dma: 1670 pm_runtime_disable(&pdev->dev); 1671 pm_runtime_set_suspended(&pdev->dev); 1672 1673 if (as->use_dma) 1674 atmel_spi_release_dma(host); 1675 1676 spi_writel(as, CR, SPI_BIT(SWRST)); 1677 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1678 clk_disable_unprepare(as->gclk); 1679 out_disable_clk: 1680 clk_disable_unprepare(clk); 1681 out_free_irq: 1682 out_unmap_regs: 1683 spi_controller_put(host); 1684 return ret; 1685 } 1686 1687 static void atmel_spi_remove(struct platform_device *pdev) 1688 { 1689 struct spi_controller *host = platform_get_drvdata(pdev); 1690 struct atmel_spi *as = spi_controller_get_devdata(host); 1691 1692 pm_runtime_get_sync(&pdev->dev); 1693 1694 /* reset the hardware and block queue progress */ 1695 if (as->use_dma) { 1696 atmel_spi_stop_dma(host); 1697 atmel_spi_release_dma(host); 1698 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 1699 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER, 1700 as->addr_tx_bbuf, 1701 as->dma_addr_tx_bbuf); 1702 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER, 1703 as->addr_rx_bbuf, 1704 as->dma_addr_rx_bbuf); 1705 } 1706 } 1707 1708 spin_lock_irq(&as->lock); 1709 spi_writel(as, CR, SPI_BIT(SWRST)); 1710 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1711 spi_readl(as, SR); 1712 spin_unlock_irq(&as->lock); 1713 1714 clk_disable_unprepare(as->clk); 1715 if (as->gclk) 1716 clk_disable_unprepare(as->gclk); 1717 1718 pm_runtime_put_noidle(&pdev->dev); 1719 pm_runtime_disable(&pdev->dev); 1720 } 1721 1722 static int atmel_spi_runtime_suspend(struct device *dev) 1723 { 1724 struct spi_controller *host = dev_get_drvdata(dev); 1725 struct atmel_spi *as = spi_controller_get_devdata(host); 1726 1727 clk_disable_unprepare(as->clk); 1728 if (as->gclk) 1729 clk_disable_unprepare(as->gclk); 1730 pinctrl_pm_select_sleep_state(dev); 1731 1732 return 0; 1733 } 1734 1735 static int atmel_spi_runtime_resume(struct device *dev) 1736 { 1737 struct spi_controller *host = dev_get_drvdata(dev); 1738 struct atmel_spi *as = spi_controller_get_devdata(host); 1739 int ret; 1740 1741 pinctrl_pm_select_default_state(dev); 1742 1743 ret = clk_prepare_enable(as->clk); 1744 if (ret) 1745 return ret; 1746 if (as->gclk) { 1747 ret = clk_prepare_enable(as->gclk); 1748 if (ret) 1749 return ret; 1750 } 1751 1752 return 0; 1753 } 1754 1755 static int atmel_spi_suspend(struct device *dev) 1756 { 1757 struct spi_controller *host = dev_get_drvdata(dev); 1758 int ret; 1759 1760 /* Stop the queue running */ 1761 ret = spi_controller_suspend(host); 1762 if (ret) 1763 return ret; 1764 1765 if (!pm_runtime_suspended(dev)) 1766 atmel_spi_runtime_suspend(dev); 1767 1768 return 0; 1769 } 1770 1771 static int atmel_spi_resume(struct device *dev) 1772 { 1773 struct spi_controller *host = dev_get_drvdata(dev); 1774 struct atmel_spi *as = spi_controller_get_devdata(host); 1775 int ret; 1776 1777 ret = clk_prepare_enable(as->clk); 1778 if (ret) 1779 return ret; 1780 if (as->gclk) { 1781 ret = clk_prepare_enable(as->gclk); 1782 if (ret) 1783 return ret; 1784 } 1785 1786 atmel_spi_init(as); 1787 1788 clk_disable_unprepare(as->clk); 1789 if (as->gclk) 1790 clk_disable_unprepare(as->gclk); 1791 1792 if (!pm_runtime_suspended(dev)) { 1793 ret = atmel_spi_runtime_resume(dev); 1794 if (ret) 1795 return ret; 1796 } 1797 1798 /* Start the queue running */ 1799 return spi_controller_resume(host); 1800 } 1801 1802 static const struct dev_pm_ops atmel_spi_pm_ops = { 1803 SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume) 1804 RUNTIME_PM_OPS(atmel_spi_runtime_suspend, 1805 atmel_spi_runtime_resume, NULL) 1806 }; 1807 1808 static const struct of_device_id atmel_spi_dt_ids[] = { 1809 { .compatible = "atmel,at91rm9200-spi" }, 1810 { /* sentinel */ } 1811 }; 1812 1813 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids); 1814 1815 static struct platform_driver atmel_spi_driver = { 1816 .driver = { 1817 .name = "atmel_spi", 1818 .pm = pm_ptr(&atmel_spi_pm_ops), 1819 .of_match_table = atmel_spi_dt_ids, 1820 }, 1821 .probe = atmel_spi_probe, 1822 .remove = atmel_spi_remove, 1823 }; 1824 module_platform_driver(atmel_spi_driver); 1825 1826 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver"); 1827 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)"); 1828 MODULE_LICENSE("GPL"); 1829 MODULE_ALIAS("platform:atmel_spi"); 1830