xref: /linux/drivers/spi/spi-atmel.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Atmel AT32 and AT91 SPI Controllers
4  *
5  * Copyright (C) 2006 Atmel Corporation
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/clk.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/spi/spi.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20 
21 #include <linux/io.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/iopoll.h>
26 #include <trace/events/spi.h>
27 
28 /* SPI register offsets */
29 #define SPI_CR					0x0000
30 #define SPI_MR					0x0004
31 #define SPI_RDR					0x0008
32 #define SPI_TDR					0x000c
33 #define SPI_SR					0x0010
34 #define SPI_IER					0x0014
35 #define SPI_IDR					0x0018
36 #define SPI_IMR					0x001c
37 #define SPI_CSR0				0x0030
38 #define SPI_CSR1				0x0034
39 #define SPI_CSR2				0x0038
40 #define SPI_CSR3				0x003c
41 #define SPI_FMR					0x0040
42 #define SPI_FLR					0x0044
43 #define SPI_VERSION				0x00fc
44 #define SPI_RPR					0x0100
45 #define SPI_RCR					0x0104
46 #define SPI_TPR					0x0108
47 #define SPI_TCR					0x010c
48 #define SPI_RNPR				0x0110
49 #define SPI_RNCR				0x0114
50 #define SPI_TNPR				0x0118
51 #define SPI_TNCR				0x011c
52 #define SPI_PTCR				0x0120
53 #define SPI_PTSR				0x0124
54 
55 /* Bitfields in CR */
56 #define SPI_SPIEN_OFFSET			0
57 #define SPI_SPIEN_SIZE				1
58 #define SPI_SPIDIS_OFFSET			1
59 #define SPI_SPIDIS_SIZE				1
60 #define SPI_SWRST_OFFSET			7
61 #define SPI_SWRST_SIZE				1
62 #define SPI_LASTXFER_OFFSET			24
63 #define SPI_LASTXFER_SIZE			1
64 #define SPI_TXFCLR_OFFSET			16
65 #define SPI_TXFCLR_SIZE				1
66 #define SPI_RXFCLR_OFFSET			17
67 #define SPI_RXFCLR_SIZE				1
68 #define SPI_FIFOEN_OFFSET			30
69 #define SPI_FIFOEN_SIZE				1
70 #define SPI_FIFODIS_OFFSET			31
71 #define SPI_FIFODIS_SIZE			1
72 
73 /* Bitfields in MR */
74 #define SPI_MSTR_OFFSET				0
75 #define SPI_MSTR_SIZE				1
76 #define SPI_PS_OFFSET				1
77 #define SPI_PS_SIZE				1
78 #define SPI_PCSDEC_OFFSET			2
79 #define SPI_PCSDEC_SIZE				1
80 #define SPI_FDIV_OFFSET				3
81 #define SPI_FDIV_SIZE				1
82 #define SPI_MODFDIS_OFFSET			4
83 #define SPI_MODFDIS_SIZE			1
84 #define SPI_WDRBT_OFFSET			5
85 #define SPI_WDRBT_SIZE				1
86 #define SPI_LLB_OFFSET				7
87 #define SPI_LLB_SIZE				1
88 #define SPI_PCS_OFFSET				16
89 #define SPI_PCS_SIZE				4
90 #define SPI_DLYBCS_OFFSET			24
91 #define SPI_DLYBCS_SIZE				8
92 
93 /* Bitfields in RDR */
94 #define SPI_RD_OFFSET				0
95 #define SPI_RD_SIZE				16
96 
97 /* Bitfields in TDR */
98 #define SPI_TD_OFFSET				0
99 #define SPI_TD_SIZE				16
100 
101 /* Bitfields in SR */
102 #define SPI_RDRF_OFFSET				0
103 #define SPI_RDRF_SIZE				1
104 #define SPI_TDRE_OFFSET				1
105 #define SPI_TDRE_SIZE				1
106 #define SPI_MODF_OFFSET				2
107 #define SPI_MODF_SIZE				1
108 #define SPI_OVRES_OFFSET			3
109 #define SPI_OVRES_SIZE				1
110 #define SPI_ENDRX_OFFSET			4
111 #define SPI_ENDRX_SIZE				1
112 #define SPI_ENDTX_OFFSET			5
113 #define SPI_ENDTX_SIZE				1
114 #define SPI_RXBUFF_OFFSET			6
115 #define SPI_RXBUFF_SIZE				1
116 #define SPI_TXBUFE_OFFSET			7
117 #define SPI_TXBUFE_SIZE				1
118 #define SPI_NSSR_OFFSET				8
119 #define SPI_NSSR_SIZE				1
120 #define SPI_TXEMPTY_OFFSET			9
121 #define SPI_TXEMPTY_SIZE			1
122 #define SPI_SPIENS_OFFSET			16
123 #define SPI_SPIENS_SIZE				1
124 #define SPI_TXFEF_OFFSET			24
125 #define SPI_TXFEF_SIZE				1
126 #define SPI_TXFFF_OFFSET			25
127 #define SPI_TXFFF_SIZE				1
128 #define SPI_TXFTHF_OFFSET			26
129 #define SPI_TXFTHF_SIZE				1
130 #define SPI_RXFEF_OFFSET			27
131 #define SPI_RXFEF_SIZE				1
132 #define SPI_RXFFF_OFFSET			28
133 #define SPI_RXFFF_SIZE				1
134 #define SPI_RXFTHF_OFFSET			29
135 #define SPI_RXFTHF_SIZE				1
136 #define SPI_TXFPTEF_OFFSET			30
137 #define SPI_TXFPTEF_SIZE			1
138 #define SPI_RXFPTEF_OFFSET			31
139 #define SPI_RXFPTEF_SIZE			1
140 
141 /* Bitfields in CSR0 */
142 #define SPI_CPOL_OFFSET				0
143 #define SPI_CPOL_SIZE				1
144 #define SPI_NCPHA_OFFSET			1
145 #define SPI_NCPHA_SIZE				1
146 #define SPI_CSAAT_OFFSET			3
147 #define SPI_CSAAT_SIZE				1
148 #define SPI_BITS_OFFSET				4
149 #define SPI_BITS_SIZE				4
150 #define SPI_SCBR_OFFSET				8
151 #define SPI_SCBR_SIZE				8
152 #define SPI_DLYBS_OFFSET			16
153 #define SPI_DLYBS_SIZE				8
154 #define SPI_DLYBCT_OFFSET			24
155 #define SPI_DLYBCT_SIZE				8
156 
157 /* Bitfields in RCR */
158 #define SPI_RXCTR_OFFSET			0
159 #define SPI_RXCTR_SIZE				16
160 
161 /* Bitfields in TCR */
162 #define SPI_TXCTR_OFFSET			0
163 #define SPI_TXCTR_SIZE				16
164 
165 /* Bitfields in RNCR */
166 #define SPI_RXNCR_OFFSET			0
167 #define SPI_RXNCR_SIZE				16
168 
169 /* Bitfields in TNCR */
170 #define SPI_TXNCR_OFFSET			0
171 #define SPI_TXNCR_SIZE				16
172 
173 /* Bitfields in PTCR */
174 #define SPI_RXTEN_OFFSET			0
175 #define SPI_RXTEN_SIZE				1
176 #define SPI_RXTDIS_OFFSET			1
177 #define SPI_RXTDIS_SIZE				1
178 #define SPI_TXTEN_OFFSET			8
179 #define SPI_TXTEN_SIZE				1
180 #define SPI_TXTDIS_OFFSET			9
181 #define SPI_TXTDIS_SIZE				1
182 
183 /* Bitfields in FMR */
184 #define SPI_TXRDYM_OFFSET			0
185 #define SPI_TXRDYM_SIZE				2
186 #define SPI_RXRDYM_OFFSET			4
187 #define SPI_RXRDYM_SIZE				2
188 #define SPI_TXFTHRES_OFFSET			16
189 #define SPI_TXFTHRES_SIZE			6
190 #define SPI_RXFTHRES_OFFSET			24
191 #define SPI_RXFTHRES_SIZE			6
192 
193 /* Bitfields in FLR */
194 #define SPI_TXFL_OFFSET				0
195 #define SPI_TXFL_SIZE				6
196 #define SPI_RXFL_OFFSET				16
197 #define SPI_RXFL_SIZE				6
198 
199 /* Constants for BITS */
200 #define SPI_BITS_8_BPT				0
201 #define SPI_BITS_9_BPT				1
202 #define SPI_BITS_10_BPT				2
203 #define SPI_BITS_11_BPT				3
204 #define SPI_BITS_12_BPT				4
205 #define SPI_BITS_13_BPT				5
206 #define SPI_BITS_14_BPT				6
207 #define SPI_BITS_15_BPT				7
208 #define SPI_BITS_16_BPT				8
209 #define SPI_ONE_DATA				0
210 #define SPI_TWO_DATA				1
211 #define SPI_FOUR_DATA				2
212 
213 /* Bit manipulation macros */
214 #define SPI_BIT(name) \
215 	(1 << SPI_##name##_OFFSET)
216 #define SPI_BF(name, value) \
217 	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
218 #define SPI_BFEXT(name, value) \
219 	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
220 #define SPI_BFINS(name, value, old) \
221 	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
222 	  | SPI_BF(name, value))
223 
224 /* Register access macros */
225 #define spi_readl(port, reg) \
226 	readl_relaxed((port)->regs + SPI_##reg)
227 #define spi_writel(port, reg, value) \
228 	writel_relaxed((value), (port)->regs + SPI_##reg)
229 #define spi_writew(port, reg, value) \
230 	writew_relaxed((value), (port)->regs + SPI_##reg)
231 
232 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
233  * cache operations; better heuristics consider wordsize and bitrate.
234  */
235 #define DMA_MIN_BYTES	16
236 
237 #define AUTOSUSPEND_TIMEOUT	2000
238 
239 struct atmel_spi_caps {
240 	bool	is_spi2;
241 	bool	has_wdrbt;
242 	bool	has_dma_support;
243 	bool	has_pdc_support;
244 };
245 
246 /*
247  * The core SPI transfer engine just talks to a register bank to set up
248  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
249  * framework provides the base clock, subdivided for each spi_device.
250  */
251 struct atmel_spi {
252 	spinlock_t		lock;
253 	unsigned long		flags;
254 
255 	phys_addr_t		phybase;
256 	void __iomem		*regs;
257 	int			irq;
258 	struct clk		*clk;
259 	struct clk		*gclk;
260 	struct platform_device	*pdev;
261 	unsigned long		spi_clk;
262 
263 	struct spi_transfer	*current_transfer;
264 	int			current_remaining_bytes;
265 	int			done_status;
266 	dma_addr_t		dma_addr_rx_bbuf;
267 	dma_addr_t		dma_addr_tx_bbuf;
268 	void			*addr_rx_bbuf;
269 	void			*addr_tx_bbuf;
270 
271 	struct completion	xfer_completion;
272 
273 	struct atmel_spi_caps	caps;
274 
275 	bool			use_dma;
276 	bool			use_pdc;
277 
278 	bool			keep_cs;
279 
280 	u32			fifo_size;
281 	bool			last_polarity;
282 	u8			native_cs_free;
283 	u8			native_cs_for_gpio;
284 };
285 
286 /* Controller-specific per-slave state */
287 struct atmel_spi_device {
288 	u32			csr;
289 };
290 
291 #define SPI_MAX_DMA_XFER	65535 /* true for both PDC and DMA */
292 #define INVALID_DMA_ADDRESS	0xffffffff
293 
294 /*
295  * This frequency can be anything supported by the controller, but to avoid
296  * unnecessary delay, the highest possible frequency is chosen.
297  *
298  * This frequency is the highest possible which is not interfering with other
299  * chip select registers (see Note for Serial Clock Bit Rate configuration in
300  * Atmel-11121F-ATARM-SAMA5D3-Series-Datasheet_02-Feb-16, page 1283)
301  */
302 #define DUMMY_MSG_FREQUENCY	0x02
303 /*
304  * 8 bits is the minimum data the controller is capable of sending.
305  *
306  * This message can be anything as it should not be treated by any SPI device.
307  */
308 #define DUMMY_MSG		0xAA
309 
310 /*
311  * Version 2 of the SPI controller has
312  *  - CR.LASTXFER
313  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
314  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
315  *  - SPI_CSRx.CSAAT
316  *  - SPI_CSRx.SBCR allows faster clocking
317  */
318 static bool atmel_spi_is_v2(struct atmel_spi *as)
319 {
320 	return as->caps.is_spi2;
321 }
322 
323 /*
324  * Send a dummy message.
325  *
326  * This is sometimes needed when using a CS GPIO to force clock transition when
327  * switching between devices with different polarities.
328  */
329 static void atmel_spi_send_dummy(struct atmel_spi *as, struct spi_device *spi, int chip_select)
330 {
331 	u32 status;
332 	u32 csr;
333 
334 	/*
335 	 * Set a clock frequency to allow sending message on SPI bus.
336 	 * The frequency here can be anything, but is needed for
337 	 * the controller to send the data.
338 	 */
339 	csr = spi_readl(as, CSR0 + 4 * chip_select);
340 	csr = SPI_BFINS(SCBR, DUMMY_MSG_FREQUENCY, csr);
341 	spi_writel(as, CSR0 + 4 * chip_select, csr);
342 
343 	/*
344 	 * Read all data coming from SPI bus, needed to be able to send
345 	 * the message.
346 	 */
347 	spi_readl(as, RDR);
348 	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
349 		spi_readl(as, RDR);
350 		cpu_relax();
351 	}
352 
353 	spi_writel(as, TDR, DUMMY_MSG);
354 
355 	readl_poll_timeout_atomic(as->regs + SPI_SR, status,
356 				  (status & SPI_BIT(TXEMPTY)), 1, 1000);
357 }
358 
359 
360 /*
361  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
362  * they assume that spi slave device state will not change on deselect, so
363  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
364  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
365  * controllers have CSAAT and friends.
366  *
367  * Even controller newer than ar91rm9200, using GPIOs can make sens as
368  * it lets us support active-high chipselects despite the controller's
369  * belief that only active-low devices/systems exists.
370  *
371  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
372  * right when driven with GPIO.  ("Mode Fault does not allow more than one
373  * Master on Chip Select 0.")  No workaround exists for that ... so for
374  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
375  * and (c) will trigger that first erratum in some cases.
376  *
377  * When changing the clock polarity, the SPI controller waits for the next
378  * transmission to enforce the default clock state. This may be an issue when
379  * using a GPIO as Chip Select: the clock level is applied only when the first
380  * packet is sent, once the CS has already been asserted. The workaround is to
381  * avoid this by sending a first (dummy) message before toggling the CS state.
382  */
383 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
384 {
385 	struct atmel_spi_device *asd = spi->controller_state;
386 	bool new_polarity;
387 	int chip_select;
388 	u32 mr;
389 
390 	if (spi_get_csgpiod(spi, 0))
391 		chip_select = as->native_cs_for_gpio;
392 	else
393 		chip_select = spi_get_chipselect(spi, 0);
394 
395 	if (atmel_spi_is_v2(as)) {
396 		spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
397 		/* For the low SPI version, there is a issue that PDC transfer
398 		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
399 		 */
400 		spi_writel(as, CSR0, asd->csr);
401 
402 		mr = spi_readl(as, MR);
403 		mr = SPI_BFINS(PCS, ~(0x01 << chip_select), mr);
404 		spi_writel(as, MR, mr);
405 
406 		/*
407 		 * Ensures the clock polarity is valid before we actually
408 		 * assert the CS to avoid spurious clock edges to be
409 		 * processed by the spi devices.
410 		 */
411 		if (spi_get_csgpiod(spi, 0)) {
412 			new_polarity = (asd->csr & SPI_BIT(CPOL)) != 0;
413 			if (new_polarity != as->last_polarity) {
414 				/*
415 				 * Need to disable the GPIO before sending the dummy
416 				 * message because it is already set by the spi core.
417 				 */
418 				gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), 0);
419 				atmel_spi_send_dummy(as, spi, chip_select);
420 				as->last_polarity = new_polarity;
421 				gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), 1);
422 			}
423 		}
424 	} else {
425 		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
426 		int i;
427 		u32 csr;
428 
429 		/* Make sure clock polarity is correct */
430 		for (i = 0; i < spi->controller->num_chipselect; i++) {
431 			csr = spi_readl(as, CSR0 + 4 * i);
432 			if ((csr ^ cpol) & SPI_BIT(CPOL))
433 				spi_writel(as, CSR0 + 4 * i,
434 						csr ^ SPI_BIT(CPOL));
435 		}
436 
437 		mr = spi_readl(as, MR);
438 		mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
439 		spi_writel(as, MR, mr);
440 	}
441 
442 	dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
443 }
444 
445 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
446 {
447 	int chip_select;
448 	u32 mr;
449 
450 	if (spi_get_csgpiod(spi, 0))
451 		chip_select = as->native_cs_for_gpio;
452 	else
453 		chip_select = spi_get_chipselect(spi, 0);
454 
455 	/* only deactivate *this* device; sometimes transfers to
456 	 * another device may be active when this routine is called.
457 	 */
458 	mr = spi_readl(as, MR);
459 	if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
460 		mr = SPI_BFINS(PCS, 0xf, mr);
461 		spi_writel(as, MR, mr);
462 	}
463 
464 	dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
465 
466 	if (!spi_get_csgpiod(spi, 0))
467 		spi_writel(as, CR, SPI_BIT(LASTXFER));
468 }
469 
470 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
471 {
472 	spin_lock_irqsave(&as->lock, as->flags);
473 }
474 
475 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
476 {
477 	spin_unlock_irqrestore(&as->lock, as->flags);
478 }
479 
480 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
481 {
482 	return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
483 }
484 
485 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
486 				struct spi_transfer *xfer)
487 {
488 	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
489 }
490 
491 static bool atmel_spi_can_dma(struct spi_controller *host,
492 			      struct spi_device *spi,
493 			      struct spi_transfer *xfer)
494 {
495 	struct atmel_spi *as = spi_controller_get_devdata(host);
496 
497 	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
498 		return atmel_spi_use_dma(as, xfer) &&
499 			!atmel_spi_is_vmalloc_xfer(xfer);
500 	else
501 		return atmel_spi_use_dma(as, xfer);
502 
503 }
504 
505 static int atmel_spi_dma_slave_config(struct atmel_spi *as, u8 bits_per_word)
506 {
507 	struct spi_controller *host = platform_get_drvdata(as->pdev);
508 	struct dma_slave_config	slave_config;
509 	int err = 0;
510 
511 	if (bits_per_word > 8) {
512 		slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
513 		slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
514 	} else {
515 		slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
516 		slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
517 	}
518 
519 	slave_config.dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
520 	slave_config.src_addr = (dma_addr_t)as->phybase + SPI_RDR;
521 	slave_config.src_maxburst = 1;
522 	slave_config.dst_maxburst = 1;
523 	slave_config.device_fc = false;
524 
525 	/*
526 	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
527 	 * the Mode Register).
528 	 * So according to the datasheet, when FIFOs are available (and
529 	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
530 	 * In this mode, up to 2 data, not 4, can be written into the Transmit
531 	 * Data Register in a single access.
532 	 * However, the first data has to be written into the lowest 16 bits and
533 	 * the second data into the highest 16 bits of the Transmit
534 	 * Data Register. For 8bit data (the most frequent case), it would
535 	 * require to rework tx_buf so each data would actually fit 16 bits.
536 	 * So we'd rather write only one data at the time. Hence the transmit
537 	 * path works the same whether FIFOs are available (and enabled) or not.
538 	 */
539 	if (dmaengine_slave_config(host->dma_tx, &slave_config)) {
540 		dev_err(&as->pdev->dev,
541 			"failed to configure tx dma channel\n");
542 		err = -EINVAL;
543 	}
544 
545 	/*
546 	 * This driver configures the spi controller for host mode (MSTR bit
547 	 * set to '1' in the Mode Register).
548 	 * So according to the datasheet, when FIFOs are available (and
549 	 * enabled), the Receive FIFO operates in Single Data Mode.
550 	 * So the receive path works the same whether FIFOs are available (and
551 	 * enabled) or not.
552 	 */
553 	if (dmaengine_slave_config(host->dma_rx, &slave_config)) {
554 		dev_err(&as->pdev->dev,
555 			"failed to configure rx dma channel\n");
556 		err = -EINVAL;
557 	}
558 
559 	return err;
560 }
561 
562 static int atmel_spi_configure_dma(struct spi_controller *host,
563 				   struct atmel_spi *as)
564 {
565 	struct device *dev = &as->pdev->dev;
566 	int err;
567 
568 	host->dma_tx = dma_request_chan(dev, "tx");
569 	if (IS_ERR(host->dma_tx)) {
570 		err = PTR_ERR(host->dma_tx);
571 		dev_dbg(dev, "No TX DMA channel, DMA is disabled\n");
572 		goto error_clear;
573 	}
574 
575 	host->dma_rx = dma_request_chan(dev, "rx");
576 	if (IS_ERR(host->dma_rx)) {
577 		err = PTR_ERR(host->dma_rx);
578 		/*
579 		 * No reason to check EPROBE_DEFER here since we have already
580 		 * requested tx channel.
581 		 */
582 		dev_dbg(dev, "No RX DMA channel, DMA is disabled\n");
583 		goto error;
584 	}
585 
586 	err = atmel_spi_dma_slave_config(as, 8);
587 	if (err)
588 		goto error;
589 
590 	dev_info(&as->pdev->dev,
591 			"Using %s (tx) and %s (rx) for DMA transfers\n",
592 			dma_chan_name(host->dma_tx),
593 			dma_chan_name(host->dma_rx));
594 
595 	return 0;
596 error:
597 	if (!IS_ERR(host->dma_rx))
598 		dma_release_channel(host->dma_rx);
599 	if (!IS_ERR(host->dma_tx))
600 		dma_release_channel(host->dma_tx);
601 error_clear:
602 	host->dma_tx = host->dma_rx = NULL;
603 	return err;
604 }
605 
606 static void atmel_spi_stop_dma(struct spi_controller *host)
607 {
608 	if (host->dma_rx)
609 		dmaengine_terminate_all(host->dma_rx);
610 	if (host->dma_tx)
611 		dmaengine_terminate_all(host->dma_tx);
612 }
613 
614 static void atmel_spi_release_dma(struct spi_controller *host)
615 {
616 	if (host->dma_rx) {
617 		dma_release_channel(host->dma_rx);
618 		host->dma_rx = NULL;
619 	}
620 	if (host->dma_tx) {
621 		dma_release_channel(host->dma_tx);
622 		host->dma_tx = NULL;
623 	}
624 }
625 
626 /* This function is called by the DMA driver from tasklet context */
627 static void dma_callback(void *data)
628 {
629 	struct spi_controller	*host = data;
630 	struct atmel_spi	*as = spi_controller_get_devdata(host);
631 
632 	if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
633 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
634 		memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
635 		       as->current_transfer->len);
636 	}
637 	complete(&as->xfer_completion);
638 }
639 
640 /*
641  * Next transfer using PIO without FIFO.
642  */
643 static void atmel_spi_next_xfer_single(struct spi_controller *host,
644 				       struct spi_transfer *xfer)
645 {
646 	struct atmel_spi	*as = spi_controller_get_devdata(host);
647 	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
648 
649 	dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_pio\n");
650 
651 	/* Make sure data is not remaining in RDR */
652 	spi_readl(as, RDR);
653 	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
654 		spi_readl(as, RDR);
655 		cpu_relax();
656 	}
657 
658 	if (xfer->bits_per_word > 8)
659 		spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
660 	else
661 		spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
662 
663 	dev_dbg(host->dev.parent,
664 		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
665 		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
666 		xfer->bits_per_word);
667 
668 	/* Enable relevant interrupts */
669 	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
670 }
671 
672 /*
673  * Next transfer using PIO with FIFO.
674  */
675 static void atmel_spi_next_xfer_fifo(struct spi_controller *host,
676 				     struct spi_transfer *xfer)
677 {
678 	struct atmel_spi *as = spi_controller_get_devdata(host);
679 	u32 current_remaining_data, num_data;
680 	u32 offset = xfer->len - as->current_remaining_bytes;
681 	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
682 	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
683 	u16 td0, td1;
684 	u32 fifomr;
685 
686 	dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_fifo\n");
687 
688 	/* Compute the number of data to transfer in the current iteration */
689 	current_remaining_data = ((xfer->bits_per_word > 8) ?
690 				  ((u32)as->current_remaining_bytes >> 1) :
691 				  (u32)as->current_remaining_bytes);
692 	num_data = min(current_remaining_data, as->fifo_size);
693 
694 	/* Flush RX and TX FIFOs */
695 	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
696 	while (spi_readl(as, FLR))
697 		cpu_relax();
698 
699 	/* Set RX FIFO Threshold to the number of data to transfer */
700 	fifomr = spi_readl(as, FMR);
701 	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
702 
703 	/* Clear FIFO flags in the Status Register, especially RXFTHF */
704 	(void)spi_readl(as, SR);
705 
706 	/* Fill TX FIFO */
707 	while (num_data >= 2) {
708 		if (xfer->bits_per_word > 8) {
709 			td0 = *words++;
710 			td1 = *words++;
711 		} else {
712 			td0 = *bytes++;
713 			td1 = *bytes++;
714 		}
715 
716 		spi_writel(as, TDR, (td1 << 16) | td0);
717 		num_data -= 2;
718 	}
719 
720 	if (num_data) {
721 		if (xfer->bits_per_word > 8)
722 			td0 = *words++;
723 		else
724 			td0 = *bytes++;
725 
726 		spi_writew(as, TDR, td0);
727 		num_data--;
728 	}
729 
730 	dev_dbg(host->dev.parent,
731 		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
732 		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
733 		xfer->bits_per_word);
734 
735 	/*
736 	 * Enable RX FIFO Threshold Flag interrupt to be notified about
737 	 * transfer completion.
738 	 */
739 	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
740 }
741 
742 /*
743  * Next transfer using PIO.
744  */
745 static void atmel_spi_next_xfer_pio(struct spi_controller *host,
746 				    struct spi_transfer *xfer)
747 {
748 	struct atmel_spi *as = spi_controller_get_devdata(host);
749 
750 	if (as->fifo_size)
751 		atmel_spi_next_xfer_fifo(host, xfer);
752 	else
753 		atmel_spi_next_xfer_single(host, xfer);
754 }
755 
756 /*
757  * Submit next transfer for DMA.
758  */
759 static int atmel_spi_next_xfer_dma_submit(struct spi_controller *host,
760 				struct spi_transfer *xfer,
761 				u32 *plen)
762 {
763 	struct atmel_spi	*as = spi_controller_get_devdata(host);
764 	struct dma_chan		*rxchan = host->dma_rx;
765 	struct dma_chan		*txchan = host->dma_tx;
766 	struct dma_async_tx_descriptor *rxdesc;
767 	struct dma_async_tx_descriptor *txdesc;
768 	dma_cookie_t		cookie;
769 
770 	dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
771 
772 	/* Check that the channels are available */
773 	if (!rxchan || !txchan)
774 		return -ENODEV;
775 
776 
777 	*plen = xfer->len;
778 
779 	if (atmel_spi_dma_slave_config(as, xfer->bits_per_word))
780 		goto err_exit;
781 
782 	/* Send both scatterlists */
783 	if (atmel_spi_is_vmalloc_xfer(xfer) &&
784 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
785 		rxdesc = dmaengine_prep_slave_single(rxchan,
786 						     as->dma_addr_rx_bbuf,
787 						     xfer->len,
788 						     DMA_DEV_TO_MEM,
789 						     DMA_PREP_INTERRUPT |
790 						     DMA_CTRL_ACK);
791 	} else {
792 		rxdesc = dmaengine_prep_slave_sg(rxchan,
793 						 xfer->rx_sg.sgl,
794 						 xfer->rx_sg.nents,
795 						 DMA_DEV_TO_MEM,
796 						 DMA_PREP_INTERRUPT |
797 						 DMA_CTRL_ACK);
798 	}
799 	if (!rxdesc)
800 		goto err_dma;
801 
802 	if (atmel_spi_is_vmalloc_xfer(xfer) &&
803 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
804 		memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
805 		txdesc = dmaengine_prep_slave_single(txchan,
806 						     as->dma_addr_tx_bbuf,
807 						     xfer->len, DMA_MEM_TO_DEV,
808 						     DMA_PREP_INTERRUPT |
809 						     DMA_CTRL_ACK);
810 	} else {
811 		txdesc = dmaengine_prep_slave_sg(txchan,
812 						 xfer->tx_sg.sgl,
813 						 xfer->tx_sg.nents,
814 						 DMA_MEM_TO_DEV,
815 						 DMA_PREP_INTERRUPT |
816 						 DMA_CTRL_ACK);
817 	}
818 	if (!txdesc)
819 		goto err_dma;
820 
821 	dev_dbg(host->dev.parent,
822 		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
823 		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
824 		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
825 
826 	/* Enable relevant interrupts */
827 	spi_writel(as, IER, SPI_BIT(OVRES));
828 
829 	/* Put the callback on the RX transfer only, that should finish last */
830 	rxdesc->callback = dma_callback;
831 	rxdesc->callback_param = host;
832 
833 	/* Submit and fire RX and TX with TX last so we're ready to read! */
834 	cookie = rxdesc->tx_submit(rxdesc);
835 	if (dma_submit_error(cookie))
836 		goto err_dma;
837 	cookie = txdesc->tx_submit(txdesc);
838 	if (dma_submit_error(cookie))
839 		goto err_dma;
840 	rxchan->device->device_issue_pending(rxchan);
841 	txchan->device->device_issue_pending(txchan);
842 
843 	return 0;
844 
845 err_dma:
846 	spi_writel(as, IDR, SPI_BIT(OVRES));
847 	atmel_spi_stop_dma(host);
848 err_exit:
849 	return -ENOMEM;
850 }
851 
852 static void atmel_spi_next_xfer_data(struct spi_controller *host,
853 				struct spi_transfer *xfer,
854 				dma_addr_t *tx_dma,
855 				dma_addr_t *rx_dma,
856 				u32 *plen)
857 {
858 	*rx_dma = xfer->rx_dma + xfer->len - *plen;
859 	*tx_dma = xfer->tx_dma + xfer->len - *plen;
860 	if (*plen > host->max_dma_len)
861 		*plen = host->max_dma_len;
862 }
863 
864 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
865 				    struct spi_device *spi,
866 				    struct spi_transfer *xfer)
867 {
868 	u32			scbr, csr;
869 	unsigned long		bus_hz;
870 	int chip_select;
871 
872 	if (spi_get_csgpiod(spi, 0))
873 		chip_select = as->native_cs_for_gpio;
874 	else
875 		chip_select = spi_get_chipselect(spi, 0);
876 
877 	/* v1 chips start out at half the peripheral bus speed. */
878 	bus_hz = as->spi_clk;
879 	if (!atmel_spi_is_v2(as))
880 		bus_hz /= 2;
881 
882 	/*
883 	 * Calculate the lowest divider that satisfies the
884 	 * constraint, assuming div32/fdiv/mbz == 0.
885 	 */
886 	scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
887 
888 	/*
889 	 * If the resulting divider doesn't fit into the
890 	 * register bitfield, we can't satisfy the constraint.
891 	 */
892 	if (scbr >= (1 << SPI_SCBR_SIZE)) {
893 		dev_err(&spi->dev,
894 			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
895 			xfer->speed_hz, scbr, bus_hz/255);
896 		return -EINVAL;
897 	}
898 	if (scbr == 0) {
899 		dev_err(&spi->dev,
900 			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
901 			xfer->speed_hz, scbr, bus_hz);
902 		return -EINVAL;
903 	}
904 	csr = spi_readl(as, CSR0 + 4 * chip_select);
905 	csr = SPI_BFINS(SCBR, scbr, csr);
906 	spi_writel(as, CSR0 + 4 * chip_select, csr);
907 	xfer->effective_speed_hz = bus_hz / scbr;
908 
909 	return 0;
910 }
911 
912 /*
913  * Submit next transfer for PDC.
914  * lock is held, spi irq is blocked
915  */
916 static void atmel_spi_pdc_next_xfer(struct spi_controller *host,
917 					struct spi_transfer *xfer)
918 {
919 	struct atmel_spi	*as = spi_controller_get_devdata(host);
920 	u32			len;
921 	dma_addr_t		tx_dma, rx_dma;
922 
923 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
924 
925 	len = as->current_remaining_bytes;
926 	atmel_spi_next_xfer_data(host, xfer, &tx_dma, &rx_dma, &len);
927 	as->current_remaining_bytes -= len;
928 
929 	spi_writel(as, RPR, rx_dma);
930 	spi_writel(as, TPR, tx_dma);
931 
932 	if (xfer->bits_per_word > 8)
933 		len >>= 1;
934 	spi_writel(as, RCR, len);
935 	spi_writel(as, TCR, len);
936 
937 	dev_dbg(&host->dev,
938 		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
939 		xfer, xfer->len, xfer->tx_buf,
940 		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
941 		(unsigned long long)xfer->rx_dma);
942 
943 	if (as->current_remaining_bytes) {
944 		len = as->current_remaining_bytes;
945 		atmel_spi_next_xfer_data(host, xfer, &tx_dma, &rx_dma, &len);
946 		as->current_remaining_bytes -= len;
947 
948 		spi_writel(as, RNPR, rx_dma);
949 		spi_writel(as, TNPR, tx_dma);
950 
951 		if (xfer->bits_per_word > 8)
952 			len >>= 1;
953 		spi_writel(as, RNCR, len);
954 		spi_writel(as, TNCR, len);
955 
956 		dev_dbg(&host->dev,
957 			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
958 			xfer, xfer->len, xfer->tx_buf,
959 			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
960 			(unsigned long long)xfer->rx_dma);
961 	}
962 
963 	/* REVISIT: We're waiting for RXBUFF before we start the next
964 	 * transfer because we need to handle some difficult timing
965 	 * issues otherwise. If we wait for TXBUFE in one transfer and
966 	 * then starts waiting for RXBUFF in the next, it's difficult
967 	 * to tell the difference between the RXBUFF interrupt we're
968 	 * actually waiting for and the RXBUFF interrupt of the
969 	 * previous transfer.
970 	 *
971 	 * It should be doable, though. Just not now...
972 	 */
973 	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
974 	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
975 }
976 
977 /*
978  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
979  *  - The buffer is either valid for CPU access, else NULL
980  *  - If the buffer is valid, so is its DMA address
981  */
982 static int
983 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
984 {
985 	struct device	*dev = &as->pdev->dev;
986 
987 	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
988 	if (xfer->tx_buf) {
989 		/* tx_buf is a const void* where we need a void * for the dma
990 		 * mapping */
991 		void *nonconst_tx = (void *)xfer->tx_buf;
992 
993 		xfer->tx_dma = dma_map_single(dev,
994 				nonconst_tx, xfer->len,
995 				DMA_TO_DEVICE);
996 		if (dma_mapping_error(dev, xfer->tx_dma))
997 			return -ENOMEM;
998 	}
999 	if (xfer->rx_buf) {
1000 		xfer->rx_dma = dma_map_single(dev,
1001 				xfer->rx_buf, xfer->len,
1002 				DMA_FROM_DEVICE);
1003 		if (dma_mapping_error(dev, xfer->rx_dma)) {
1004 			if (xfer->tx_buf)
1005 				dma_unmap_single(dev,
1006 						xfer->tx_dma, xfer->len,
1007 						DMA_TO_DEVICE);
1008 			return -ENOMEM;
1009 		}
1010 	}
1011 	return 0;
1012 }
1013 
1014 static void atmel_spi_dma_unmap_xfer(struct spi_controller *host,
1015 				     struct spi_transfer *xfer)
1016 {
1017 	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
1018 		dma_unmap_single(host->dev.parent, xfer->tx_dma,
1019 				 xfer->len, DMA_TO_DEVICE);
1020 	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
1021 		dma_unmap_single(host->dev.parent, xfer->rx_dma,
1022 				 xfer->len, DMA_FROM_DEVICE);
1023 }
1024 
1025 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
1026 {
1027 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1028 }
1029 
1030 static void
1031 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1032 {
1033 	u8		*rxp;
1034 	u16		*rxp16;
1035 	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
1036 
1037 	if (xfer->bits_per_word > 8) {
1038 		rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1039 		*rxp16 = spi_readl(as, RDR);
1040 	} else {
1041 		rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1042 		*rxp = spi_readl(as, RDR);
1043 	}
1044 	if (xfer->bits_per_word > 8) {
1045 		if (as->current_remaining_bytes > 2)
1046 			as->current_remaining_bytes -= 2;
1047 		else
1048 			as->current_remaining_bytes = 0;
1049 	} else {
1050 		as->current_remaining_bytes--;
1051 	}
1052 }
1053 
1054 static void
1055 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1056 {
1057 	u32 fifolr = spi_readl(as, FLR);
1058 	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1059 	u32 offset = xfer->len - as->current_remaining_bytes;
1060 	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1061 	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1062 	u16 rd; /* RD field is the lowest 16 bits of RDR */
1063 
1064 	/* Update the number of remaining bytes to transfer */
1065 	num_bytes = ((xfer->bits_per_word > 8) ?
1066 		     (num_data << 1) :
1067 		     num_data);
1068 
1069 	if (as->current_remaining_bytes > num_bytes)
1070 		as->current_remaining_bytes -= num_bytes;
1071 	else
1072 		as->current_remaining_bytes = 0;
1073 
1074 	/* Handle odd number of bytes when data are more than 8bit width */
1075 	if (xfer->bits_per_word > 8)
1076 		as->current_remaining_bytes &= ~0x1;
1077 
1078 	/* Read data */
1079 	while (num_data) {
1080 		rd = spi_readl(as, RDR);
1081 		if (xfer->bits_per_word > 8)
1082 			*words++ = rd;
1083 		else
1084 			*bytes++ = rd;
1085 		num_data--;
1086 	}
1087 }
1088 
1089 /* Called from IRQ
1090  *
1091  * Must update "current_remaining_bytes" to keep track of data
1092  * to transfer.
1093  */
1094 static void
1095 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1096 {
1097 	if (as->fifo_size)
1098 		atmel_spi_pump_fifo_data(as, xfer);
1099 	else
1100 		atmel_spi_pump_single_data(as, xfer);
1101 }
1102 
1103 /* Interrupt
1104  *
1105  */
1106 static irqreturn_t
1107 atmel_spi_pio_interrupt(int irq, void *dev_id)
1108 {
1109 	struct spi_controller	*host = dev_id;
1110 	struct atmel_spi	*as = spi_controller_get_devdata(host);
1111 	u32			status, pending, imr;
1112 	struct spi_transfer	*xfer;
1113 	int			ret = IRQ_NONE;
1114 
1115 	imr = spi_readl(as, IMR);
1116 	status = spi_readl(as, SR);
1117 	pending = status & imr;
1118 
1119 	if (pending & SPI_BIT(OVRES)) {
1120 		ret = IRQ_HANDLED;
1121 		spi_writel(as, IDR, SPI_BIT(OVRES));
1122 		dev_warn(host->dev.parent, "overrun\n");
1123 
1124 		/*
1125 		 * When we get an overrun, we disregard the current
1126 		 * transfer. Data will not be copied back from any
1127 		 * bounce buffer and msg->actual_len will not be
1128 		 * updated with the last xfer.
1129 		 *
1130 		 * We will also not process any remaning transfers in
1131 		 * the message.
1132 		 */
1133 		as->done_status = -EIO;
1134 		smp_wmb();
1135 
1136 		/* Clear any overrun happening while cleaning up */
1137 		spi_readl(as, SR);
1138 
1139 		complete(&as->xfer_completion);
1140 
1141 	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1142 		atmel_spi_lock(as);
1143 
1144 		if (as->current_remaining_bytes) {
1145 			ret = IRQ_HANDLED;
1146 			xfer = as->current_transfer;
1147 			atmel_spi_pump_pio_data(as, xfer);
1148 			if (!as->current_remaining_bytes)
1149 				spi_writel(as, IDR, pending);
1150 
1151 			complete(&as->xfer_completion);
1152 		}
1153 
1154 		atmel_spi_unlock(as);
1155 	} else {
1156 		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1157 		ret = IRQ_HANDLED;
1158 		spi_writel(as, IDR, pending);
1159 	}
1160 
1161 	return ret;
1162 }
1163 
1164 static irqreturn_t
1165 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1166 {
1167 	struct spi_controller	*host = dev_id;
1168 	struct atmel_spi	*as = spi_controller_get_devdata(host);
1169 	u32			status, pending, imr;
1170 	int			ret = IRQ_NONE;
1171 
1172 	imr = spi_readl(as, IMR);
1173 	status = spi_readl(as, SR);
1174 	pending = status & imr;
1175 
1176 	if (pending & SPI_BIT(OVRES)) {
1177 
1178 		ret = IRQ_HANDLED;
1179 
1180 		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1181 				     | SPI_BIT(OVRES)));
1182 
1183 		/* Clear any overrun happening while cleaning up */
1184 		spi_readl(as, SR);
1185 
1186 		as->done_status = -EIO;
1187 
1188 		complete(&as->xfer_completion);
1189 
1190 	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1191 		ret = IRQ_HANDLED;
1192 
1193 		spi_writel(as, IDR, pending);
1194 
1195 		complete(&as->xfer_completion);
1196 	}
1197 
1198 	return ret;
1199 }
1200 
1201 static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1202 {
1203 	struct spi_delay *delay = &spi->word_delay;
1204 	u32 value = delay->value;
1205 
1206 	switch (delay->unit) {
1207 	case SPI_DELAY_UNIT_NSECS:
1208 		value /= 1000;
1209 		break;
1210 	case SPI_DELAY_UNIT_USECS:
1211 		break;
1212 	default:
1213 		return -EINVAL;
1214 	}
1215 
1216 	return (as->spi_clk / 1000000 * value) >> 5;
1217 }
1218 
1219 static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1220 {
1221 	int i;
1222 	struct spi_controller *host = platform_get_drvdata(as->pdev);
1223 
1224 	if (!as->native_cs_free)
1225 		return; /* already initialized */
1226 
1227 	if (!host->cs_gpiods)
1228 		return; /* No CS GPIO */
1229 
1230 	/*
1231 	 * On the first version of the controller (AT91RM9200), CS0
1232 	 * can't be used associated with GPIO
1233 	 */
1234 	if (atmel_spi_is_v2(as))
1235 		i = 0;
1236 	else
1237 		i = 1;
1238 
1239 	for (; i < 4; i++)
1240 		if (host->cs_gpiods[i])
1241 			as->native_cs_free |= BIT(i);
1242 
1243 	if (as->native_cs_free)
1244 		as->native_cs_for_gpio = ffs(as->native_cs_free);
1245 }
1246 
1247 static int atmel_spi_setup(struct spi_device *spi)
1248 {
1249 	struct atmel_spi	*as;
1250 	struct atmel_spi_device	*asd;
1251 	u32			csr;
1252 	unsigned int		bits = spi->bits_per_word;
1253 	int chip_select;
1254 	int			word_delay_csr;
1255 
1256 	as = spi_controller_get_devdata(spi->controller);
1257 
1258 	/* see notes above re chipselect */
1259 	if (!spi_get_csgpiod(spi, 0) && (spi->mode & SPI_CS_HIGH)) {
1260 		dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1261 		return -EINVAL;
1262 	}
1263 
1264 	/* Setup() is called during spi_register_controller(aka
1265 	 * spi_register_master) but after all membmers of the cs_gpiod
1266 	 * array have been filled, so we can looked for which native
1267 	 * CS will be free for using with GPIO
1268 	 */
1269 	initialize_native_cs_for_gpio(as);
1270 
1271 	if (spi_get_csgpiod(spi, 0) && as->native_cs_free) {
1272 		dev_err(&spi->dev,
1273 			"No native CS available to support this GPIO CS\n");
1274 		return -EBUSY;
1275 	}
1276 
1277 	if (spi_get_csgpiod(spi, 0))
1278 		chip_select = as->native_cs_for_gpio;
1279 	else
1280 		chip_select = spi_get_chipselect(spi, 0);
1281 
1282 	csr = SPI_BF(BITS, bits - 8);
1283 	if (spi->mode & SPI_CPOL)
1284 		csr |= SPI_BIT(CPOL);
1285 	if (!(spi->mode & SPI_CPHA))
1286 		csr |= SPI_BIT(NCPHA);
1287 
1288 	if (!spi_get_csgpiod(spi, 0))
1289 		csr |= SPI_BIT(CSAAT);
1290 	csr |= SPI_BF(DLYBS, 0);
1291 
1292 	word_delay_csr = atmel_word_delay_csr(spi, as);
1293 	if (word_delay_csr < 0)
1294 		return word_delay_csr;
1295 
1296 	/* DLYBCT adds delays between words.  This is useful for slow devices
1297 	 * that need a bit of time to setup the next transfer.
1298 	 */
1299 	csr |= SPI_BF(DLYBCT, word_delay_csr);
1300 
1301 	asd = spi->controller_state;
1302 	if (!asd) {
1303 		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1304 		if (!asd)
1305 			return -ENOMEM;
1306 
1307 		spi->controller_state = asd;
1308 	}
1309 
1310 	asd->csr = csr;
1311 
1312 	dev_dbg(&spi->dev,
1313 		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1314 		bits, spi->mode, spi_get_chipselect(spi, 0), csr);
1315 
1316 	if (!atmel_spi_is_v2(as))
1317 		spi_writel(as, CSR0 + 4 * chip_select, csr);
1318 
1319 	return 0;
1320 }
1321 
1322 static void atmel_spi_set_cs(struct spi_device *spi, bool enable)
1323 {
1324 	struct atmel_spi *as = spi_controller_get_devdata(spi->controller);
1325 	/* the core doesn't really pass us enable/disable, but CS HIGH vs CS LOW
1326 	 * since we already have routines for activate/deactivate translate
1327 	 * high/low to active/inactive
1328 	 */
1329 	enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
1330 
1331 	if (enable) {
1332 		cs_activate(as, spi);
1333 	} else {
1334 		cs_deactivate(as, spi);
1335 	}
1336 
1337 }
1338 
1339 static int atmel_spi_one_transfer(struct spi_controller *host,
1340 					struct spi_device *spi,
1341 					struct spi_transfer *xfer)
1342 {
1343 	struct atmel_spi	*as;
1344 	u8			bits;
1345 	u32			len;
1346 	struct atmel_spi_device	*asd;
1347 	int			timeout;
1348 	int			ret;
1349 	unsigned int		dma_timeout;
1350 	long			ret_timeout;
1351 
1352 	as = spi_controller_get_devdata(host);
1353 
1354 	asd = spi->controller_state;
1355 	bits = (asd->csr >> 4) & 0xf;
1356 	if (bits != xfer->bits_per_word - 8) {
1357 		dev_dbg(&spi->dev,
1358 			"you can't yet change bits_per_word in transfers\n");
1359 		return -ENOPROTOOPT;
1360 	}
1361 
1362 	/*
1363 	 * DMA map early, for performance (empties dcache ASAP) and
1364 	 * better fault reporting.
1365 	 */
1366 	if (as->use_pdc) {
1367 		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1368 			return -ENOMEM;
1369 	}
1370 
1371 	atmel_spi_set_xfer_speed(as, spi, xfer);
1372 
1373 	as->done_status = 0;
1374 	as->current_transfer = xfer;
1375 	as->current_remaining_bytes = xfer->len;
1376 	while (as->current_remaining_bytes) {
1377 		reinit_completion(&as->xfer_completion);
1378 
1379 		if (as->use_pdc) {
1380 			atmel_spi_lock(as);
1381 			atmel_spi_pdc_next_xfer(host, xfer);
1382 			atmel_spi_unlock(as);
1383 		} else if (atmel_spi_use_dma(as, xfer)) {
1384 			len = as->current_remaining_bytes;
1385 			ret = atmel_spi_next_xfer_dma_submit(host,
1386 								xfer, &len);
1387 			if (ret) {
1388 				dev_err(&spi->dev,
1389 					"unable to use DMA, fallback to PIO\n");
1390 				as->done_status = ret;
1391 				break;
1392 			} else {
1393 				as->current_remaining_bytes -= len;
1394 				if (as->current_remaining_bytes < 0)
1395 					as->current_remaining_bytes = 0;
1396 			}
1397 		} else {
1398 			atmel_spi_lock(as);
1399 			atmel_spi_next_xfer_pio(host, xfer);
1400 			atmel_spi_unlock(as);
1401 		}
1402 
1403 		dma_timeout = msecs_to_jiffies(spi_controller_xfer_timeout(host, xfer));
1404 		ret_timeout = wait_for_completion_timeout(&as->xfer_completion, dma_timeout);
1405 		if (!ret_timeout) {
1406 			dev_err(&spi->dev, "spi transfer timeout\n");
1407 			as->done_status = -EIO;
1408 		}
1409 
1410 		if (as->done_status)
1411 			break;
1412 	}
1413 
1414 	if (as->done_status) {
1415 		if (as->use_pdc) {
1416 			dev_warn(host->dev.parent,
1417 				"overrun (%u/%u remaining)\n",
1418 				spi_readl(as, TCR), spi_readl(as, RCR));
1419 
1420 			/*
1421 			 * Clean up DMA registers and make sure the data
1422 			 * registers are empty.
1423 			 */
1424 			spi_writel(as, RNCR, 0);
1425 			spi_writel(as, TNCR, 0);
1426 			spi_writel(as, RCR, 0);
1427 			spi_writel(as, TCR, 0);
1428 			for (timeout = 1000; timeout; timeout--)
1429 				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1430 					break;
1431 			if (!timeout)
1432 				dev_warn(host->dev.parent,
1433 					 "timeout waiting for TXEMPTY");
1434 			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1435 				spi_readl(as, RDR);
1436 
1437 			/* Clear any overrun happening while cleaning up */
1438 			spi_readl(as, SR);
1439 
1440 		} else if (atmel_spi_use_dma(as, xfer)) {
1441 			atmel_spi_stop_dma(host);
1442 		}
1443 	}
1444 
1445 	if (as->use_pdc)
1446 		atmel_spi_dma_unmap_xfer(host, xfer);
1447 
1448 	if (as->use_pdc)
1449 		atmel_spi_disable_pdc_transfer(as);
1450 
1451 	return as->done_status;
1452 }
1453 
1454 static void atmel_spi_cleanup(struct spi_device *spi)
1455 {
1456 	struct atmel_spi_device	*asd = spi->controller_state;
1457 
1458 	if (!asd)
1459 		return;
1460 
1461 	spi->controller_state = NULL;
1462 	kfree(asd);
1463 }
1464 
1465 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1466 {
1467 	return spi_readl(as, VERSION) & 0x00000fff;
1468 }
1469 
1470 static void atmel_get_caps(struct atmel_spi *as)
1471 {
1472 	unsigned int version;
1473 
1474 	version = atmel_get_version(as);
1475 
1476 	as->caps.is_spi2 = version > 0x121;
1477 	as->caps.has_wdrbt = version >= 0x210;
1478 	as->caps.has_dma_support = version >= 0x212;
1479 	as->caps.has_pdc_support = version < 0x212;
1480 }
1481 
1482 static void atmel_spi_init(struct atmel_spi *as)
1483 {
1484 	u32 mr = 0;
1485 
1486 	spi_writel(as, CR, SPI_BIT(SWRST));
1487 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1488 
1489 	/* It is recommended to enable FIFOs first thing after reset */
1490 	if (as->fifo_size)
1491 		spi_writel(as, CR, SPI_BIT(FIFOEN));
1492 
1493 	/*
1494 	 * If GCLK is selected as the source clock for the bit rate generation
1495 	 * Enable the BRSRCCLK/FDIV/DIV32 bit
1496 	 */
1497 	if (as->gclk)
1498 		mr |= SPI_BIT(FDIV);
1499 
1500 	if (as->caps.has_wdrbt)
1501 		mr |= SPI_BIT(WDRBT);
1502 
1503 	spi_writel(as, MR, mr | SPI_BIT(MODFDIS) | SPI_BIT(MSTR));
1504 
1505 	if (as->use_pdc)
1506 		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1507 	spi_writel(as, CR, SPI_BIT(SPIEN));
1508 }
1509 
1510 static int atmel_spi_probe(struct platform_device *pdev)
1511 {
1512 	struct resource		*regs;
1513 	int			irq;
1514 	struct clk		*clk;
1515 	int			ret;
1516 	struct spi_controller	*host;
1517 	struct atmel_spi	*as;
1518 
1519 	/* Select default pin state */
1520 	pinctrl_pm_select_default_state(&pdev->dev);
1521 
1522 	irq = platform_get_irq(pdev, 0);
1523 	if (irq < 0)
1524 		return irq;
1525 
1526 	clk = devm_clk_get(&pdev->dev, "spi_clk");
1527 	if (IS_ERR(clk))
1528 		return PTR_ERR(clk);
1529 
1530 	/* setup spi core then atmel-specific driver state */
1531 	host = spi_alloc_host(&pdev->dev, sizeof(*as));
1532 	if (!host)
1533 		return -ENOMEM;
1534 
1535 	/* the spi->mode bits understood by this driver: */
1536 	host->use_gpio_descriptors = true;
1537 	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1538 	host->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1539 	host->dev.of_node = pdev->dev.of_node;
1540 	host->bus_num = pdev->id;
1541 	host->num_chipselect = 4;
1542 	host->setup = atmel_spi_setup;
1543 	host->flags = (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX |
1544 			SPI_CONTROLLER_GPIO_SS);
1545 	host->transfer_one = atmel_spi_one_transfer;
1546 	host->set_cs = atmel_spi_set_cs;
1547 	host->cleanup = atmel_spi_cleanup;
1548 	host->auto_runtime_pm = true;
1549 	host->max_dma_len = SPI_MAX_DMA_XFER;
1550 	host->can_dma = atmel_spi_can_dma;
1551 	platform_set_drvdata(pdev, host);
1552 
1553 	as = spi_controller_get_devdata(host);
1554 
1555 	spin_lock_init(&as->lock);
1556 
1557 	as->pdev = pdev;
1558 	as->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &regs);
1559 	if (IS_ERR(as->regs)) {
1560 		ret = PTR_ERR(as->regs);
1561 		goto out_unmap_regs;
1562 	}
1563 	as->phybase = regs->start;
1564 	as->irq = irq;
1565 	as->clk = clk;
1566 	as->gclk = devm_clk_get_optional(&pdev->dev, "spi_gclk");
1567 	if (IS_ERR(as->gclk)) {
1568 		ret = PTR_ERR(as->gclk);
1569 		goto out_unmap_regs;
1570 	}
1571 
1572 	init_completion(&as->xfer_completion);
1573 
1574 	atmel_get_caps(as);
1575 
1576 	as->use_dma = false;
1577 	as->use_pdc = false;
1578 	if (as->caps.has_dma_support) {
1579 		ret = atmel_spi_configure_dma(host, as);
1580 		if (ret == 0) {
1581 			as->use_dma = true;
1582 		} else if (ret == -EPROBE_DEFER) {
1583 			goto out_unmap_regs;
1584 		}
1585 	} else if (as->caps.has_pdc_support) {
1586 		as->use_pdc = true;
1587 	}
1588 
1589 	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1590 		as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1591 						      SPI_MAX_DMA_XFER,
1592 						      &as->dma_addr_rx_bbuf,
1593 						      GFP_KERNEL | GFP_DMA);
1594 		if (!as->addr_rx_bbuf) {
1595 			as->use_dma = false;
1596 		} else {
1597 			as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1598 					SPI_MAX_DMA_XFER,
1599 					&as->dma_addr_tx_bbuf,
1600 					GFP_KERNEL | GFP_DMA);
1601 			if (!as->addr_tx_bbuf) {
1602 				as->use_dma = false;
1603 				dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1604 						  as->addr_rx_bbuf,
1605 						  as->dma_addr_rx_bbuf);
1606 			}
1607 		}
1608 		if (!as->use_dma)
1609 			dev_info(host->dev.parent,
1610 				 "  can not allocate dma coherent memory\n");
1611 	}
1612 
1613 	if (as->caps.has_dma_support && !as->use_dma)
1614 		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1615 
1616 	if (as->use_pdc) {
1617 		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1618 					0, dev_name(&pdev->dev), host);
1619 	} else {
1620 		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1621 					0, dev_name(&pdev->dev), host);
1622 	}
1623 	if (ret)
1624 		goto out_unmap_regs;
1625 
1626 	/* Initialize the hardware */
1627 	ret = clk_prepare_enable(clk);
1628 	if (ret)
1629 		goto out_free_irq;
1630 
1631 	/*
1632 	 * In cases where the peripheral clock is higher,the FLEX_SPI_CSRx.SCBR
1633 	 * exceeds the threshold (SCBR ≤ 255), the GCLK is used as the source clock
1634 	 * for the SPCK (SPI Serial Clock) bit rate generation
1635 	 */
1636 	if (as->gclk) {
1637 		ret = clk_prepare_enable(as->gclk);
1638 		if (ret)
1639 			goto out_disable_clk;
1640 		as->spi_clk = clk_get_rate(as->gclk);
1641 	} else {
1642 		as->spi_clk = clk_get_rate(clk);
1643 	}
1644 
1645 	as->fifo_size = 0;
1646 	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1647 				  &as->fifo_size)) {
1648 		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1649 	}
1650 
1651 	atmel_spi_init(as);
1652 
1653 	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1654 	pm_runtime_use_autosuspend(&pdev->dev);
1655 	pm_runtime_set_active(&pdev->dev);
1656 	pm_runtime_enable(&pdev->dev);
1657 
1658 	ret = devm_spi_register_controller(&pdev->dev, host);
1659 	if (ret)
1660 		goto out_free_dma;
1661 
1662 	/* go! */
1663 	dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1664 			atmel_get_version(as), (unsigned long)regs->start,
1665 			irq);
1666 
1667 	return 0;
1668 
1669 out_free_dma:
1670 	pm_runtime_disable(&pdev->dev);
1671 	pm_runtime_set_suspended(&pdev->dev);
1672 
1673 	if (as->use_dma)
1674 		atmel_spi_release_dma(host);
1675 
1676 	spi_writel(as, CR, SPI_BIT(SWRST));
1677 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1678 	clk_disable_unprepare(as->gclk);
1679 out_disable_clk:
1680 	clk_disable_unprepare(clk);
1681 out_free_irq:
1682 out_unmap_regs:
1683 	spi_controller_put(host);
1684 	return ret;
1685 }
1686 
1687 static void atmel_spi_remove(struct platform_device *pdev)
1688 {
1689 	struct spi_controller	*host = platform_get_drvdata(pdev);
1690 	struct atmel_spi	*as = spi_controller_get_devdata(host);
1691 
1692 	pm_runtime_get_sync(&pdev->dev);
1693 
1694 	/* reset the hardware and block queue progress */
1695 	if (as->use_dma) {
1696 		atmel_spi_stop_dma(host);
1697 		atmel_spi_release_dma(host);
1698 		if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1699 			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1700 					  as->addr_tx_bbuf,
1701 					  as->dma_addr_tx_bbuf);
1702 			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1703 					  as->addr_rx_bbuf,
1704 					  as->dma_addr_rx_bbuf);
1705 		}
1706 	}
1707 
1708 	spin_lock_irq(&as->lock);
1709 	spi_writel(as, CR, SPI_BIT(SWRST));
1710 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1711 	spi_readl(as, SR);
1712 	spin_unlock_irq(&as->lock);
1713 
1714 	clk_disable_unprepare(as->clk);
1715 	if (as->gclk)
1716 		clk_disable_unprepare(as->gclk);
1717 
1718 	pm_runtime_put_noidle(&pdev->dev);
1719 	pm_runtime_disable(&pdev->dev);
1720 }
1721 
1722 static int atmel_spi_runtime_suspend(struct device *dev)
1723 {
1724 	struct spi_controller *host = dev_get_drvdata(dev);
1725 	struct atmel_spi *as = spi_controller_get_devdata(host);
1726 
1727 	clk_disable_unprepare(as->clk);
1728 	if (as->gclk)
1729 		clk_disable_unprepare(as->gclk);
1730 	pinctrl_pm_select_sleep_state(dev);
1731 
1732 	return 0;
1733 }
1734 
1735 static int atmel_spi_runtime_resume(struct device *dev)
1736 {
1737 	struct spi_controller *host = dev_get_drvdata(dev);
1738 	struct atmel_spi *as = spi_controller_get_devdata(host);
1739 	int ret;
1740 
1741 	pinctrl_pm_select_default_state(dev);
1742 
1743 	ret = clk_prepare_enable(as->clk);
1744 	if (ret)
1745 		return ret;
1746 	if (as->gclk) {
1747 		ret = clk_prepare_enable(as->gclk);
1748 		if (ret)
1749 			return ret;
1750 	}
1751 
1752 	return 0;
1753 }
1754 
1755 static int atmel_spi_suspend(struct device *dev)
1756 {
1757 	struct spi_controller *host = dev_get_drvdata(dev);
1758 	int ret;
1759 
1760 	/* Stop the queue running */
1761 	ret = spi_controller_suspend(host);
1762 	if (ret)
1763 		return ret;
1764 
1765 	if (!pm_runtime_suspended(dev))
1766 		atmel_spi_runtime_suspend(dev);
1767 
1768 	return 0;
1769 }
1770 
1771 static int atmel_spi_resume(struct device *dev)
1772 {
1773 	struct spi_controller *host = dev_get_drvdata(dev);
1774 	struct atmel_spi *as = spi_controller_get_devdata(host);
1775 	int ret;
1776 
1777 	ret = clk_prepare_enable(as->clk);
1778 	if (ret)
1779 		return ret;
1780 	if (as->gclk) {
1781 		ret = clk_prepare_enable(as->gclk);
1782 		if (ret)
1783 			return ret;
1784 	}
1785 
1786 	atmel_spi_init(as);
1787 
1788 	clk_disable_unprepare(as->clk);
1789 	if (as->gclk)
1790 		clk_disable_unprepare(as->gclk);
1791 
1792 	if (!pm_runtime_suspended(dev)) {
1793 		ret = atmel_spi_runtime_resume(dev);
1794 		if (ret)
1795 			return ret;
1796 	}
1797 
1798 	/* Start the queue running */
1799 	return spi_controller_resume(host);
1800 }
1801 
1802 static const struct dev_pm_ops atmel_spi_pm_ops = {
1803 	SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1804 	RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1805 		       atmel_spi_runtime_resume, NULL)
1806 };
1807 
1808 static const struct of_device_id atmel_spi_dt_ids[] = {
1809 	{ .compatible = "atmel,at91rm9200-spi" },
1810 	{ /* sentinel */ }
1811 };
1812 
1813 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1814 
1815 static struct platform_driver atmel_spi_driver = {
1816 	.driver		= {
1817 		.name	= "atmel_spi",
1818 		.pm	= pm_ptr(&atmel_spi_pm_ops),
1819 		.of_match_table	= atmel_spi_dt_ids,
1820 	},
1821 	.probe		= atmel_spi_probe,
1822 	.remove		= atmel_spi_remove,
1823 };
1824 module_platform_driver(atmel_spi_driver);
1825 
1826 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1827 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1828 MODULE_LICENSE("GPL");
1829 MODULE_ALIAS("platform:atmel_spi");
1830