xref: /linux/drivers/spi/spi-atmel.c (revision 00a6d7b6762c27d441e9ac8faff36384bc0fc180)
1 /*
2  * Driver for Atmel AT32 and AT91 SPI Controllers
3  *
4  * Copyright (C) 2006 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/clk.h>
13 #include <linux/module.h>
14 #include <linux/platform_device.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/dmaengine.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/slab.h>
22 #include <linux/platform_data/atmel.h>
23 #include <linux/platform_data/dma-atmel.h>
24 #include <linux/of.h>
25 
26 #include <linux/io.h>
27 #include <linux/gpio.h>
28 #include <linux/pinctrl/consumer.h>
29 
30 /* SPI register offsets */
31 #define SPI_CR					0x0000
32 #define SPI_MR					0x0004
33 #define SPI_RDR					0x0008
34 #define SPI_TDR					0x000c
35 #define SPI_SR					0x0010
36 #define SPI_IER					0x0014
37 #define SPI_IDR					0x0018
38 #define SPI_IMR					0x001c
39 #define SPI_CSR0				0x0030
40 #define SPI_CSR1				0x0034
41 #define SPI_CSR2				0x0038
42 #define SPI_CSR3				0x003c
43 #define SPI_VERSION				0x00fc
44 #define SPI_RPR					0x0100
45 #define SPI_RCR					0x0104
46 #define SPI_TPR					0x0108
47 #define SPI_TCR					0x010c
48 #define SPI_RNPR				0x0110
49 #define SPI_RNCR				0x0114
50 #define SPI_TNPR				0x0118
51 #define SPI_TNCR				0x011c
52 #define SPI_PTCR				0x0120
53 #define SPI_PTSR				0x0124
54 
55 /* Bitfields in CR */
56 #define SPI_SPIEN_OFFSET			0
57 #define SPI_SPIEN_SIZE				1
58 #define SPI_SPIDIS_OFFSET			1
59 #define SPI_SPIDIS_SIZE				1
60 #define SPI_SWRST_OFFSET			7
61 #define SPI_SWRST_SIZE				1
62 #define SPI_LASTXFER_OFFSET			24
63 #define SPI_LASTXFER_SIZE			1
64 
65 /* Bitfields in MR */
66 #define SPI_MSTR_OFFSET				0
67 #define SPI_MSTR_SIZE				1
68 #define SPI_PS_OFFSET				1
69 #define SPI_PS_SIZE				1
70 #define SPI_PCSDEC_OFFSET			2
71 #define SPI_PCSDEC_SIZE				1
72 #define SPI_FDIV_OFFSET				3
73 #define SPI_FDIV_SIZE				1
74 #define SPI_MODFDIS_OFFSET			4
75 #define SPI_MODFDIS_SIZE			1
76 #define SPI_WDRBT_OFFSET			5
77 #define SPI_WDRBT_SIZE				1
78 #define SPI_LLB_OFFSET				7
79 #define SPI_LLB_SIZE				1
80 #define SPI_PCS_OFFSET				16
81 #define SPI_PCS_SIZE				4
82 #define SPI_DLYBCS_OFFSET			24
83 #define SPI_DLYBCS_SIZE				8
84 
85 /* Bitfields in RDR */
86 #define SPI_RD_OFFSET				0
87 #define SPI_RD_SIZE				16
88 
89 /* Bitfields in TDR */
90 #define SPI_TD_OFFSET				0
91 #define SPI_TD_SIZE				16
92 
93 /* Bitfields in SR */
94 #define SPI_RDRF_OFFSET				0
95 #define SPI_RDRF_SIZE				1
96 #define SPI_TDRE_OFFSET				1
97 #define SPI_TDRE_SIZE				1
98 #define SPI_MODF_OFFSET				2
99 #define SPI_MODF_SIZE				1
100 #define SPI_OVRES_OFFSET			3
101 #define SPI_OVRES_SIZE				1
102 #define SPI_ENDRX_OFFSET			4
103 #define SPI_ENDRX_SIZE				1
104 #define SPI_ENDTX_OFFSET			5
105 #define SPI_ENDTX_SIZE				1
106 #define SPI_RXBUFF_OFFSET			6
107 #define SPI_RXBUFF_SIZE				1
108 #define SPI_TXBUFE_OFFSET			7
109 #define SPI_TXBUFE_SIZE				1
110 #define SPI_NSSR_OFFSET				8
111 #define SPI_NSSR_SIZE				1
112 #define SPI_TXEMPTY_OFFSET			9
113 #define SPI_TXEMPTY_SIZE			1
114 #define SPI_SPIENS_OFFSET			16
115 #define SPI_SPIENS_SIZE				1
116 
117 /* Bitfields in CSR0 */
118 #define SPI_CPOL_OFFSET				0
119 #define SPI_CPOL_SIZE				1
120 #define SPI_NCPHA_OFFSET			1
121 #define SPI_NCPHA_SIZE				1
122 #define SPI_CSAAT_OFFSET			3
123 #define SPI_CSAAT_SIZE				1
124 #define SPI_BITS_OFFSET				4
125 #define SPI_BITS_SIZE				4
126 #define SPI_SCBR_OFFSET				8
127 #define SPI_SCBR_SIZE				8
128 #define SPI_DLYBS_OFFSET			16
129 #define SPI_DLYBS_SIZE				8
130 #define SPI_DLYBCT_OFFSET			24
131 #define SPI_DLYBCT_SIZE				8
132 
133 /* Bitfields in RCR */
134 #define SPI_RXCTR_OFFSET			0
135 #define SPI_RXCTR_SIZE				16
136 
137 /* Bitfields in TCR */
138 #define SPI_TXCTR_OFFSET			0
139 #define SPI_TXCTR_SIZE				16
140 
141 /* Bitfields in RNCR */
142 #define SPI_RXNCR_OFFSET			0
143 #define SPI_RXNCR_SIZE				16
144 
145 /* Bitfields in TNCR */
146 #define SPI_TXNCR_OFFSET			0
147 #define SPI_TXNCR_SIZE				16
148 
149 /* Bitfields in PTCR */
150 #define SPI_RXTEN_OFFSET			0
151 #define SPI_RXTEN_SIZE				1
152 #define SPI_RXTDIS_OFFSET			1
153 #define SPI_RXTDIS_SIZE				1
154 #define SPI_TXTEN_OFFSET			8
155 #define SPI_TXTEN_SIZE				1
156 #define SPI_TXTDIS_OFFSET			9
157 #define SPI_TXTDIS_SIZE				1
158 
159 /* Constants for BITS */
160 #define SPI_BITS_8_BPT				0
161 #define SPI_BITS_9_BPT				1
162 #define SPI_BITS_10_BPT				2
163 #define SPI_BITS_11_BPT				3
164 #define SPI_BITS_12_BPT				4
165 #define SPI_BITS_13_BPT				5
166 #define SPI_BITS_14_BPT				6
167 #define SPI_BITS_15_BPT				7
168 #define SPI_BITS_16_BPT				8
169 
170 /* Bit manipulation macros */
171 #define SPI_BIT(name) \
172 	(1 << SPI_##name##_OFFSET)
173 #define SPI_BF(name, value) \
174 	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
175 #define SPI_BFEXT(name, value) \
176 	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
177 #define SPI_BFINS(name, value, old) \
178 	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
179 	  | SPI_BF(name, value))
180 
181 /* Register access macros */
182 #define spi_readl(port, reg) \
183 	__raw_readl((port)->regs + SPI_##reg)
184 #define spi_writel(port, reg, value) \
185 	__raw_writel((value), (port)->regs + SPI_##reg)
186 
187 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
188  * cache operations; better heuristics consider wordsize and bitrate.
189  */
190 #define DMA_MIN_BYTES	16
191 
192 #define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))
193 
194 struct atmel_spi_dma {
195 	struct dma_chan			*chan_rx;
196 	struct dma_chan			*chan_tx;
197 	struct scatterlist		sgrx;
198 	struct scatterlist		sgtx;
199 	struct dma_async_tx_descriptor	*data_desc_rx;
200 	struct dma_async_tx_descriptor	*data_desc_tx;
201 
202 	struct at_dma_slave	dma_slave;
203 };
204 
205 struct atmel_spi_caps {
206 	bool	is_spi2;
207 	bool	has_wdrbt;
208 	bool	has_dma_support;
209 };
210 
211 /*
212  * The core SPI transfer engine just talks to a register bank to set up
213  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
214  * framework provides the base clock, subdivided for each spi_device.
215  */
216 struct atmel_spi {
217 	spinlock_t		lock;
218 	unsigned long		flags;
219 
220 	phys_addr_t		phybase;
221 	void __iomem		*regs;
222 	int			irq;
223 	struct clk		*clk;
224 	struct platform_device	*pdev;
225 
226 	struct spi_transfer	*current_transfer;
227 	unsigned long		current_remaining_bytes;
228 	int			done_status;
229 
230 	struct completion	xfer_completion;
231 
232 	/* scratch buffer */
233 	void			*buffer;
234 	dma_addr_t		buffer_dma;
235 
236 	struct atmel_spi_caps	caps;
237 
238 	bool			use_dma;
239 	bool			use_pdc;
240 	/* dmaengine data */
241 	struct atmel_spi_dma	dma;
242 
243 	bool			keep_cs;
244 	bool			cs_active;
245 };
246 
247 /* Controller-specific per-slave state */
248 struct atmel_spi_device {
249 	unsigned int		npcs_pin;
250 	u32			csr;
251 };
252 
253 #define BUFFER_SIZE		PAGE_SIZE
254 #define INVALID_DMA_ADDRESS	0xffffffff
255 
256 /*
257  * Version 2 of the SPI controller has
258  *  - CR.LASTXFER
259  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
260  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
261  *  - SPI_CSRx.CSAAT
262  *  - SPI_CSRx.SBCR allows faster clocking
263  */
264 static bool atmel_spi_is_v2(struct atmel_spi *as)
265 {
266 	return as->caps.is_spi2;
267 }
268 
269 /*
270  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
271  * they assume that spi slave device state will not change on deselect, so
272  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
273  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
274  * controllers have CSAAT and friends.
275  *
276  * Since the CSAAT functionality is a bit weird on newer controllers as
277  * well, we use GPIO to control nCSx pins on all controllers, updating
278  * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
279  * support active-high chipselects despite the controller's belief that
280  * only active-low devices/systems exists.
281  *
282  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
283  * right when driven with GPIO.  ("Mode Fault does not allow more than one
284  * Master on Chip Select 0.")  No workaround exists for that ... so for
285  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
286  * and (c) will trigger that first erratum in some cases.
287  */
288 
289 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
290 {
291 	struct atmel_spi_device *asd = spi->controller_state;
292 	unsigned active = spi->mode & SPI_CS_HIGH;
293 	u32 mr;
294 
295 	if (atmel_spi_is_v2(as)) {
296 		spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
297 		/* For the low SPI version, there is a issue that PDC transfer
298 		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
299 		 */
300 		spi_writel(as, CSR0, asd->csr);
301 		if (as->caps.has_wdrbt) {
302 			spi_writel(as, MR,
303 					SPI_BF(PCS, ~(0x01 << spi->chip_select))
304 					| SPI_BIT(WDRBT)
305 					| SPI_BIT(MODFDIS)
306 					| SPI_BIT(MSTR));
307 		} else {
308 			spi_writel(as, MR,
309 					SPI_BF(PCS, ~(0x01 << spi->chip_select))
310 					| SPI_BIT(MODFDIS)
311 					| SPI_BIT(MSTR));
312 		}
313 
314 		mr = spi_readl(as, MR);
315 		gpio_set_value(asd->npcs_pin, active);
316 	} else {
317 		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
318 		int i;
319 		u32 csr;
320 
321 		/* Make sure clock polarity is correct */
322 		for (i = 0; i < spi->master->num_chipselect; i++) {
323 			csr = spi_readl(as, CSR0 + 4 * i);
324 			if ((csr ^ cpol) & SPI_BIT(CPOL))
325 				spi_writel(as, CSR0 + 4 * i,
326 						csr ^ SPI_BIT(CPOL));
327 		}
328 
329 		mr = spi_readl(as, MR);
330 		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
331 		if (spi->chip_select != 0)
332 			gpio_set_value(asd->npcs_pin, active);
333 		spi_writel(as, MR, mr);
334 	}
335 
336 	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
337 			asd->npcs_pin, active ? " (high)" : "",
338 			mr);
339 }
340 
341 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
342 {
343 	struct atmel_spi_device *asd = spi->controller_state;
344 	unsigned active = spi->mode & SPI_CS_HIGH;
345 	u32 mr;
346 
347 	/* only deactivate *this* device; sometimes transfers to
348 	 * another device may be active when this routine is called.
349 	 */
350 	mr = spi_readl(as, MR);
351 	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
352 		mr = SPI_BFINS(PCS, 0xf, mr);
353 		spi_writel(as, MR, mr);
354 	}
355 
356 	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
357 			asd->npcs_pin, active ? " (low)" : "",
358 			mr);
359 
360 	if (atmel_spi_is_v2(as) || spi->chip_select != 0)
361 		gpio_set_value(asd->npcs_pin, !active);
362 }
363 
364 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
365 {
366 	spin_lock_irqsave(&as->lock, as->flags);
367 }
368 
369 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
370 {
371 	spin_unlock_irqrestore(&as->lock, as->flags);
372 }
373 
374 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
375 				struct spi_transfer *xfer)
376 {
377 	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
378 }
379 
380 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
381 				struct dma_slave_config *slave_config,
382 				u8 bits_per_word)
383 {
384 	int err = 0;
385 
386 	if (bits_per_word > 8) {
387 		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
388 		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
389 	} else {
390 		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
391 		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
392 	}
393 
394 	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
395 	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
396 	slave_config->src_maxburst = 1;
397 	slave_config->dst_maxburst = 1;
398 	slave_config->device_fc = false;
399 
400 	slave_config->direction = DMA_MEM_TO_DEV;
401 	if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
402 		dev_err(&as->pdev->dev,
403 			"failed to configure tx dma channel\n");
404 		err = -EINVAL;
405 	}
406 
407 	slave_config->direction = DMA_DEV_TO_MEM;
408 	if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
409 		dev_err(&as->pdev->dev,
410 			"failed to configure rx dma channel\n");
411 		err = -EINVAL;
412 	}
413 
414 	return err;
415 }
416 
417 static bool filter(struct dma_chan *chan, void *pdata)
418 {
419 	struct atmel_spi_dma *sl_pdata = pdata;
420 	struct at_dma_slave *sl;
421 
422 	if (!sl_pdata)
423 		return false;
424 
425 	sl = &sl_pdata->dma_slave;
426 	if (sl->dma_dev == chan->device->dev) {
427 		chan->private = sl;
428 		return true;
429 	} else {
430 		return false;
431 	}
432 }
433 
434 static int atmel_spi_configure_dma(struct atmel_spi *as)
435 {
436 	struct dma_slave_config	slave_config;
437 	struct device *dev = &as->pdev->dev;
438 	int err;
439 
440 	dma_cap_mask_t mask;
441 	dma_cap_zero(mask);
442 	dma_cap_set(DMA_SLAVE, mask);
443 
444 	as->dma.chan_tx = dma_request_slave_channel_compat(mask, filter,
445 							   &as->dma,
446 							   dev, "tx");
447 	if (!as->dma.chan_tx) {
448 		dev_err(dev,
449 			"DMA TX channel not available, SPI unable to use DMA\n");
450 		err = -EBUSY;
451 		goto error;
452 	}
453 
454 	as->dma.chan_rx = dma_request_slave_channel_compat(mask, filter,
455 							   &as->dma,
456 							   dev, "rx");
457 
458 	if (!as->dma.chan_rx) {
459 		dev_err(dev,
460 			"DMA RX channel not available, SPI unable to use DMA\n");
461 		err = -EBUSY;
462 		goto error;
463 	}
464 
465 	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
466 	if (err)
467 		goto error;
468 
469 	dev_info(&as->pdev->dev,
470 			"Using %s (tx) and %s (rx) for DMA transfers\n",
471 			dma_chan_name(as->dma.chan_tx),
472 			dma_chan_name(as->dma.chan_rx));
473 	return 0;
474 error:
475 	if (as->dma.chan_rx)
476 		dma_release_channel(as->dma.chan_rx);
477 	if (as->dma.chan_tx)
478 		dma_release_channel(as->dma.chan_tx);
479 	return err;
480 }
481 
482 static void atmel_spi_stop_dma(struct atmel_spi *as)
483 {
484 	if (as->dma.chan_rx)
485 		as->dma.chan_rx->device->device_control(as->dma.chan_rx,
486 							DMA_TERMINATE_ALL, 0);
487 	if (as->dma.chan_tx)
488 		as->dma.chan_tx->device->device_control(as->dma.chan_tx,
489 							DMA_TERMINATE_ALL, 0);
490 }
491 
492 static void atmel_spi_release_dma(struct atmel_spi *as)
493 {
494 	if (as->dma.chan_rx)
495 		dma_release_channel(as->dma.chan_rx);
496 	if (as->dma.chan_tx)
497 		dma_release_channel(as->dma.chan_tx);
498 }
499 
500 /* This function is called by the DMA driver from tasklet context */
501 static void dma_callback(void *data)
502 {
503 	struct spi_master	*master = data;
504 	struct atmel_spi	*as = spi_master_get_devdata(master);
505 
506 	complete(&as->xfer_completion);
507 }
508 
509 /*
510  * Next transfer using PIO.
511  */
512 static void atmel_spi_next_xfer_pio(struct spi_master *master,
513 				struct spi_transfer *xfer)
514 {
515 	struct atmel_spi	*as = spi_master_get_devdata(master);
516 	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
517 
518 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
519 
520 	/* Make sure data is not remaining in RDR */
521 	spi_readl(as, RDR);
522 	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
523 		spi_readl(as, RDR);
524 		cpu_relax();
525 	}
526 
527 	if (xfer->tx_buf) {
528 		if (xfer->bits_per_word > 8)
529 			spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
530 		else
531 			spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
532 	} else {
533 		spi_writel(as, TDR, 0);
534 	}
535 
536 	dev_dbg(master->dev.parent,
537 		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
538 		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
539 		xfer->bits_per_word);
540 
541 	/* Enable relevant interrupts */
542 	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
543 }
544 
545 /*
546  * Submit next transfer for DMA.
547  */
548 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
549 				struct spi_transfer *xfer,
550 				u32 *plen)
551 {
552 	struct atmel_spi	*as = spi_master_get_devdata(master);
553 	struct dma_chan		*rxchan = as->dma.chan_rx;
554 	struct dma_chan		*txchan = as->dma.chan_tx;
555 	struct dma_async_tx_descriptor *rxdesc;
556 	struct dma_async_tx_descriptor *txdesc;
557 	struct dma_slave_config	slave_config;
558 	dma_cookie_t		cookie;
559 	u32	len = *plen;
560 
561 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
562 
563 	/* Check that the channels are available */
564 	if (!rxchan || !txchan)
565 		return -ENODEV;
566 
567 	/* release lock for DMA operations */
568 	atmel_spi_unlock(as);
569 
570 	/* prepare the RX dma transfer */
571 	sg_init_table(&as->dma.sgrx, 1);
572 	if (xfer->rx_buf) {
573 		as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
574 	} else {
575 		as->dma.sgrx.dma_address = as->buffer_dma;
576 		if (len > BUFFER_SIZE)
577 			len = BUFFER_SIZE;
578 	}
579 
580 	/* prepare the TX dma transfer */
581 	sg_init_table(&as->dma.sgtx, 1);
582 	if (xfer->tx_buf) {
583 		as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
584 	} else {
585 		as->dma.sgtx.dma_address = as->buffer_dma;
586 		if (len > BUFFER_SIZE)
587 			len = BUFFER_SIZE;
588 		memset(as->buffer, 0, len);
589 	}
590 
591 	sg_dma_len(&as->dma.sgtx) = len;
592 	sg_dma_len(&as->dma.sgrx) = len;
593 
594 	*plen = len;
595 
596 	if (atmel_spi_dma_slave_config(as, &slave_config, 8))
597 		goto err_exit;
598 
599 	/* Send both scatterlists */
600 	rxdesc = rxchan->device->device_prep_slave_sg(rxchan,
601 					&as->dma.sgrx,
602 					1,
603 					DMA_FROM_DEVICE,
604 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK,
605 					NULL);
606 	if (!rxdesc)
607 		goto err_dma;
608 
609 	txdesc = txchan->device->device_prep_slave_sg(txchan,
610 					&as->dma.sgtx,
611 					1,
612 					DMA_TO_DEVICE,
613 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK,
614 					NULL);
615 	if (!txdesc)
616 		goto err_dma;
617 
618 	dev_dbg(master->dev.parent,
619 		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
620 		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
621 		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
622 
623 	/* Enable relevant interrupts */
624 	spi_writel(as, IER, SPI_BIT(OVRES));
625 
626 	/* Put the callback on the RX transfer only, that should finish last */
627 	rxdesc->callback = dma_callback;
628 	rxdesc->callback_param = master;
629 
630 	/* Submit and fire RX and TX with TX last so we're ready to read! */
631 	cookie = rxdesc->tx_submit(rxdesc);
632 	if (dma_submit_error(cookie))
633 		goto err_dma;
634 	cookie = txdesc->tx_submit(txdesc);
635 	if (dma_submit_error(cookie))
636 		goto err_dma;
637 	rxchan->device->device_issue_pending(rxchan);
638 	txchan->device->device_issue_pending(txchan);
639 
640 	/* take back lock */
641 	atmel_spi_lock(as);
642 	return 0;
643 
644 err_dma:
645 	spi_writel(as, IDR, SPI_BIT(OVRES));
646 	atmel_spi_stop_dma(as);
647 err_exit:
648 	atmel_spi_lock(as);
649 	return -ENOMEM;
650 }
651 
652 static void atmel_spi_next_xfer_data(struct spi_master *master,
653 				struct spi_transfer *xfer,
654 				dma_addr_t *tx_dma,
655 				dma_addr_t *rx_dma,
656 				u32 *plen)
657 {
658 	struct atmel_spi	*as = spi_master_get_devdata(master);
659 	u32			len = *plen;
660 
661 	/* use scratch buffer only when rx or tx data is unspecified */
662 	if (xfer->rx_buf)
663 		*rx_dma = xfer->rx_dma + xfer->len - *plen;
664 	else {
665 		*rx_dma = as->buffer_dma;
666 		if (len > BUFFER_SIZE)
667 			len = BUFFER_SIZE;
668 	}
669 
670 	if (xfer->tx_buf)
671 		*tx_dma = xfer->tx_dma + xfer->len - *plen;
672 	else {
673 		*tx_dma = as->buffer_dma;
674 		if (len > BUFFER_SIZE)
675 			len = BUFFER_SIZE;
676 		memset(as->buffer, 0, len);
677 		dma_sync_single_for_device(&as->pdev->dev,
678 				as->buffer_dma, len, DMA_TO_DEVICE);
679 	}
680 
681 	*plen = len;
682 }
683 
684 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
685 				    struct spi_device *spi,
686 				    struct spi_transfer *xfer)
687 {
688 	u32			scbr, csr;
689 	unsigned long		bus_hz;
690 
691 	/* v1 chips start out at half the peripheral bus speed. */
692 	bus_hz = clk_get_rate(as->clk);
693 	if (!atmel_spi_is_v2(as))
694 		bus_hz /= 2;
695 
696 	/*
697 	 * Calculate the lowest divider that satisfies the
698 	 * constraint, assuming div32/fdiv/mbz == 0.
699 	 */
700 	if (xfer->speed_hz)
701 		scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
702 	else
703 		/*
704 		 * This can happend if max_speed is null.
705 		 * In this case, we set the lowest possible speed
706 		 */
707 		scbr = 0xff;
708 
709 	/*
710 	 * If the resulting divider doesn't fit into the
711 	 * register bitfield, we can't satisfy the constraint.
712 	 */
713 	if (scbr >= (1 << SPI_SCBR_SIZE)) {
714 		dev_err(&spi->dev,
715 			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
716 			xfer->speed_hz, scbr, bus_hz/255);
717 		return -EINVAL;
718 	}
719 	if (scbr == 0) {
720 		dev_err(&spi->dev,
721 			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
722 			xfer->speed_hz, scbr, bus_hz);
723 		return -EINVAL;
724 	}
725 	csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
726 	csr = SPI_BFINS(SCBR, scbr, csr);
727 	spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
728 
729 	return 0;
730 }
731 
732 /*
733  * Submit next transfer for PDC.
734  * lock is held, spi irq is blocked
735  */
736 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
737 					struct spi_message *msg,
738 					struct spi_transfer *xfer)
739 {
740 	struct atmel_spi	*as = spi_master_get_devdata(master);
741 	u32			len;
742 	dma_addr_t		tx_dma, rx_dma;
743 
744 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
745 
746 	len = as->current_remaining_bytes;
747 	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
748 	as->current_remaining_bytes -= len;
749 
750 	spi_writel(as, RPR, rx_dma);
751 	spi_writel(as, TPR, tx_dma);
752 
753 	if (msg->spi->bits_per_word > 8)
754 		len >>= 1;
755 	spi_writel(as, RCR, len);
756 	spi_writel(as, TCR, len);
757 
758 	dev_dbg(&msg->spi->dev,
759 		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
760 		xfer, xfer->len, xfer->tx_buf,
761 		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
762 		(unsigned long long)xfer->rx_dma);
763 
764 	if (as->current_remaining_bytes) {
765 		len = as->current_remaining_bytes;
766 		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
767 		as->current_remaining_bytes -= len;
768 
769 		spi_writel(as, RNPR, rx_dma);
770 		spi_writel(as, TNPR, tx_dma);
771 
772 		if (msg->spi->bits_per_word > 8)
773 			len >>= 1;
774 		spi_writel(as, RNCR, len);
775 		spi_writel(as, TNCR, len);
776 
777 		dev_dbg(&msg->spi->dev,
778 			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
779 			xfer, xfer->len, xfer->tx_buf,
780 			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
781 			(unsigned long long)xfer->rx_dma);
782 	}
783 
784 	/* REVISIT: We're waiting for ENDRX before we start the next
785 	 * transfer because we need to handle some difficult timing
786 	 * issues otherwise. If we wait for ENDTX in one transfer and
787 	 * then starts waiting for ENDRX in the next, it's difficult
788 	 * to tell the difference between the ENDRX interrupt we're
789 	 * actually waiting for and the ENDRX interrupt of the
790 	 * previous transfer.
791 	 *
792 	 * It should be doable, though. Just not now...
793 	 */
794 	spi_writel(as, IER, SPI_BIT(ENDRX) | SPI_BIT(OVRES));
795 	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
796 }
797 
798 /*
799  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
800  *  - The buffer is either valid for CPU access, else NULL
801  *  - If the buffer is valid, so is its DMA address
802  *
803  * This driver manages the dma address unless message->is_dma_mapped.
804  */
805 static int
806 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
807 {
808 	struct device	*dev = &as->pdev->dev;
809 
810 	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
811 	if (xfer->tx_buf) {
812 		/* tx_buf is a const void* where we need a void * for the dma
813 		 * mapping */
814 		void *nonconst_tx = (void *)xfer->tx_buf;
815 
816 		xfer->tx_dma = dma_map_single(dev,
817 				nonconst_tx, xfer->len,
818 				DMA_TO_DEVICE);
819 		if (dma_mapping_error(dev, xfer->tx_dma))
820 			return -ENOMEM;
821 	}
822 	if (xfer->rx_buf) {
823 		xfer->rx_dma = dma_map_single(dev,
824 				xfer->rx_buf, xfer->len,
825 				DMA_FROM_DEVICE);
826 		if (dma_mapping_error(dev, xfer->rx_dma)) {
827 			if (xfer->tx_buf)
828 				dma_unmap_single(dev,
829 						xfer->tx_dma, xfer->len,
830 						DMA_TO_DEVICE);
831 			return -ENOMEM;
832 		}
833 	}
834 	return 0;
835 }
836 
837 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
838 				     struct spi_transfer *xfer)
839 {
840 	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
841 		dma_unmap_single(master->dev.parent, xfer->tx_dma,
842 				 xfer->len, DMA_TO_DEVICE);
843 	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
844 		dma_unmap_single(master->dev.parent, xfer->rx_dma,
845 				 xfer->len, DMA_FROM_DEVICE);
846 }
847 
848 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
849 {
850 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
851 }
852 
853 /* Called from IRQ
854  *
855  * Must update "current_remaining_bytes" to keep track of data
856  * to transfer.
857  */
858 static void
859 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
860 {
861 	u8		*rxp;
862 	u16		*rxp16;
863 	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
864 
865 	if (xfer->rx_buf) {
866 		if (xfer->bits_per_word > 8) {
867 			rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
868 			*rxp16 = spi_readl(as, RDR);
869 		} else {
870 			rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
871 			*rxp = spi_readl(as, RDR);
872 		}
873 	} else {
874 		spi_readl(as, RDR);
875 	}
876 	if (xfer->bits_per_word > 8) {
877 		as->current_remaining_bytes -= 2;
878 		if (as->current_remaining_bytes < 0)
879 			as->current_remaining_bytes = 0;
880 	} else {
881 		as->current_remaining_bytes--;
882 	}
883 }
884 
885 /* Interrupt
886  *
887  * No need for locking in this Interrupt handler: done_status is the
888  * only information modified.
889  */
890 static irqreturn_t
891 atmel_spi_pio_interrupt(int irq, void *dev_id)
892 {
893 	struct spi_master	*master = dev_id;
894 	struct atmel_spi	*as = spi_master_get_devdata(master);
895 	u32			status, pending, imr;
896 	struct spi_transfer	*xfer;
897 	int			ret = IRQ_NONE;
898 
899 	imr = spi_readl(as, IMR);
900 	status = spi_readl(as, SR);
901 	pending = status & imr;
902 
903 	if (pending & SPI_BIT(OVRES)) {
904 		ret = IRQ_HANDLED;
905 		spi_writel(as, IDR, SPI_BIT(OVRES));
906 		dev_warn(master->dev.parent, "overrun\n");
907 
908 		/*
909 		 * When we get an overrun, we disregard the current
910 		 * transfer. Data will not be copied back from any
911 		 * bounce buffer and msg->actual_len will not be
912 		 * updated with the last xfer.
913 		 *
914 		 * We will also not process any remaning transfers in
915 		 * the message.
916 		 */
917 		as->done_status = -EIO;
918 		smp_wmb();
919 
920 		/* Clear any overrun happening while cleaning up */
921 		spi_readl(as, SR);
922 
923 		complete(&as->xfer_completion);
924 
925 	} else if (pending & SPI_BIT(RDRF)) {
926 		atmel_spi_lock(as);
927 
928 		if (as->current_remaining_bytes) {
929 			ret = IRQ_HANDLED;
930 			xfer = as->current_transfer;
931 			atmel_spi_pump_pio_data(as, xfer);
932 			if (!as->current_remaining_bytes)
933 				spi_writel(as, IDR, pending);
934 
935 			complete(&as->xfer_completion);
936 		}
937 
938 		atmel_spi_unlock(as);
939 	} else {
940 		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
941 		ret = IRQ_HANDLED;
942 		spi_writel(as, IDR, pending);
943 	}
944 
945 	return ret;
946 }
947 
948 static irqreturn_t
949 atmel_spi_pdc_interrupt(int irq, void *dev_id)
950 {
951 	struct spi_master	*master = dev_id;
952 	struct atmel_spi	*as = spi_master_get_devdata(master);
953 	u32			status, pending, imr;
954 	int			ret = IRQ_NONE;
955 
956 	imr = spi_readl(as, IMR);
957 	status = spi_readl(as, SR);
958 	pending = status & imr;
959 
960 	if (pending & SPI_BIT(OVRES)) {
961 
962 		ret = IRQ_HANDLED;
963 
964 		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
965 				     | SPI_BIT(OVRES)));
966 
967 		/* Clear any overrun happening while cleaning up */
968 		spi_readl(as, SR);
969 
970 		as->done_status = -EIO;
971 
972 		complete(&as->xfer_completion);
973 
974 	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
975 		ret = IRQ_HANDLED;
976 
977 		spi_writel(as, IDR, pending);
978 
979 		complete(&as->xfer_completion);
980 	}
981 
982 	return ret;
983 }
984 
985 static int atmel_spi_setup(struct spi_device *spi)
986 {
987 	struct atmel_spi	*as;
988 	struct atmel_spi_device	*asd;
989 	u32			csr;
990 	unsigned int		bits = spi->bits_per_word;
991 	unsigned int		npcs_pin;
992 	int			ret;
993 
994 	as = spi_master_get_devdata(spi->master);
995 
996 	/* see notes above re chipselect */
997 	if (!atmel_spi_is_v2(as)
998 			&& spi->chip_select == 0
999 			&& (spi->mode & SPI_CS_HIGH)) {
1000 		dev_dbg(&spi->dev, "setup: can't be active-high\n");
1001 		return -EINVAL;
1002 	}
1003 
1004 	csr = SPI_BF(BITS, bits - 8);
1005 	if (spi->mode & SPI_CPOL)
1006 		csr |= SPI_BIT(CPOL);
1007 	if (!(spi->mode & SPI_CPHA))
1008 		csr |= SPI_BIT(NCPHA);
1009 
1010 	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1011 	 *
1012 	 * DLYBCT would add delays between words, slowing down transfers.
1013 	 * It could potentially be useful to cope with DMA bottlenecks, but
1014 	 * in those cases it's probably best to just use a lower bitrate.
1015 	 */
1016 	csr |= SPI_BF(DLYBS, 0);
1017 	csr |= SPI_BF(DLYBCT, 0);
1018 
1019 	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
1020 	npcs_pin = (unsigned int)spi->controller_data;
1021 
1022 	if (gpio_is_valid(spi->cs_gpio))
1023 		npcs_pin = spi->cs_gpio;
1024 
1025 	asd = spi->controller_state;
1026 	if (!asd) {
1027 		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1028 		if (!asd)
1029 			return -ENOMEM;
1030 
1031 		ret = gpio_request(npcs_pin, dev_name(&spi->dev));
1032 		if (ret) {
1033 			kfree(asd);
1034 			return ret;
1035 		}
1036 
1037 		asd->npcs_pin = npcs_pin;
1038 		spi->controller_state = asd;
1039 		gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
1040 	}
1041 
1042 	asd->csr = csr;
1043 
1044 	dev_dbg(&spi->dev,
1045 		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1046 		bits, spi->mode, spi->chip_select, csr);
1047 
1048 	if (!atmel_spi_is_v2(as))
1049 		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1050 
1051 	return 0;
1052 }
1053 
1054 static int atmel_spi_one_transfer(struct spi_master *master,
1055 					struct spi_message *msg,
1056 					struct spi_transfer *xfer)
1057 {
1058 	struct atmel_spi	*as;
1059 	struct spi_device	*spi = msg->spi;
1060 	u8			bits;
1061 	u32			len;
1062 	struct atmel_spi_device	*asd;
1063 	int			timeout;
1064 	int			ret;
1065 
1066 	as = spi_master_get_devdata(master);
1067 
1068 	if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1069 		dev_dbg(&spi->dev, "missing rx or tx buf\n");
1070 		return -EINVAL;
1071 	}
1072 
1073 	if (xfer->bits_per_word) {
1074 		asd = spi->controller_state;
1075 		bits = (asd->csr >> 4) & 0xf;
1076 		if (bits != xfer->bits_per_word - 8) {
1077 			dev_dbg(&spi->dev,
1078 			"you can't yet change bits_per_word in transfers\n");
1079 			return -ENOPROTOOPT;
1080 		}
1081 	}
1082 
1083 	/*
1084 	 * DMA map early, for performance (empties dcache ASAP) and
1085 	 * better fault reporting.
1086 	 */
1087 	if ((!msg->is_dma_mapped)
1088 		&& (atmel_spi_use_dma(as, xfer)	|| as->use_pdc)) {
1089 		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1090 			return -ENOMEM;
1091 	}
1092 
1093 	atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1094 
1095 	as->done_status = 0;
1096 	as->current_transfer = xfer;
1097 	as->current_remaining_bytes = xfer->len;
1098 	while (as->current_remaining_bytes) {
1099 		reinit_completion(&as->xfer_completion);
1100 
1101 		if (as->use_pdc) {
1102 			atmel_spi_pdc_next_xfer(master, msg, xfer);
1103 		} else if (atmel_spi_use_dma(as, xfer)) {
1104 			len = as->current_remaining_bytes;
1105 			ret = atmel_spi_next_xfer_dma_submit(master,
1106 								xfer, &len);
1107 			if (ret) {
1108 				dev_err(&spi->dev,
1109 					"unable to use DMA, fallback to PIO\n");
1110 				atmel_spi_next_xfer_pio(master, xfer);
1111 			} else {
1112 				as->current_remaining_bytes -= len;
1113 			}
1114 		} else {
1115 			atmel_spi_next_xfer_pio(master, xfer);
1116 		}
1117 
1118 		/* interrupts are disabled, so free the lock for schedule */
1119 		atmel_spi_unlock(as);
1120 		ret = wait_for_completion_timeout(&as->xfer_completion,
1121 							SPI_DMA_TIMEOUT);
1122 		atmel_spi_lock(as);
1123 		if (WARN_ON(ret == 0)) {
1124 			dev_err(&spi->dev,
1125 				"spi trasfer timeout, err %d\n", ret);
1126 			as->done_status = -EIO;
1127 		} else {
1128 			ret = 0;
1129 		}
1130 
1131 		if (as->done_status)
1132 			break;
1133 	}
1134 
1135 	if (as->done_status) {
1136 		if (as->use_pdc) {
1137 			dev_warn(master->dev.parent,
1138 				"overrun (%u/%u remaining)\n",
1139 				spi_readl(as, TCR), spi_readl(as, RCR));
1140 
1141 			/*
1142 			 * Clean up DMA registers and make sure the data
1143 			 * registers are empty.
1144 			 */
1145 			spi_writel(as, RNCR, 0);
1146 			spi_writel(as, TNCR, 0);
1147 			spi_writel(as, RCR, 0);
1148 			spi_writel(as, TCR, 0);
1149 			for (timeout = 1000; timeout; timeout--)
1150 				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1151 					break;
1152 			if (!timeout)
1153 				dev_warn(master->dev.parent,
1154 					 "timeout waiting for TXEMPTY");
1155 			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1156 				spi_readl(as, RDR);
1157 
1158 			/* Clear any overrun happening while cleaning up */
1159 			spi_readl(as, SR);
1160 
1161 		} else if (atmel_spi_use_dma(as, xfer)) {
1162 			atmel_spi_stop_dma(as);
1163 		}
1164 
1165 		if (!msg->is_dma_mapped
1166 			&& (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1167 			atmel_spi_dma_unmap_xfer(master, xfer);
1168 
1169 		return 0;
1170 
1171 	} else {
1172 		/* only update length if no error */
1173 		msg->actual_length += xfer->len;
1174 	}
1175 
1176 	if (!msg->is_dma_mapped
1177 		&& (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1178 		atmel_spi_dma_unmap_xfer(master, xfer);
1179 
1180 	if (xfer->delay_usecs)
1181 		udelay(xfer->delay_usecs);
1182 
1183 	if (xfer->cs_change) {
1184 		if (list_is_last(&xfer->transfer_list,
1185 				 &msg->transfers)) {
1186 			as->keep_cs = true;
1187 		} else {
1188 			as->cs_active = !as->cs_active;
1189 			if (as->cs_active)
1190 				cs_activate(as, msg->spi);
1191 			else
1192 				cs_deactivate(as, msg->spi);
1193 		}
1194 	}
1195 
1196 	return 0;
1197 }
1198 
1199 static int atmel_spi_transfer_one_message(struct spi_master *master,
1200 						struct spi_message *msg)
1201 {
1202 	struct atmel_spi *as;
1203 	struct spi_transfer *xfer;
1204 	struct spi_device *spi = msg->spi;
1205 	int ret = 0;
1206 
1207 	as = spi_master_get_devdata(master);
1208 
1209 	dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1210 					msg, dev_name(&spi->dev));
1211 
1212 	atmel_spi_lock(as);
1213 	cs_activate(as, spi);
1214 
1215 	as->cs_active = true;
1216 	as->keep_cs = false;
1217 
1218 	msg->status = 0;
1219 	msg->actual_length = 0;
1220 
1221 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1222 		ret = atmel_spi_one_transfer(master, msg, xfer);
1223 		if (ret)
1224 			goto msg_done;
1225 	}
1226 
1227 	if (as->use_pdc)
1228 		atmel_spi_disable_pdc_transfer(as);
1229 
1230 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1231 		dev_dbg(&spi->dev,
1232 			"  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1233 			xfer, xfer->len,
1234 			xfer->tx_buf, &xfer->tx_dma,
1235 			xfer->rx_buf, &xfer->rx_dma);
1236 	}
1237 
1238 msg_done:
1239 	if (!as->keep_cs)
1240 		cs_deactivate(as, msg->spi);
1241 
1242 	atmel_spi_unlock(as);
1243 
1244 	msg->status = as->done_status;
1245 	spi_finalize_current_message(spi->master);
1246 
1247 	return ret;
1248 }
1249 
1250 static void atmel_spi_cleanup(struct spi_device *spi)
1251 {
1252 	struct atmel_spi_device	*asd = spi->controller_state;
1253 	unsigned		gpio = (unsigned) spi->controller_data;
1254 
1255 	if (!asd)
1256 		return;
1257 
1258 	spi->controller_state = NULL;
1259 	gpio_free(gpio);
1260 	kfree(asd);
1261 }
1262 
1263 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1264 {
1265 	return spi_readl(as, VERSION) & 0x00000fff;
1266 }
1267 
1268 static void atmel_get_caps(struct atmel_spi *as)
1269 {
1270 	unsigned int version;
1271 
1272 	version = atmel_get_version(as);
1273 	dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1274 
1275 	as->caps.is_spi2 = version > 0x121;
1276 	as->caps.has_wdrbt = version >= 0x210;
1277 	as->caps.has_dma_support = version >= 0x212;
1278 }
1279 
1280 /*-------------------------------------------------------------------------*/
1281 
1282 static int atmel_spi_probe(struct platform_device *pdev)
1283 {
1284 	struct resource		*regs;
1285 	int			irq;
1286 	struct clk		*clk;
1287 	int			ret;
1288 	struct spi_master	*master;
1289 	struct atmel_spi	*as;
1290 
1291 	/* Select default pin state */
1292 	pinctrl_pm_select_default_state(&pdev->dev);
1293 
1294 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1295 	if (!regs)
1296 		return -ENXIO;
1297 
1298 	irq = platform_get_irq(pdev, 0);
1299 	if (irq < 0)
1300 		return irq;
1301 
1302 	clk = devm_clk_get(&pdev->dev, "spi_clk");
1303 	if (IS_ERR(clk))
1304 		return PTR_ERR(clk);
1305 
1306 	/* setup spi core then atmel-specific driver state */
1307 	ret = -ENOMEM;
1308 	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1309 	if (!master)
1310 		goto out_free;
1311 
1312 	/* the spi->mode bits understood by this driver: */
1313 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1314 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1315 	master->dev.of_node = pdev->dev.of_node;
1316 	master->bus_num = pdev->id;
1317 	master->num_chipselect = master->dev.of_node ? 0 : 4;
1318 	master->setup = atmel_spi_setup;
1319 	master->transfer_one_message = atmel_spi_transfer_one_message;
1320 	master->cleanup = atmel_spi_cleanup;
1321 	platform_set_drvdata(pdev, master);
1322 
1323 	as = spi_master_get_devdata(master);
1324 
1325 	/*
1326 	 * Scratch buffer is used for throwaway rx and tx data.
1327 	 * It's coherent to minimize dcache pollution.
1328 	 */
1329 	as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
1330 					&as->buffer_dma, GFP_KERNEL);
1331 	if (!as->buffer)
1332 		goto out_free;
1333 
1334 	spin_lock_init(&as->lock);
1335 
1336 	as->pdev = pdev;
1337 	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1338 	if (IS_ERR(as->regs)) {
1339 		ret = PTR_ERR(as->regs);
1340 		goto out_free_buffer;
1341 	}
1342 	as->phybase = regs->start;
1343 	as->irq = irq;
1344 	as->clk = clk;
1345 
1346 	init_completion(&as->xfer_completion);
1347 
1348 	atmel_get_caps(as);
1349 
1350 	as->use_dma = false;
1351 	as->use_pdc = false;
1352 	if (as->caps.has_dma_support) {
1353 		if (atmel_spi_configure_dma(as) == 0)
1354 			as->use_dma = true;
1355 	} else {
1356 		as->use_pdc = true;
1357 	}
1358 
1359 	if (as->caps.has_dma_support && !as->use_dma)
1360 		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1361 
1362 	if (as->use_pdc) {
1363 		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1364 					0, dev_name(&pdev->dev), master);
1365 	} else {
1366 		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1367 					0, dev_name(&pdev->dev), master);
1368 	}
1369 	if (ret)
1370 		goto out_unmap_regs;
1371 
1372 	/* Initialize the hardware */
1373 	ret = clk_prepare_enable(clk);
1374 	if (ret)
1375 		goto out_free_irq;
1376 	spi_writel(as, CR, SPI_BIT(SWRST));
1377 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1378 	if (as->caps.has_wdrbt) {
1379 		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1380 				| SPI_BIT(MSTR));
1381 	} else {
1382 		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1383 	}
1384 
1385 	if (as->use_pdc)
1386 		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1387 	spi_writel(as, CR, SPI_BIT(SPIEN));
1388 
1389 	/* go! */
1390 	dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1391 			(unsigned long)regs->start, irq);
1392 
1393 	ret = devm_spi_register_master(&pdev->dev, master);
1394 	if (ret)
1395 		goto out_free_dma;
1396 
1397 	return 0;
1398 
1399 out_free_dma:
1400 	if (as->use_dma)
1401 		atmel_spi_release_dma(as);
1402 
1403 	spi_writel(as, CR, SPI_BIT(SWRST));
1404 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1405 	clk_disable_unprepare(clk);
1406 out_free_irq:
1407 out_unmap_regs:
1408 out_free_buffer:
1409 	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1410 			as->buffer_dma);
1411 out_free:
1412 	spi_master_put(master);
1413 	return ret;
1414 }
1415 
1416 static int atmel_spi_remove(struct platform_device *pdev)
1417 {
1418 	struct spi_master	*master = platform_get_drvdata(pdev);
1419 	struct atmel_spi	*as = spi_master_get_devdata(master);
1420 
1421 	/* reset the hardware and block queue progress */
1422 	spin_lock_irq(&as->lock);
1423 	if (as->use_dma) {
1424 		atmel_spi_stop_dma(as);
1425 		atmel_spi_release_dma(as);
1426 	}
1427 
1428 	spi_writel(as, CR, SPI_BIT(SWRST));
1429 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1430 	spi_readl(as, SR);
1431 	spin_unlock_irq(&as->lock);
1432 
1433 	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1434 			as->buffer_dma);
1435 
1436 	clk_disable_unprepare(as->clk);
1437 
1438 	return 0;
1439 }
1440 
1441 #ifdef CONFIG_PM_SLEEP
1442 static int atmel_spi_suspend(struct device *dev)
1443 {
1444 	struct spi_master	*master = dev_get_drvdata(dev);
1445 	struct atmel_spi	*as = spi_master_get_devdata(master);
1446 	int ret;
1447 
1448 	/* Stop the queue running */
1449 	ret = spi_master_suspend(master);
1450 	if (ret) {
1451 		dev_warn(dev, "cannot suspend master\n");
1452 		return ret;
1453 	}
1454 
1455 	clk_disable_unprepare(as->clk);
1456 
1457 	pinctrl_pm_select_sleep_state(dev);
1458 
1459 	return 0;
1460 }
1461 
1462 static int atmel_spi_resume(struct device *dev)
1463 {
1464 	struct spi_master	*master = dev_get_drvdata(dev);
1465 	struct atmel_spi	*as = spi_master_get_devdata(master);
1466 	int ret;
1467 
1468 	pinctrl_pm_select_default_state(dev);
1469 
1470 	clk_prepare_enable(as->clk);
1471 
1472 	/* Start the queue running */
1473 	ret = spi_master_resume(master);
1474 	if (ret)
1475 		dev_err(dev, "problem starting queue (%d)\n", ret);
1476 
1477 	return ret;
1478 }
1479 
1480 static SIMPLE_DEV_PM_OPS(atmel_spi_pm_ops, atmel_spi_suspend, atmel_spi_resume);
1481 
1482 #define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1483 #else
1484 #define ATMEL_SPI_PM_OPS	NULL
1485 #endif
1486 
1487 #if defined(CONFIG_OF)
1488 static const struct of_device_id atmel_spi_dt_ids[] = {
1489 	{ .compatible = "atmel,at91rm9200-spi" },
1490 	{ /* sentinel */ }
1491 };
1492 
1493 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1494 #endif
1495 
1496 static struct platform_driver atmel_spi_driver = {
1497 	.driver		= {
1498 		.name	= "atmel_spi",
1499 		.owner	= THIS_MODULE,
1500 		.pm	= ATMEL_SPI_PM_OPS,
1501 		.of_match_table	= of_match_ptr(atmel_spi_dt_ids),
1502 	},
1503 	.probe		= atmel_spi_probe,
1504 	.remove		= atmel_spi_remove,
1505 };
1506 module_platform_driver(atmel_spi_driver);
1507 
1508 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1509 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1510 MODULE_LICENSE("GPL");
1511 MODULE_ALIAS("platform:atmel_spi");
1512