xref: /linux/drivers/soundwire/intel.c (revision a99009bc4f2f0b46e6c553704fda0b67e04395f5)
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 // Copyright(c) 2015-17 Intel Corporation.
3 
4 /*
5  * Soundwire Intel Master Driver
6  */
7 
8 #include <linux/acpi.h>
9 #include <linux/debugfs.h>
10 #include <linux/delay.h>
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/auxiliary_bus.h>
15 #include <sound/pcm_params.h>
16 #include <linux/pm_runtime.h>
17 #include <sound/soc.h>
18 #include <linux/soundwire/sdw_registers.h>
19 #include <linux/soundwire/sdw.h>
20 #include <linux/soundwire/sdw_intel.h>
21 #include "cadence_master.h"
22 #include "bus.h"
23 #include "intel.h"
24 
25 #define INTEL_MASTER_SUSPEND_DELAY_MS	3000
26 #define INTEL_MASTER_RESET_ITERATIONS	10
27 
28 /*
29  * debug/config flags for the Intel SoundWire Master.
30  *
31  * Since we may have multiple masters active, we can have up to 8
32  * flags reused in each byte, with master0 using the ls-byte, etc.
33  */
34 
35 #define SDW_INTEL_MASTER_DISABLE_PM_RUNTIME		BIT(0)
36 #define SDW_INTEL_MASTER_DISABLE_CLOCK_STOP		BIT(1)
37 #define SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE	BIT(2)
38 #define SDW_INTEL_MASTER_DISABLE_MULTI_LINK		BIT(3)
39 
40 static int md_flags;
41 module_param_named(sdw_md_flags, md_flags, int, 0444);
42 MODULE_PARM_DESC(sdw_md_flags, "SoundWire Intel Master device flags (0x0 all off)");
43 
44 /* Intel SHIM Registers Definition */
45 #define SDW_SHIM_LCAP			0x0
46 #define SDW_SHIM_LCTL			0x4
47 #define SDW_SHIM_IPPTR			0x8
48 #define SDW_SHIM_SYNC			0xC
49 
50 #define SDW_SHIM_CTLSCAP(x)		(0x010 + 0x60 * (x))
51 #define SDW_SHIM_CTLS0CM(x)		(0x012 + 0x60 * (x))
52 #define SDW_SHIM_CTLS1CM(x)		(0x014 + 0x60 * (x))
53 #define SDW_SHIM_CTLS2CM(x)		(0x016 + 0x60 * (x))
54 #define SDW_SHIM_CTLS3CM(x)		(0x018 + 0x60 * (x))
55 #define SDW_SHIM_PCMSCAP(x)		(0x020 + 0x60 * (x))
56 
57 #define SDW_SHIM_PCMSYCHM(x, y)		(0x022 + (0x60 * (x)) + (0x2 * (y)))
58 #define SDW_SHIM_PCMSYCHC(x, y)		(0x042 + (0x60 * (x)) + (0x2 * (y)))
59 #define SDW_SHIM_PDMSCAP(x)		(0x062 + 0x60 * (x))
60 #define SDW_SHIM_IOCTL(x)		(0x06C + 0x60 * (x))
61 #define SDW_SHIM_CTMCTL(x)		(0x06E + 0x60 * (x))
62 
63 #define SDW_SHIM_WAKEEN			0x190
64 #define SDW_SHIM_WAKESTS		0x192
65 
66 #define SDW_SHIM_LCTL_SPA		BIT(0)
67 #define SDW_SHIM_LCTL_SPA_MASK		GENMASK(3, 0)
68 #define SDW_SHIM_LCTL_CPA		BIT(8)
69 #define SDW_SHIM_LCTL_CPA_MASK		GENMASK(11, 8)
70 
71 #define SDW_SHIM_SYNC_SYNCPRD_VAL_24	(24000 / SDW_CADENCE_GSYNC_KHZ - 1)
72 #define SDW_SHIM_SYNC_SYNCPRD_VAL_38_4	(38400 / SDW_CADENCE_GSYNC_KHZ - 1)
73 #define SDW_SHIM_SYNC_SYNCPRD		GENMASK(14, 0)
74 #define SDW_SHIM_SYNC_SYNCCPU		BIT(15)
75 #define SDW_SHIM_SYNC_CMDSYNC_MASK	GENMASK(19, 16)
76 #define SDW_SHIM_SYNC_CMDSYNC		BIT(16)
77 #define SDW_SHIM_SYNC_SYNCGO		BIT(24)
78 
79 #define SDW_SHIM_PCMSCAP_ISS		GENMASK(3, 0)
80 #define SDW_SHIM_PCMSCAP_OSS		GENMASK(7, 4)
81 #define SDW_SHIM_PCMSCAP_BSS		GENMASK(12, 8)
82 
83 #define SDW_SHIM_PCMSYCM_LCHN		GENMASK(3, 0)
84 #define SDW_SHIM_PCMSYCM_HCHN		GENMASK(7, 4)
85 #define SDW_SHIM_PCMSYCM_STREAM		GENMASK(13, 8)
86 #define SDW_SHIM_PCMSYCM_DIR		BIT(15)
87 
88 #define SDW_SHIM_PDMSCAP_ISS		GENMASK(3, 0)
89 #define SDW_SHIM_PDMSCAP_OSS		GENMASK(7, 4)
90 #define SDW_SHIM_PDMSCAP_BSS		GENMASK(12, 8)
91 #define SDW_SHIM_PDMSCAP_CPSS		GENMASK(15, 13)
92 
93 #define SDW_SHIM_IOCTL_MIF		BIT(0)
94 #define SDW_SHIM_IOCTL_CO		BIT(1)
95 #define SDW_SHIM_IOCTL_COE		BIT(2)
96 #define SDW_SHIM_IOCTL_DO		BIT(3)
97 #define SDW_SHIM_IOCTL_DOE		BIT(4)
98 #define SDW_SHIM_IOCTL_BKE		BIT(5)
99 #define SDW_SHIM_IOCTL_WPDD		BIT(6)
100 #define SDW_SHIM_IOCTL_CIBD		BIT(8)
101 #define SDW_SHIM_IOCTL_DIBD		BIT(9)
102 
103 #define SDW_SHIM_CTMCTL_DACTQE		BIT(0)
104 #define SDW_SHIM_CTMCTL_DODS		BIT(1)
105 #define SDW_SHIM_CTMCTL_DOAIS		GENMASK(4, 3)
106 
107 #define SDW_SHIM_WAKEEN_ENABLE		BIT(0)
108 #define SDW_SHIM_WAKESTS_STATUS		BIT(0)
109 
110 /* Intel ALH Register definitions */
111 #define SDW_ALH_STRMZCFG(x)		(0x000 + (0x4 * (x)))
112 #define SDW_ALH_NUM_STREAMS		64
113 
114 #define SDW_ALH_STRMZCFG_DMAT_VAL	0x3
115 #define SDW_ALH_STRMZCFG_DMAT		GENMASK(7, 0)
116 #define SDW_ALH_STRMZCFG_CHN		GENMASK(19, 16)
117 
118 enum intel_pdi_type {
119 	INTEL_PDI_IN = 0,
120 	INTEL_PDI_OUT = 1,
121 	INTEL_PDI_BD = 2,
122 };
123 
124 #define cdns_to_intel(_cdns) container_of(_cdns, struct sdw_intel, cdns)
125 
126 /*
127  * Read, write helpers for HW registers
128  */
129 static inline int intel_readl(void __iomem *base, int offset)
130 {
131 	return readl(base + offset);
132 }
133 
134 static inline void intel_writel(void __iomem *base, int offset, int value)
135 {
136 	writel(value, base + offset);
137 }
138 
139 static inline u16 intel_readw(void __iomem *base, int offset)
140 {
141 	return readw(base + offset);
142 }
143 
144 static inline void intel_writew(void __iomem *base, int offset, u16 value)
145 {
146 	writew(value, base + offset);
147 }
148 
149 static int intel_wait_bit(void __iomem *base, int offset, u32 mask, u32 target)
150 {
151 	int timeout = 10;
152 	u32 reg_read;
153 
154 	do {
155 		reg_read = readl(base + offset);
156 		if ((reg_read & mask) == target)
157 			return 0;
158 
159 		timeout--;
160 		usleep_range(50, 100);
161 	} while (timeout != 0);
162 
163 	return -EAGAIN;
164 }
165 
166 static int intel_clear_bit(void __iomem *base, int offset, u32 value, u32 mask)
167 {
168 	writel(value, base + offset);
169 	return intel_wait_bit(base, offset, mask, 0);
170 }
171 
172 static int intel_set_bit(void __iomem *base, int offset, u32 value, u32 mask)
173 {
174 	writel(value, base + offset);
175 	return intel_wait_bit(base, offset, mask, mask);
176 }
177 
178 /*
179  * debugfs
180  */
181 #ifdef CONFIG_DEBUG_FS
182 
183 #define RD_BUF (2 * PAGE_SIZE)
184 
185 static ssize_t intel_sprintf(void __iomem *mem, bool l,
186 			     char *buf, size_t pos, unsigned int reg)
187 {
188 	int value;
189 
190 	if (l)
191 		value = intel_readl(mem, reg);
192 	else
193 		value = intel_readw(mem, reg);
194 
195 	return scnprintf(buf + pos, RD_BUF - pos, "%4x\t%4x\n", reg, value);
196 }
197 
198 static int intel_reg_show(struct seq_file *s_file, void *data)
199 {
200 	struct sdw_intel *sdw = s_file->private;
201 	void __iomem *s = sdw->link_res->shim;
202 	void __iomem *a = sdw->link_res->alh;
203 	char *buf;
204 	ssize_t ret;
205 	int i, j;
206 	unsigned int links, reg;
207 
208 	buf = kzalloc(RD_BUF, GFP_KERNEL);
209 	if (!buf)
210 		return -ENOMEM;
211 
212 	links = intel_readl(s, SDW_SHIM_LCAP) & GENMASK(2, 0);
213 
214 	ret = scnprintf(buf, RD_BUF, "Register  Value\n");
215 	ret += scnprintf(buf + ret, RD_BUF - ret, "\nShim\n");
216 
217 	for (i = 0; i < links; i++) {
218 		reg = SDW_SHIM_LCAP + i * 4;
219 		ret += intel_sprintf(s, true, buf, ret, reg);
220 	}
221 
222 	for (i = 0; i < links; i++) {
223 		ret += scnprintf(buf + ret, RD_BUF - ret, "\nLink%d\n", i);
224 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLSCAP(i));
225 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS0CM(i));
226 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS1CM(i));
227 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS2CM(i));
228 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS3CM(i));
229 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_PCMSCAP(i));
230 
231 		ret += scnprintf(buf + ret, RD_BUF - ret, "\n PCMSyCH registers\n");
232 
233 		/*
234 		 * the value 10 is the number of PDIs. We will need a
235 		 * cleanup to remove hard-coded Intel configurations
236 		 * from cadence_master.c
237 		 */
238 		for (j = 0; j < 10; j++) {
239 			ret += intel_sprintf(s, false, buf, ret,
240 					SDW_SHIM_PCMSYCHM(i, j));
241 			ret += intel_sprintf(s, false, buf, ret,
242 					SDW_SHIM_PCMSYCHC(i, j));
243 		}
244 		ret += scnprintf(buf + ret, RD_BUF - ret, "\n PDMSCAP, IOCTL, CTMCTL\n");
245 
246 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_PDMSCAP(i));
247 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_IOCTL(i));
248 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTMCTL(i));
249 	}
250 
251 	ret += scnprintf(buf + ret, RD_BUF - ret, "\nWake registers\n");
252 	ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_WAKEEN);
253 	ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_WAKESTS);
254 
255 	ret += scnprintf(buf + ret, RD_BUF - ret, "\nALH STRMzCFG\n");
256 	for (i = 0; i < SDW_ALH_NUM_STREAMS; i++)
257 		ret += intel_sprintf(a, true, buf, ret, SDW_ALH_STRMZCFG(i));
258 
259 	seq_printf(s_file, "%s", buf);
260 	kfree(buf);
261 
262 	return 0;
263 }
264 DEFINE_SHOW_ATTRIBUTE(intel_reg);
265 
266 static int intel_set_m_datamode(void *data, u64 value)
267 {
268 	struct sdw_intel *sdw = data;
269 	struct sdw_bus *bus = &sdw->cdns.bus;
270 
271 	if (value > SDW_PORT_DATA_MODE_STATIC_1)
272 		return -EINVAL;
273 
274 	/* Userspace changed the hardware state behind the kernel's back */
275 	add_taint(TAINT_USER, LOCKDEP_STILL_OK);
276 
277 	bus->params.m_data_mode = value;
278 
279 	return 0;
280 }
281 DEFINE_DEBUGFS_ATTRIBUTE(intel_set_m_datamode_fops, NULL,
282 			 intel_set_m_datamode, "%llu\n");
283 
284 static int intel_set_s_datamode(void *data, u64 value)
285 {
286 	struct sdw_intel *sdw = data;
287 	struct sdw_bus *bus = &sdw->cdns.bus;
288 
289 	if (value > SDW_PORT_DATA_MODE_STATIC_1)
290 		return -EINVAL;
291 
292 	/* Userspace changed the hardware state behind the kernel's back */
293 	add_taint(TAINT_USER, LOCKDEP_STILL_OK);
294 
295 	bus->params.s_data_mode = value;
296 
297 	return 0;
298 }
299 DEFINE_DEBUGFS_ATTRIBUTE(intel_set_s_datamode_fops, NULL,
300 			 intel_set_s_datamode, "%llu\n");
301 
302 static void intel_debugfs_init(struct sdw_intel *sdw)
303 {
304 	struct dentry *root = sdw->cdns.bus.debugfs;
305 
306 	if (!root)
307 		return;
308 
309 	sdw->debugfs = debugfs_create_dir("intel-sdw", root);
310 
311 	debugfs_create_file("intel-registers", 0400, sdw->debugfs, sdw,
312 			    &intel_reg_fops);
313 
314 	debugfs_create_file("intel-m-datamode", 0200, sdw->debugfs, sdw,
315 			    &intel_set_m_datamode_fops);
316 
317 	debugfs_create_file("intel-s-datamode", 0200, sdw->debugfs, sdw,
318 			    &intel_set_s_datamode_fops);
319 
320 	sdw_cdns_debugfs_init(&sdw->cdns, sdw->debugfs);
321 }
322 
323 static void intel_debugfs_exit(struct sdw_intel *sdw)
324 {
325 	debugfs_remove_recursive(sdw->debugfs);
326 }
327 #else
328 static void intel_debugfs_init(struct sdw_intel *sdw) {}
329 static void intel_debugfs_exit(struct sdw_intel *sdw) {}
330 #endif /* CONFIG_DEBUG_FS */
331 
332 /*
333  * shim ops
334  */
335 
336 static int intel_link_power_up(struct sdw_intel *sdw)
337 {
338 	unsigned int link_id = sdw->instance;
339 	void __iomem *shim = sdw->link_res->shim;
340 	u32 *shim_mask = sdw->link_res->shim_mask;
341 	struct sdw_bus *bus = &sdw->cdns.bus;
342 	struct sdw_master_prop *prop = &bus->prop;
343 	u32 spa_mask, cpa_mask;
344 	u32 link_control;
345 	int ret = 0;
346 	u32 syncprd;
347 	u32 sync_reg;
348 
349 	mutex_lock(sdw->link_res->shim_lock);
350 
351 	/*
352 	 * The hardware relies on an internal counter, typically 4kHz,
353 	 * to generate the SoundWire SSP - which defines a 'safe'
354 	 * synchronization point between commands and audio transport
355 	 * and allows for multi link synchronization. The SYNCPRD value
356 	 * is only dependent on the oscillator clock provided to
357 	 * the IP, so adjust based on _DSD properties reported in DSDT
358 	 * tables. The values reported are based on either 24MHz
359 	 * (CNL/CML) or 38.4 MHz (ICL/TGL+).
360 	 */
361 	if (prop->mclk_freq % 6000000)
362 		syncprd = SDW_SHIM_SYNC_SYNCPRD_VAL_38_4;
363 	else
364 		syncprd = SDW_SHIM_SYNC_SYNCPRD_VAL_24;
365 
366 	if (!*shim_mask) {
367 		dev_dbg(sdw->cdns.dev, "%s: powering up all links\n", __func__);
368 
369 		/* we first need to program the SyncPRD/CPU registers */
370 		dev_dbg(sdw->cdns.dev,
371 			"%s: first link up, programming SYNCPRD\n", __func__);
372 
373 		/* set SyncPRD period */
374 		sync_reg = intel_readl(shim, SDW_SHIM_SYNC);
375 		u32p_replace_bits(&sync_reg, syncprd, SDW_SHIM_SYNC_SYNCPRD);
376 
377 		/* Set SyncCPU bit */
378 		sync_reg |= SDW_SHIM_SYNC_SYNCCPU;
379 		intel_writel(shim, SDW_SHIM_SYNC, sync_reg);
380 
381 		/* Link power up sequence */
382 		link_control = intel_readl(shim, SDW_SHIM_LCTL);
383 
384 		/* only power-up enabled links */
385 		spa_mask = FIELD_PREP(SDW_SHIM_LCTL_SPA_MASK, sdw->link_res->link_mask);
386 		cpa_mask = FIELD_PREP(SDW_SHIM_LCTL_CPA_MASK, sdw->link_res->link_mask);
387 
388 		link_control |=  spa_mask;
389 
390 		ret = intel_set_bit(shim, SDW_SHIM_LCTL, link_control, cpa_mask);
391 		if (ret < 0) {
392 			dev_err(sdw->cdns.dev, "Failed to power up link: %d\n", ret);
393 			goto out;
394 		}
395 
396 		/* SyncCPU will change once link is active */
397 		ret = intel_wait_bit(shim, SDW_SHIM_SYNC,
398 				     SDW_SHIM_SYNC_SYNCCPU, 0);
399 		if (ret < 0) {
400 			dev_err(sdw->cdns.dev,
401 				"Failed to set SHIM_SYNC: %d\n", ret);
402 			goto out;
403 		}
404 	}
405 
406 	*shim_mask |= BIT(link_id);
407 
408 	sdw->cdns.link_up = true;
409 out:
410 	mutex_unlock(sdw->link_res->shim_lock);
411 
412 	return ret;
413 }
414 
415 /* this needs to be called with shim_lock */
416 static void intel_shim_glue_to_master_ip(struct sdw_intel *sdw)
417 {
418 	void __iomem *shim = sdw->link_res->shim;
419 	unsigned int link_id = sdw->instance;
420 	u16 ioctl;
421 
422 	/* Switch to MIP from Glue logic */
423 	ioctl = intel_readw(shim,  SDW_SHIM_IOCTL(link_id));
424 
425 	ioctl &= ~(SDW_SHIM_IOCTL_DOE);
426 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
427 	usleep_range(10, 15);
428 
429 	ioctl &= ~(SDW_SHIM_IOCTL_DO);
430 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
431 	usleep_range(10, 15);
432 
433 	ioctl |= (SDW_SHIM_IOCTL_MIF);
434 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
435 	usleep_range(10, 15);
436 
437 	ioctl &= ~(SDW_SHIM_IOCTL_BKE);
438 	ioctl &= ~(SDW_SHIM_IOCTL_COE);
439 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
440 	usleep_range(10, 15);
441 
442 	/* at this point Master IP has full control of the I/Os */
443 }
444 
445 /* this needs to be called with shim_lock */
446 static void intel_shim_master_ip_to_glue(struct sdw_intel *sdw)
447 {
448 	unsigned int link_id = sdw->instance;
449 	void __iomem *shim = sdw->link_res->shim;
450 	u16 ioctl;
451 
452 	/* Glue logic */
453 	ioctl = intel_readw(shim, SDW_SHIM_IOCTL(link_id));
454 	ioctl |= SDW_SHIM_IOCTL_BKE;
455 	ioctl |= SDW_SHIM_IOCTL_COE;
456 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
457 	usleep_range(10, 15);
458 
459 	ioctl &= ~(SDW_SHIM_IOCTL_MIF);
460 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
461 	usleep_range(10, 15);
462 
463 	/* at this point Integration Glue has full control of the I/Os */
464 }
465 
466 static int intel_shim_init(struct sdw_intel *sdw, bool clock_stop)
467 {
468 	void __iomem *shim = sdw->link_res->shim;
469 	unsigned int link_id = sdw->instance;
470 	int ret = 0;
471 	u16 ioctl = 0, act = 0;
472 
473 	mutex_lock(sdw->link_res->shim_lock);
474 
475 	/* Initialize Shim */
476 	ioctl |= SDW_SHIM_IOCTL_BKE;
477 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
478 	usleep_range(10, 15);
479 
480 	ioctl |= SDW_SHIM_IOCTL_WPDD;
481 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
482 	usleep_range(10, 15);
483 
484 	ioctl |= SDW_SHIM_IOCTL_DO;
485 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
486 	usleep_range(10, 15);
487 
488 	ioctl |= SDW_SHIM_IOCTL_DOE;
489 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
490 	usleep_range(10, 15);
491 
492 	intel_shim_glue_to_master_ip(sdw);
493 
494 	u16p_replace_bits(&act, 0x1, SDW_SHIM_CTMCTL_DOAIS);
495 	act |= SDW_SHIM_CTMCTL_DACTQE;
496 	act |= SDW_SHIM_CTMCTL_DODS;
497 	intel_writew(shim, SDW_SHIM_CTMCTL(link_id), act);
498 	usleep_range(10, 15);
499 
500 	mutex_unlock(sdw->link_res->shim_lock);
501 
502 	return ret;
503 }
504 
505 static void intel_shim_wake(struct sdw_intel *sdw, bool wake_enable)
506 {
507 	void __iomem *shim = sdw->link_res->shim;
508 	unsigned int link_id = sdw->instance;
509 	u16 wake_en, wake_sts;
510 
511 	mutex_lock(sdw->link_res->shim_lock);
512 	wake_en = intel_readw(shim, SDW_SHIM_WAKEEN);
513 
514 	if (wake_enable) {
515 		/* Enable the wakeup */
516 		wake_en |= (SDW_SHIM_WAKEEN_ENABLE << link_id);
517 		intel_writew(shim, SDW_SHIM_WAKEEN, wake_en);
518 	} else {
519 		/* Disable the wake up interrupt */
520 		wake_en &= ~(SDW_SHIM_WAKEEN_ENABLE << link_id);
521 		intel_writew(shim, SDW_SHIM_WAKEEN, wake_en);
522 
523 		/* Clear wake status */
524 		wake_sts = intel_readw(shim, SDW_SHIM_WAKESTS);
525 		wake_sts |= (SDW_SHIM_WAKEEN_ENABLE << link_id);
526 		intel_writew(shim, SDW_SHIM_WAKESTS_STATUS, wake_sts);
527 	}
528 	mutex_unlock(sdw->link_res->shim_lock);
529 }
530 
531 static int intel_link_power_down(struct sdw_intel *sdw)
532 {
533 	u32 link_control, spa_mask, cpa_mask;
534 	unsigned int link_id = sdw->instance;
535 	void __iomem *shim = sdw->link_res->shim;
536 	u32 *shim_mask = sdw->link_res->shim_mask;
537 	int ret = 0;
538 
539 	mutex_lock(sdw->link_res->shim_lock);
540 
541 	if (!(*shim_mask & BIT(link_id)))
542 		dev_err(sdw->cdns.dev,
543 			"%s: Unbalanced power-up/down calls\n", __func__);
544 
545 	sdw->cdns.link_up = false;
546 
547 	intel_shim_master_ip_to_glue(sdw);
548 
549 	*shim_mask &= ~BIT(link_id);
550 
551 	if (!*shim_mask) {
552 
553 		dev_dbg(sdw->cdns.dev, "%s: powering down all links\n", __func__);
554 
555 		/* Link power down sequence */
556 		link_control = intel_readl(shim, SDW_SHIM_LCTL);
557 
558 		/* only power-down enabled links */
559 		spa_mask = FIELD_PREP(SDW_SHIM_LCTL_SPA_MASK, ~sdw->link_res->link_mask);
560 		cpa_mask = FIELD_PREP(SDW_SHIM_LCTL_CPA_MASK, sdw->link_res->link_mask);
561 
562 		link_control &=  spa_mask;
563 
564 		ret = intel_clear_bit(shim, SDW_SHIM_LCTL, link_control, cpa_mask);
565 		if (ret < 0) {
566 			dev_err(sdw->cdns.dev, "%s: could not power down link\n", __func__);
567 
568 			/*
569 			 * we leave the sdw->cdns.link_up flag as false since we've disabled
570 			 * the link at this point and cannot handle interrupts any longer.
571 			 */
572 		}
573 	}
574 
575 	mutex_unlock(sdw->link_res->shim_lock);
576 
577 	return ret;
578 }
579 
580 static void intel_shim_sync_arm(struct sdw_intel *sdw)
581 {
582 	void __iomem *shim = sdw->link_res->shim;
583 	u32 sync_reg;
584 
585 	mutex_lock(sdw->link_res->shim_lock);
586 
587 	/* update SYNC register */
588 	sync_reg = intel_readl(shim, SDW_SHIM_SYNC);
589 	sync_reg |= (SDW_SHIM_SYNC_CMDSYNC << sdw->instance);
590 	intel_writel(shim, SDW_SHIM_SYNC, sync_reg);
591 
592 	mutex_unlock(sdw->link_res->shim_lock);
593 }
594 
595 static int intel_shim_sync_go_unlocked(struct sdw_intel *sdw)
596 {
597 	void __iomem *shim = sdw->link_res->shim;
598 	u32 sync_reg;
599 	int ret;
600 
601 	/* Read SYNC register */
602 	sync_reg = intel_readl(shim, SDW_SHIM_SYNC);
603 
604 	/*
605 	 * Set SyncGO bit to synchronously trigger a bank switch for
606 	 * all the masters. A write to SYNCGO bit clears CMDSYNC bit for all
607 	 * the Masters.
608 	 */
609 	sync_reg |= SDW_SHIM_SYNC_SYNCGO;
610 
611 	ret = intel_clear_bit(shim, SDW_SHIM_SYNC, sync_reg,
612 			      SDW_SHIM_SYNC_SYNCGO);
613 
614 	if (ret < 0)
615 		dev_err(sdw->cdns.dev, "SyncGO clear failed: %d\n", ret);
616 
617 	return ret;
618 }
619 
620 static int intel_shim_sync_go(struct sdw_intel *sdw)
621 {
622 	int ret;
623 
624 	mutex_lock(sdw->link_res->shim_lock);
625 
626 	ret = intel_shim_sync_go_unlocked(sdw);
627 
628 	mutex_unlock(sdw->link_res->shim_lock);
629 
630 	return ret;
631 }
632 
633 /*
634  * PDI routines
635  */
636 static void intel_pdi_init(struct sdw_intel *sdw,
637 			   struct sdw_cdns_stream_config *config)
638 {
639 	void __iomem *shim = sdw->link_res->shim;
640 	unsigned int link_id = sdw->instance;
641 	int pcm_cap, pdm_cap;
642 
643 	/* PCM Stream Capability */
644 	pcm_cap = intel_readw(shim, SDW_SHIM_PCMSCAP(link_id));
645 
646 	config->pcm_bd = FIELD_GET(SDW_SHIM_PCMSCAP_BSS, pcm_cap);
647 	config->pcm_in = FIELD_GET(SDW_SHIM_PCMSCAP_ISS, pcm_cap);
648 	config->pcm_out = FIELD_GET(SDW_SHIM_PCMSCAP_OSS, pcm_cap);
649 
650 	dev_dbg(sdw->cdns.dev, "PCM cap bd:%d in:%d out:%d\n",
651 		config->pcm_bd, config->pcm_in, config->pcm_out);
652 
653 	/* PDM Stream Capability */
654 	pdm_cap = intel_readw(shim, SDW_SHIM_PDMSCAP(link_id));
655 
656 	config->pdm_bd = FIELD_GET(SDW_SHIM_PDMSCAP_BSS, pdm_cap);
657 	config->pdm_in = FIELD_GET(SDW_SHIM_PDMSCAP_ISS, pdm_cap);
658 	config->pdm_out = FIELD_GET(SDW_SHIM_PDMSCAP_OSS, pdm_cap);
659 
660 	dev_dbg(sdw->cdns.dev, "PDM cap bd:%d in:%d out:%d\n",
661 		config->pdm_bd, config->pdm_in, config->pdm_out);
662 }
663 
664 static int
665 intel_pdi_get_ch_cap(struct sdw_intel *sdw, unsigned int pdi_num, bool pcm)
666 {
667 	void __iomem *shim = sdw->link_res->shim;
668 	unsigned int link_id = sdw->instance;
669 	int count;
670 
671 	if (pcm) {
672 		count = intel_readw(shim, SDW_SHIM_PCMSYCHC(link_id, pdi_num));
673 
674 		/*
675 		 * WORKAROUND: on all existing Intel controllers, pdi
676 		 * number 2 reports channel count as 1 even though it
677 		 * supports 8 channels. Performing hardcoding for pdi
678 		 * number 2.
679 		 */
680 		if (pdi_num == 2)
681 			count = 7;
682 
683 	} else {
684 		count = intel_readw(shim, SDW_SHIM_PDMSCAP(link_id));
685 		count = FIELD_GET(SDW_SHIM_PDMSCAP_CPSS, count);
686 	}
687 
688 	/* zero based values for channel count in register */
689 	count++;
690 
691 	return count;
692 }
693 
694 static int intel_pdi_get_ch_update(struct sdw_intel *sdw,
695 				   struct sdw_cdns_pdi *pdi,
696 				   unsigned int num_pdi,
697 				   unsigned int *num_ch, bool pcm)
698 {
699 	int i, ch_count = 0;
700 
701 	for (i = 0; i < num_pdi; i++) {
702 		pdi->ch_count = intel_pdi_get_ch_cap(sdw, pdi->num, pcm);
703 		ch_count += pdi->ch_count;
704 		pdi++;
705 	}
706 
707 	*num_ch = ch_count;
708 	return 0;
709 }
710 
711 static int intel_pdi_stream_ch_update(struct sdw_intel *sdw,
712 				      struct sdw_cdns_streams *stream, bool pcm)
713 {
714 	intel_pdi_get_ch_update(sdw, stream->bd, stream->num_bd,
715 				&stream->num_ch_bd, pcm);
716 
717 	intel_pdi_get_ch_update(sdw, stream->in, stream->num_in,
718 				&stream->num_ch_in, pcm);
719 
720 	intel_pdi_get_ch_update(sdw, stream->out, stream->num_out,
721 				&stream->num_ch_out, pcm);
722 
723 	return 0;
724 }
725 
726 static int intel_pdi_ch_update(struct sdw_intel *sdw)
727 {
728 	/* First update PCM streams followed by PDM streams */
729 	intel_pdi_stream_ch_update(sdw, &sdw->cdns.pcm, true);
730 	intel_pdi_stream_ch_update(sdw, &sdw->cdns.pdm, false);
731 
732 	return 0;
733 }
734 
735 static void
736 intel_pdi_shim_configure(struct sdw_intel *sdw, struct sdw_cdns_pdi *pdi)
737 {
738 	void __iomem *shim = sdw->link_res->shim;
739 	unsigned int link_id = sdw->instance;
740 	int pdi_conf = 0;
741 
742 	/* the Bulk and PCM streams are not contiguous */
743 	pdi->intel_alh_id = (link_id * 16) + pdi->num + 3;
744 	if (pdi->num >= 2)
745 		pdi->intel_alh_id += 2;
746 
747 	/*
748 	 * Program stream parameters to stream SHIM register
749 	 * This is applicable for PCM stream only.
750 	 */
751 	if (pdi->type != SDW_STREAM_PCM)
752 		return;
753 
754 	if (pdi->dir == SDW_DATA_DIR_RX)
755 		pdi_conf |= SDW_SHIM_PCMSYCM_DIR;
756 	else
757 		pdi_conf &= ~(SDW_SHIM_PCMSYCM_DIR);
758 
759 	u32p_replace_bits(&pdi_conf, pdi->intel_alh_id, SDW_SHIM_PCMSYCM_STREAM);
760 	u32p_replace_bits(&pdi_conf, pdi->l_ch_num, SDW_SHIM_PCMSYCM_LCHN);
761 	u32p_replace_bits(&pdi_conf, pdi->h_ch_num, SDW_SHIM_PCMSYCM_HCHN);
762 
763 	intel_writew(shim, SDW_SHIM_PCMSYCHM(link_id, pdi->num), pdi_conf);
764 }
765 
766 static void
767 intel_pdi_alh_configure(struct sdw_intel *sdw, struct sdw_cdns_pdi *pdi)
768 {
769 	void __iomem *alh = sdw->link_res->alh;
770 	unsigned int link_id = sdw->instance;
771 	unsigned int conf;
772 
773 	/* the Bulk and PCM streams are not contiguous */
774 	pdi->intel_alh_id = (link_id * 16) + pdi->num + 3;
775 	if (pdi->num >= 2)
776 		pdi->intel_alh_id += 2;
777 
778 	/* Program Stream config ALH register */
779 	conf = intel_readl(alh, SDW_ALH_STRMZCFG(pdi->intel_alh_id));
780 
781 	u32p_replace_bits(&conf, SDW_ALH_STRMZCFG_DMAT_VAL, SDW_ALH_STRMZCFG_DMAT);
782 	u32p_replace_bits(&conf, pdi->ch_count - 1, SDW_ALH_STRMZCFG_CHN);
783 
784 	intel_writel(alh, SDW_ALH_STRMZCFG(pdi->intel_alh_id), conf);
785 }
786 
787 static int intel_params_stream(struct sdw_intel *sdw,
788 			       struct snd_pcm_substream *substream,
789 			       struct snd_soc_dai *dai,
790 			       struct snd_pcm_hw_params *hw_params,
791 			       int link_id, int alh_stream_id)
792 {
793 	struct sdw_intel_link_res *res = sdw->link_res;
794 	struct sdw_intel_stream_params_data params_data;
795 
796 	params_data.substream = substream;
797 	params_data.dai = dai;
798 	params_data.hw_params = hw_params;
799 	params_data.link_id = link_id;
800 	params_data.alh_stream_id = alh_stream_id;
801 
802 	if (res->ops && res->ops->params_stream && res->dev)
803 		return res->ops->params_stream(res->dev,
804 					       &params_data);
805 	return -EIO;
806 }
807 
808 static int intel_free_stream(struct sdw_intel *sdw,
809 			     struct snd_pcm_substream *substream,
810 			     struct snd_soc_dai *dai,
811 			     int link_id)
812 {
813 	struct sdw_intel_link_res *res = sdw->link_res;
814 	struct sdw_intel_stream_free_data free_data;
815 
816 	free_data.substream = substream;
817 	free_data.dai = dai;
818 	free_data.link_id = link_id;
819 
820 	if (res->ops && res->ops->free_stream && res->dev)
821 		return res->ops->free_stream(res->dev,
822 					     &free_data);
823 
824 	return 0;
825 }
826 
827 /*
828  * bank switch routines
829  */
830 
831 static int intel_pre_bank_switch(struct sdw_bus *bus)
832 {
833 	struct sdw_cdns *cdns = bus_to_cdns(bus);
834 	struct sdw_intel *sdw = cdns_to_intel(cdns);
835 
836 	/* Write to register only for multi-link */
837 	if (!bus->multi_link)
838 		return 0;
839 
840 	intel_shim_sync_arm(sdw);
841 
842 	return 0;
843 }
844 
845 static int intel_post_bank_switch(struct sdw_bus *bus)
846 {
847 	struct sdw_cdns *cdns = bus_to_cdns(bus);
848 	struct sdw_intel *sdw = cdns_to_intel(cdns);
849 	void __iomem *shim = sdw->link_res->shim;
850 	int sync_reg, ret;
851 
852 	/* Write to register only for multi-link */
853 	if (!bus->multi_link)
854 		return 0;
855 
856 	mutex_lock(sdw->link_res->shim_lock);
857 
858 	/* Read SYNC register */
859 	sync_reg = intel_readl(shim, SDW_SHIM_SYNC);
860 
861 	/*
862 	 * post_bank_switch() ops is called from the bus in loop for
863 	 * all the Masters in the steam with the expectation that
864 	 * we trigger the bankswitch for the only first Master in the list
865 	 * and do nothing for the other Masters
866 	 *
867 	 * So, set the SYNCGO bit only if CMDSYNC bit is set for any Master.
868 	 */
869 	if (!(sync_reg & SDW_SHIM_SYNC_CMDSYNC_MASK)) {
870 		ret = 0;
871 		goto unlock;
872 	}
873 
874 	ret = intel_shim_sync_go_unlocked(sdw);
875 unlock:
876 	mutex_unlock(sdw->link_res->shim_lock);
877 
878 	if (ret < 0)
879 		dev_err(sdw->cdns.dev, "Post bank switch failed: %d\n", ret);
880 
881 	return ret;
882 }
883 
884 /*
885  * DAI routines
886  */
887 
888 static int intel_startup(struct snd_pcm_substream *substream,
889 			 struct snd_soc_dai *dai)
890 {
891 	struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
892 	int ret;
893 
894 	ret = pm_runtime_get_sync(cdns->dev);
895 	if (ret < 0 && ret != -EACCES) {
896 		dev_err_ratelimited(cdns->dev,
897 				    "pm_runtime_get_sync failed in %s, ret %d\n",
898 				    __func__, ret);
899 		pm_runtime_put_noidle(cdns->dev);
900 		return ret;
901 	}
902 	return 0;
903 }
904 
905 static int intel_hw_params(struct snd_pcm_substream *substream,
906 			   struct snd_pcm_hw_params *params,
907 			   struct snd_soc_dai *dai)
908 {
909 	struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
910 	struct sdw_intel *sdw = cdns_to_intel(cdns);
911 	struct sdw_cdns_dma_data *dma;
912 	struct sdw_cdns_pdi *pdi;
913 	struct sdw_stream_config sconfig;
914 	struct sdw_port_config *pconfig;
915 	int ch, dir;
916 	int ret;
917 	bool pcm = true;
918 
919 	dma = snd_soc_dai_get_dma_data(dai, substream);
920 	if (!dma)
921 		return -EIO;
922 
923 	ch = params_channels(params);
924 	if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
925 		dir = SDW_DATA_DIR_RX;
926 	else
927 		dir = SDW_DATA_DIR_TX;
928 
929 	if (dma->stream_type == SDW_STREAM_PDM)
930 		pcm = false;
931 
932 	if (pcm)
933 		pdi = sdw_cdns_alloc_pdi(cdns, &cdns->pcm, ch, dir, dai->id);
934 	else
935 		pdi = sdw_cdns_alloc_pdi(cdns, &cdns->pdm, ch, dir, dai->id);
936 
937 	if (!pdi) {
938 		ret = -EINVAL;
939 		goto error;
940 	}
941 
942 	/* do run-time configurations for SHIM, ALH and PDI/PORT */
943 	intel_pdi_shim_configure(sdw, pdi);
944 	intel_pdi_alh_configure(sdw, pdi);
945 	sdw_cdns_config_stream(cdns, ch, dir, pdi);
946 
947 	/* store pdi and hw_params, may be needed in prepare step */
948 	dma->suspended = false;
949 	dma->pdi = pdi;
950 	dma->hw_params = params;
951 
952 	/* Inform DSP about PDI stream number */
953 	ret = intel_params_stream(sdw, substream, dai, params,
954 				  sdw->instance,
955 				  pdi->intel_alh_id);
956 	if (ret)
957 		goto error;
958 
959 	sconfig.direction = dir;
960 	sconfig.ch_count = ch;
961 	sconfig.frame_rate = params_rate(params);
962 	sconfig.type = dma->stream_type;
963 
964 	if (dma->stream_type == SDW_STREAM_PDM) {
965 		sconfig.frame_rate *= 50;
966 		sconfig.bps = 1;
967 	} else {
968 		sconfig.bps = snd_pcm_format_width(params_format(params));
969 	}
970 
971 	/* Port configuration */
972 	pconfig = kzalloc(sizeof(*pconfig), GFP_KERNEL);
973 	if (!pconfig) {
974 		ret =  -ENOMEM;
975 		goto error;
976 	}
977 
978 	pconfig->num = pdi->num;
979 	pconfig->ch_mask = (1 << ch) - 1;
980 
981 	ret = sdw_stream_add_master(&cdns->bus, &sconfig,
982 				    pconfig, 1, dma->stream);
983 	if (ret)
984 		dev_err(cdns->dev, "add master to stream failed:%d\n", ret);
985 
986 	kfree(pconfig);
987 error:
988 	return ret;
989 }
990 
991 static int intel_prepare(struct snd_pcm_substream *substream,
992 			 struct snd_soc_dai *dai)
993 {
994 	struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
995 	struct sdw_intel *sdw = cdns_to_intel(cdns);
996 	struct sdw_cdns_dma_data *dma;
997 	int ch, dir;
998 	int ret = 0;
999 
1000 	dma = snd_soc_dai_get_dma_data(dai, substream);
1001 	if (!dma) {
1002 		dev_err(dai->dev, "failed to get dma data in %s\n",
1003 			__func__);
1004 		return -EIO;
1005 	}
1006 
1007 	if (dma->suspended) {
1008 		dma->suspended = false;
1009 
1010 		/*
1011 		 * .prepare() is called after system resume, where we
1012 		 * need to reinitialize the SHIM/ALH/Cadence IP.
1013 		 * .prepare() is also called to deal with underflows,
1014 		 * but in those cases we cannot touch ALH/SHIM
1015 		 * registers
1016 		 */
1017 
1018 		/* configure stream */
1019 		ch = params_channels(dma->hw_params);
1020 		if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
1021 			dir = SDW_DATA_DIR_RX;
1022 		else
1023 			dir = SDW_DATA_DIR_TX;
1024 
1025 		intel_pdi_shim_configure(sdw, dma->pdi);
1026 		intel_pdi_alh_configure(sdw, dma->pdi);
1027 		sdw_cdns_config_stream(cdns, ch, dir, dma->pdi);
1028 
1029 		/* Inform DSP about PDI stream number */
1030 		ret = intel_params_stream(sdw, substream, dai,
1031 					  dma->hw_params,
1032 					  sdw->instance,
1033 					  dma->pdi->intel_alh_id);
1034 	}
1035 
1036 	return ret;
1037 }
1038 
1039 static int
1040 intel_hw_free(struct snd_pcm_substream *substream, struct snd_soc_dai *dai)
1041 {
1042 	struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
1043 	struct sdw_intel *sdw = cdns_to_intel(cdns);
1044 	struct sdw_cdns_dma_data *dma;
1045 	int ret;
1046 
1047 	dma = snd_soc_dai_get_dma_data(dai, substream);
1048 	if (!dma)
1049 		return -EIO;
1050 
1051 	/*
1052 	 * The sdw stream state will transition to RELEASED when stream->
1053 	 * master_list is empty. So the stream state will transition to
1054 	 * DEPREPARED for the first cpu-dai and to RELEASED for the last
1055 	 * cpu-dai.
1056 	 */
1057 	ret = sdw_stream_remove_master(&cdns->bus, dma->stream);
1058 	if (ret < 0) {
1059 		dev_err(dai->dev, "remove master from stream %s failed: %d\n",
1060 			dma->stream->name, ret);
1061 		return ret;
1062 	}
1063 
1064 	ret = intel_free_stream(sdw, substream, dai, sdw->instance);
1065 	if (ret < 0) {
1066 		dev_err(dai->dev, "intel_free_stream: failed %d\n", ret);
1067 		return ret;
1068 	}
1069 
1070 	dma->hw_params = NULL;
1071 	dma->pdi = NULL;
1072 
1073 	return 0;
1074 }
1075 
1076 static void intel_shutdown(struct snd_pcm_substream *substream,
1077 			   struct snd_soc_dai *dai)
1078 {
1079 	struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
1080 
1081 	pm_runtime_mark_last_busy(cdns->dev);
1082 	pm_runtime_put_autosuspend(cdns->dev);
1083 }
1084 
1085 static int intel_component_dais_suspend(struct snd_soc_component *component)
1086 {
1087 	struct sdw_cdns_dma_data *dma;
1088 	struct snd_soc_dai *dai;
1089 
1090 	for_each_component_dais(component, dai) {
1091 		/*
1092 		 * we don't have a .suspend dai_ops, and we don't have access
1093 		 * to the substream, so let's mark both capture and playback
1094 		 * DMA contexts as suspended
1095 		 */
1096 		dma = dai->playback_dma_data;
1097 		if (dma)
1098 			dma->suspended = true;
1099 
1100 		dma = dai->capture_dma_data;
1101 		if (dma)
1102 			dma->suspended = true;
1103 	}
1104 
1105 	return 0;
1106 }
1107 
1108 static int intel_pcm_set_sdw_stream(struct snd_soc_dai *dai,
1109 				    void *stream, int direction)
1110 {
1111 	return cdns_set_sdw_stream(dai, stream, true, direction);
1112 }
1113 
1114 static int intel_pdm_set_sdw_stream(struct snd_soc_dai *dai,
1115 				    void *stream, int direction)
1116 {
1117 	return cdns_set_sdw_stream(dai, stream, false, direction);
1118 }
1119 
1120 static void *intel_get_sdw_stream(struct snd_soc_dai *dai,
1121 				  int direction)
1122 {
1123 	struct sdw_cdns_dma_data *dma;
1124 
1125 	if (direction == SNDRV_PCM_STREAM_PLAYBACK)
1126 		dma = dai->playback_dma_data;
1127 	else
1128 		dma = dai->capture_dma_data;
1129 
1130 	if (!dma)
1131 		return ERR_PTR(-EINVAL);
1132 
1133 	return dma->stream;
1134 }
1135 
1136 static const struct snd_soc_dai_ops intel_pcm_dai_ops = {
1137 	.startup = intel_startup,
1138 	.hw_params = intel_hw_params,
1139 	.prepare = intel_prepare,
1140 	.hw_free = intel_hw_free,
1141 	.shutdown = intel_shutdown,
1142 	.set_sdw_stream = intel_pcm_set_sdw_stream,
1143 	.get_sdw_stream = intel_get_sdw_stream,
1144 };
1145 
1146 static const struct snd_soc_dai_ops intel_pdm_dai_ops = {
1147 	.startup = intel_startup,
1148 	.hw_params = intel_hw_params,
1149 	.prepare = intel_prepare,
1150 	.hw_free = intel_hw_free,
1151 	.shutdown = intel_shutdown,
1152 	.set_sdw_stream = intel_pdm_set_sdw_stream,
1153 	.get_sdw_stream = intel_get_sdw_stream,
1154 };
1155 
1156 static const struct snd_soc_component_driver dai_component = {
1157 	.name           = "soundwire",
1158 	.suspend	= intel_component_dais_suspend
1159 };
1160 
1161 static int intel_create_dai(struct sdw_cdns *cdns,
1162 			    struct snd_soc_dai_driver *dais,
1163 			    enum intel_pdi_type type,
1164 			    u32 num, u32 off, u32 max_ch, bool pcm)
1165 {
1166 	int i;
1167 
1168 	if (num == 0)
1169 		return 0;
1170 
1171 	 /* TODO: Read supported rates/formats from hardware */
1172 	for (i = off; i < (off + num); i++) {
1173 		dais[i].name = devm_kasprintf(cdns->dev, GFP_KERNEL,
1174 					      "SDW%d Pin%d",
1175 					      cdns->instance, i);
1176 		if (!dais[i].name)
1177 			return -ENOMEM;
1178 
1179 		if (type == INTEL_PDI_BD || type == INTEL_PDI_OUT) {
1180 			dais[i].playback.channels_min = 1;
1181 			dais[i].playback.channels_max = max_ch;
1182 			dais[i].playback.rates = SNDRV_PCM_RATE_48000;
1183 			dais[i].playback.formats = SNDRV_PCM_FMTBIT_S16_LE;
1184 		}
1185 
1186 		if (type == INTEL_PDI_BD || type == INTEL_PDI_IN) {
1187 			dais[i].capture.channels_min = 1;
1188 			dais[i].capture.channels_max = max_ch;
1189 			dais[i].capture.rates = SNDRV_PCM_RATE_48000;
1190 			dais[i].capture.formats = SNDRV_PCM_FMTBIT_S16_LE;
1191 		}
1192 
1193 		if (pcm)
1194 			dais[i].ops = &intel_pcm_dai_ops;
1195 		else
1196 			dais[i].ops = &intel_pdm_dai_ops;
1197 	}
1198 
1199 	return 0;
1200 }
1201 
1202 static int intel_register_dai(struct sdw_intel *sdw)
1203 {
1204 	struct sdw_cdns *cdns = &sdw->cdns;
1205 	struct sdw_cdns_streams *stream;
1206 	struct snd_soc_dai_driver *dais;
1207 	int num_dai, ret, off = 0;
1208 
1209 	/* DAIs are created based on total number of PDIs supported */
1210 	num_dai = cdns->pcm.num_pdi + cdns->pdm.num_pdi;
1211 
1212 	dais = devm_kcalloc(cdns->dev, num_dai, sizeof(*dais), GFP_KERNEL);
1213 	if (!dais)
1214 		return -ENOMEM;
1215 
1216 	/* Create PCM DAIs */
1217 	stream = &cdns->pcm;
1218 
1219 	ret = intel_create_dai(cdns, dais, INTEL_PDI_IN, cdns->pcm.num_in,
1220 			       off, stream->num_ch_in, true);
1221 	if (ret)
1222 		return ret;
1223 
1224 	off += cdns->pcm.num_in;
1225 	ret = intel_create_dai(cdns, dais, INTEL_PDI_OUT, cdns->pcm.num_out,
1226 			       off, stream->num_ch_out, true);
1227 	if (ret)
1228 		return ret;
1229 
1230 	off += cdns->pcm.num_out;
1231 	ret = intel_create_dai(cdns, dais, INTEL_PDI_BD, cdns->pcm.num_bd,
1232 			       off, stream->num_ch_bd, true);
1233 	if (ret)
1234 		return ret;
1235 
1236 	/* Create PDM DAIs */
1237 	stream = &cdns->pdm;
1238 	off += cdns->pcm.num_bd;
1239 	ret = intel_create_dai(cdns, dais, INTEL_PDI_IN, cdns->pdm.num_in,
1240 			       off, stream->num_ch_in, false);
1241 	if (ret)
1242 		return ret;
1243 
1244 	off += cdns->pdm.num_in;
1245 	ret = intel_create_dai(cdns, dais, INTEL_PDI_OUT, cdns->pdm.num_out,
1246 			       off, stream->num_ch_out, false);
1247 	if (ret)
1248 		return ret;
1249 
1250 	off += cdns->pdm.num_out;
1251 	ret = intel_create_dai(cdns, dais, INTEL_PDI_BD, cdns->pdm.num_bd,
1252 			       off, stream->num_ch_bd, false);
1253 	if (ret)
1254 		return ret;
1255 
1256 	return snd_soc_register_component(cdns->dev, &dai_component,
1257 					  dais, num_dai);
1258 }
1259 
1260 static int sdw_master_read_intel_prop(struct sdw_bus *bus)
1261 {
1262 	struct sdw_master_prop *prop = &bus->prop;
1263 	struct fwnode_handle *link;
1264 	char name[32];
1265 	u32 quirk_mask;
1266 
1267 	/* Find master handle */
1268 	snprintf(name, sizeof(name),
1269 		 "mipi-sdw-link-%d-subproperties", bus->link_id);
1270 
1271 	link = device_get_named_child_node(bus->dev, name);
1272 	if (!link) {
1273 		dev_err(bus->dev, "Master node %s not found\n", name);
1274 		return -EIO;
1275 	}
1276 
1277 	fwnode_property_read_u32(link,
1278 				 "intel-sdw-ip-clock",
1279 				 &prop->mclk_freq);
1280 
1281 	/* the values reported by BIOS are the 2x clock, not the bus clock */
1282 	prop->mclk_freq /= 2;
1283 
1284 	fwnode_property_read_u32(link,
1285 				 "intel-quirk-mask",
1286 				 &quirk_mask);
1287 
1288 	if (quirk_mask & SDW_INTEL_QUIRK_MASK_BUS_DISABLE)
1289 		prop->hw_disabled = true;
1290 
1291 	prop->quirks = SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH |
1292 		SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY;
1293 
1294 	return 0;
1295 }
1296 
1297 static int intel_prop_read(struct sdw_bus *bus)
1298 {
1299 	/* Initialize with default handler to read all DisCo properties */
1300 	sdw_master_read_prop(bus);
1301 
1302 	/* read Intel-specific properties */
1303 	sdw_master_read_intel_prop(bus);
1304 
1305 	return 0;
1306 }
1307 
1308 static struct sdw_master_ops sdw_intel_ops = {
1309 	.read_prop = sdw_master_read_prop,
1310 	.override_adr = sdw_dmi_override_adr,
1311 	.xfer_msg = cdns_xfer_msg,
1312 	.xfer_msg_defer = cdns_xfer_msg_defer,
1313 	.reset_page_addr = cdns_reset_page_addr,
1314 	.set_bus_conf = cdns_bus_conf,
1315 	.pre_bank_switch = intel_pre_bank_switch,
1316 	.post_bank_switch = intel_post_bank_switch,
1317 };
1318 
1319 static int intel_init(struct sdw_intel *sdw)
1320 {
1321 	bool clock_stop;
1322 
1323 	/* Initialize shim and controller */
1324 	intel_link_power_up(sdw);
1325 
1326 	clock_stop = sdw_cdns_is_clock_stop(&sdw->cdns);
1327 
1328 	intel_shim_init(sdw, clock_stop);
1329 
1330 	return 0;
1331 }
1332 
1333 /*
1334  * probe and init (aux_dev_id argument is required by function prototype but not used)
1335  */
1336 static int intel_link_probe(struct auxiliary_device *auxdev,
1337 			    const struct auxiliary_device_id *aux_dev_id)
1338 
1339 {
1340 	struct device *dev = &auxdev->dev;
1341 	struct sdw_intel_link_dev *ldev = auxiliary_dev_to_sdw_intel_link_dev(auxdev);
1342 	struct sdw_intel *sdw;
1343 	struct sdw_cdns *cdns;
1344 	struct sdw_bus *bus;
1345 	int ret;
1346 
1347 	sdw = devm_kzalloc(dev, sizeof(*sdw), GFP_KERNEL);
1348 	if (!sdw)
1349 		return -ENOMEM;
1350 
1351 	cdns = &sdw->cdns;
1352 	bus = &cdns->bus;
1353 
1354 	sdw->instance = auxdev->id;
1355 	sdw->link_res = &ldev->link_res;
1356 	cdns->dev = dev;
1357 	cdns->registers = sdw->link_res->registers;
1358 	cdns->instance = sdw->instance;
1359 	cdns->msg_count = 0;
1360 
1361 	bus->link_id = auxdev->id;
1362 
1363 	sdw_cdns_probe(cdns);
1364 
1365 	/* Set property read ops */
1366 	sdw_intel_ops.read_prop = intel_prop_read;
1367 	bus->ops = &sdw_intel_ops;
1368 
1369 	/* set driver data, accessed by snd_soc_dai_get_drvdata() */
1370 	dev_set_drvdata(dev, cdns);
1371 
1372 	/* use generic bandwidth allocation algorithm */
1373 	sdw->cdns.bus.compute_params = sdw_compute_params;
1374 
1375 	ret = sdw_bus_master_add(bus, dev, dev->fwnode);
1376 	if (ret) {
1377 		dev_err(dev, "sdw_bus_master_add fail: %d\n", ret);
1378 		return ret;
1379 	}
1380 
1381 	if (bus->prop.hw_disabled)
1382 		dev_info(dev,
1383 			 "SoundWire master %d is disabled, will be ignored\n",
1384 			 bus->link_id);
1385 	/*
1386 	 * Ignore BIOS err_threshold, it's a really bad idea when dealing
1387 	 * with multiple hardware synchronized links
1388 	 */
1389 	bus->prop.err_threshold = 0;
1390 
1391 	return 0;
1392 }
1393 
1394 int intel_link_startup(struct auxiliary_device *auxdev)
1395 {
1396 	struct sdw_cdns_stream_config config;
1397 	struct device *dev = &auxdev->dev;
1398 	struct sdw_cdns *cdns = dev_get_drvdata(dev);
1399 	struct sdw_intel *sdw = cdns_to_intel(cdns);
1400 	struct sdw_bus *bus = &cdns->bus;
1401 	int link_flags;
1402 	bool multi_link;
1403 	u32 clock_stop_quirks;
1404 	int ret;
1405 
1406 	if (bus->prop.hw_disabled) {
1407 		dev_info(dev,
1408 			 "SoundWire master %d is disabled, ignoring\n",
1409 			 sdw->instance);
1410 		return 0;
1411 	}
1412 
1413 	link_flags = md_flags >> (bus->link_id * 8);
1414 	multi_link = !(link_flags & SDW_INTEL_MASTER_DISABLE_MULTI_LINK);
1415 	if (!multi_link) {
1416 		dev_dbg(dev, "Multi-link is disabled\n");
1417 		bus->multi_link = false;
1418 	} else {
1419 		/*
1420 		 * hardware-based synchronization is required regardless
1421 		 * of the number of segments used by a stream: SSP-based
1422 		 * synchronization is gated by gsync when the multi-master
1423 		 * mode is set.
1424 		 */
1425 		bus->multi_link = true;
1426 		bus->hw_sync_min_links = 1;
1427 	}
1428 
1429 	/* Initialize shim, controller */
1430 	ret = intel_init(sdw);
1431 	if (ret)
1432 		goto err_init;
1433 
1434 	/* Read the PDI config and initialize cadence PDI */
1435 	intel_pdi_init(sdw, &config);
1436 	ret = sdw_cdns_pdi_init(cdns, config);
1437 	if (ret)
1438 		goto err_init;
1439 
1440 	intel_pdi_ch_update(sdw);
1441 
1442 	ret = sdw_cdns_enable_interrupt(cdns, true);
1443 	if (ret < 0) {
1444 		dev_err(dev, "cannot enable interrupts\n");
1445 		goto err_init;
1446 	}
1447 
1448 	/*
1449 	 * follow recommended programming flows to avoid timeouts when
1450 	 * gsync is enabled
1451 	 */
1452 	if (multi_link)
1453 		intel_shim_sync_arm(sdw);
1454 
1455 	ret = sdw_cdns_init(cdns);
1456 	if (ret < 0) {
1457 		dev_err(dev, "unable to initialize Cadence IP\n");
1458 		goto err_interrupt;
1459 	}
1460 
1461 	ret = sdw_cdns_exit_reset(cdns);
1462 	if (ret < 0) {
1463 		dev_err(dev, "unable to exit bus reset sequence\n");
1464 		goto err_interrupt;
1465 	}
1466 
1467 	if (multi_link) {
1468 		ret = intel_shim_sync_go(sdw);
1469 		if (ret < 0) {
1470 			dev_err(dev, "sync go failed: %d\n", ret);
1471 			goto err_interrupt;
1472 		}
1473 	}
1474 	sdw_cdns_check_self_clearing_bits(cdns, __func__,
1475 					  true, INTEL_MASTER_RESET_ITERATIONS);
1476 
1477 	/* Register DAIs */
1478 	ret = intel_register_dai(sdw);
1479 	if (ret) {
1480 		dev_err(dev, "DAI registration failed: %d\n", ret);
1481 		snd_soc_unregister_component(dev);
1482 		goto err_interrupt;
1483 	}
1484 
1485 	intel_debugfs_init(sdw);
1486 
1487 	/* Enable runtime PM */
1488 	if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME)) {
1489 		pm_runtime_set_autosuspend_delay(dev,
1490 						 INTEL_MASTER_SUSPEND_DELAY_MS);
1491 		pm_runtime_use_autosuspend(dev);
1492 		pm_runtime_mark_last_busy(dev);
1493 
1494 		pm_runtime_set_active(dev);
1495 		pm_runtime_enable(dev);
1496 	}
1497 
1498 	clock_stop_quirks = sdw->link_res->clock_stop_quirks;
1499 	if (clock_stop_quirks & SDW_INTEL_CLK_STOP_NOT_ALLOWED) {
1500 		/*
1501 		 * To keep the clock running we need to prevent
1502 		 * pm_runtime suspend from happening by increasing the
1503 		 * reference count.
1504 		 * This quirk is specified by the parent PCI device in
1505 		 * case of specific latency requirements. It will have
1506 		 * no effect if pm_runtime is disabled by the user via
1507 		 * a module parameter for testing purposes.
1508 		 */
1509 		pm_runtime_get_noresume(dev);
1510 	}
1511 
1512 	/*
1513 	 * The runtime PM status of Slave devices is "Unsupported"
1514 	 * until they report as ATTACHED. If they don't, e.g. because
1515 	 * there are no Slave devices populated or if the power-on is
1516 	 * delayed or dependent on a power switch, the Master will
1517 	 * remain active and prevent its parent from suspending.
1518 	 *
1519 	 * Conditionally force the pm_runtime core to re-evaluate the
1520 	 * Master status in the absence of any Slave activity. A quirk
1521 	 * is provided to e.g. deal with Slaves that may be powered on
1522 	 * with a delay. A more complete solution would require the
1523 	 * definition of Master properties.
1524 	 */
1525 	if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE))
1526 		pm_runtime_idle(dev);
1527 
1528 	sdw->startup_done = true;
1529 	return 0;
1530 
1531 err_interrupt:
1532 	sdw_cdns_enable_interrupt(cdns, false);
1533 err_init:
1534 	return ret;
1535 }
1536 
1537 static void intel_link_remove(struct auxiliary_device *auxdev)
1538 {
1539 	struct device *dev = &auxdev->dev;
1540 	struct sdw_cdns *cdns = dev_get_drvdata(dev);
1541 	struct sdw_intel *sdw = cdns_to_intel(cdns);
1542 	struct sdw_bus *bus = &cdns->bus;
1543 
1544 	/*
1545 	 * Since pm_runtime is already disabled, we don't decrease
1546 	 * the refcount when the clock_stop_quirk is
1547 	 * SDW_INTEL_CLK_STOP_NOT_ALLOWED
1548 	 */
1549 	if (!bus->prop.hw_disabled) {
1550 		intel_debugfs_exit(sdw);
1551 		sdw_cdns_enable_interrupt(cdns, false);
1552 		snd_soc_unregister_component(dev);
1553 	}
1554 	sdw_bus_master_delete(bus);
1555 }
1556 
1557 int intel_link_process_wakeen_event(struct auxiliary_device *auxdev)
1558 {
1559 	struct device *dev = &auxdev->dev;
1560 	struct sdw_intel *sdw;
1561 	struct sdw_bus *bus;
1562 	void __iomem *shim;
1563 	u16 wake_sts;
1564 
1565 	sdw = dev_get_drvdata(dev);
1566 	bus = &sdw->cdns.bus;
1567 
1568 	if (bus->prop.hw_disabled || !sdw->startup_done) {
1569 		dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n",
1570 			bus->link_id);
1571 		return 0;
1572 	}
1573 
1574 	shim = sdw->link_res->shim;
1575 	wake_sts = intel_readw(shim, SDW_SHIM_WAKESTS);
1576 
1577 	if (!(wake_sts & BIT(sdw->instance)))
1578 		return 0;
1579 
1580 	/* disable WAKEEN interrupt ASAP to prevent interrupt flood */
1581 	intel_shim_wake(sdw, false);
1582 
1583 	/*
1584 	 * resume the Master, which will generate a bus reset and result in
1585 	 * Slaves re-attaching and be re-enumerated. The SoundWire physical
1586 	 * device which generated the wake will trigger an interrupt, which
1587 	 * will in turn cause the corresponding Linux Slave device to be
1588 	 * resumed and the Slave codec driver to check the status.
1589 	 */
1590 	pm_request_resume(dev);
1591 
1592 	return 0;
1593 }
1594 
1595 /*
1596  * PM calls
1597  */
1598 
1599 static int intel_resume_child_device(struct device *dev, void *data)
1600 {
1601 	int ret;
1602 	struct sdw_slave *slave = dev_to_sdw_dev(dev);
1603 
1604 	if (!slave->probed) {
1605 		dev_dbg(dev, "%s: skipping device, no probed driver\n", __func__);
1606 		return 0;
1607 	}
1608 	if (!slave->dev_num_sticky) {
1609 		dev_dbg(dev, "%s: skipping device, never detected on bus\n", __func__);
1610 		return 0;
1611 	}
1612 
1613 	ret = pm_request_resume(dev);
1614 	if (ret < 0)
1615 		dev_err(dev, "%s: pm_request_resume failed: %d\n", __func__, ret);
1616 
1617 	return ret;
1618 }
1619 
1620 static int __maybe_unused intel_pm_prepare(struct device *dev)
1621 {
1622 	struct sdw_cdns *cdns = dev_get_drvdata(dev);
1623 	struct sdw_intel *sdw = cdns_to_intel(cdns);
1624 	struct sdw_bus *bus = &cdns->bus;
1625 	u32 clock_stop_quirks;
1626 	int ret = 0;
1627 
1628 	if (bus->prop.hw_disabled || !sdw->startup_done) {
1629 		dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n",
1630 			bus->link_id);
1631 		return 0;
1632 	}
1633 
1634 	clock_stop_quirks = sdw->link_res->clock_stop_quirks;
1635 
1636 	if (pm_runtime_suspended(dev) &&
1637 	    pm_runtime_suspended(dev->parent) &&
1638 	    ((clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET) ||
1639 	     !clock_stop_quirks)) {
1640 		/*
1641 		 * if we've enabled clock stop, and the parent is suspended, the SHIM registers
1642 		 * are not accessible and the shim wake cannot be disabled.
1643 		 * The only solution is to resume the entire bus to full power
1644 		 */
1645 
1646 		/*
1647 		 * If any operation in this block fails, we keep going since we don't want
1648 		 * to prevent system suspend from happening and errors should be recoverable
1649 		 * on resume.
1650 		 */
1651 
1652 		/*
1653 		 * first resume the device for this link. This will also by construction
1654 		 * resume the PCI parent device.
1655 		 */
1656 		ret = pm_request_resume(dev);
1657 		if (ret < 0) {
1658 			dev_err(dev, "%s: pm_request_resume failed: %d\n", __func__, ret);
1659 			return 0;
1660 		}
1661 
1662 		/*
1663 		 * Continue resuming the entire bus (parent + child devices) to exit
1664 		 * the clock stop mode. If there are no devices connected on this link
1665 		 * this is a no-op.
1666 		 * The resume to full power could have been implemented with a .prepare
1667 		 * step in SoundWire codec drivers. This would however require a lot
1668 		 * of code to handle an Intel-specific corner case. It is simpler in
1669 		 * practice to add a loop at the link level.
1670 		 */
1671 		ret = device_for_each_child(bus->dev, NULL, intel_resume_child_device);
1672 
1673 		if (ret < 0)
1674 			dev_err(dev, "%s: intel_resume_child_device failed: %d\n", __func__, ret);
1675 	}
1676 
1677 	return 0;
1678 }
1679 
1680 static int __maybe_unused intel_suspend(struct device *dev)
1681 {
1682 	struct sdw_cdns *cdns = dev_get_drvdata(dev);
1683 	struct sdw_intel *sdw = cdns_to_intel(cdns);
1684 	struct sdw_bus *bus = &cdns->bus;
1685 	u32 clock_stop_quirks;
1686 	int ret;
1687 
1688 	if (bus->prop.hw_disabled || !sdw->startup_done) {
1689 		dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n",
1690 			bus->link_id);
1691 		return 0;
1692 	}
1693 
1694 	if (pm_runtime_suspended(dev)) {
1695 		dev_dbg(dev, "%s: pm_runtime status: suspended\n", __func__);
1696 
1697 		clock_stop_quirks = sdw->link_res->clock_stop_quirks;
1698 
1699 		if ((clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET) ||
1700 		    !clock_stop_quirks) {
1701 
1702 			if (pm_runtime_suspended(dev->parent)) {
1703 				/*
1704 				 * paranoia check: this should not happen with the .prepare
1705 				 * resume to full power
1706 				 */
1707 				dev_err(dev, "%s: invalid config: parent is suspended\n", __func__);
1708 			} else {
1709 				intel_shim_wake(sdw, false);
1710 			}
1711 		}
1712 
1713 		return 0;
1714 	}
1715 
1716 	ret = sdw_cdns_enable_interrupt(cdns, false);
1717 	if (ret < 0) {
1718 		dev_err(dev, "cannot disable interrupts on suspend\n");
1719 		return ret;
1720 	}
1721 
1722 	ret = intel_link_power_down(sdw);
1723 	if (ret) {
1724 		dev_err(dev, "Link power down failed: %d\n", ret);
1725 		return ret;
1726 	}
1727 
1728 	intel_shim_wake(sdw, false);
1729 
1730 	return 0;
1731 }
1732 
1733 static int __maybe_unused intel_suspend_runtime(struct device *dev)
1734 {
1735 	struct sdw_cdns *cdns = dev_get_drvdata(dev);
1736 	struct sdw_intel *sdw = cdns_to_intel(cdns);
1737 	struct sdw_bus *bus = &cdns->bus;
1738 	u32 clock_stop_quirks;
1739 	int ret;
1740 
1741 	if (bus->prop.hw_disabled || !sdw->startup_done) {
1742 		dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n",
1743 			bus->link_id);
1744 		return 0;
1745 	}
1746 
1747 	clock_stop_quirks = sdw->link_res->clock_stop_quirks;
1748 
1749 	if (clock_stop_quirks & SDW_INTEL_CLK_STOP_TEARDOWN) {
1750 
1751 		ret = sdw_cdns_enable_interrupt(cdns, false);
1752 		if (ret < 0) {
1753 			dev_err(dev, "cannot disable interrupts on suspend\n");
1754 			return ret;
1755 		}
1756 
1757 		ret = intel_link_power_down(sdw);
1758 		if (ret) {
1759 			dev_err(dev, "Link power down failed: %d\n", ret);
1760 			return ret;
1761 		}
1762 
1763 		intel_shim_wake(sdw, false);
1764 
1765 	} else if (clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET ||
1766 		   !clock_stop_quirks) {
1767 		bool wake_enable = true;
1768 
1769 		ret = sdw_cdns_clock_stop(cdns, true);
1770 		if (ret < 0) {
1771 			dev_err(dev, "cannot enable clock stop on suspend\n");
1772 			wake_enable = false;
1773 		}
1774 
1775 		ret = sdw_cdns_enable_interrupt(cdns, false);
1776 		if (ret < 0) {
1777 			dev_err(dev, "cannot disable interrupts on suspend\n");
1778 			return ret;
1779 		}
1780 
1781 		ret = intel_link_power_down(sdw);
1782 		if (ret) {
1783 			dev_err(dev, "Link power down failed: %d\n", ret);
1784 			return ret;
1785 		}
1786 
1787 		intel_shim_wake(sdw, wake_enable);
1788 	} else {
1789 		dev_err(dev, "%s clock_stop_quirks %x unsupported\n",
1790 			__func__, clock_stop_quirks);
1791 		ret = -EINVAL;
1792 	}
1793 
1794 	return ret;
1795 }
1796 
1797 static int __maybe_unused intel_resume(struct device *dev)
1798 {
1799 	struct sdw_cdns *cdns = dev_get_drvdata(dev);
1800 	struct sdw_intel *sdw = cdns_to_intel(cdns);
1801 	struct sdw_bus *bus = &cdns->bus;
1802 	int link_flags;
1803 	bool multi_link;
1804 	int ret;
1805 
1806 	if (bus->prop.hw_disabled || !sdw->startup_done) {
1807 		dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n",
1808 			bus->link_id);
1809 		return 0;
1810 	}
1811 
1812 	link_flags = md_flags >> (bus->link_id * 8);
1813 	multi_link = !(link_flags & SDW_INTEL_MASTER_DISABLE_MULTI_LINK);
1814 
1815 	if (pm_runtime_suspended(dev)) {
1816 		dev_dbg(dev, "%s: pm_runtime status was suspended, forcing active\n", __func__);
1817 
1818 		/* follow required sequence from runtime_pm.rst */
1819 		pm_runtime_disable(dev);
1820 		pm_runtime_set_active(dev);
1821 		pm_runtime_mark_last_busy(dev);
1822 		pm_runtime_enable(dev);
1823 
1824 		link_flags = md_flags >> (bus->link_id * 8);
1825 
1826 		if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE))
1827 			pm_runtime_idle(dev);
1828 	}
1829 
1830 	ret = intel_init(sdw);
1831 	if (ret) {
1832 		dev_err(dev, "%s failed: %d\n", __func__, ret);
1833 		return ret;
1834 	}
1835 
1836 	/*
1837 	 * make sure all Slaves are tagged as UNATTACHED and provide
1838 	 * reason for reinitialization
1839 	 */
1840 	sdw_clear_slave_status(bus, SDW_UNATTACH_REQUEST_MASTER_RESET);
1841 
1842 	ret = sdw_cdns_enable_interrupt(cdns, true);
1843 	if (ret < 0) {
1844 		dev_err(dev, "cannot enable interrupts during resume\n");
1845 		return ret;
1846 	}
1847 
1848 	/*
1849 	 * follow recommended programming flows to avoid timeouts when
1850 	 * gsync is enabled
1851 	 */
1852 	if (multi_link)
1853 		intel_shim_sync_arm(sdw);
1854 
1855 	ret = sdw_cdns_init(&sdw->cdns);
1856 	if (ret < 0) {
1857 		dev_err(dev, "unable to initialize Cadence IP during resume\n");
1858 		return ret;
1859 	}
1860 
1861 	ret = sdw_cdns_exit_reset(cdns);
1862 	if (ret < 0) {
1863 		dev_err(dev, "unable to exit bus reset sequence during resume\n");
1864 		return ret;
1865 	}
1866 
1867 	if (multi_link) {
1868 		ret = intel_shim_sync_go(sdw);
1869 		if (ret < 0) {
1870 			dev_err(dev, "sync go failed during resume\n");
1871 			return ret;
1872 		}
1873 	}
1874 	sdw_cdns_check_self_clearing_bits(cdns, __func__,
1875 					  true, INTEL_MASTER_RESET_ITERATIONS);
1876 
1877 	/*
1878 	 * after system resume, the pm_runtime suspend() may kick in
1879 	 * during the enumeration, before any children device force the
1880 	 * master device to remain active.  Using pm_runtime_get()
1881 	 * routines is not really possible, since it'd prevent the
1882 	 * master from suspending.
1883 	 * A reasonable compromise is to update the pm_runtime
1884 	 * counters and delay the pm_runtime suspend by several
1885 	 * seconds, by when all enumeration should be complete.
1886 	 */
1887 	pm_runtime_mark_last_busy(dev);
1888 
1889 	return ret;
1890 }
1891 
1892 static int __maybe_unused intel_resume_runtime(struct device *dev)
1893 {
1894 	struct sdw_cdns *cdns = dev_get_drvdata(dev);
1895 	struct sdw_intel *sdw = cdns_to_intel(cdns);
1896 	struct sdw_bus *bus = &cdns->bus;
1897 	u32 clock_stop_quirks;
1898 	bool clock_stop0;
1899 	int link_flags;
1900 	bool multi_link;
1901 	int status;
1902 	int ret;
1903 
1904 	if (bus->prop.hw_disabled || !sdw->startup_done) {
1905 		dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n",
1906 			bus->link_id);
1907 		return 0;
1908 	}
1909 
1910 	link_flags = md_flags >> (bus->link_id * 8);
1911 	multi_link = !(link_flags & SDW_INTEL_MASTER_DISABLE_MULTI_LINK);
1912 
1913 	clock_stop_quirks = sdw->link_res->clock_stop_quirks;
1914 
1915 	if (clock_stop_quirks & SDW_INTEL_CLK_STOP_TEARDOWN) {
1916 		ret = intel_init(sdw);
1917 		if (ret) {
1918 			dev_err(dev, "%s failed: %d\n", __func__, ret);
1919 			return ret;
1920 		}
1921 
1922 		/*
1923 		 * make sure all Slaves are tagged as UNATTACHED and provide
1924 		 * reason for reinitialization
1925 		 */
1926 		sdw_clear_slave_status(bus, SDW_UNATTACH_REQUEST_MASTER_RESET);
1927 
1928 		ret = sdw_cdns_enable_interrupt(cdns, true);
1929 		if (ret < 0) {
1930 			dev_err(dev, "cannot enable interrupts during resume\n");
1931 			return ret;
1932 		}
1933 
1934 		/*
1935 		 * follow recommended programming flows to avoid
1936 		 * timeouts when gsync is enabled
1937 		 */
1938 		if (multi_link)
1939 			intel_shim_sync_arm(sdw);
1940 
1941 		ret = sdw_cdns_init(&sdw->cdns);
1942 		if (ret < 0) {
1943 			dev_err(dev, "unable to initialize Cadence IP during resume\n");
1944 			return ret;
1945 		}
1946 
1947 		ret = sdw_cdns_exit_reset(cdns);
1948 		if (ret < 0) {
1949 			dev_err(dev, "unable to exit bus reset sequence during resume\n");
1950 			return ret;
1951 		}
1952 
1953 		if (multi_link) {
1954 			ret = intel_shim_sync_go(sdw);
1955 			if (ret < 0) {
1956 				dev_err(dev, "sync go failed during resume\n");
1957 				return ret;
1958 			}
1959 		}
1960 		sdw_cdns_check_self_clearing_bits(cdns, "intel_resume_runtime TEARDOWN",
1961 						  true, INTEL_MASTER_RESET_ITERATIONS);
1962 
1963 	} else if (clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET) {
1964 		ret = intel_init(sdw);
1965 		if (ret) {
1966 			dev_err(dev, "%s failed: %d\n", __func__, ret);
1967 			return ret;
1968 		}
1969 
1970 		/*
1971 		 * An exception condition occurs for the CLK_STOP_BUS_RESET
1972 		 * case if one or more masters remain active. In this condition,
1973 		 * all the masters are powered on for they are in the same power
1974 		 * domain. Master can preserve its context for clock stop0, so
1975 		 * there is no need to clear slave status and reset bus.
1976 		 */
1977 		clock_stop0 = sdw_cdns_is_clock_stop(&sdw->cdns);
1978 
1979 		if (!clock_stop0) {
1980 
1981 			/*
1982 			 * make sure all Slaves are tagged as UNATTACHED and
1983 			 * provide reason for reinitialization
1984 			 */
1985 
1986 			status = SDW_UNATTACH_REQUEST_MASTER_RESET;
1987 			sdw_clear_slave_status(bus, status);
1988 
1989 			ret = sdw_cdns_enable_interrupt(cdns, true);
1990 			if (ret < 0) {
1991 				dev_err(dev, "cannot enable interrupts during resume\n");
1992 				return ret;
1993 			}
1994 
1995 			/*
1996 			 * follow recommended programming flows to avoid
1997 			 * timeouts when gsync is enabled
1998 			 */
1999 			if (multi_link)
2000 				intel_shim_sync_arm(sdw);
2001 
2002 			/*
2003 			 * Re-initialize the IP since it was powered-off
2004 			 */
2005 			sdw_cdns_init(&sdw->cdns);
2006 
2007 		} else {
2008 			ret = sdw_cdns_enable_interrupt(cdns, true);
2009 			if (ret < 0) {
2010 				dev_err(dev, "cannot enable interrupts during resume\n");
2011 				return ret;
2012 			}
2013 		}
2014 
2015 		ret = sdw_cdns_clock_restart(cdns, !clock_stop0);
2016 		if (ret < 0) {
2017 			dev_err(dev, "unable to restart clock during resume\n");
2018 			return ret;
2019 		}
2020 
2021 		if (!clock_stop0) {
2022 			ret = sdw_cdns_exit_reset(cdns);
2023 			if (ret < 0) {
2024 				dev_err(dev, "unable to exit bus reset sequence during resume\n");
2025 				return ret;
2026 			}
2027 
2028 			if (multi_link) {
2029 				ret = intel_shim_sync_go(sdw);
2030 				if (ret < 0) {
2031 					dev_err(sdw->cdns.dev, "sync go failed during resume\n");
2032 					return ret;
2033 				}
2034 			}
2035 		}
2036 		sdw_cdns_check_self_clearing_bits(cdns, "intel_resume_runtime BUS_RESET",
2037 						  true, INTEL_MASTER_RESET_ITERATIONS);
2038 
2039 	} else if (!clock_stop_quirks) {
2040 
2041 		clock_stop0 = sdw_cdns_is_clock_stop(&sdw->cdns);
2042 		if (!clock_stop0)
2043 			dev_err(dev, "%s invalid configuration, clock was not stopped", __func__);
2044 
2045 		ret = intel_init(sdw);
2046 		if (ret) {
2047 			dev_err(dev, "%s failed: %d\n", __func__, ret);
2048 			return ret;
2049 		}
2050 
2051 		ret = sdw_cdns_enable_interrupt(cdns, true);
2052 		if (ret < 0) {
2053 			dev_err(dev, "cannot enable interrupts during resume\n");
2054 			return ret;
2055 		}
2056 
2057 		ret = sdw_cdns_clock_restart(cdns, false);
2058 		if (ret < 0) {
2059 			dev_err(dev, "unable to resume master during resume\n");
2060 			return ret;
2061 		}
2062 
2063 		sdw_cdns_check_self_clearing_bits(cdns, "intel_resume_runtime no_quirks",
2064 						  true, INTEL_MASTER_RESET_ITERATIONS);
2065 	} else {
2066 		dev_err(dev, "%s clock_stop_quirks %x unsupported\n",
2067 			__func__, clock_stop_quirks);
2068 		ret = -EINVAL;
2069 	}
2070 
2071 	return ret;
2072 }
2073 
2074 static const struct dev_pm_ops intel_pm = {
2075 	.prepare = intel_pm_prepare,
2076 	SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
2077 	SET_RUNTIME_PM_OPS(intel_suspend_runtime, intel_resume_runtime, NULL)
2078 };
2079 
2080 static const struct auxiliary_device_id intel_link_id_table[] = {
2081 	{ .name = "soundwire_intel.link" },
2082 	{},
2083 };
2084 MODULE_DEVICE_TABLE(auxiliary, intel_link_id_table);
2085 
2086 static struct auxiliary_driver sdw_intel_drv = {
2087 	.probe = intel_link_probe,
2088 	.remove = intel_link_remove,
2089 	.driver = {
2090 		/* auxiliary_driver_register() sets .name to be the modname */
2091 		.pm = &intel_pm,
2092 	},
2093 	.id_table = intel_link_id_table
2094 };
2095 module_auxiliary_driver(sdw_intel_drv);
2096 
2097 MODULE_LICENSE("Dual BSD/GPL");
2098 MODULE_DESCRIPTION("Intel Soundwire Link Driver");
2099