1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) 2 // Copyright(c) 2015-17 Intel Corporation. 3 4 /* 5 * Soundwire Intel Master Driver 6 */ 7 8 #include <linux/acpi.h> 9 #include <linux/debugfs.h> 10 #include <linux/delay.h> 11 #include <linux/module.h> 12 #include <linux/interrupt.h> 13 #include <linux/io.h> 14 #include <linux/auxiliary_bus.h> 15 #include <sound/pcm_params.h> 16 #include <linux/pm_runtime.h> 17 #include <sound/soc.h> 18 #include <linux/soundwire/sdw_registers.h> 19 #include <linux/soundwire/sdw.h> 20 #include <linux/soundwire/sdw_intel.h> 21 #include "cadence_master.h" 22 #include "bus.h" 23 #include "intel.h" 24 25 /* IDA min selected to avoid conflicts with HDaudio/iDISP SDI values */ 26 #define INTEL_DEV_NUM_IDA_MIN 4 27 28 #define INTEL_MASTER_SUSPEND_DELAY_MS 3000 29 #define INTEL_MASTER_RESET_ITERATIONS 10 30 31 /* 32 * debug/config flags for the Intel SoundWire Master. 33 * 34 * Since we may have multiple masters active, we can have up to 8 35 * flags reused in each byte, with master0 using the ls-byte, etc. 36 */ 37 38 #define SDW_INTEL_MASTER_DISABLE_PM_RUNTIME BIT(0) 39 #define SDW_INTEL_MASTER_DISABLE_CLOCK_STOP BIT(1) 40 #define SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE BIT(2) 41 #define SDW_INTEL_MASTER_DISABLE_MULTI_LINK BIT(3) 42 43 static int md_flags; 44 module_param_named(sdw_md_flags, md_flags, int, 0444); 45 MODULE_PARM_DESC(sdw_md_flags, "SoundWire Intel Master device flags (0x0 all off)"); 46 47 enum intel_pdi_type { 48 INTEL_PDI_IN = 0, 49 INTEL_PDI_OUT = 1, 50 INTEL_PDI_BD = 2, 51 }; 52 53 #define cdns_to_intel(_cdns) container_of(_cdns, struct sdw_intel, cdns) 54 55 /* 56 * Read, write helpers for HW registers 57 */ 58 static inline int intel_readl(void __iomem *base, int offset) 59 { 60 return readl(base + offset); 61 } 62 63 static inline void intel_writel(void __iomem *base, int offset, int value) 64 { 65 writel(value, base + offset); 66 } 67 68 static inline u16 intel_readw(void __iomem *base, int offset) 69 { 70 return readw(base + offset); 71 } 72 73 static inline void intel_writew(void __iomem *base, int offset, u16 value) 74 { 75 writew(value, base + offset); 76 } 77 78 static int intel_wait_bit(void __iomem *base, int offset, u32 mask, u32 target) 79 { 80 int timeout = 10; 81 u32 reg_read; 82 83 do { 84 reg_read = readl(base + offset); 85 if ((reg_read & mask) == target) 86 return 0; 87 88 timeout--; 89 usleep_range(50, 100); 90 } while (timeout != 0); 91 92 return -EAGAIN; 93 } 94 95 static int intel_clear_bit(void __iomem *base, int offset, u32 value, u32 mask) 96 { 97 writel(value, base + offset); 98 return intel_wait_bit(base, offset, mask, 0); 99 } 100 101 static int intel_set_bit(void __iomem *base, int offset, u32 value, u32 mask) 102 { 103 writel(value, base + offset); 104 return intel_wait_bit(base, offset, mask, mask); 105 } 106 107 /* 108 * debugfs 109 */ 110 #ifdef CONFIG_DEBUG_FS 111 112 #define RD_BUF (2 * PAGE_SIZE) 113 114 static ssize_t intel_sprintf(void __iomem *mem, bool l, 115 char *buf, size_t pos, unsigned int reg) 116 { 117 int value; 118 119 if (l) 120 value = intel_readl(mem, reg); 121 else 122 value = intel_readw(mem, reg); 123 124 return scnprintf(buf + pos, RD_BUF - pos, "%4x\t%4x\n", reg, value); 125 } 126 127 static int intel_reg_show(struct seq_file *s_file, void *data) 128 { 129 struct sdw_intel *sdw = s_file->private; 130 void __iomem *s = sdw->link_res->shim; 131 void __iomem *a = sdw->link_res->alh; 132 char *buf; 133 ssize_t ret; 134 int i, j; 135 unsigned int links, reg; 136 137 buf = kzalloc(RD_BUF, GFP_KERNEL); 138 if (!buf) 139 return -ENOMEM; 140 141 links = intel_readl(s, SDW_SHIM_LCAP) & SDW_SHIM_LCAP_LCOUNT_MASK; 142 143 ret = scnprintf(buf, RD_BUF, "Register Value\n"); 144 ret += scnprintf(buf + ret, RD_BUF - ret, "\nShim\n"); 145 146 for (i = 0; i < links; i++) { 147 reg = SDW_SHIM_LCAP + i * 4; 148 ret += intel_sprintf(s, true, buf, ret, reg); 149 } 150 151 for (i = 0; i < links; i++) { 152 ret += scnprintf(buf + ret, RD_BUF - ret, "\nLink%d\n", i); 153 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLSCAP(i)); 154 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS0CM(i)); 155 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS1CM(i)); 156 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS2CM(i)); 157 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS3CM(i)); 158 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_PCMSCAP(i)); 159 160 ret += scnprintf(buf + ret, RD_BUF - ret, "\n PCMSyCH registers\n"); 161 162 /* 163 * the value 10 is the number of PDIs. We will need a 164 * cleanup to remove hard-coded Intel configurations 165 * from cadence_master.c 166 */ 167 for (j = 0; j < 10; j++) { 168 ret += intel_sprintf(s, false, buf, ret, 169 SDW_SHIM_PCMSYCHM(i, j)); 170 ret += intel_sprintf(s, false, buf, ret, 171 SDW_SHIM_PCMSYCHC(i, j)); 172 } 173 ret += scnprintf(buf + ret, RD_BUF - ret, "\n IOCTL, CTMCTL\n"); 174 175 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_IOCTL(i)); 176 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTMCTL(i)); 177 } 178 179 ret += scnprintf(buf + ret, RD_BUF - ret, "\nWake registers\n"); 180 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_WAKEEN); 181 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_WAKESTS); 182 183 ret += scnprintf(buf + ret, RD_BUF - ret, "\nALH STRMzCFG\n"); 184 for (i = 0; i < SDW_ALH_NUM_STREAMS; i++) 185 ret += intel_sprintf(a, true, buf, ret, SDW_ALH_STRMZCFG(i)); 186 187 seq_printf(s_file, "%s", buf); 188 kfree(buf); 189 190 return 0; 191 } 192 DEFINE_SHOW_ATTRIBUTE(intel_reg); 193 194 static int intel_set_m_datamode(void *data, u64 value) 195 { 196 struct sdw_intel *sdw = data; 197 struct sdw_bus *bus = &sdw->cdns.bus; 198 199 if (value > SDW_PORT_DATA_MODE_STATIC_1) 200 return -EINVAL; 201 202 /* Userspace changed the hardware state behind the kernel's back */ 203 add_taint(TAINT_USER, LOCKDEP_STILL_OK); 204 205 bus->params.m_data_mode = value; 206 207 return 0; 208 } 209 DEFINE_DEBUGFS_ATTRIBUTE(intel_set_m_datamode_fops, NULL, 210 intel_set_m_datamode, "%llu\n"); 211 212 static int intel_set_s_datamode(void *data, u64 value) 213 { 214 struct sdw_intel *sdw = data; 215 struct sdw_bus *bus = &sdw->cdns.bus; 216 217 if (value > SDW_PORT_DATA_MODE_STATIC_1) 218 return -EINVAL; 219 220 /* Userspace changed the hardware state behind the kernel's back */ 221 add_taint(TAINT_USER, LOCKDEP_STILL_OK); 222 223 bus->params.s_data_mode = value; 224 225 return 0; 226 } 227 DEFINE_DEBUGFS_ATTRIBUTE(intel_set_s_datamode_fops, NULL, 228 intel_set_s_datamode, "%llu\n"); 229 230 static void intel_debugfs_init(struct sdw_intel *sdw) 231 { 232 struct dentry *root = sdw->cdns.bus.debugfs; 233 234 if (!root) 235 return; 236 237 sdw->debugfs = debugfs_create_dir("intel-sdw", root); 238 239 debugfs_create_file("intel-registers", 0400, sdw->debugfs, sdw, 240 &intel_reg_fops); 241 242 debugfs_create_file("intel-m-datamode", 0200, sdw->debugfs, sdw, 243 &intel_set_m_datamode_fops); 244 245 debugfs_create_file("intel-s-datamode", 0200, sdw->debugfs, sdw, 246 &intel_set_s_datamode_fops); 247 248 sdw_cdns_debugfs_init(&sdw->cdns, sdw->debugfs); 249 } 250 251 static void intel_debugfs_exit(struct sdw_intel *sdw) 252 { 253 debugfs_remove_recursive(sdw->debugfs); 254 } 255 #else 256 static void intel_debugfs_init(struct sdw_intel *sdw) {} 257 static void intel_debugfs_exit(struct sdw_intel *sdw) {} 258 #endif /* CONFIG_DEBUG_FS */ 259 260 /* 261 * shim ops 262 */ 263 /* this needs to be called with shim_lock */ 264 static void intel_shim_glue_to_master_ip(struct sdw_intel *sdw) 265 { 266 void __iomem *shim = sdw->link_res->shim; 267 unsigned int link_id = sdw->instance; 268 u16 ioctl; 269 270 /* Switch to MIP from Glue logic */ 271 ioctl = intel_readw(shim, SDW_SHIM_IOCTL(link_id)); 272 273 ioctl &= ~(SDW_SHIM_IOCTL_DOE); 274 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 275 usleep_range(10, 15); 276 277 ioctl &= ~(SDW_SHIM_IOCTL_DO); 278 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 279 usleep_range(10, 15); 280 281 ioctl |= (SDW_SHIM_IOCTL_MIF); 282 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 283 usleep_range(10, 15); 284 285 ioctl &= ~(SDW_SHIM_IOCTL_BKE); 286 ioctl &= ~(SDW_SHIM_IOCTL_COE); 287 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 288 usleep_range(10, 15); 289 290 /* at this point Master IP has full control of the I/Os */ 291 } 292 293 /* this needs to be called with shim_lock */ 294 static void intel_shim_master_ip_to_glue(struct sdw_intel *sdw) 295 { 296 unsigned int link_id = sdw->instance; 297 void __iomem *shim = sdw->link_res->shim; 298 u16 ioctl; 299 300 /* Glue logic */ 301 ioctl = intel_readw(shim, SDW_SHIM_IOCTL(link_id)); 302 ioctl |= SDW_SHIM_IOCTL_BKE; 303 ioctl |= SDW_SHIM_IOCTL_COE; 304 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 305 usleep_range(10, 15); 306 307 ioctl &= ~(SDW_SHIM_IOCTL_MIF); 308 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 309 usleep_range(10, 15); 310 311 /* at this point Integration Glue has full control of the I/Os */ 312 } 313 314 /* this needs to be called with shim_lock */ 315 static void intel_shim_init(struct sdw_intel *sdw) 316 { 317 void __iomem *shim = sdw->link_res->shim; 318 unsigned int link_id = sdw->instance; 319 u16 ioctl = 0, act = 0; 320 321 /* Initialize Shim */ 322 ioctl |= SDW_SHIM_IOCTL_BKE; 323 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 324 usleep_range(10, 15); 325 326 ioctl |= SDW_SHIM_IOCTL_WPDD; 327 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 328 usleep_range(10, 15); 329 330 ioctl |= SDW_SHIM_IOCTL_DO; 331 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 332 usleep_range(10, 15); 333 334 ioctl |= SDW_SHIM_IOCTL_DOE; 335 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl); 336 usleep_range(10, 15); 337 338 intel_shim_glue_to_master_ip(sdw); 339 340 u16p_replace_bits(&act, 0x1, SDW_SHIM_CTMCTL_DOAIS); 341 act |= SDW_SHIM_CTMCTL_DACTQE; 342 act |= SDW_SHIM_CTMCTL_DODS; 343 intel_writew(shim, SDW_SHIM_CTMCTL(link_id), act); 344 usleep_range(10, 15); 345 } 346 347 static int intel_shim_check_wake(struct sdw_intel *sdw) 348 { 349 void __iomem *shim; 350 u16 wake_sts; 351 352 shim = sdw->link_res->shim; 353 wake_sts = intel_readw(shim, SDW_SHIM_WAKESTS); 354 355 return wake_sts & BIT(sdw->instance); 356 } 357 358 static void intel_shim_wake(struct sdw_intel *sdw, bool wake_enable) 359 { 360 void __iomem *shim = sdw->link_res->shim; 361 unsigned int link_id = sdw->instance; 362 u16 wake_en, wake_sts; 363 364 mutex_lock(sdw->link_res->shim_lock); 365 wake_en = intel_readw(shim, SDW_SHIM_WAKEEN); 366 367 if (wake_enable) { 368 /* Enable the wakeup */ 369 wake_en |= (SDW_SHIM_WAKEEN_ENABLE << link_id); 370 intel_writew(shim, SDW_SHIM_WAKEEN, wake_en); 371 } else { 372 /* Disable the wake up interrupt */ 373 wake_en &= ~(SDW_SHIM_WAKEEN_ENABLE << link_id); 374 intel_writew(shim, SDW_SHIM_WAKEEN, wake_en); 375 376 /* Clear wake status */ 377 wake_sts = intel_readw(shim, SDW_SHIM_WAKESTS); 378 wake_sts |= (SDW_SHIM_WAKESTS_STATUS << link_id); 379 intel_writew(shim, SDW_SHIM_WAKESTS, wake_sts); 380 } 381 mutex_unlock(sdw->link_res->shim_lock); 382 } 383 384 static int intel_link_power_up(struct sdw_intel *sdw) 385 { 386 unsigned int link_id = sdw->instance; 387 void __iomem *shim = sdw->link_res->shim; 388 u32 *shim_mask = sdw->link_res->shim_mask; 389 struct sdw_bus *bus = &sdw->cdns.bus; 390 struct sdw_master_prop *prop = &bus->prop; 391 u32 spa_mask, cpa_mask; 392 u32 link_control; 393 int ret = 0; 394 u32 syncprd; 395 u32 sync_reg; 396 397 mutex_lock(sdw->link_res->shim_lock); 398 399 /* 400 * The hardware relies on an internal counter, typically 4kHz, 401 * to generate the SoundWire SSP - which defines a 'safe' 402 * synchronization point between commands and audio transport 403 * and allows for multi link synchronization. The SYNCPRD value 404 * is only dependent on the oscillator clock provided to 405 * the IP, so adjust based on _DSD properties reported in DSDT 406 * tables. The values reported are based on either 24MHz 407 * (CNL/CML) or 38.4 MHz (ICL/TGL+). 408 */ 409 if (prop->mclk_freq % 6000000) 410 syncprd = SDW_SHIM_SYNC_SYNCPRD_VAL_38_4; 411 else 412 syncprd = SDW_SHIM_SYNC_SYNCPRD_VAL_24; 413 414 if (!*shim_mask) { 415 dev_dbg(sdw->cdns.dev, "powering up all links\n"); 416 417 /* we first need to program the SyncPRD/CPU registers */ 418 dev_dbg(sdw->cdns.dev, 419 "first link up, programming SYNCPRD\n"); 420 421 /* set SyncPRD period */ 422 sync_reg = intel_readl(shim, SDW_SHIM_SYNC); 423 u32p_replace_bits(&sync_reg, syncprd, SDW_SHIM_SYNC_SYNCPRD); 424 425 /* Set SyncCPU bit */ 426 sync_reg |= SDW_SHIM_SYNC_SYNCCPU; 427 intel_writel(shim, SDW_SHIM_SYNC, sync_reg); 428 429 /* Link power up sequence */ 430 link_control = intel_readl(shim, SDW_SHIM_LCTL); 431 432 /* only power-up enabled links */ 433 spa_mask = FIELD_PREP(SDW_SHIM_LCTL_SPA_MASK, sdw->link_res->link_mask); 434 cpa_mask = FIELD_PREP(SDW_SHIM_LCTL_CPA_MASK, sdw->link_res->link_mask); 435 436 link_control |= spa_mask; 437 438 ret = intel_set_bit(shim, SDW_SHIM_LCTL, link_control, cpa_mask); 439 if (ret < 0) { 440 dev_err(sdw->cdns.dev, "Failed to power up link: %d\n", ret); 441 goto out; 442 } 443 444 /* SyncCPU will change once link is active */ 445 ret = intel_wait_bit(shim, SDW_SHIM_SYNC, 446 SDW_SHIM_SYNC_SYNCCPU, 0); 447 if (ret < 0) { 448 dev_err(sdw->cdns.dev, 449 "Failed to set SHIM_SYNC: %d\n", ret); 450 goto out; 451 } 452 } 453 454 *shim_mask |= BIT(link_id); 455 456 sdw->cdns.link_up = true; 457 458 intel_shim_init(sdw); 459 460 out: 461 mutex_unlock(sdw->link_res->shim_lock); 462 463 return ret; 464 } 465 466 static int intel_link_power_down(struct sdw_intel *sdw) 467 { 468 u32 link_control, spa_mask, cpa_mask; 469 unsigned int link_id = sdw->instance; 470 void __iomem *shim = sdw->link_res->shim; 471 u32 *shim_mask = sdw->link_res->shim_mask; 472 int ret = 0; 473 474 mutex_lock(sdw->link_res->shim_lock); 475 476 if (!(*shim_mask & BIT(link_id))) 477 dev_err(sdw->cdns.dev, 478 "%s: Unbalanced power-up/down calls\n", __func__); 479 480 sdw->cdns.link_up = false; 481 482 intel_shim_master_ip_to_glue(sdw); 483 484 *shim_mask &= ~BIT(link_id); 485 486 if (!*shim_mask) { 487 488 dev_dbg(sdw->cdns.dev, "powering down all links\n"); 489 490 /* Link power down sequence */ 491 link_control = intel_readl(shim, SDW_SHIM_LCTL); 492 493 /* only power-down enabled links */ 494 spa_mask = FIELD_PREP(SDW_SHIM_LCTL_SPA_MASK, ~sdw->link_res->link_mask); 495 cpa_mask = FIELD_PREP(SDW_SHIM_LCTL_CPA_MASK, sdw->link_res->link_mask); 496 497 link_control &= spa_mask; 498 499 ret = intel_clear_bit(shim, SDW_SHIM_LCTL, link_control, cpa_mask); 500 if (ret < 0) { 501 dev_err(sdw->cdns.dev, "%s: could not power down link\n", __func__); 502 503 /* 504 * we leave the sdw->cdns.link_up flag as false since we've disabled 505 * the link at this point and cannot handle interrupts any longer. 506 */ 507 } 508 } 509 510 mutex_unlock(sdw->link_res->shim_lock); 511 512 return ret; 513 } 514 515 static void intel_shim_sync_arm(struct sdw_intel *sdw) 516 { 517 void __iomem *shim = sdw->link_res->shim; 518 u32 sync_reg; 519 520 mutex_lock(sdw->link_res->shim_lock); 521 522 /* update SYNC register */ 523 sync_reg = intel_readl(shim, SDW_SHIM_SYNC); 524 sync_reg |= (SDW_SHIM_SYNC_CMDSYNC << sdw->instance); 525 intel_writel(shim, SDW_SHIM_SYNC, sync_reg); 526 527 mutex_unlock(sdw->link_res->shim_lock); 528 } 529 530 static int intel_shim_sync_go_unlocked(struct sdw_intel *sdw) 531 { 532 void __iomem *shim = sdw->link_res->shim; 533 u32 sync_reg; 534 int ret; 535 536 /* Read SYNC register */ 537 sync_reg = intel_readl(shim, SDW_SHIM_SYNC); 538 539 /* 540 * Set SyncGO bit to synchronously trigger a bank switch for 541 * all the masters. A write to SYNCGO bit clears CMDSYNC bit for all 542 * the Masters. 543 */ 544 sync_reg |= SDW_SHIM_SYNC_SYNCGO; 545 546 ret = intel_clear_bit(shim, SDW_SHIM_SYNC, sync_reg, 547 SDW_SHIM_SYNC_SYNCGO); 548 549 if (ret < 0) 550 dev_err(sdw->cdns.dev, "SyncGO clear failed: %d\n", ret); 551 552 return ret; 553 } 554 555 static int intel_shim_sync_go(struct sdw_intel *sdw) 556 { 557 int ret; 558 559 mutex_lock(sdw->link_res->shim_lock); 560 561 ret = intel_shim_sync_go_unlocked(sdw); 562 563 mutex_unlock(sdw->link_res->shim_lock); 564 565 return ret; 566 } 567 568 /* 569 * PDI routines 570 */ 571 static void intel_pdi_init(struct sdw_intel *sdw, 572 struct sdw_cdns_stream_config *config) 573 { 574 void __iomem *shim = sdw->link_res->shim; 575 unsigned int link_id = sdw->instance; 576 int pcm_cap; 577 578 /* PCM Stream Capability */ 579 pcm_cap = intel_readw(shim, SDW_SHIM_PCMSCAP(link_id)); 580 581 config->pcm_bd = FIELD_GET(SDW_SHIM_PCMSCAP_BSS, pcm_cap); 582 config->pcm_in = FIELD_GET(SDW_SHIM_PCMSCAP_ISS, pcm_cap); 583 config->pcm_out = FIELD_GET(SDW_SHIM_PCMSCAP_OSS, pcm_cap); 584 585 dev_dbg(sdw->cdns.dev, "PCM cap bd:%d in:%d out:%d\n", 586 config->pcm_bd, config->pcm_in, config->pcm_out); 587 } 588 589 static int 590 intel_pdi_get_ch_cap(struct sdw_intel *sdw, unsigned int pdi_num) 591 { 592 void __iomem *shim = sdw->link_res->shim; 593 unsigned int link_id = sdw->instance; 594 int count; 595 596 count = intel_readw(shim, SDW_SHIM_PCMSYCHC(link_id, pdi_num)); 597 598 /* 599 * WORKAROUND: on all existing Intel controllers, pdi 600 * number 2 reports channel count as 1 even though it 601 * supports 8 channels. Performing hardcoding for pdi 602 * number 2. 603 */ 604 if (pdi_num == 2) 605 count = 7; 606 607 /* zero based values for channel count in register */ 608 count++; 609 610 return count; 611 } 612 613 static int intel_pdi_get_ch_update(struct sdw_intel *sdw, 614 struct sdw_cdns_pdi *pdi, 615 unsigned int num_pdi, 616 unsigned int *num_ch) 617 { 618 int i, ch_count = 0; 619 620 for (i = 0; i < num_pdi; i++) { 621 pdi->ch_count = intel_pdi_get_ch_cap(sdw, pdi->num); 622 ch_count += pdi->ch_count; 623 pdi++; 624 } 625 626 *num_ch = ch_count; 627 return 0; 628 } 629 630 static int intel_pdi_stream_ch_update(struct sdw_intel *sdw, 631 struct sdw_cdns_streams *stream) 632 { 633 intel_pdi_get_ch_update(sdw, stream->bd, stream->num_bd, 634 &stream->num_ch_bd); 635 636 intel_pdi_get_ch_update(sdw, stream->in, stream->num_in, 637 &stream->num_ch_in); 638 639 intel_pdi_get_ch_update(sdw, stream->out, stream->num_out, 640 &stream->num_ch_out); 641 642 return 0; 643 } 644 645 static int intel_pdi_ch_update(struct sdw_intel *sdw) 646 { 647 intel_pdi_stream_ch_update(sdw, &sdw->cdns.pcm); 648 649 return 0; 650 } 651 652 static void 653 intel_pdi_shim_configure(struct sdw_intel *sdw, struct sdw_cdns_pdi *pdi) 654 { 655 void __iomem *shim = sdw->link_res->shim; 656 unsigned int link_id = sdw->instance; 657 int pdi_conf = 0; 658 659 /* the Bulk and PCM streams are not contiguous */ 660 pdi->intel_alh_id = (link_id * 16) + pdi->num + 3; 661 if (pdi->num >= 2) 662 pdi->intel_alh_id += 2; 663 664 /* 665 * Program stream parameters to stream SHIM register 666 * This is applicable for PCM stream only. 667 */ 668 if (pdi->type != SDW_STREAM_PCM) 669 return; 670 671 if (pdi->dir == SDW_DATA_DIR_RX) 672 pdi_conf |= SDW_SHIM_PCMSYCM_DIR; 673 else 674 pdi_conf &= ~(SDW_SHIM_PCMSYCM_DIR); 675 676 u32p_replace_bits(&pdi_conf, pdi->intel_alh_id, SDW_SHIM_PCMSYCM_STREAM); 677 u32p_replace_bits(&pdi_conf, pdi->l_ch_num, SDW_SHIM_PCMSYCM_LCHN); 678 u32p_replace_bits(&pdi_conf, pdi->h_ch_num, SDW_SHIM_PCMSYCM_HCHN); 679 680 intel_writew(shim, SDW_SHIM_PCMSYCHM(link_id, pdi->num), pdi_conf); 681 } 682 683 static void 684 intel_pdi_alh_configure(struct sdw_intel *sdw, struct sdw_cdns_pdi *pdi) 685 { 686 void __iomem *alh = sdw->link_res->alh; 687 unsigned int link_id = sdw->instance; 688 unsigned int conf; 689 690 /* the Bulk and PCM streams are not contiguous */ 691 pdi->intel_alh_id = (link_id * 16) + pdi->num + 3; 692 if (pdi->num >= 2) 693 pdi->intel_alh_id += 2; 694 695 /* Program Stream config ALH register */ 696 conf = intel_readl(alh, SDW_ALH_STRMZCFG(pdi->intel_alh_id)); 697 698 u32p_replace_bits(&conf, SDW_ALH_STRMZCFG_DMAT_VAL, SDW_ALH_STRMZCFG_DMAT); 699 u32p_replace_bits(&conf, pdi->ch_count - 1, SDW_ALH_STRMZCFG_CHN); 700 701 intel_writel(alh, SDW_ALH_STRMZCFG(pdi->intel_alh_id), conf); 702 } 703 704 static int intel_params_stream(struct sdw_intel *sdw, 705 int stream, 706 struct snd_soc_dai *dai, 707 struct snd_pcm_hw_params *hw_params, 708 int link_id, int alh_stream_id) 709 { 710 struct sdw_intel_link_res *res = sdw->link_res; 711 struct sdw_intel_stream_params_data params_data; 712 713 params_data.stream = stream; /* direction */ 714 params_data.dai = dai; 715 params_data.hw_params = hw_params; 716 params_data.link_id = link_id; 717 params_data.alh_stream_id = alh_stream_id; 718 719 if (res->ops && res->ops->params_stream && res->dev) 720 return res->ops->params_stream(res->dev, 721 ¶ms_data); 722 return -EIO; 723 } 724 725 static int intel_free_stream(struct sdw_intel *sdw, 726 int stream, 727 struct snd_soc_dai *dai, 728 int link_id) 729 { 730 struct sdw_intel_link_res *res = sdw->link_res; 731 struct sdw_intel_stream_free_data free_data; 732 733 free_data.stream = stream; /* direction */ 734 free_data.dai = dai; 735 free_data.link_id = link_id; 736 737 if (res->ops && res->ops->free_stream && res->dev) 738 return res->ops->free_stream(res->dev, 739 &free_data); 740 741 return 0; 742 } 743 744 /* 745 * bank switch routines 746 */ 747 748 static int intel_pre_bank_switch(struct sdw_bus *bus) 749 { 750 struct sdw_cdns *cdns = bus_to_cdns(bus); 751 struct sdw_intel *sdw = cdns_to_intel(cdns); 752 753 /* Write to register only for multi-link */ 754 if (!bus->multi_link) 755 return 0; 756 757 intel_shim_sync_arm(sdw); 758 759 return 0; 760 } 761 762 static int intel_post_bank_switch(struct sdw_bus *bus) 763 { 764 struct sdw_cdns *cdns = bus_to_cdns(bus); 765 struct sdw_intel *sdw = cdns_to_intel(cdns); 766 void __iomem *shim = sdw->link_res->shim; 767 int sync_reg, ret; 768 769 /* Write to register only for multi-link */ 770 if (!bus->multi_link) 771 return 0; 772 773 mutex_lock(sdw->link_res->shim_lock); 774 775 /* Read SYNC register */ 776 sync_reg = intel_readl(shim, SDW_SHIM_SYNC); 777 778 /* 779 * post_bank_switch() ops is called from the bus in loop for 780 * all the Masters in the steam with the expectation that 781 * we trigger the bankswitch for the only first Master in the list 782 * and do nothing for the other Masters 783 * 784 * So, set the SYNCGO bit only if CMDSYNC bit is set for any Master. 785 */ 786 if (!(sync_reg & SDW_SHIM_SYNC_CMDSYNC_MASK)) { 787 ret = 0; 788 goto unlock; 789 } 790 791 ret = intel_shim_sync_go_unlocked(sdw); 792 unlock: 793 mutex_unlock(sdw->link_res->shim_lock); 794 795 if (ret < 0) 796 dev_err(sdw->cdns.dev, "Post bank switch failed: %d\n", ret); 797 798 return ret; 799 } 800 801 /* 802 * DAI routines 803 */ 804 805 static int intel_startup(struct snd_pcm_substream *substream, 806 struct snd_soc_dai *dai) 807 { 808 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); 809 int ret; 810 811 ret = pm_runtime_resume_and_get(cdns->dev); 812 if (ret < 0 && ret != -EACCES) { 813 dev_err_ratelimited(cdns->dev, 814 "pm_runtime_resume_and_get failed in %s, ret %d\n", 815 __func__, ret); 816 return ret; 817 } 818 return 0; 819 } 820 821 static int intel_hw_params(struct snd_pcm_substream *substream, 822 struct snd_pcm_hw_params *params, 823 struct snd_soc_dai *dai) 824 { 825 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); 826 struct sdw_intel *sdw = cdns_to_intel(cdns); 827 struct sdw_cdns_dma_data *dma; 828 struct sdw_cdns_pdi *pdi; 829 struct sdw_stream_config sconfig; 830 struct sdw_port_config *pconfig; 831 int ch, dir; 832 int ret; 833 834 dma = snd_soc_dai_get_dma_data(dai, substream); 835 if (!dma) 836 return -EIO; 837 838 ch = params_channels(params); 839 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) 840 dir = SDW_DATA_DIR_RX; 841 else 842 dir = SDW_DATA_DIR_TX; 843 844 pdi = sdw_cdns_alloc_pdi(cdns, &cdns->pcm, ch, dir, dai->id); 845 846 if (!pdi) { 847 ret = -EINVAL; 848 goto error; 849 } 850 851 /* do run-time configurations for SHIM, ALH and PDI/PORT */ 852 intel_pdi_shim_configure(sdw, pdi); 853 intel_pdi_alh_configure(sdw, pdi); 854 sdw_cdns_config_stream(cdns, ch, dir, pdi); 855 856 /* store pdi and hw_params, may be needed in prepare step */ 857 dma->paused = false; 858 dma->suspended = false; 859 dma->pdi = pdi; 860 dma->hw_params = params; 861 862 /* Inform DSP about PDI stream number */ 863 ret = intel_params_stream(sdw, substream->stream, dai, params, 864 sdw->instance, 865 pdi->intel_alh_id); 866 if (ret) 867 goto error; 868 869 sconfig.direction = dir; 870 sconfig.ch_count = ch; 871 sconfig.frame_rate = params_rate(params); 872 sconfig.type = dma->stream_type; 873 874 sconfig.bps = snd_pcm_format_width(params_format(params)); 875 876 /* Port configuration */ 877 pconfig = kzalloc(sizeof(*pconfig), GFP_KERNEL); 878 if (!pconfig) { 879 ret = -ENOMEM; 880 goto error; 881 } 882 883 pconfig->num = pdi->num; 884 pconfig->ch_mask = (1 << ch) - 1; 885 886 ret = sdw_stream_add_master(&cdns->bus, &sconfig, 887 pconfig, 1, dma->stream); 888 if (ret) 889 dev_err(cdns->dev, "add master to stream failed:%d\n", ret); 890 891 kfree(pconfig); 892 error: 893 return ret; 894 } 895 896 static int intel_prepare(struct snd_pcm_substream *substream, 897 struct snd_soc_dai *dai) 898 { 899 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); 900 struct sdw_intel *sdw = cdns_to_intel(cdns); 901 struct sdw_cdns_dma_data *dma; 902 int ch, dir; 903 int ret = 0; 904 905 dma = snd_soc_dai_get_dma_data(dai, substream); 906 if (!dma) { 907 dev_err(dai->dev, "failed to get dma data in %s\n", 908 __func__); 909 return -EIO; 910 } 911 912 if (dma->suspended) { 913 dma->suspended = false; 914 915 /* 916 * .prepare() is called after system resume, where we 917 * need to reinitialize the SHIM/ALH/Cadence IP. 918 * .prepare() is also called to deal with underflows, 919 * but in those cases we cannot touch ALH/SHIM 920 * registers 921 */ 922 923 /* configure stream */ 924 ch = params_channels(dma->hw_params); 925 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) 926 dir = SDW_DATA_DIR_RX; 927 else 928 dir = SDW_DATA_DIR_TX; 929 930 intel_pdi_shim_configure(sdw, dma->pdi); 931 intel_pdi_alh_configure(sdw, dma->pdi); 932 sdw_cdns_config_stream(cdns, ch, dir, dma->pdi); 933 934 /* Inform DSP about PDI stream number */ 935 ret = intel_params_stream(sdw, substream->stream, dai, 936 dma->hw_params, 937 sdw->instance, 938 dma->pdi->intel_alh_id); 939 } 940 941 return ret; 942 } 943 944 static int 945 intel_hw_free(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) 946 { 947 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); 948 struct sdw_intel *sdw = cdns_to_intel(cdns); 949 struct sdw_cdns_dma_data *dma; 950 int ret; 951 952 dma = snd_soc_dai_get_dma_data(dai, substream); 953 if (!dma) 954 return -EIO; 955 956 /* 957 * The sdw stream state will transition to RELEASED when stream-> 958 * master_list is empty. So the stream state will transition to 959 * DEPREPARED for the first cpu-dai and to RELEASED for the last 960 * cpu-dai. 961 */ 962 ret = sdw_stream_remove_master(&cdns->bus, dma->stream); 963 if (ret < 0) { 964 dev_err(dai->dev, "remove master from stream %s failed: %d\n", 965 dma->stream->name, ret); 966 return ret; 967 } 968 969 ret = intel_free_stream(sdw, substream->stream, dai, sdw->instance); 970 if (ret < 0) { 971 dev_err(dai->dev, "intel_free_stream: failed %d\n", ret); 972 return ret; 973 } 974 975 dma->hw_params = NULL; 976 dma->pdi = NULL; 977 978 return 0; 979 } 980 981 static void intel_shutdown(struct snd_pcm_substream *substream, 982 struct snd_soc_dai *dai) 983 { 984 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); 985 986 pm_runtime_mark_last_busy(cdns->dev); 987 pm_runtime_put_autosuspend(cdns->dev); 988 } 989 990 static int intel_pcm_set_sdw_stream(struct snd_soc_dai *dai, 991 void *stream, int direction) 992 { 993 return cdns_set_sdw_stream(dai, stream, direction); 994 } 995 996 static void *intel_get_sdw_stream(struct snd_soc_dai *dai, 997 int direction) 998 { 999 struct sdw_cdns_dma_data *dma; 1000 1001 if (direction == SNDRV_PCM_STREAM_PLAYBACK) 1002 dma = dai->playback_dma_data; 1003 else 1004 dma = dai->capture_dma_data; 1005 1006 if (!dma) 1007 return ERR_PTR(-EINVAL); 1008 1009 return dma->stream; 1010 } 1011 1012 static int intel_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) 1013 { 1014 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); 1015 struct sdw_intel *sdw = cdns_to_intel(cdns); 1016 struct sdw_intel_link_res *res = sdw->link_res; 1017 struct sdw_cdns_dma_data *dma; 1018 int ret = 0; 1019 1020 /* 1021 * The .trigger callback is used to send required IPC to audio 1022 * firmware. The .free_stream callback will still be called 1023 * by intel_free_stream() in the TRIGGER_SUSPEND case. 1024 */ 1025 if (res->ops && res->ops->trigger) 1026 res->ops->trigger(dai, cmd, substream->stream); 1027 1028 dma = snd_soc_dai_get_dma_data(dai, substream); 1029 if (!dma) { 1030 dev_err(dai->dev, "failed to get dma data in %s\n", 1031 __func__); 1032 return -EIO; 1033 } 1034 1035 switch (cmd) { 1036 case SNDRV_PCM_TRIGGER_SUSPEND: 1037 1038 /* 1039 * The .prepare callback is used to deal with xruns and resume operations. 1040 * In the case of xruns, the DMAs and SHIM registers cannot be touched, 1041 * but for resume operations the DMAs and SHIM registers need to be initialized. 1042 * the .trigger callback is used to track the suspend case only. 1043 */ 1044 1045 dma->suspended = true; 1046 1047 ret = intel_free_stream(sdw, substream->stream, dai, sdw->instance); 1048 break; 1049 1050 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 1051 dma->paused = true; 1052 break; 1053 case SNDRV_PCM_TRIGGER_STOP: 1054 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 1055 dma->paused = false; 1056 break; 1057 default: 1058 break; 1059 } 1060 1061 return ret; 1062 } 1063 1064 static int intel_component_probe(struct snd_soc_component *component) 1065 { 1066 int ret; 1067 1068 /* 1069 * make sure the device is pm_runtime_active before initiating 1070 * bus transactions during the card registration. 1071 * We use pm_runtime_resume() here, without taking a reference 1072 * and releasing it immediately. 1073 */ 1074 ret = pm_runtime_resume(component->dev); 1075 if (ret < 0 && ret != -EACCES) 1076 return ret; 1077 1078 return 0; 1079 } 1080 1081 static int intel_component_dais_suspend(struct snd_soc_component *component) 1082 { 1083 struct snd_soc_dai *dai; 1084 1085 /* 1086 * In the corner case where a SUSPEND happens during a PAUSE, the ALSA core 1087 * does not throw the TRIGGER_SUSPEND. This leaves the DAIs in an unbalanced state. 1088 * Since the component suspend is called last, we can trap this corner case 1089 * and force the DAIs to release their resources. 1090 */ 1091 for_each_component_dais(component, dai) { 1092 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); 1093 struct sdw_intel *sdw = cdns_to_intel(cdns); 1094 struct sdw_cdns_dma_data *dma; 1095 int stream; 1096 int ret; 1097 1098 dma = dai->playback_dma_data; 1099 stream = SNDRV_PCM_STREAM_PLAYBACK; 1100 if (!dma) { 1101 dma = dai->capture_dma_data; 1102 stream = SNDRV_PCM_STREAM_CAPTURE; 1103 } 1104 1105 if (!dma) 1106 continue; 1107 1108 if (dma->suspended) 1109 continue; 1110 1111 if (dma->paused) { 1112 dma->suspended = true; 1113 1114 ret = intel_free_stream(sdw, stream, dai, sdw->instance); 1115 if (ret < 0) 1116 return ret; 1117 } 1118 } 1119 1120 return 0; 1121 } 1122 1123 static const struct snd_soc_dai_ops intel_pcm_dai_ops = { 1124 .startup = intel_startup, 1125 .hw_params = intel_hw_params, 1126 .prepare = intel_prepare, 1127 .hw_free = intel_hw_free, 1128 .trigger = intel_trigger, 1129 .shutdown = intel_shutdown, 1130 .set_stream = intel_pcm_set_sdw_stream, 1131 .get_stream = intel_get_sdw_stream, 1132 }; 1133 1134 static const struct snd_soc_component_driver dai_component = { 1135 .name = "soundwire", 1136 .probe = intel_component_probe, 1137 .suspend = intel_component_dais_suspend, 1138 .legacy_dai_naming = 1, 1139 }; 1140 1141 static int intel_create_dai(struct sdw_cdns *cdns, 1142 struct snd_soc_dai_driver *dais, 1143 enum intel_pdi_type type, 1144 u32 num, u32 off, u32 max_ch) 1145 { 1146 int i; 1147 1148 if (num == 0) 1149 return 0; 1150 1151 /* TODO: Read supported rates/formats from hardware */ 1152 for (i = off; i < (off + num); i++) { 1153 dais[i].name = devm_kasprintf(cdns->dev, GFP_KERNEL, 1154 "SDW%d Pin%d", 1155 cdns->instance, i); 1156 if (!dais[i].name) 1157 return -ENOMEM; 1158 1159 if (type == INTEL_PDI_BD || type == INTEL_PDI_OUT) { 1160 dais[i].playback.channels_min = 1; 1161 dais[i].playback.channels_max = max_ch; 1162 dais[i].playback.rates = SNDRV_PCM_RATE_48000; 1163 dais[i].playback.formats = SNDRV_PCM_FMTBIT_S16_LE; 1164 } 1165 1166 if (type == INTEL_PDI_BD || type == INTEL_PDI_IN) { 1167 dais[i].capture.channels_min = 1; 1168 dais[i].capture.channels_max = max_ch; 1169 dais[i].capture.rates = SNDRV_PCM_RATE_48000; 1170 dais[i].capture.formats = SNDRV_PCM_FMTBIT_S16_LE; 1171 } 1172 1173 dais[i].ops = &intel_pcm_dai_ops; 1174 } 1175 1176 return 0; 1177 } 1178 1179 static int intel_register_dai(struct sdw_intel *sdw) 1180 { 1181 struct sdw_cdns_stream_config config; 1182 struct sdw_cdns *cdns = &sdw->cdns; 1183 struct sdw_cdns_streams *stream; 1184 struct snd_soc_dai_driver *dais; 1185 int num_dai, ret, off = 0; 1186 1187 /* Read the PDI config and initialize cadence PDI */ 1188 intel_pdi_init(sdw, &config); 1189 ret = sdw_cdns_pdi_init(cdns, config); 1190 if (ret) 1191 return ret; 1192 1193 intel_pdi_ch_update(sdw); 1194 1195 /* DAIs are created based on total number of PDIs supported */ 1196 num_dai = cdns->pcm.num_pdi; 1197 1198 dais = devm_kcalloc(cdns->dev, num_dai, sizeof(*dais), GFP_KERNEL); 1199 if (!dais) 1200 return -ENOMEM; 1201 1202 /* Create PCM DAIs */ 1203 stream = &cdns->pcm; 1204 1205 ret = intel_create_dai(cdns, dais, INTEL_PDI_IN, cdns->pcm.num_in, 1206 off, stream->num_ch_in); 1207 if (ret) 1208 return ret; 1209 1210 off += cdns->pcm.num_in; 1211 ret = intel_create_dai(cdns, dais, INTEL_PDI_OUT, cdns->pcm.num_out, 1212 off, stream->num_ch_out); 1213 if (ret) 1214 return ret; 1215 1216 off += cdns->pcm.num_out; 1217 ret = intel_create_dai(cdns, dais, INTEL_PDI_BD, cdns->pcm.num_bd, 1218 off, stream->num_ch_bd); 1219 if (ret) 1220 return ret; 1221 1222 return devm_snd_soc_register_component(cdns->dev, &dai_component, 1223 dais, num_dai); 1224 } 1225 1226 static int intel_start_bus(struct sdw_intel *sdw) 1227 { 1228 struct device *dev = sdw->cdns.dev; 1229 struct sdw_cdns *cdns = &sdw->cdns; 1230 struct sdw_bus *bus = &cdns->bus; 1231 int ret; 1232 1233 ret = sdw_cdns_enable_interrupt(cdns, true); 1234 if (ret < 0) { 1235 dev_err(dev, "%s: cannot enable interrupts: %d\n", __func__, ret); 1236 return ret; 1237 } 1238 1239 /* 1240 * follow recommended programming flows to avoid timeouts when 1241 * gsync is enabled 1242 */ 1243 if (bus->multi_link) 1244 intel_shim_sync_arm(sdw); 1245 1246 ret = sdw_cdns_init(cdns); 1247 if (ret < 0) { 1248 dev_err(dev, "%s: unable to initialize Cadence IP: %d\n", __func__, ret); 1249 goto err_interrupt; 1250 } 1251 1252 ret = sdw_cdns_exit_reset(cdns); 1253 if (ret < 0) { 1254 dev_err(dev, "%s: unable to exit bus reset sequence: %d\n", __func__, ret); 1255 goto err_interrupt; 1256 } 1257 1258 if (bus->multi_link) { 1259 ret = intel_shim_sync_go(sdw); 1260 if (ret < 0) { 1261 dev_err(dev, "%s: sync go failed: %d\n", __func__, ret); 1262 goto err_interrupt; 1263 } 1264 } 1265 sdw_cdns_check_self_clearing_bits(cdns, __func__, 1266 true, INTEL_MASTER_RESET_ITERATIONS); 1267 1268 return 0; 1269 1270 err_interrupt: 1271 sdw_cdns_enable_interrupt(cdns, false); 1272 return ret; 1273 } 1274 1275 static int intel_start_bus_after_reset(struct sdw_intel *sdw) 1276 { 1277 struct device *dev = sdw->cdns.dev; 1278 struct sdw_cdns *cdns = &sdw->cdns; 1279 struct sdw_bus *bus = &cdns->bus; 1280 bool clock_stop0; 1281 int status; 1282 int ret; 1283 1284 /* 1285 * An exception condition occurs for the CLK_STOP_BUS_RESET 1286 * case if one or more masters remain active. In this condition, 1287 * all the masters are powered on for they are in the same power 1288 * domain. Master can preserve its context for clock stop0, so 1289 * there is no need to clear slave status and reset bus. 1290 */ 1291 clock_stop0 = sdw_cdns_is_clock_stop(&sdw->cdns); 1292 1293 if (!clock_stop0) { 1294 1295 /* 1296 * make sure all Slaves are tagged as UNATTACHED and 1297 * provide reason for reinitialization 1298 */ 1299 1300 status = SDW_UNATTACH_REQUEST_MASTER_RESET; 1301 sdw_clear_slave_status(bus, status); 1302 1303 ret = sdw_cdns_enable_interrupt(cdns, true); 1304 if (ret < 0) { 1305 dev_err(dev, "cannot enable interrupts during resume\n"); 1306 return ret; 1307 } 1308 1309 /* 1310 * follow recommended programming flows to avoid 1311 * timeouts when gsync is enabled 1312 */ 1313 if (bus->multi_link) 1314 intel_shim_sync_arm(sdw); 1315 1316 /* 1317 * Re-initialize the IP since it was powered-off 1318 */ 1319 sdw_cdns_init(&sdw->cdns); 1320 1321 } else { 1322 ret = sdw_cdns_enable_interrupt(cdns, true); 1323 if (ret < 0) { 1324 dev_err(dev, "cannot enable interrupts during resume\n"); 1325 return ret; 1326 } 1327 } 1328 1329 ret = sdw_cdns_clock_restart(cdns, !clock_stop0); 1330 if (ret < 0) { 1331 dev_err(dev, "unable to restart clock during resume\n"); 1332 goto err_interrupt; 1333 } 1334 1335 if (!clock_stop0) { 1336 ret = sdw_cdns_exit_reset(cdns); 1337 if (ret < 0) { 1338 dev_err(dev, "unable to exit bus reset sequence during resume\n"); 1339 goto err_interrupt; 1340 } 1341 1342 if (bus->multi_link) { 1343 ret = intel_shim_sync_go(sdw); 1344 if (ret < 0) { 1345 dev_err(sdw->cdns.dev, "sync go failed during resume\n"); 1346 goto err_interrupt; 1347 } 1348 } 1349 } 1350 sdw_cdns_check_self_clearing_bits(cdns, __func__, true, INTEL_MASTER_RESET_ITERATIONS); 1351 1352 return 0; 1353 1354 err_interrupt: 1355 sdw_cdns_enable_interrupt(cdns, false); 1356 return ret; 1357 } 1358 1359 static void intel_check_clock_stop(struct sdw_intel *sdw) 1360 { 1361 struct device *dev = sdw->cdns.dev; 1362 bool clock_stop0; 1363 1364 clock_stop0 = sdw_cdns_is_clock_stop(&sdw->cdns); 1365 if (!clock_stop0) 1366 dev_err(dev, "%s: invalid configuration, clock was not stopped\n", __func__); 1367 } 1368 1369 static int intel_start_bus_after_clock_stop(struct sdw_intel *sdw) 1370 { 1371 struct device *dev = sdw->cdns.dev; 1372 struct sdw_cdns *cdns = &sdw->cdns; 1373 int ret; 1374 1375 ret = sdw_cdns_enable_interrupt(cdns, true); 1376 if (ret < 0) { 1377 dev_err(dev, "%s: cannot enable interrupts: %d\n", __func__, ret); 1378 return ret; 1379 } 1380 1381 ret = sdw_cdns_clock_restart(cdns, false); 1382 if (ret < 0) { 1383 dev_err(dev, "%s: unable to restart clock: %d\n", __func__, ret); 1384 sdw_cdns_enable_interrupt(cdns, false); 1385 return ret; 1386 } 1387 1388 sdw_cdns_check_self_clearing_bits(cdns, "intel_resume_runtime no_quirks", 1389 true, INTEL_MASTER_RESET_ITERATIONS); 1390 1391 return 0; 1392 } 1393 1394 static int intel_stop_bus(struct sdw_intel *sdw, bool clock_stop) 1395 { 1396 struct device *dev = sdw->cdns.dev; 1397 struct sdw_cdns *cdns = &sdw->cdns; 1398 bool wake_enable = false; 1399 int ret; 1400 1401 if (clock_stop) { 1402 ret = sdw_cdns_clock_stop(cdns, true); 1403 if (ret < 0) 1404 dev_err(dev, "%s: cannot stop clock: %d\n", __func__, ret); 1405 else 1406 wake_enable = true; 1407 } 1408 1409 ret = sdw_cdns_enable_interrupt(cdns, false); 1410 if (ret < 0) { 1411 dev_err(dev, "%s: cannot disable interrupts: %d\n", __func__, ret); 1412 return ret; 1413 } 1414 1415 ret = intel_link_power_down(sdw); 1416 if (ret) { 1417 dev_err(dev, "%s: Link power down failed: %d\n", __func__, ret); 1418 return ret; 1419 } 1420 1421 intel_shim_wake(sdw, wake_enable); 1422 1423 return 0; 1424 } 1425 1426 static int sdw_master_read_intel_prop(struct sdw_bus *bus) 1427 { 1428 struct sdw_master_prop *prop = &bus->prop; 1429 struct fwnode_handle *link; 1430 char name[32]; 1431 u32 quirk_mask; 1432 1433 /* Find master handle */ 1434 snprintf(name, sizeof(name), 1435 "mipi-sdw-link-%d-subproperties", bus->link_id); 1436 1437 link = device_get_named_child_node(bus->dev, name); 1438 if (!link) { 1439 dev_err(bus->dev, "Master node %s not found\n", name); 1440 return -EIO; 1441 } 1442 1443 fwnode_property_read_u32(link, 1444 "intel-sdw-ip-clock", 1445 &prop->mclk_freq); 1446 1447 /* the values reported by BIOS are the 2x clock, not the bus clock */ 1448 prop->mclk_freq /= 2; 1449 1450 fwnode_property_read_u32(link, 1451 "intel-quirk-mask", 1452 &quirk_mask); 1453 1454 if (quirk_mask & SDW_INTEL_QUIRK_MASK_BUS_DISABLE) 1455 prop->hw_disabled = true; 1456 1457 prop->quirks = SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH | 1458 SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY; 1459 1460 return 0; 1461 } 1462 1463 static int intel_prop_read(struct sdw_bus *bus) 1464 { 1465 /* Initialize with default handler to read all DisCo properties */ 1466 sdw_master_read_prop(bus); 1467 1468 /* read Intel-specific properties */ 1469 sdw_master_read_intel_prop(bus); 1470 1471 return 0; 1472 } 1473 1474 static struct sdw_master_ops sdw_intel_ops = { 1475 .read_prop = intel_prop_read, 1476 .override_adr = sdw_dmi_override_adr, 1477 .xfer_msg = cdns_xfer_msg, 1478 .xfer_msg_defer = cdns_xfer_msg_defer, 1479 .reset_page_addr = cdns_reset_page_addr, 1480 .set_bus_conf = cdns_bus_conf, 1481 .pre_bank_switch = intel_pre_bank_switch, 1482 .post_bank_switch = intel_post_bank_switch, 1483 .read_ping_status = cdns_read_ping_status, 1484 }; 1485 1486 /* 1487 * probe and init (aux_dev_id argument is required by function prototype but not used) 1488 */ 1489 static int intel_link_probe(struct auxiliary_device *auxdev, 1490 const struct auxiliary_device_id *aux_dev_id) 1491 1492 { 1493 struct device *dev = &auxdev->dev; 1494 struct sdw_intel_link_dev *ldev = auxiliary_dev_to_sdw_intel_link_dev(auxdev); 1495 struct sdw_intel *sdw; 1496 struct sdw_cdns *cdns; 1497 struct sdw_bus *bus; 1498 int ret; 1499 1500 sdw = devm_kzalloc(dev, sizeof(*sdw), GFP_KERNEL); 1501 if (!sdw) 1502 return -ENOMEM; 1503 1504 cdns = &sdw->cdns; 1505 bus = &cdns->bus; 1506 1507 sdw->instance = auxdev->id; 1508 sdw->link_res = &ldev->link_res; 1509 cdns->dev = dev; 1510 cdns->registers = sdw->link_res->registers; 1511 cdns->instance = sdw->instance; 1512 cdns->msg_count = 0; 1513 1514 bus->link_id = auxdev->id; 1515 bus->dev_num_ida_min = INTEL_DEV_NUM_IDA_MIN; 1516 bus->clk_stop_timeout = 1; 1517 1518 sdw_cdns_probe(cdns); 1519 1520 /* Set ops */ 1521 bus->ops = &sdw_intel_ops; 1522 1523 /* set driver data, accessed by snd_soc_dai_get_drvdata() */ 1524 auxiliary_set_drvdata(auxdev, cdns); 1525 1526 /* use generic bandwidth allocation algorithm */ 1527 sdw->cdns.bus.compute_params = sdw_compute_params; 1528 1529 /* avoid resuming from pm_runtime suspend if it's not required */ 1530 dev_pm_set_driver_flags(dev, DPM_FLAG_SMART_SUSPEND); 1531 1532 ret = sdw_bus_master_add(bus, dev, dev->fwnode); 1533 if (ret) { 1534 dev_err(dev, "sdw_bus_master_add fail: %d\n", ret); 1535 return ret; 1536 } 1537 1538 if (bus->prop.hw_disabled) 1539 dev_info(dev, 1540 "SoundWire master %d is disabled, will be ignored\n", 1541 bus->link_id); 1542 /* 1543 * Ignore BIOS err_threshold, it's a really bad idea when dealing 1544 * with multiple hardware synchronized links 1545 */ 1546 bus->prop.err_threshold = 0; 1547 1548 return 0; 1549 } 1550 1551 int intel_link_startup(struct auxiliary_device *auxdev) 1552 { 1553 struct device *dev = &auxdev->dev; 1554 struct sdw_cdns *cdns = auxiliary_get_drvdata(auxdev); 1555 struct sdw_intel *sdw = cdns_to_intel(cdns); 1556 struct sdw_bus *bus = &cdns->bus; 1557 int link_flags; 1558 bool multi_link; 1559 u32 clock_stop_quirks; 1560 int ret; 1561 1562 if (bus->prop.hw_disabled) { 1563 dev_info(dev, 1564 "SoundWire master %d is disabled, ignoring\n", 1565 sdw->instance); 1566 return 0; 1567 } 1568 1569 link_flags = md_flags >> (bus->link_id * 8); 1570 multi_link = !(link_flags & SDW_INTEL_MASTER_DISABLE_MULTI_LINK); 1571 if (!multi_link) { 1572 dev_dbg(dev, "Multi-link is disabled\n"); 1573 } else { 1574 /* 1575 * hardware-based synchronization is required regardless 1576 * of the number of segments used by a stream: SSP-based 1577 * synchronization is gated by gsync when the multi-master 1578 * mode is set. 1579 */ 1580 bus->hw_sync_min_links = 1; 1581 } 1582 bus->multi_link = multi_link; 1583 1584 /* Initialize shim, controller */ 1585 ret = intel_link_power_up(sdw); 1586 if (ret) 1587 goto err_init; 1588 1589 /* Register DAIs */ 1590 ret = intel_register_dai(sdw); 1591 if (ret) { 1592 dev_err(dev, "DAI registration failed: %d\n", ret); 1593 goto err_power_up; 1594 } 1595 1596 intel_debugfs_init(sdw); 1597 1598 /* start bus */ 1599 ret = intel_start_bus(sdw); 1600 if (ret) { 1601 dev_err(dev, "bus start failed: %d\n", ret); 1602 goto err_power_up; 1603 } 1604 1605 /* Enable runtime PM */ 1606 if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME)) { 1607 pm_runtime_set_autosuspend_delay(dev, 1608 INTEL_MASTER_SUSPEND_DELAY_MS); 1609 pm_runtime_use_autosuspend(dev); 1610 pm_runtime_mark_last_busy(dev); 1611 1612 pm_runtime_set_active(dev); 1613 pm_runtime_enable(dev); 1614 } 1615 1616 clock_stop_quirks = sdw->link_res->clock_stop_quirks; 1617 if (clock_stop_quirks & SDW_INTEL_CLK_STOP_NOT_ALLOWED) { 1618 /* 1619 * To keep the clock running we need to prevent 1620 * pm_runtime suspend from happening by increasing the 1621 * reference count. 1622 * This quirk is specified by the parent PCI device in 1623 * case of specific latency requirements. It will have 1624 * no effect if pm_runtime is disabled by the user via 1625 * a module parameter for testing purposes. 1626 */ 1627 pm_runtime_get_noresume(dev); 1628 } 1629 1630 /* 1631 * The runtime PM status of Slave devices is "Unsupported" 1632 * until they report as ATTACHED. If they don't, e.g. because 1633 * there are no Slave devices populated or if the power-on is 1634 * delayed or dependent on a power switch, the Master will 1635 * remain active and prevent its parent from suspending. 1636 * 1637 * Conditionally force the pm_runtime core to re-evaluate the 1638 * Master status in the absence of any Slave activity. A quirk 1639 * is provided to e.g. deal with Slaves that may be powered on 1640 * with a delay. A more complete solution would require the 1641 * definition of Master properties. 1642 */ 1643 if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE)) 1644 pm_runtime_idle(dev); 1645 1646 sdw->startup_done = true; 1647 return 0; 1648 1649 err_power_up: 1650 intel_link_power_down(sdw); 1651 err_init: 1652 return ret; 1653 } 1654 1655 static void intel_link_remove(struct auxiliary_device *auxdev) 1656 { 1657 struct sdw_cdns *cdns = auxiliary_get_drvdata(auxdev); 1658 struct sdw_intel *sdw = cdns_to_intel(cdns); 1659 struct sdw_bus *bus = &cdns->bus; 1660 1661 /* 1662 * Since pm_runtime is already disabled, we don't decrease 1663 * the refcount when the clock_stop_quirk is 1664 * SDW_INTEL_CLK_STOP_NOT_ALLOWED 1665 */ 1666 if (!bus->prop.hw_disabled) { 1667 intel_debugfs_exit(sdw); 1668 sdw_cdns_enable_interrupt(cdns, false); 1669 } 1670 sdw_bus_master_delete(bus); 1671 } 1672 1673 int intel_link_process_wakeen_event(struct auxiliary_device *auxdev) 1674 { 1675 struct device *dev = &auxdev->dev; 1676 struct sdw_intel *sdw; 1677 struct sdw_bus *bus; 1678 1679 sdw = auxiliary_get_drvdata(auxdev); 1680 bus = &sdw->cdns.bus; 1681 1682 if (bus->prop.hw_disabled || !sdw->startup_done) { 1683 dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n", 1684 bus->link_id); 1685 return 0; 1686 } 1687 1688 if (!intel_shim_check_wake(sdw)) 1689 return 0; 1690 1691 /* disable WAKEEN interrupt ASAP to prevent interrupt flood */ 1692 intel_shim_wake(sdw, false); 1693 1694 /* 1695 * resume the Master, which will generate a bus reset and result in 1696 * Slaves re-attaching and be re-enumerated. The SoundWire physical 1697 * device which generated the wake will trigger an interrupt, which 1698 * will in turn cause the corresponding Linux Slave device to be 1699 * resumed and the Slave codec driver to check the status. 1700 */ 1701 pm_request_resume(dev); 1702 1703 return 0; 1704 } 1705 1706 /* 1707 * PM calls 1708 */ 1709 1710 static int intel_resume_child_device(struct device *dev, void *data) 1711 { 1712 int ret; 1713 struct sdw_slave *slave = dev_to_sdw_dev(dev); 1714 1715 if (!slave->probed) { 1716 dev_dbg(dev, "skipping device, no probed driver\n"); 1717 return 0; 1718 } 1719 if (!slave->dev_num_sticky) { 1720 dev_dbg(dev, "skipping device, never detected on bus\n"); 1721 return 0; 1722 } 1723 1724 ret = pm_request_resume(dev); 1725 if (ret < 0) 1726 dev_err(dev, "%s: pm_request_resume failed: %d\n", __func__, ret); 1727 1728 return ret; 1729 } 1730 1731 static int __maybe_unused intel_pm_prepare(struct device *dev) 1732 { 1733 struct sdw_cdns *cdns = dev_get_drvdata(dev); 1734 struct sdw_intel *sdw = cdns_to_intel(cdns); 1735 struct sdw_bus *bus = &cdns->bus; 1736 u32 clock_stop_quirks; 1737 int ret; 1738 1739 if (bus->prop.hw_disabled || !sdw->startup_done) { 1740 dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n", 1741 bus->link_id); 1742 return 0; 1743 } 1744 1745 clock_stop_quirks = sdw->link_res->clock_stop_quirks; 1746 1747 if (pm_runtime_suspended(dev) && 1748 pm_runtime_suspended(dev->parent) && 1749 ((clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET) || 1750 !clock_stop_quirks)) { 1751 /* 1752 * if we've enabled clock stop, and the parent is suspended, the SHIM registers 1753 * are not accessible and the shim wake cannot be disabled. 1754 * The only solution is to resume the entire bus to full power 1755 */ 1756 1757 /* 1758 * If any operation in this block fails, we keep going since we don't want 1759 * to prevent system suspend from happening and errors should be recoverable 1760 * on resume. 1761 */ 1762 1763 /* 1764 * first resume the device for this link. This will also by construction 1765 * resume the PCI parent device. 1766 */ 1767 ret = pm_request_resume(dev); 1768 if (ret < 0) { 1769 dev_err(dev, "%s: pm_request_resume failed: %d\n", __func__, ret); 1770 return 0; 1771 } 1772 1773 /* 1774 * Continue resuming the entire bus (parent + child devices) to exit 1775 * the clock stop mode. If there are no devices connected on this link 1776 * this is a no-op. 1777 * The resume to full power could have been implemented with a .prepare 1778 * step in SoundWire codec drivers. This would however require a lot 1779 * of code to handle an Intel-specific corner case. It is simpler in 1780 * practice to add a loop at the link level. 1781 */ 1782 ret = device_for_each_child(bus->dev, NULL, intel_resume_child_device); 1783 1784 if (ret < 0) 1785 dev_err(dev, "%s: intel_resume_child_device failed: %d\n", __func__, ret); 1786 } 1787 1788 return 0; 1789 } 1790 1791 static int __maybe_unused intel_suspend(struct device *dev) 1792 { 1793 struct sdw_cdns *cdns = dev_get_drvdata(dev); 1794 struct sdw_intel *sdw = cdns_to_intel(cdns); 1795 struct sdw_bus *bus = &cdns->bus; 1796 u32 clock_stop_quirks; 1797 int ret; 1798 1799 if (bus->prop.hw_disabled || !sdw->startup_done) { 1800 dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n", 1801 bus->link_id); 1802 return 0; 1803 } 1804 1805 if (pm_runtime_suspended(dev)) { 1806 dev_dbg(dev, "pm_runtime status: suspended\n"); 1807 1808 clock_stop_quirks = sdw->link_res->clock_stop_quirks; 1809 1810 if ((clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET) || 1811 !clock_stop_quirks) { 1812 1813 if (pm_runtime_suspended(dev->parent)) { 1814 /* 1815 * paranoia check: this should not happen with the .prepare 1816 * resume to full power 1817 */ 1818 dev_err(dev, "%s: invalid config: parent is suspended\n", __func__); 1819 } else { 1820 intel_shim_wake(sdw, false); 1821 } 1822 } 1823 1824 return 0; 1825 } 1826 1827 ret = intel_stop_bus(sdw, false); 1828 if (ret < 0) { 1829 dev_err(dev, "%s: cannot stop bus: %d\n", __func__, ret); 1830 return ret; 1831 } 1832 1833 return 0; 1834 } 1835 1836 static int __maybe_unused intel_suspend_runtime(struct device *dev) 1837 { 1838 struct sdw_cdns *cdns = dev_get_drvdata(dev); 1839 struct sdw_intel *sdw = cdns_to_intel(cdns); 1840 struct sdw_bus *bus = &cdns->bus; 1841 u32 clock_stop_quirks; 1842 int ret; 1843 1844 if (bus->prop.hw_disabled || !sdw->startup_done) { 1845 dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n", 1846 bus->link_id); 1847 return 0; 1848 } 1849 1850 clock_stop_quirks = sdw->link_res->clock_stop_quirks; 1851 1852 if (clock_stop_quirks & SDW_INTEL_CLK_STOP_TEARDOWN) { 1853 ret = intel_stop_bus(sdw, false); 1854 if (ret < 0) { 1855 dev_err(dev, "%s: cannot stop bus during teardown: %d\n", 1856 __func__, ret); 1857 return ret; 1858 } 1859 } else if (clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET || !clock_stop_quirks) { 1860 ret = intel_stop_bus(sdw, true); 1861 if (ret < 0) { 1862 dev_err(dev, "%s: cannot stop bus during clock_stop: %d\n", 1863 __func__, ret); 1864 return ret; 1865 } 1866 } else { 1867 dev_err(dev, "%s clock_stop_quirks %x unsupported\n", 1868 __func__, clock_stop_quirks); 1869 ret = -EINVAL; 1870 } 1871 1872 return ret; 1873 } 1874 1875 static int __maybe_unused intel_resume(struct device *dev) 1876 { 1877 struct sdw_cdns *cdns = dev_get_drvdata(dev); 1878 struct sdw_intel *sdw = cdns_to_intel(cdns); 1879 struct sdw_bus *bus = &cdns->bus; 1880 int link_flags; 1881 int ret; 1882 1883 if (bus->prop.hw_disabled || !sdw->startup_done) { 1884 dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n", 1885 bus->link_id); 1886 return 0; 1887 } 1888 1889 link_flags = md_flags >> (bus->link_id * 8); 1890 1891 if (pm_runtime_suspended(dev)) { 1892 dev_dbg(dev, "pm_runtime status was suspended, forcing active\n"); 1893 1894 /* follow required sequence from runtime_pm.rst */ 1895 pm_runtime_disable(dev); 1896 pm_runtime_set_active(dev); 1897 pm_runtime_mark_last_busy(dev); 1898 pm_runtime_enable(dev); 1899 1900 link_flags = md_flags >> (bus->link_id * 8); 1901 1902 if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE)) 1903 pm_runtime_idle(dev); 1904 } 1905 1906 ret = intel_link_power_up(sdw); 1907 if (ret) { 1908 dev_err(dev, "%s failed: %d\n", __func__, ret); 1909 return ret; 1910 } 1911 1912 /* 1913 * make sure all Slaves are tagged as UNATTACHED and provide 1914 * reason for reinitialization 1915 */ 1916 sdw_clear_slave_status(bus, SDW_UNATTACH_REQUEST_MASTER_RESET); 1917 1918 ret = intel_start_bus(sdw); 1919 if (ret < 0) { 1920 dev_err(dev, "cannot start bus during resume\n"); 1921 intel_link_power_down(sdw); 1922 return ret; 1923 } 1924 1925 /* 1926 * after system resume, the pm_runtime suspend() may kick in 1927 * during the enumeration, before any children device force the 1928 * master device to remain active. Using pm_runtime_get() 1929 * routines is not really possible, since it'd prevent the 1930 * master from suspending. 1931 * A reasonable compromise is to update the pm_runtime 1932 * counters and delay the pm_runtime suspend by several 1933 * seconds, by when all enumeration should be complete. 1934 */ 1935 pm_runtime_mark_last_busy(dev); 1936 1937 return 0; 1938 } 1939 1940 static int __maybe_unused intel_resume_runtime(struct device *dev) 1941 { 1942 struct sdw_cdns *cdns = dev_get_drvdata(dev); 1943 struct sdw_intel *sdw = cdns_to_intel(cdns); 1944 struct sdw_bus *bus = &cdns->bus; 1945 u32 clock_stop_quirks; 1946 int ret; 1947 1948 if (bus->prop.hw_disabled || !sdw->startup_done) { 1949 dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n", 1950 bus->link_id); 1951 return 0; 1952 } 1953 1954 /* unconditionally disable WAKEEN interrupt */ 1955 intel_shim_wake(sdw, false); 1956 1957 clock_stop_quirks = sdw->link_res->clock_stop_quirks; 1958 1959 if (clock_stop_quirks & SDW_INTEL_CLK_STOP_TEARDOWN) { 1960 ret = intel_link_power_up(sdw); 1961 if (ret) { 1962 dev_err(dev, "%s: power_up failed after teardown: %d\n", __func__, ret); 1963 return ret; 1964 } 1965 1966 /* 1967 * make sure all Slaves are tagged as UNATTACHED and provide 1968 * reason for reinitialization 1969 */ 1970 sdw_clear_slave_status(bus, SDW_UNATTACH_REQUEST_MASTER_RESET); 1971 1972 ret = intel_start_bus(sdw); 1973 if (ret < 0) { 1974 dev_err(dev, "%s: cannot start bus after teardown: %d\n", __func__, ret); 1975 intel_link_power_down(sdw); 1976 return ret; 1977 } 1978 1979 1980 } else if (clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET) { 1981 ret = intel_link_power_up(sdw); 1982 if (ret) { 1983 dev_err(dev, "%s: power_up failed after bus reset: %d\n", __func__, ret); 1984 return ret; 1985 } 1986 1987 ret = intel_start_bus_after_reset(sdw); 1988 if (ret < 0) { 1989 dev_err(dev, "%s: cannot start bus after reset: %d\n", __func__, ret); 1990 intel_link_power_down(sdw); 1991 return ret; 1992 } 1993 } else if (!clock_stop_quirks) { 1994 1995 intel_check_clock_stop(sdw); 1996 1997 ret = intel_link_power_up(sdw); 1998 if (ret) { 1999 dev_err(dev, "%s: power_up failed: %d\n", __func__, ret); 2000 return ret; 2001 } 2002 2003 ret = intel_start_bus_after_clock_stop(sdw); 2004 if (ret < 0) { 2005 dev_err(dev, "%s: cannot start bus after clock stop: %d\n", __func__, ret); 2006 intel_link_power_down(sdw); 2007 return ret; 2008 } 2009 } else { 2010 dev_err(dev, "%s: clock_stop_quirks %x unsupported\n", 2011 __func__, clock_stop_quirks); 2012 ret = -EINVAL; 2013 } 2014 2015 return ret; 2016 } 2017 2018 static const struct dev_pm_ops intel_pm = { 2019 .prepare = intel_pm_prepare, 2020 SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume) 2021 SET_RUNTIME_PM_OPS(intel_suspend_runtime, intel_resume_runtime, NULL) 2022 }; 2023 2024 static const struct auxiliary_device_id intel_link_id_table[] = { 2025 { .name = "soundwire_intel.link" }, 2026 {}, 2027 }; 2028 MODULE_DEVICE_TABLE(auxiliary, intel_link_id_table); 2029 2030 static struct auxiliary_driver sdw_intel_drv = { 2031 .probe = intel_link_probe, 2032 .remove = intel_link_remove, 2033 .driver = { 2034 /* auxiliary_driver_register() sets .name to be the modname */ 2035 .pm = &intel_pm, 2036 }, 2037 .id_table = intel_link_id_table 2038 }; 2039 module_auxiliary_driver(sdw_intel_drv); 2040 2041 MODULE_LICENSE("Dual BSD/GPL"); 2042 MODULE_DESCRIPTION("Intel Soundwire Link Driver"); 2043