xref: /linux/drivers/soundwire/intel.c (revision 9052e9c95d908d6c3d7570aadc8898e1d871c8bb)
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 // Copyright(c) 2015-17 Intel Corporation.
3 
4 /*
5  * Soundwire Intel Master Driver
6  */
7 
8 #include <linux/acpi.h>
9 #include <linux/debugfs.h>
10 #include <linux/delay.h>
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/auxiliary_bus.h>
15 #include <sound/pcm_params.h>
16 #include <linux/pm_runtime.h>
17 #include <sound/soc.h>
18 #include <linux/soundwire/sdw_registers.h>
19 #include <linux/soundwire/sdw.h>
20 #include <linux/soundwire/sdw_intel.h>
21 #include "cadence_master.h"
22 #include "bus.h"
23 #include "intel.h"
24 
25 #define INTEL_MASTER_SUSPEND_DELAY_MS	3000
26 #define INTEL_MASTER_RESET_ITERATIONS	10
27 
28 /*
29  * debug/config flags for the Intel SoundWire Master.
30  *
31  * Since we may have multiple masters active, we can have up to 8
32  * flags reused in each byte, with master0 using the ls-byte, etc.
33  */
34 
35 #define SDW_INTEL_MASTER_DISABLE_PM_RUNTIME		BIT(0)
36 #define SDW_INTEL_MASTER_DISABLE_CLOCK_STOP		BIT(1)
37 #define SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE	BIT(2)
38 #define SDW_INTEL_MASTER_DISABLE_MULTI_LINK		BIT(3)
39 
40 static int md_flags;
41 module_param_named(sdw_md_flags, md_flags, int, 0444);
42 MODULE_PARM_DESC(sdw_md_flags, "SoundWire Intel Master device flags (0x0 all off)");
43 
44 enum intel_pdi_type {
45 	INTEL_PDI_IN = 0,
46 	INTEL_PDI_OUT = 1,
47 	INTEL_PDI_BD = 2,
48 };
49 
50 #define cdns_to_intel(_cdns) container_of(_cdns, struct sdw_intel, cdns)
51 
52 /*
53  * Read, write helpers for HW registers
54  */
55 static inline int intel_readl(void __iomem *base, int offset)
56 {
57 	return readl(base + offset);
58 }
59 
60 static inline void intel_writel(void __iomem *base, int offset, int value)
61 {
62 	writel(value, base + offset);
63 }
64 
65 static inline u16 intel_readw(void __iomem *base, int offset)
66 {
67 	return readw(base + offset);
68 }
69 
70 static inline void intel_writew(void __iomem *base, int offset, u16 value)
71 {
72 	writew(value, base + offset);
73 }
74 
75 static int intel_wait_bit(void __iomem *base, int offset, u32 mask, u32 target)
76 {
77 	int timeout = 10;
78 	u32 reg_read;
79 
80 	do {
81 		reg_read = readl(base + offset);
82 		if ((reg_read & mask) == target)
83 			return 0;
84 
85 		timeout--;
86 		usleep_range(50, 100);
87 	} while (timeout != 0);
88 
89 	return -EAGAIN;
90 }
91 
92 static int intel_clear_bit(void __iomem *base, int offset, u32 value, u32 mask)
93 {
94 	writel(value, base + offset);
95 	return intel_wait_bit(base, offset, mask, 0);
96 }
97 
98 static int intel_set_bit(void __iomem *base, int offset, u32 value, u32 mask)
99 {
100 	writel(value, base + offset);
101 	return intel_wait_bit(base, offset, mask, mask);
102 }
103 
104 /*
105  * debugfs
106  */
107 #ifdef CONFIG_DEBUG_FS
108 
109 #define RD_BUF (2 * PAGE_SIZE)
110 
111 static ssize_t intel_sprintf(void __iomem *mem, bool l,
112 			     char *buf, size_t pos, unsigned int reg)
113 {
114 	int value;
115 
116 	if (l)
117 		value = intel_readl(mem, reg);
118 	else
119 		value = intel_readw(mem, reg);
120 
121 	return scnprintf(buf + pos, RD_BUF - pos, "%4x\t%4x\n", reg, value);
122 }
123 
124 static int intel_reg_show(struct seq_file *s_file, void *data)
125 {
126 	struct sdw_intel *sdw = s_file->private;
127 	void __iomem *s = sdw->link_res->shim;
128 	void __iomem *a = sdw->link_res->alh;
129 	char *buf;
130 	ssize_t ret;
131 	int i, j;
132 	unsigned int links, reg;
133 
134 	buf = kzalloc(RD_BUF, GFP_KERNEL);
135 	if (!buf)
136 		return -ENOMEM;
137 
138 	links = intel_readl(s, SDW_SHIM_LCAP) & GENMASK(2, 0);
139 
140 	ret = scnprintf(buf, RD_BUF, "Register  Value\n");
141 	ret += scnprintf(buf + ret, RD_BUF - ret, "\nShim\n");
142 
143 	for (i = 0; i < links; i++) {
144 		reg = SDW_SHIM_LCAP + i * 4;
145 		ret += intel_sprintf(s, true, buf, ret, reg);
146 	}
147 
148 	for (i = 0; i < links; i++) {
149 		ret += scnprintf(buf + ret, RD_BUF - ret, "\nLink%d\n", i);
150 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLSCAP(i));
151 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS0CM(i));
152 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS1CM(i));
153 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS2CM(i));
154 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS3CM(i));
155 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_PCMSCAP(i));
156 
157 		ret += scnprintf(buf + ret, RD_BUF - ret, "\n PCMSyCH registers\n");
158 
159 		/*
160 		 * the value 10 is the number of PDIs. We will need a
161 		 * cleanup to remove hard-coded Intel configurations
162 		 * from cadence_master.c
163 		 */
164 		for (j = 0; j < 10; j++) {
165 			ret += intel_sprintf(s, false, buf, ret,
166 					SDW_SHIM_PCMSYCHM(i, j));
167 			ret += intel_sprintf(s, false, buf, ret,
168 					SDW_SHIM_PCMSYCHC(i, j));
169 		}
170 		ret += scnprintf(buf + ret, RD_BUF - ret, "\n PDMSCAP, IOCTL, CTMCTL\n");
171 
172 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_PDMSCAP(i));
173 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_IOCTL(i));
174 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTMCTL(i));
175 	}
176 
177 	ret += scnprintf(buf + ret, RD_BUF - ret, "\nWake registers\n");
178 	ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_WAKEEN);
179 	ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_WAKESTS);
180 
181 	ret += scnprintf(buf + ret, RD_BUF - ret, "\nALH STRMzCFG\n");
182 	for (i = 0; i < SDW_ALH_NUM_STREAMS; i++)
183 		ret += intel_sprintf(a, true, buf, ret, SDW_ALH_STRMZCFG(i));
184 
185 	seq_printf(s_file, "%s", buf);
186 	kfree(buf);
187 
188 	return 0;
189 }
190 DEFINE_SHOW_ATTRIBUTE(intel_reg);
191 
192 static int intel_set_m_datamode(void *data, u64 value)
193 {
194 	struct sdw_intel *sdw = data;
195 	struct sdw_bus *bus = &sdw->cdns.bus;
196 
197 	if (value > SDW_PORT_DATA_MODE_STATIC_1)
198 		return -EINVAL;
199 
200 	/* Userspace changed the hardware state behind the kernel's back */
201 	add_taint(TAINT_USER, LOCKDEP_STILL_OK);
202 
203 	bus->params.m_data_mode = value;
204 
205 	return 0;
206 }
207 DEFINE_DEBUGFS_ATTRIBUTE(intel_set_m_datamode_fops, NULL,
208 			 intel_set_m_datamode, "%llu\n");
209 
210 static int intel_set_s_datamode(void *data, u64 value)
211 {
212 	struct sdw_intel *sdw = data;
213 	struct sdw_bus *bus = &sdw->cdns.bus;
214 
215 	if (value > SDW_PORT_DATA_MODE_STATIC_1)
216 		return -EINVAL;
217 
218 	/* Userspace changed the hardware state behind the kernel's back */
219 	add_taint(TAINT_USER, LOCKDEP_STILL_OK);
220 
221 	bus->params.s_data_mode = value;
222 
223 	return 0;
224 }
225 DEFINE_DEBUGFS_ATTRIBUTE(intel_set_s_datamode_fops, NULL,
226 			 intel_set_s_datamode, "%llu\n");
227 
228 static void intel_debugfs_init(struct sdw_intel *sdw)
229 {
230 	struct dentry *root = sdw->cdns.bus.debugfs;
231 
232 	if (!root)
233 		return;
234 
235 	sdw->debugfs = debugfs_create_dir("intel-sdw", root);
236 
237 	debugfs_create_file("intel-registers", 0400, sdw->debugfs, sdw,
238 			    &intel_reg_fops);
239 
240 	debugfs_create_file("intel-m-datamode", 0200, sdw->debugfs, sdw,
241 			    &intel_set_m_datamode_fops);
242 
243 	debugfs_create_file("intel-s-datamode", 0200, sdw->debugfs, sdw,
244 			    &intel_set_s_datamode_fops);
245 
246 	sdw_cdns_debugfs_init(&sdw->cdns, sdw->debugfs);
247 }
248 
249 static void intel_debugfs_exit(struct sdw_intel *sdw)
250 {
251 	debugfs_remove_recursive(sdw->debugfs);
252 }
253 #else
254 static void intel_debugfs_init(struct sdw_intel *sdw) {}
255 static void intel_debugfs_exit(struct sdw_intel *sdw) {}
256 #endif /* CONFIG_DEBUG_FS */
257 
258 /*
259  * shim ops
260  */
261 
262 static int intel_link_power_up(struct sdw_intel *sdw)
263 {
264 	unsigned int link_id = sdw->instance;
265 	void __iomem *shim = sdw->link_res->shim;
266 	u32 *shim_mask = sdw->link_res->shim_mask;
267 	struct sdw_bus *bus = &sdw->cdns.bus;
268 	struct sdw_master_prop *prop = &bus->prop;
269 	u32 spa_mask, cpa_mask;
270 	u32 link_control;
271 	int ret = 0;
272 	u32 syncprd;
273 	u32 sync_reg;
274 
275 	mutex_lock(sdw->link_res->shim_lock);
276 
277 	/*
278 	 * The hardware relies on an internal counter, typically 4kHz,
279 	 * to generate the SoundWire SSP - which defines a 'safe'
280 	 * synchronization point between commands and audio transport
281 	 * and allows for multi link synchronization. The SYNCPRD value
282 	 * is only dependent on the oscillator clock provided to
283 	 * the IP, so adjust based on _DSD properties reported in DSDT
284 	 * tables. The values reported are based on either 24MHz
285 	 * (CNL/CML) or 38.4 MHz (ICL/TGL+).
286 	 */
287 	if (prop->mclk_freq % 6000000)
288 		syncprd = SDW_SHIM_SYNC_SYNCPRD_VAL_38_4;
289 	else
290 		syncprd = SDW_SHIM_SYNC_SYNCPRD_VAL_24;
291 
292 	if (!*shim_mask) {
293 		dev_dbg(sdw->cdns.dev, "%s: powering up all links\n", __func__);
294 
295 		/* we first need to program the SyncPRD/CPU registers */
296 		dev_dbg(sdw->cdns.dev,
297 			"%s: first link up, programming SYNCPRD\n", __func__);
298 
299 		/* set SyncPRD period */
300 		sync_reg = intel_readl(shim, SDW_SHIM_SYNC);
301 		u32p_replace_bits(&sync_reg, syncprd, SDW_SHIM_SYNC_SYNCPRD);
302 
303 		/* Set SyncCPU bit */
304 		sync_reg |= SDW_SHIM_SYNC_SYNCCPU;
305 		intel_writel(shim, SDW_SHIM_SYNC, sync_reg);
306 
307 		/* Link power up sequence */
308 		link_control = intel_readl(shim, SDW_SHIM_LCTL);
309 
310 		/* only power-up enabled links */
311 		spa_mask = FIELD_PREP(SDW_SHIM_LCTL_SPA_MASK, sdw->link_res->link_mask);
312 		cpa_mask = FIELD_PREP(SDW_SHIM_LCTL_CPA_MASK, sdw->link_res->link_mask);
313 
314 		link_control |=  spa_mask;
315 
316 		ret = intel_set_bit(shim, SDW_SHIM_LCTL, link_control, cpa_mask);
317 		if (ret < 0) {
318 			dev_err(sdw->cdns.dev, "Failed to power up link: %d\n", ret);
319 			goto out;
320 		}
321 
322 		/* SyncCPU will change once link is active */
323 		ret = intel_wait_bit(shim, SDW_SHIM_SYNC,
324 				     SDW_SHIM_SYNC_SYNCCPU, 0);
325 		if (ret < 0) {
326 			dev_err(sdw->cdns.dev,
327 				"Failed to set SHIM_SYNC: %d\n", ret);
328 			goto out;
329 		}
330 	}
331 
332 	*shim_mask |= BIT(link_id);
333 
334 	sdw->cdns.link_up = true;
335 out:
336 	mutex_unlock(sdw->link_res->shim_lock);
337 
338 	return ret;
339 }
340 
341 /* this needs to be called with shim_lock */
342 static void intel_shim_glue_to_master_ip(struct sdw_intel *sdw)
343 {
344 	void __iomem *shim = sdw->link_res->shim;
345 	unsigned int link_id = sdw->instance;
346 	u16 ioctl;
347 
348 	/* Switch to MIP from Glue logic */
349 	ioctl = intel_readw(shim,  SDW_SHIM_IOCTL(link_id));
350 
351 	ioctl &= ~(SDW_SHIM_IOCTL_DOE);
352 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
353 	usleep_range(10, 15);
354 
355 	ioctl &= ~(SDW_SHIM_IOCTL_DO);
356 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
357 	usleep_range(10, 15);
358 
359 	ioctl |= (SDW_SHIM_IOCTL_MIF);
360 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
361 	usleep_range(10, 15);
362 
363 	ioctl &= ~(SDW_SHIM_IOCTL_BKE);
364 	ioctl &= ~(SDW_SHIM_IOCTL_COE);
365 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
366 	usleep_range(10, 15);
367 
368 	/* at this point Master IP has full control of the I/Os */
369 }
370 
371 /* this needs to be called with shim_lock */
372 static void intel_shim_master_ip_to_glue(struct sdw_intel *sdw)
373 {
374 	unsigned int link_id = sdw->instance;
375 	void __iomem *shim = sdw->link_res->shim;
376 	u16 ioctl;
377 
378 	/* Glue logic */
379 	ioctl = intel_readw(shim, SDW_SHIM_IOCTL(link_id));
380 	ioctl |= SDW_SHIM_IOCTL_BKE;
381 	ioctl |= SDW_SHIM_IOCTL_COE;
382 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
383 	usleep_range(10, 15);
384 
385 	ioctl &= ~(SDW_SHIM_IOCTL_MIF);
386 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
387 	usleep_range(10, 15);
388 
389 	/* at this point Integration Glue has full control of the I/Os */
390 }
391 
392 static int intel_shim_init(struct sdw_intel *sdw, bool clock_stop)
393 {
394 	void __iomem *shim = sdw->link_res->shim;
395 	unsigned int link_id = sdw->instance;
396 	int ret = 0;
397 	u16 ioctl = 0, act = 0;
398 
399 	mutex_lock(sdw->link_res->shim_lock);
400 
401 	/* Initialize Shim */
402 	ioctl |= SDW_SHIM_IOCTL_BKE;
403 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
404 	usleep_range(10, 15);
405 
406 	ioctl |= SDW_SHIM_IOCTL_WPDD;
407 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
408 	usleep_range(10, 15);
409 
410 	ioctl |= SDW_SHIM_IOCTL_DO;
411 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
412 	usleep_range(10, 15);
413 
414 	ioctl |= SDW_SHIM_IOCTL_DOE;
415 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
416 	usleep_range(10, 15);
417 
418 	intel_shim_glue_to_master_ip(sdw);
419 
420 	u16p_replace_bits(&act, 0x1, SDW_SHIM_CTMCTL_DOAIS);
421 	act |= SDW_SHIM_CTMCTL_DACTQE;
422 	act |= SDW_SHIM_CTMCTL_DODS;
423 	intel_writew(shim, SDW_SHIM_CTMCTL(link_id), act);
424 	usleep_range(10, 15);
425 
426 	mutex_unlock(sdw->link_res->shim_lock);
427 
428 	return ret;
429 }
430 
431 static void intel_shim_wake(struct sdw_intel *sdw, bool wake_enable)
432 {
433 	void __iomem *shim = sdw->link_res->shim;
434 	unsigned int link_id = sdw->instance;
435 	u16 wake_en, wake_sts;
436 
437 	mutex_lock(sdw->link_res->shim_lock);
438 	wake_en = intel_readw(shim, SDW_SHIM_WAKEEN);
439 
440 	if (wake_enable) {
441 		/* Enable the wakeup */
442 		wake_en |= (SDW_SHIM_WAKEEN_ENABLE << link_id);
443 		intel_writew(shim, SDW_SHIM_WAKEEN, wake_en);
444 	} else {
445 		/* Disable the wake up interrupt */
446 		wake_en &= ~(SDW_SHIM_WAKEEN_ENABLE << link_id);
447 		intel_writew(shim, SDW_SHIM_WAKEEN, wake_en);
448 
449 		/* Clear wake status */
450 		wake_sts = intel_readw(shim, SDW_SHIM_WAKESTS);
451 		wake_sts |= (SDW_SHIM_WAKEEN_ENABLE << link_id);
452 		intel_writew(shim, SDW_SHIM_WAKESTS_STATUS, wake_sts);
453 	}
454 	mutex_unlock(sdw->link_res->shim_lock);
455 }
456 
457 static int intel_link_power_down(struct sdw_intel *sdw)
458 {
459 	u32 link_control, spa_mask, cpa_mask;
460 	unsigned int link_id = sdw->instance;
461 	void __iomem *shim = sdw->link_res->shim;
462 	u32 *shim_mask = sdw->link_res->shim_mask;
463 	int ret = 0;
464 
465 	mutex_lock(sdw->link_res->shim_lock);
466 
467 	if (!(*shim_mask & BIT(link_id)))
468 		dev_err(sdw->cdns.dev,
469 			"%s: Unbalanced power-up/down calls\n", __func__);
470 
471 	sdw->cdns.link_up = false;
472 
473 	intel_shim_master_ip_to_glue(sdw);
474 
475 	*shim_mask &= ~BIT(link_id);
476 
477 	if (!*shim_mask) {
478 
479 		dev_dbg(sdw->cdns.dev, "%s: powering down all links\n", __func__);
480 
481 		/* Link power down sequence */
482 		link_control = intel_readl(shim, SDW_SHIM_LCTL);
483 
484 		/* only power-down enabled links */
485 		spa_mask = FIELD_PREP(SDW_SHIM_LCTL_SPA_MASK, ~sdw->link_res->link_mask);
486 		cpa_mask = FIELD_PREP(SDW_SHIM_LCTL_CPA_MASK, sdw->link_res->link_mask);
487 
488 		link_control &=  spa_mask;
489 
490 		ret = intel_clear_bit(shim, SDW_SHIM_LCTL, link_control, cpa_mask);
491 		if (ret < 0) {
492 			dev_err(sdw->cdns.dev, "%s: could not power down link\n", __func__);
493 
494 			/*
495 			 * we leave the sdw->cdns.link_up flag as false since we've disabled
496 			 * the link at this point and cannot handle interrupts any longer.
497 			 */
498 		}
499 	}
500 
501 	mutex_unlock(sdw->link_res->shim_lock);
502 
503 	return ret;
504 }
505 
506 static void intel_shim_sync_arm(struct sdw_intel *sdw)
507 {
508 	void __iomem *shim = sdw->link_res->shim;
509 	u32 sync_reg;
510 
511 	mutex_lock(sdw->link_res->shim_lock);
512 
513 	/* update SYNC register */
514 	sync_reg = intel_readl(shim, SDW_SHIM_SYNC);
515 	sync_reg |= (SDW_SHIM_SYNC_CMDSYNC << sdw->instance);
516 	intel_writel(shim, SDW_SHIM_SYNC, sync_reg);
517 
518 	mutex_unlock(sdw->link_res->shim_lock);
519 }
520 
521 static int intel_shim_sync_go_unlocked(struct sdw_intel *sdw)
522 {
523 	void __iomem *shim = sdw->link_res->shim;
524 	u32 sync_reg;
525 	int ret;
526 
527 	/* Read SYNC register */
528 	sync_reg = intel_readl(shim, SDW_SHIM_SYNC);
529 
530 	/*
531 	 * Set SyncGO bit to synchronously trigger a bank switch for
532 	 * all the masters. A write to SYNCGO bit clears CMDSYNC bit for all
533 	 * the Masters.
534 	 */
535 	sync_reg |= SDW_SHIM_SYNC_SYNCGO;
536 
537 	ret = intel_clear_bit(shim, SDW_SHIM_SYNC, sync_reg,
538 			      SDW_SHIM_SYNC_SYNCGO);
539 
540 	if (ret < 0)
541 		dev_err(sdw->cdns.dev, "SyncGO clear failed: %d\n", ret);
542 
543 	return ret;
544 }
545 
546 static int intel_shim_sync_go(struct sdw_intel *sdw)
547 {
548 	int ret;
549 
550 	mutex_lock(sdw->link_res->shim_lock);
551 
552 	ret = intel_shim_sync_go_unlocked(sdw);
553 
554 	mutex_unlock(sdw->link_res->shim_lock);
555 
556 	return ret;
557 }
558 
559 /*
560  * PDI routines
561  */
562 static void intel_pdi_init(struct sdw_intel *sdw,
563 			   struct sdw_cdns_stream_config *config)
564 {
565 	void __iomem *shim = sdw->link_res->shim;
566 	unsigned int link_id = sdw->instance;
567 	int pcm_cap, pdm_cap;
568 
569 	/* PCM Stream Capability */
570 	pcm_cap = intel_readw(shim, SDW_SHIM_PCMSCAP(link_id));
571 
572 	config->pcm_bd = FIELD_GET(SDW_SHIM_PCMSCAP_BSS, pcm_cap);
573 	config->pcm_in = FIELD_GET(SDW_SHIM_PCMSCAP_ISS, pcm_cap);
574 	config->pcm_out = FIELD_GET(SDW_SHIM_PCMSCAP_OSS, pcm_cap);
575 
576 	dev_dbg(sdw->cdns.dev, "PCM cap bd:%d in:%d out:%d\n",
577 		config->pcm_bd, config->pcm_in, config->pcm_out);
578 
579 	/* PDM Stream Capability */
580 	pdm_cap = intel_readw(shim, SDW_SHIM_PDMSCAP(link_id));
581 
582 	config->pdm_bd = FIELD_GET(SDW_SHIM_PDMSCAP_BSS, pdm_cap);
583 	config->pdm_in = FIELD_GET(SDW_SHIM_PDMSCAP_ISS, pdm_cap);
584 	config->pdm_out = FIELD_GET(SDW_SHIM_PDMSCAP_OSS, pdm_cap);
585 
586 	dev_dbg(sdw->cdns.dev, "PDM cap bd:%d in:%d out:%d\n",
587 		config->pdm_bd, config->pdm_in, config->pdm_out);
588 }
589 
590 static int
591 intel_pdi_get_ch_cap(struct sdw_intel *sdw, unsigned int pdi_num, bool pcm)
592 {
593 	void __iomem *shim = sdw->link_res->shim;
594 	unsigned int link_id = sdw->instance;
595 	int count;
596 
597 	if (pcm) {
598 		count = intel_readw(shim, SDW_SHIM_PCMSYCHC(link_id, pdi_num));
599 
600 		/*
601 		 * WORKAROUND: on all existing Intel controllers, pdi
602 		 * number 2 reports channel count as 1 even though it
603 		 * supports 8 channels. Performing hardcoding for pdi
604 		 * number 2.
605 		 */
606 		if (pdi_num == 2)
607 			count = 7;
608 
609 	} else {
610 		count = intel_readw(shim, SDW_SHIM_PDMSCAP(link_id));
611 		count = FIELD_GET(SDW_SHIM_PDMSCAP_CPSS, count);
612 	}
613 
614 	/* zero based values for channel count in register */
615 	count++;
616 
617 	return count;
618 }
619 
620 static int intel_pdi_get_ch_update(struct sdw_intel *sdw,
621 				   struct sdw_cdns_pdi *pdi,
622 				   unsigned int num_pdi,
623 				   unsigned int *num_ch, bool pcm)
624 {
625 	int i, ch_count = 0;
626 
627 	for (i = 0; i < num_pdi; i++) {
628 		pdi->ch_count = intel_pdi_get_ch_cap(sdw, pdi->num, pcm);
629 		ch_count += pdi->ch_count;
630 		pdi++;
631 	}
632 
633 	*num_ch = ch_count;
634 	return 0;
635 }
636 
637 static int intel_pdi_stream_ch_update(struct sdw_intel *sdw,
638 				      struct sdw_cdns_streams *stream, bool pcm)
639 {
640 	intel_pdi_get_ch_update(sdw, stream->bd, stream->num_bd,
641 				&stream->num_ch_bd, pcm);
642 
643 	intel_pdi_get_ch_update(sdw, stream->in, stream->num_in,
644 				&stream->num_ch_in, pcm);
645 
646 	intel_pdi_get_ch_update(sdw, stream->out, stream->num_out,
647 				&stream->num_ch_out, pcm);
648 
649 	return 0;
650 }
651 
652 static int intel_pdi_ch_update(struct sdw_intel *sdw)
653 {
654 	/* First update PCM streams followed by PDM streams */
655 	intel_pdi_stream_ch_update(sdw, &sdw->cdns.pcm, true);
656 	intel_pdi_stream_ch_update(sdw, &sdw->cdns.pdm, false);
657 
658 	return 0;
659 }
660 
661 static void
662 intel_pdi_shim_configure(struct sdw_intel *sdw, struct sdw_cdns_pdi *pdi)
663 {
664 	void __iomem *shim = sdw->link_res->shim;
665 	unsigned int link_id = sdw->instance;
666 	int pdi_conf = 0;
667 
668 	/* the Bulk and PCM streams are not contiguous */
669 	pdi->intel_alh_id = (link_id * 16) + pdi->num + 3;
670 	if (pdi->num >= 2)
671 		pdi->intel_alh_id += 2;
672 
673 	/*
674 	 * Program stream parameters to stream SHIM register
675 	 * This is applicable for PCM stream only.
676 	 */
677 	if (pdi->type != SDW_STREAM_PCM)
678 		return;
679 
680 	if (pdi->dir == SDW_DATA_DIR_RX)
681 		pdi_conf |= SDW_SHIM_PCMSYCM_DIR;
682 	else
683 		pdi_conf &= ~(SDW_SHIM_PCMSYCM_DIR);
684 
685 	u32p_replace_bits(&pdi_conf, pdi->intel_alh_id, SDW_SHIM_PCMSYCM_STREAM);
686 	u32p_replace_bits(&pdi_conf, pdi->l_ch_num, SDW_SHIM_PCMSYCM_LCHN);
687 	u32p_replace_bits(&pdi_conf, pdi->h_ch_num, SDW_SHIM_PCMSYCM_HCHN);
688 
689 	intel_writew(shim, SDW_SHIM_PCMSYCHM(link_id, pdi->num), pdi_conf);
690 }
691 
692 static void
693 intel_pdi_alh_configure(struct sdw_intel *sdw, struct sdw_cdns_pdi *pdi)
694 {
695 	void __iomem *alh = sdw->link_res->alh;
696 	unsigned int link_id = sdw->instance;
697 	unsigned int conf;
698 
699 	/* the Bulk and PCM streams are not contiguous */
700 	pdi->intel_alh_id = (link_id * 16) + pdi->num + 3;
701 	if (pdi->num >= 2)
702 		pdi->intel_alh_id += 2;
703 
704 	/* Program Stream config ALH register */
705 	conf = intel_readl(alh, SDW_ALH_STRMZCFG(pdi->intel_alh_id));
706 
707 	u32p_replace_bits(&conf, SDW_ALH_STRMZCFG_DMAT_VAL, SDW_ALH_STRMZCFG_DMAT);
708 	u32p_replace_bits(&conf, pdi->ch_count - 1, SDW_ALH_STRMZCFG_CHN);
709 
710 	intel_writel(alh, SDW_ALH_STRMZCFG(pdi->intel_alh_id), conf);
711 }
712 
713 static int intel_params_stream(struct sdw_intel *sdw,
714 			       struct snd_pcm_substream *substream,
715 			       struct snd_soc_dai *dai,
716 			       struct snd_pcm_hw_params *hw_params,
717 			       int link_id, int alh_stream_id)
718 {
719 	struct sdw_intel_link_res *res = sdw->link_res;
720 	struct sdw_intel_stream_params_data params_data;
721 
722 	params_data.substream = substream;
723 	params_data.dai = dai;
724 	params_data.hw_params = hw_params;
725 	params_data.link_id = link_id;
726 	params_data.alh_stream_id = alh_stream_id;
727 
728 	if (res->ops && res->ops->params_stream && res->dev)
729 		return res->ops->params_stream(res->dev,
730 					       &params_data);
731 	return -EIO;
732 }
733 
734 static int intel_free_stream(struct sdw_intel *sdw,
735 			     struct snd_pcm_substream *substream,
736 			     struct snd_soc_dai *dai,
737 			     int link_id)
738 {
739 	struct sdw_intel_link_res *res = sdw->link_res;
740 	struct sdw_intel_stream_free_data free_data;
741 
742 	free_data.substream = substream;
743 	free_data.dai = dai;
744 	free_data.link_id = link_id;
745 
746 	if (res->ops && res->ops->free_stream && res->dev)
747 		return res->ops->free_stream(res->dev,
748 					     &free_data);
749 
750 	return 0;
751 }
752 
753 /*
754  * bank switch routines
755  */
756 
757 static int intel_pre_bank_switch(struct sdw_bus *bus)
758 {
759 	struct sdw_cdns *cdns = bus_to_cdns(bus);
760 	struct sdw_intel *sdw = cdns_to_intel(cdns);
761 
762 	/* Write to register only for multi-link */
763 	if (!bus->multi_link)
764 		return 0;
765 
766 	intel_shim_sync_arm(sdw);
767 
768 	return 0;
769 }
770 
771 static int intel_post_bank_switch(struct sdw_bus *bus)
772 {
773 	struct sdw_cdns *cdns = bus_to_cdns(bus);
774 	struct sdw_intel *sdw = cdns_to_intel(cdns);
775 	void __iomem *shim = sdw->link_res->shim;
776 	int sync_reg, ret;
777 
778 	/* Write to register only for multi-link */
779 	if (!bus->multi_link)
780 		return 0;
781 
782 	mutex_lock(sdw->link_res->shim_lock);
783 
784 	/* Read SYNC register */
785 	sync_reg = intel_readl(shim, SDW_SHIM_SYNC);
786 
787 	/*
788 	 * post_bank_switch() ops is called from the bus in loop for
789 	 * all the Masters in the steam with the expectation that
790 	 * we trigger the bankswitch for the only first Master in the list
791 	 * and do nothing for the other Masters
792 	 *
793 	 * So, set the SYNCGO bit only if CMDSYNC bit is set for any Master.
794 	 */
795 	if (!(sync_reg & SDW_SHIM_SYNC_CMDSYNC_MASK)) {
796 		ret = 0;
797 		goto unlock;
798 	}
799 
800 	ret = intel_shim_sync_go_unlocked(sdw);
801 unlock:
802 	mutex_unlock(sdw->link_res->shim_lock);
803 
804 	if (ret < 0)
805 		dev_err(sdw->cdns.dev, "Post bank switch failed: %d\n", ret);
806 
807 	return ret;
808 }
809 
810 /*
811  * DAI routines
812  */
813 
814 static int intel_startup(struct snd_pcm_substream *substream,
815 			 struct snd_soc_dai *dai)
816 {
817 	struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
818 	int ret;
819 
820 	ret = pm_runtime_get_sync(cdns->dev);
821 	if (ret < 0 && ret != -EACCES) {
822 		dev_err_ratelimited(cdns->dev,
823 				    "pm_runtime_get_sync failed in %s, ret %d\n",
824 				    __func__, ret);
825 		pm_runtime_put_noidle(cdns->dev);
826 		return ret;
827 	}
828 	return 0;
829 }
830 
831 static int intel_hw_params(struct snd_pcm_substream *substream,
832 			   struct snd_pcm_hw_params *params,
833 			   struct snd_soc_dai *dai)
834 {
835 	struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
836 	struct sdw_intel *sdw = cdns_to_intel(cdns);
837 	struct sdw_cdns_dma_data *dma;
838 	struct sdw_cdns_pdi *pdi;
839 	struct sdw_stream_config sconfig;
840 	struct sdw_port_config *pconfig;
841 	int ch, dir;
842 	int ret;
843 	bool pcm = true;
844 
845 	dma = snd_soc_dai_get_dma_data(dai, substream);
846 	if (!dma)
847 		return -EIO;
848 
849 	ch = params_channels(params);
850 	if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
851 		dir = SDW_DATA_DIR_RX;
852 	else
853 		dir = SDW_DATA_DIR_TX;
854 
855 	if (dma->stream_type == SDW_STREAM_PDM)
856 		pcm = false;
857 
858 	if (pcm)
859 		pdi = sdw_cdns_alloc_pdi(cdns, &cdns->pcm, ch, dir, dai->id);
860 	else
861 		pdi = sdw_cdns_alloc_pdi(cdns, &cdns->pdm, ch, dir, dai->id);
862 
863 	if (!pdi) {
864 		ret = -EINVAL;
865 		goto error;
866 	}
867 
868 	/* do run-time configurations for SHIM, ALH and PDI/PORT */
869 	intel_pdi_shim_configure(sdw, pdi);
870 	intel_pdi_alh_configure(sdw, pdi);
871 	sdw_cdns_config_stream(cdns, ch, dir, pdi);
872 
873 	/* store pdi and hw_params, may be needed in prepare step */
874 	dma->suspended = false;
875 	dma->pdi = pdi;
876 	dma->hw_params = params;
877 
878 	/* Inform DSP about PDI stream number */
879 	ret = intel_params_stream(sdw, substream, dai, params,
880 				  sdw->instance,
881 				  pdi->intel_alh_id);
882 	if (ret)
883 		goto error;
884 
885 	sconfig.direction = dir;
886 	sconfig.ch_count = ch;
887 	sconfig.frame_rate = params_rate(params);
888 	sconfig.type = dma->stream_type;
889 
890 	if (dma->stream_type == SDW_STREAM_PDM) {
891 		sconfig.frame_rate *= 50;
892 		sconfig.bps = 1;
893 	} else {
894 		sconfig.bps = snd_pcm_format_width(params_format(params));
895 	}
896 
897 	/* Port configuration */
898 	pconfig = kzalloc(sizeof(*pconfig), GFP_KERNEL);
899 	if (!pconfig) {
900 		ret =  -ENOMEM;
901 		goto error;
902 	}
903 
904 	pconfig->num = pdi->num;
905 	pconfig->ch_mask = (1 << ch) - 1;
906 
907 	ret = sdw_stream_add_master(&cdns->bus, &sconfig,
908 				    pconfig, 1, dma->stream);
909 	if (ret)
910 		dev_err(cdns->dev, "add master to stream failed:%d\n", ret);
911 
912 	kfree(pconfig);
913 error:
914 	return ret;
915 }
916 
917 static int intel_prepare(struct snd_pcm_substream *substream,
918 			 struct snd_soc_dai *dai)
919 {
920 	struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
921 	struct sdw_intel *sdw = cdns_to_intel(cdns);
922 	struct sdw_cdns_dma_data *dma;
923 	int ch, dir;
924 	int ret = 0;
925 
926 	dma = snd_soc_dai_get_dma_data(dai, substream);
927 	if (!dma) {
928 		dev_err(dai->dev, "failed to get dma data in %s\n",
929 			__func__);
930 		return -EIO;
931 	}
932 
933 	if (dma->suspended) {
934 		dma->suspended = false;
935 
936 		/*
937 		 * .prepare() is called after system resume, where we
938 		 * need to reinitialize the SHIM/ALH/Cadence IP.
939 		 * .prepare() is also called to deal with underflows,
940 		 * but in those cases we cannot touch ALH/SHIM
941 		 * registers
942 		 */
943 
944 		/* configure stream */
945 		ch = params_channels(dma->hw_params);
946 		if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
947 			dir = SDW_DATA_DIR_RX;
948 		else
949 			dir = SDW_DATA_DIR_TX;
950 
951 		intel_pdi_shim_configure(sdw, dma->pdi);
952 		intel_pdi_alh_configure(sdw, dma->pdi);
953 		sdw_cdns_config_stream(cdns, ch, dir, dma->pdi);
954 
955 		/* Inform DSP about PDI stream number */
956 		ret = intel_params_stream(sdw, substream, dai,
957 					  dma->hw_params,
958 					  sdw->instance,
959 					  dma->pdi->intel_alh_id);
960 	}
961 
962 	return ret;
963 }
964 
965 static int
966 intel_hw_free(struct snd_pcm_substream *substream, struct snd_soc_dai *dai)
967 {
968 	struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
969 	struct sdw_intel *sdw = cdns_to_intel(cdns);
970 	struct sdw_cdns_dma_data *dma;
971 	int ret;
972 
973 	dma = snd_soc_dai_get_dma_data(dai, substream);
974 	if (!dma)
975 		return -EIO;
976 
977 	/*
978 	 * The sdw stream state will transition to RELEASED when stream->
979 	 * master_list is empty. So the stream state will transition to
980 	 * DEPREPARED for the first cpu-dai and to RELEASED for the last
981 	 * cpu-dai.
982 	 */
983 	ret = sdw_stream_remove_master(&cdns->bus, dma->stream);
984 	if (ret < 0) {
985 		dev_err(dai->dev, "remove master from stream %s failed: %d\n",
986 			dma->stream->name, ret);
987 		return ret;
988 	}
989 
990 	ret = intel_free_stream(sdw, substream, dai, sdw->instance);
991 	if (ret < 0) {
992 		dev_err(dai->dev, "intel_free_stream: failed %d\n", ret);
993 		return ret;
994 	}
995 
996 	dma->hw_params = NULL;
997 	dma->pdi = NULL;
998 
999 	return 0;
1000 }
1001 
1002 static void intel_shutdown(struct snd_pcm_substream *substream,
1003 			   struct snd_soc_dai *dai)
1004 {
1005 	struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
1006 
1007 	pm_runtime_mark_last_busy(cdns->dev);
1008 	pm_runtime_put_autosuspend(cdns->dev);
1009 }
1010 
1011 static int intel_component_dais_suspend(struct snd_soc_component *component)
1012 {
1013 	struct sdw_cdns_dma_data *dma;
1014 	struct snd_soc_dai *dai;
1015 
1016 	for_each_component_dais(component, dai) {
1017 		/*
1018 		 * we don't have a .suspend dai_ops, and we don't have access
1019 		 * to the substream, so let's mark both capture and playback
1020 		 * DMA contexts as suspended
1021 		 */
1022 		dma = dai->playback_dma_data;
1023 		if (dma)
1024 			dma->suspended = true;
1025 
1026 		dma = dai->capture_dma_data;
1027 		if (dma)
1028 			dma->suspended = true;
1029 	}
1030 
1031 	return 0;
1032 }
1033 
1034 static int intel_pcm_set_sdw_stream(struct snd_soc_dai *dai,
1035 				    void *stream, int direction)
1036 {
1037 	return cdns_set_sdw_stream(dai, stream, true, direction);
1038 }
1039 
1040 static int intel_pdm_set_sdw_stream(struct snd_soc_dai *dai,
1041 				    void *stream, int direction)
1042 {
1043 	return cdns_set_sdw_stream(dai, stream, false, direction);
1044 }
1045 
1046 static void *intel_get_sdw_stream(struct snd_soc_dai *dai,
1047 				  int direction)
1048 {
1049 	struct sdw_cdns_dma_data *dma;
1050 
1051 	if (direction == SNDRV_PCM_STREAM_PLAYBACK)
1052 		dma = dai->playback_dma_data;
1053 	else
1054 		dma = dai->capture_dma_data;
1055 
1056 	if (!dma)
1057 		return ERR_PTR(-EINVAL);
1058 
1059 	return dma->stream;
1060 }
1061 
1062 static const struct snd_soc_dai_ops intel_pcm_dai_ops = {
1063 	.startup = intel_startup,
1064 	.hw_params = intel_hw_params,
1065 	.prepare = intel_prepare,
1066 	.hw_free = intel_hw_free,
1067 	.shutdown = intel_shutdown,
1068 	.set_sdw_stream = intel_pcm_set_sdw_stream,
1069 	.get_sdw_stream = intel_get_sdw_stream,
1070 };
1071 
1072 static const struct snd_soc_dai_ops intel_pdm_dai_ops = {
1073 	.startup = intel_startup,
1074 	.hw_params = intel_hw_params,
1075 	.prepare = intel_prepare,
1076 	.hw_free = intel_hw_free,
1077 	.shutdown = intel_shutdown,
1078 	.set_sdw_stream = intel_pdm_set_sdw_stream,
1079 	.get_sdw_stream = intel_get_sdw_stream,
1080 };
1081 
1082 static const struct snd_soc_component_driver dai_component = {
1083 	.name           = "soundwire",
1084 	.suspend	= intel_component_dais_suspend
1085 };
1086 
1087 static int intel_create_dai(struct sdw_cdns *cdns,
1088 			    struct snd_soc_dai_driver *dais,
1089 			    enum intel_pdi_type type,
1090 			    u32 num, u32 off, u32 max_ch, bool pcm)
1091 {
1092 	int i;
1093 
1094 	if (num == 0)
1095 		return 0;
1096 
1097 	 /* TODO: Read supported rates/formats from hardware */
1098 	for (i = off; i < (off + num); i++) {
1099 		dais[i].name = devm_kasprintf(cdns->dev, GFP_KERNEL,
1100 					      "SDW%d Pin%d",
1101 					      cdns->instance, i);
1102 		if (!dais[i].name)
1103 			return -ENOMEM;
1104 
1105 		if (type == INTEL_PDI_BD || type == INTEL_PDI_OUT) {
1106 			dais[i].playback.channels_min = 1;
1107 			dais[i].playback.channels_max = max_ch;
1108 			dais[i].playback.rates = SNDRV_PCM_RATE_48000;
1109 			dais[i].playback.formats = SNDRV_PCM_FMTBIT_S16_LE;
1110 		}
1111 
1112 		if (type == INTEL_PDI_BD || type == INTEL_PDI_IN) {
1113 			dais[i].capture.channels_min = 1;
1114 			dais[i].capture.channels_max = max_ch;
1115 			dais[i].capture.rates = SNDRV_PCM_RATE_48000;
1116 			dais[i].capture.formats = SNDRV_PCM_FMTBIT_S16_LE;
1117 		}
1118 
1119 		if (pcm)
1120 			dais[i].ops = &intel_pcm_dai_ops;
1121 		else
1122 			dais[i].ops = &intel_pdm_dai_ops;
1123 	}
1124 
1125 	return 0;
1126 }
1127 
1128 static int intel_register_dai(struct sdw_intel *sdw)
1129 {
1130 	struct sdw_cdns *cdns = &sdw->cdns;
1131 	struct sdw_cdns_streams *stream;
1132 	struct snd_soc_dai_driver *dais;
1133 	int num_dai, ret, off = 0;
1134 
1135 	/* DAIs are created based on total number of PDIs supported */
1136 	num_dai = cdns->pcm.num_pdi + cdns->pdm.num_pdi;
1137 
1138 	dais = devm_kcalloc(cdns->dev, num_dai, sizeof(*dais), GFP_KERNEL);
1139 	if (!dais)
1140 		return -ENOMEM;
1141 
1142 	/* Create PCM DAIs */
1143 	stream = &cdns->pcm;
1144 
1145 	ret = intel_create_dai(cdns, dais, INTEL_PDI_IN, cdns->pcm.num_in,
1146 			       off, stream->num_ch_in, true);
1147 	if (ret)
1148 		return ret;
1149 
1150 	off += cdns->pcm.num_in;
1151 	ret = intel_create_dai(cdns, dais, INTEL_PDI_OUT, cdns->pcm.num_out,
1152 			       off, stream->num_ch_out, true);
1153 	if (ret)
1154 		return ret;
1155 
1156 	off += cdns->pcm.num_out;
1157 	ret = intel_create_dai(cdns, dais, INTEL_PDI_BD, cdns->pcm.num_bd,
1158 			       off, stream->num_ch_bd, true);
1159 	if (ret)
1160 		return ret;
1161 
1162 	/* Create PDM DAIs */
1163 	stream = &cdns->pdm;
1164 	off += cdns->pcm.num_bd;
1165 	ret = intel_create_dai(cdns, dais, INTEL_PDI_IN, cdns->pdm.num_in,
1166 			       off, stream->num_ch_in, false);
1167 	if (ret)
1168 		return ret;
1169 
1170 	off += cdns->pdm.num_in;
1171 	ret = intel_create_dai(cdns, dais, INTEL_PDI_OUT, cdns->pdm.num_out,
1172 			       off, stream->num_ch_out, false);
1173 	if (ret)
1174 		return ret;
1175 
1176 	off += cdns->pdm.num_out;
1177 	ret = intel_create_dai(cdns, dais, INTEL_PDI_BD, cdns->pdm.num_bd,
1178 			       off, stream->num_ch_bd, false);
1179 	if (ret)
1180 		return ret;
1181 
1182 	return snd_soc_register_component(cdns->dev, &dai_component,
1183 					  dais, num_dai);
1184 }
1185 
1186 static int sdw_master_read_intel_prop(struct sdw_bus *bus)
1187 {
1188 	struct sdw_master_prop *prop = &bus->prop;
1189 	struct fwnode_handle *link;
1190 	char name[32];
1191 	u32 quirk_mask;
1192 
1193 	/* Find master handle */
1194 	snprintf(name, sizeof(name),
1195 		 "mipi-sdw-link-%d-subproperties", bus->link_id);
1196 
1197 	link = device_get_named_child_node(bus->dev, name);
1198 	if (!link) {
1199 		dev_err(bus->dev, "Master node %s not found\n", name);
1200 		return -EIO;
1201 	}
1202 
1203 	fwnode_property_read_u32(link,
1204 				 "intel-sdw-ip-clock",
1205 				 &prop->mclk_freq);
1206 
1207 	/* the values reported by BIOS are the 2x clock, not the bus clock */
1208 	prop->mclk_freq /= 2;
1209 
1210 	fwnode_property_read_u32(link,
1211 				 "intel-quirk-mask",
1212 				 &quirk_mask);
1213 
1214 	if (quirk_mask & SDW_INTEL_QUIRK_MASK_BUS_DISABLE)
1215 		prop->hw_disabled = true;
1216 
1217 	prop->quirks = SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH |
1218 		SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY;
1219 
1220 	return 0;
1221 }
1222 
1223 static int intel_prop_read(struct sdw_bus *bus)
1224 {
1225 	/* Initialize with default handler to read all DisCo properties */
1226 	sdw_master_read_prop(bus);
1227 
1228 	/* read Intel-specific properties */
1229 	sdw_master_read_intel_prop(bus);
1230 
1231 	return 0;
1232 }
1233 
1234 static struct sdw_master_ops sdw_intel_ops = {
1235 	.read_prop = sdw_master_read_prop,
1236 	.override_adr = sdw_dmi_override_adr,
1237 	.xfer_msg = cdns_xfer_msg,
1238 	.xfer_msg_defer = cdns_xfer_msg_defer,
1239 	.reset_page_addr = cdns_reset_page_addr,
1240 	.set_bus_conf = cdns_bus_conf,
1241 	.pre_bank_switch = intel_pre_bank_switch,
1242 	.post_bank_switch = intel_post_bank_switch,
1243 };
1244 
1245 static int intel_init(struct sdw_intel *sdw)
1246 {
1247 	bool clock_stop;
1248 
1249 	/* Initialize shim and controller */
1250 	intel_link_power_up(sdw);
1251 
1252 	clock_stop = sdw_cdns_is_clock_stop(&sdw->cdns);
1253 
1254 	intel_shim_init(sdw, clock_stop);
1255 
1256 	return 0;
1257 }
1258 
1259 /*
1260  * probe and init (aux_dev_id argument is required by function prototype but not used)
1261  */
1262 static int intel_link_probe(struct auxiliary_device *auxdev,
1263 			    const struct auxiliary_device_id *aux_dev_id)
1264 
1265 {
1266 	struct device *dev = &auxdev->dev;
1267 	struct sdw_intel_link_dev *ldev = auxiliary_dev_to_sdw_intel_link_dev(auxdev);
1268 	struct sdw_intel *sdw;
1269 	struct sdw_cdns *cdns;
1270 	struct sdw_bus *bus;
1271 	int ret;
1272 
1273 	sdw = devm_kzalloc(dev, sizeof(*sdw), GFP_KERNEL);
1274 	if (!sdw)
1275 		return -ENOMEM;
1276 
1277 	cdns = &sdw->cdns;
1278 	bus = &cdns->bus;
1279 
1280 	sdw->instance = auxdev->id;
1281 	sdw->link_res = &ldev->link_res;
1282 	cdns->dev = dev;
1283 	cdns->registers = sdw->link_res->registers;
1284 	cdns->instance = sdw->instance;
1285 	cdns->msg_count = 0;
1286 
1287 	bus->link_id = auxdev->id;
1288 
1289 	sdw_cdns_probe(cdns);
1290 
1291 	/* Set property read ops */
1292 	sdw_intel_ops.read_prop = intel_prop_read;
1293 	bus->ops = &sdw_intel_ops;
1294 
1295 	/* set driver data, accessed by snd_soc_dai_get_drvdata() */
1296 	dev_set_drvdata(dev, cdns);
1297 
1298 	/* use generic bandwidth allocation algorithm */
1299 	sdw->cdns.bus.compute_params = sdw_compute_params;
1300 
1301 	ret = sdw_bus_master_add(bus, dev, dev->fwnode);
1302 	if (ret) {
1303 		dev_err(dev, "sdw_bus_master_add fail: %d\n", ret);
1304 		return ret;
1305 	}
1306 
1307 	if (bus->prop.hw_disabled)
1308 		dev_info(dev,
1309 			 "SoundWire master %d is disabled, will be ignored\n",
1310 			 bus->link_id);
1311 	/*
1312 	 * Ignore BIOS err_threshold, it's a really bad idea when dealing
1313 	 * with multiple hardware synchronized links
1314 	 */
1315 	bus->prop.err_threshold = 0;
1316 
1317 	return 0;
1318 }
1319 
1320 int intel_link_startup(struct auxiliary_device *auxdev)
1321 {
1322 	struct sdw_cdns_stream_config config;
1323 	struct device *dev = &auxdev->dev;
1324 	struct sdw_cdns *cdns = dev_get_drvdata(dev);
1325 	struct sdw_intel *sdw = cdns_to_intel(cdns);
1326 	struct sdw_bus *bus = &cdns->bus;
1327 	int link_flags;
1328 	bool multi_link;
1329 	u32 clock_stop_quirks;
1330 	int ret;
1331 
1332 	if (bus->prop.hw_disabled) {
1333 		dev_info(dev,
1334 			 "SoundWire master %d is disabled, ignoring\n",
1335 			 sdw->instance);
1336 		return 0;
1337 	}
1338 
1339 	link_flags = md_flags >> (bus->link_id * 8);
1340 	multi_link = !(link_flags & SDW_INTEL_MASTER_DISABLE_MULTI_LINK);
1341 	if (!multi_link) {
1342 		dev_dbg(dev, "Multi-link is disabled\n");
1343 		bus->multi_link = false;
1344 	} else {
1345 		/*
1346 		 * hardware-based synchronization is required regardless
1347 		 * of the number of segments used by a stream: SSP-based
1348 		 * synchronization is gated by gsync when the multi-master
1349 		 * mode is set.
1350 		 */
1351 		bus->multi_link = true;
1352 		bus->hw_sync_min_links = 1;
1353 	}
1354 
1355 	/* Initialize shim, controller */
1356 	ret = intel_init(sdw);
1357 	if (ret)
1358 		goto err_init;
1359 
1360 	/* Read the PDI config and initialize cadence PDI */
1361 	intel_pdi_init(sdw, &config);
1362 	ret = sdw_cdns_pdi_init(cdns, config);
1363 	if (ret)
1364 		goto err_init;
1365 
1366 	intel_pdi_ch_update(sdw);
1367 
1368 	ret = sdw_cdns_enable_interrupt(cdns, true);
1369 	if (ret < 0) {
1370 		dev_err(dev, "cannot enable interrupts\n");
1371 		goto err_init;
1372 	}
1373 
1374 	/*
1375 	 * follow recommended programming flows to avoid timeouts when
1376 	 * gsync is enabled
1377 	 */
1378 	if (multi_link)
1379 		intel_shim_sync_arm(sdw);
1380 
1381 	ret = sdw_cdns_init(cdns);
1382 	if (ret < 0) {
1383 		dev_err(dev, "unable to initialize Cadence IP\n");
1384 		goto err_interrupt;
1385 	}
1386 
1387 	ret = sdw_cdns_exit_reset(cdns);
1388 	if (ret < 0) {
1389 		dev_err(dev, "unable to exit bus reset sequence\n");
1390 		goto err_interrupt;
1391 	}
1392 
1393 	if (multi_link) {
1394 		ret = intel_shim_sync_go(sdw);
1395 		if (ret < 0) {
1396 			dev_err(dev, "sync go failed: %d\n", ret);
1397 			goto err_interrupt;
1398 		}
1399 	}
1400 	sdw_cdns_check_self_clearing_bits(cdns, __func__,
1401 					  true, INTEL_MASTER_RESET_ITERATIONS);
1402 
1403 	/* Register DAIs */
1404 	ret = intel_register_dai(sdw);
1405 	if (ret) {
1406 		dev_err(dev, "DAI registration failed: %d\n", ret);
1407 		snd_soc_unregister_component(dev);
1408 		goto err_interrupt;
1409 	}
1410 
1411 	intel_debugfs_init(sdw);
1412 
1413 	/* Enable runtime PM */
1414 	if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME)) {
1415 		pm_runtime_set_autosuspend_delay(dev,
1416 						 INTEL_MASTER_SUSPEND_DELAY_MS);
1417 		pm_runtime_use_autosuspend(dev);
1418 		pm_runtime_mark_last_busy(dev);
1419 
1420 		pm_runtime_set_active(dev);
1421 		pm_runtime_enable(dev);
1422 	}
1423 
1424 	clock_stop_quirks = sdw->link_res->clock_stop_quirks;
1425 	if (clock_stop_quirks & SDW_INTEL_CLK_STOP_NOT_ALLOWED) {
1426 		/*
1427 		 * To keep the clock running we need to prevent
1428 		 * pm_runtime suspend from happening by increasing the
1429 		 * reference count.
1430 		 * This quirk is specified by the parent PCI device in
1431 		 * case of specific latency requirements. It will have
1432 		 * no effect if pm_runtime is disabled by the user via
1433 		 * a module parameter for testing purposes.
1434 		 */
1435 		pm_runtime_get_noresume(dev);
1436 	}
1437 
1438 	/*
1439 	 * The runtime PM status of Slave devices is "Unsupported"
1440 	 * until they report as ATTACHED. If they don't, e.g. because
1441 	 * there are no Slave devices populated or if the power-on is
1442 	 * delayed or dependent on a power switch, the Master will
1443 	 * remain active and prevent its parent from suspending.
1444 	 *
1445 	 * Conditionally force the pm_runtime core to re-evaluate the
1446 	 * Master status in the absence of any Slave activity. A quirk
1447 	 * is provided to e.g. deal with Slaves that may be powered on
1448 	 * with a delay. A more complete solution would require the
1449 	 * definition of Master properties.
1450 	 */
1451 	if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE))
1452 		pm_runtime_idle(dev);
1453 
1454 	sdw->startup_done = true;
1455 	return 0;
1456 
1457 err_interrupt:
1458 	sdw_cdns_enable_interrupt(cdns, false);
1459 err_init:
1460 	return ret;
1461 }
1462 
1463 static void intel_link_remove(struct auxiliary_device *auxdev)
1464 {
1465 	struct device *dev = &auxdev->dev;
1466 	struct sdw_cdns *cdns = dev_get_drvdata(dev);
1467 	struct sdw_intel *sdw = cdns_to_intel(cdns);
1468 	struct sdw_bus *bus = &cdns->bus;
1469 
1470 	/*
1471 	 * Since pm_runtime is already disabled, we don't decrease
1472 	 * the refcount when the clock_stop_quirk is
1473 	 * SDW_INTEL_CLK_STOP_NOT_ALLOWED
1474 	 */
1475 	if (!bus->prop.hw_disabled) {
1476 		intel_debugfs_exit(sdw);
1477 		sdw_cdns_enable_interrupt(cdns, false);
1478 		snd_soc_unregister_component(dev);
1479 	}
1480 	sdw_bus_master_delete(bus);
1481 }
1482 
1483 int intel_link_process_wakeen_event(struct auxiliary_device *auxdev)
1484 {
1485 	struct device *dev = &auxdev->dev;
1486 	struct sdw_intel *sdw;
1487 	struct sdw_bus *bus;
1488 	void __iomem *shim;
1489 	u16 wake_sts;
1490 
1491 	sdw = dev_get_drvdata(dev);
1492 	bus = &sdw->cdns.bus;
1493 
1494 	if (bus->prop.hw_disabled || !sdw->startup_done) {
1495 		dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n",
1496 			bus->link_id);
1497 		return 0;
1498 	}
1499 
1500 	shim = sdw->link_res->shim;
1501 	wake_sts = intel_readw(shim, SDW_SHIM_WAKESTS);
1502 
1503 	if (!(wake_sts & BIT(sdw->instance)))
1504 		return 0;
1505 
1506 	/* disable WAKEEN interrupt ASAP to prevent interrupt flood */
1507 	intel_shim_wake(sdw, false);
1508 
1509 	/*
1510 	 * resume the Master, which will generate a bus reset and result in
1511 	 * Slaves re-attaching and be re-enumerated. The SoundWire physical
1512 	 * device which generated the wake will trigger an interrupt, which
1513 	 * will in turn cause the corresponding Linux Slave device to be
1514 	 * resumed and the Slave codec driver to check the status.
1515 	 */
1516 	pm_request_resume(dev);
1517 
1518 	return 0;
1519 }
1520 
1521 /*
1522  * PM calls
1523  */
1524 
1525 static int intel_resume_child_device(struct device *dev, void *data)
1526 {
1527 	int ret;
1528 	struct sdw_slave *slave = dev_to_sdw_dev(dev);
1529 
1530 	if (!slave->probed) {
1531 		dev_dbg(dev, "%s: skipping device, no probed driver\n", __func__);
1532 		return 0;
1533 	}
1534 	if (!slave->dev_num_sticky) {
1535 		dev_dbg(dev, "%s: skipping device, never detected on bus\n", __func__);
1536 		return 0;
1537 	}
1538 
1539 	ret = pm_request_resume(dev);
1540 	if (ret < 0)
1541 		dev_err(dev, "%s: pm_request_resume failed: %d\n", __func__, ret);
1542 
1543 	return ret;
1544 }
1545 
1546 static int __maybe_unused intel_pm_prepare(struct device *dev)
1547 {
1548 	struct sdw_cdns *cdns = dev_get_drvdata(dev);
1549 	struct sdw_intel *sdw = cdns_to_intel(cdns);
1550 	struct sdw_bus *bus = &cdns->bus;
1551 	u32 clock_stop_quirks;
1552 	int ret = 0;
1553 
1554 	if (bus->prop.hw_disabled || !sdw->startup_done) {
1555 		dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n",
1556 			bus->link_id);
1557 		return 0;
1558 	}
1559 
1560 	clock_stop_quirks = sdw->link_res->clock_stop_quirks;
1561 
1562 	if (pm_runtime_suspended(dev) &&
1563 	    pm_runtime_suspended(dev->parent) &&
1564 	    ((clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET) ||
1565 	     !clock_stop_quirks)) {
1566 		/*
1567 		 * if we've enabled clock stop, and the parent is suspended, the SHIM registers
1568 		 * are not accessible and the shim wake cannot be disabled.
1569 		 * The only solution is to resume the entire bus to full power
1570 		 */
1571 
1572 		/*
1573 		 * If any operation in this block fails, we keep going since we don't want
1574 		 * to prevent system suspend from happening and errors should be recoverable
1575 		 * on resume.
1576 		 */
1577 
1578 		/*
1579 		 * first resume the device for this link. This will also by construction
1580 		 * resume the PCI parent device.
1581 		 */
1582 		ret = pm_request_resume(dev);
1583 		if (ret < 0) {
1584 			dev_err(dev, "%s: pm_request_resume failed: %d\n", __func__, ret);
1585 			return 0;
1586 		}
1587 
1588 		/*
1589 		 * Continue resuming the entire bus (parent + child devices) to exit
1590 		 * the clock stop mode. If there are no devices connected on this link
1591 		 * this is a no-op.
1592 		 * The resume to full power could have been implemented with a .prepare
1593 		 * step in SoundWire codec drivers. This would however require a lot
1594 		 * of code to handle an Intel-specific corner case. It is simpler in
1595 		 * practice to add a loop at the link level.
1596 		 */
1597 		ret = device_for_each_child(bus->dev, NULL, intel_resume_child_device);
1598 
1599 		if (ret < 0)
1600 			dev_err(dev, "%s: intel_resume_child_device failed: %d\n", __func__, ret);
1601 	}
1602 
1603 	return 0;
1604 }
1605 
1606 static int __maybe_unused intel_suspend(struct device *dev)
1607 {
1608 	struct sdw_cdns *cdns = dev_get_drvdata(dev);
1609 	struct sdw_intel *sdw = cdns_to_intel(cdns);
1610 	struct sdw_bus *bus = &cdns->bus;
1611 	u32 clock_stop_quirks;
1612 	int ret;
1613 
1614 	if (bus->prop.hw_disabled || !sdw->startup_done) {
1615 		dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n",
1616 			bus->link_id);
1617 		return 0;
1618 	}
1619 
1620 	if (pm_runtime_suspended(dev)) {
1621 		dev_dbg(dev, "%s: pm_runtime status: suspended\n", __func__);
1622 
1623 		clock_stop_quirks = sdw->link_res->clock_stop_quirks;
1624 
1625 		if ((clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET) ||
1626 		    !clock_stop_quirks) {
1627 
1628 			if (pm_runtime_suspended(dev->parent)) {
1629 				/*
1630 				 * paranoia check: this should not happen with the .prepare
1631 				 * resume to full power
1632 				 */
1633 				dev_err(dev, "%s: invalid config: parent is suspended\n", __func__);
1634 			} else {
1635 				intel_shim_wake(sdw, false);
1636 			}
1637 		}
1638 
1639 		return 0;
1640 	}
1641 
1642 	ret = sdw_cdns_enable_interrupt(cdns, false);
1643 	if (ret < 0) {
1644 		dev_err(dev, "cannot disable interrupts on suspend\n");
1645 		return ret;
1646 	}
1647 
1648 	ret = intel_link_power_down(sdw);
1649 	if (ret) {
1650 		dev_err(dev, "Link power down failed: %d\n", ret);
1651 		return ret;
1652 	}
1653 
1654 	intel_shim_wake(sdw, false);
1655 
1656 	return 0;
1657 }
1658 
1659 static int __maybe_unused intel_suspend_runtime(struct device *dev)
1660 {
1661 	struct sdw_cdns *cdns = dev_get_drvdata(dev);
1662 	struct sdw_intel *sdw = cdns_to_intel(cdns);
1663 	struct sdw_bus *bus = &cdns->bus;
1664 	u32 clock_stop_quirks;
1665 	int ret;
1666 
1667 	if (bus->prop.hw_disabled || !sdw->startup_done) {
1668 		dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n",
1669 			bus->link_id);
1670 		return 0;
1671 	}
1672 
1673 	clock_stop_quirks = sdw->link_res->clock_stop_quirks;
1674 
1675 	if (clock_stop_quirks & SDW_INTEL_CLK_STOP_TEARDOWN) {
1676 
1677 		ret = sdw_cdns_enable_interrupt(cdns, false);
1678 		if (ret < 0) {
1679 			dev_err(dev, "cannot disable interrupts on suspend\n");
1680 			return ret;
1681 		}
1682 
1683 		ret = intel_link_power_down(sdw);
1684 		if (ret) {
1685 			dev_err(dev, "Link power down failed: %d\n", ret);
1686 			return ret;
1687 		}
1688 
1689 		intel_shim_wake(sdw, false);
1690 
1691 	} else if (clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET ||
1692 		   !clock_stop_quirks) {
1693 		bool wake_enable = true;
1694 
1695 		ret = sdw_cdns_clock_stop(cdns, true);
1696 		if (ret < 0) {
1697 			dev_err(dev, "cannot enable clock stop on suspend\n");
1698 			wake_enable = false;
1699 		}
1700 
1701 		ret = sdw_cdns_enable_interrupt(cdns, false);
1702 		if (ret < 0) {
1703 			dev_err(dev, "cannot disable interrupts on suspend\n");
1704 			return ret;
1705 		}
1706 
1707 		ret = intel_link_power_down(sdw);
1708 		if (ret) {
1709 			dev_err(dev, "Link power down failed: %d\n", ret);
1710 			return ret;
1711 		}
1712 
1713 		intel_shim_wake(sdw, wake_enable);
1714 	} else {
1715 		dev_err(dev, "%s clock_stop_quirks %x unsupported\n",
1716 			__func__, clock_stop_quirks);
1717 		ret = -EINVAL;
1718 	}
1719 
1720 	return ret;
1721 }
1722 
1723 static int __maybe_unused intel_resume(struct device *dev)
1724 {
1725 	struct sdw_cdns *cdns = dev_get_drvdata(dev);
1726 	struct sdw_intel *sdw = cdns_to_intel(cdns);
1727 	struct sdw_bus *bus = &cdns->bus;
1728 	int link_flags;
1729 	bool multi_link;
1730 	int ret;
1731 
1732 	if (bus->prop.hw_disabled || !sdw->startup_done) {
1733 		dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n",
1734 			bus->link_id);
1735 		return 0;
1736 	}
1737 
1738 	link_flags = md_flags >> (bus->link_id * 8);
1739 	multi_link = !(link_flags & SDW_INTEL_MASTER_DISABLE_MULTI_LINK);
1740 
1741 	if (pm_runtime_suspended(dev)) {
1742 		dev_dbg(dev, "%s: pm_runtime status was suspended, forcing active\n", __func__);
1743 
1744 		/* follow required sequence from runtime_pm.rst */
1745 		pm_runtime_disable(dev);
1746 		pm_runtime_set_active(dev);
1747 		pm_runtime_mark_last_busy(dev);
1748 		pm_runtime_enable(dev);
1749 
1750 		link_flags = md_flags >> (bus->link_id * 8);
1751 
1752 		if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE))
1753 			pm_runtime_idle(dev);
1754 	}
1755 
1756 	ret = intel_init(sdw);
1757 	if (ret) {
1758 		dev_err(dev, "%s failed: %d\n", __func__, ret);
1759 		return ret;
1760 	}
1761 
1762 	/*
1763 	 * make sure all Slaves are tagged as UNATTACHED and provide
1764 	 * reason for reinitialization
1765 	 */
1766 	sdw_clear_slave_status(bus, SDW_UNATTACH_REQUEST_MASTER_RESET);
1767 
1768 	ret = sdw_cdns_enable_interrupt(cdns, true);
1769 	if (ret < 0) {
1770 		dev_err(dev, "cannot enable interrupts during resume\n");
1771 		return ret;
1772 	}
1773 
1774 	/*
1775 	 * follow recommended programming flows to avoid timeouts when
1776 	 * gsync is enabled
1777 	 */
1778 	if (multi_link)
1779 		intel_shim_sync_arm(sdw);
1780 
1781 	ret = sdw_cdns_init(&sdw->cdns);
1782 	if (ret < 0) {
1783 		dev_err(dev, "unable to initialize Cadence IP during resume\n");
1784 		return ret;
1785 	}
1786 
1787 	ret = sdw_cdns_exit_reset(cdns);
1788 	if (ret < 0) {
1789 		dev_err(dev, "unable to exit bus reset sequence during resume\n");
1790 		return ret;
1791 	}
1792 
1793 	if (multi_link) {
1794 		ret = intel_shim_sync_go(sdw);
1795 		if (ret < 0) {
1796 			dev_err(dev, "sync go failed during resume\n");
1797 			return ret;
1798 		}
1799 	}
1800 	sdw_cdns_check_self_clearing_bits(cdns, __func__,
1801 					  true, INTEL_MASTER_RESET_ITERATIONS);
1802 
1803 	/*
1804 	 * after system resume, the pm_runtime suspend() may kick in
1805 	 * during the enumeration, before any children device force the
1806 	 * master device to remain active.  Using pm_runtime_get()
1807 	 * routines is not really possible, since it'd prevent the
1808 	 * master from suspending.
1809 	 * A reasonable compromise is to update the pm_runtime
1810 	 * counters and delay the pm_runtime suspend by several
1811 	 * seconds, by when all enumeration should be complete.
1812 	 */
1813 	pm_runtime_mark_last_busy(dev);
1814 
1815 	return ret;
1816 }
1817 
1818 static int __maybe_unused intel_resume_runtime(struct device *dev)
1819 {
1820 	struct sdw_cdns *cdns = dev_get_drvdata(dev);
1821 	struct sdw_intel *sdw = cdns_to_intel(cdns);
1822 	struct sdw_bus *bus = &cdns->bus;
1823 	u32 clock_stop_quirks;
1824 	bool clock_stop0;
1825 	int link_flags;
1826 	bool multi_link;
1827 	int status;
1828 	int ret;
1829 
1830 	if (bus->prop.hw_disabled || !sdw->startup_done) {
1831 		dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n",
1832 			bus->link_id);
1833 		return 0;
1834 	}
1835 
1836 	link_flags = md_flags >> (bus->link_id * 8);
1837 	multi_link = !(link_flags & SDW_INTEL_MASTER_DISABLE_MULTI_LINK);
1838 
1839 	clock_stop_quirks = sdw->link_res->clock_stop_quirks;
1840 
1841 	if (clock_stop_quirks & SDW_INTEL_CLK_STOP_TEARDOWN) {
1842 		ret = intel_init(sdw);
1843 		if (ret) {
1844 			dev_err(dev, "%s failed: %d\n", __func__, ret);
1845 			return ret;
1846 		}
1847 
1848 		/*
1849 		 * make sure all Slaves are tagged as UNATTACHED and provide
1850 		 * reason for reinitialization
1851 		 */
1852 		sdw_clear_slave_status(bus, SDW_UNATTACH_REQUEST_MASTER_RESET);
1853 
1854 		ret = sdw_cdns_enable_interrupt(cdns, true);
1855 		if (ret < 0) {
1856 			dev_err(dev, "cannot enable interrupts during resume\n");
1857 			return ret;
1858 		}
1859 
1860 		/*
1861 		 * follow recommended programming flows to avoid
1862 		 * timeouts when gsync is enabled
1863 		 */
1864 		if (multi_link)
1865 			intel_shim_sync_arm(sdw);
1866 
1867 		ret = sdw_cdns_init(&sdw->cdns);
1868 		if (ret < 0) {
1869 			dev_err(dev, "unable to initialize Cadence IP during resume\n");
1870 			return ret;
1871 		}
1872 
1873 		ret = sdw_cdns_exit_reset(cdns);
1874 		if (ret < 0) {
1875 			dev_err(dev, "unable to exit bus reset sequence during resume\n");
1876 			return ret;
1877 		}
1878 
1879 		if (multi_link) {
1880 			ret = intel_shim_sync_go(sdw);
1881 			if (ret < 0) {
1882 				dev_err(dev, "sync go failed during resume\n");
1883 				return ret;
1884 			}
1885 		}
1886 		sdw_cdns_check_self_clearing_bits(cdns, "intel_resume_runtime TEARDOWN",
1887 						  true, INTEL_MASTER_RESET_ITERATIONS);
1888 
1889 	} else if (clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET) {
1890 		ret = intel_init(sdw);
1891 		if (ret) {
1892 			dev_err(dev, "%s failed: %d\n", __func__, ret);
1893 			return ret;
1894 		}
1895 
1896 		/*
1897 		 * An exception condition occurs for the CLK_STOP_BUS_RESET
1898 		 * case if one or more masters remain active. In this condition,
1899 		 * all the masters are powered on for they are in the same power
1900 		 * domain. Master can preserve its context for clock stop0, so
1901 		 * there is no need to clear slave status and reset bus.
1902 		 */
1903 		clock_stop0 = sdw_cdns_is_clock_stop(&sdw->cdns);
1904 
1905 		if (!clock_stop0) {
1906 
1907 			/*
1908 			 * make sure all Slaves are tagged as UNATTACHED and
1909 			 * provide reason for reinitialization
1910 			 */
1911 
1912 			status = SDW_UNATTACH_REQUEST_MASTER_RESET;
1913 			sdw_clear_slave_status(bus, status);
1914 
1915 			ret = sdw_cdns_enable_interrupt(cdns, true);
1916 			if (ret < 0) {
1917 				dev_err(dev, "cannot enable interrupts during resume\n");
1918 				return ret;
1919 			}
1920 
1921 			/*
1922 			 * follow recommended programming flows to avoid
1923 			 * timeouts when gsync is enabled
1924 			 */
1925 			if (multi_link)
1926 				intel_shim_sync_arm(sdw);
1927 
1928 			/*
1929 			 * Re-initialize the IP since it was powered-off
1930 			 */
1931 			sdw_cdns_init(&sdw->cdns);
1932 
1933 		} else {
1934 			ret = sdw_cdns_enable_interrupt(cdns, true);
1935 			if (ret < 0) {
1936 				dev_err(dev, "cannot enable interrupts during resume\n");
1937 				return ret;
1938 			}
1939 		}
1940 
1941 		ret = sdw_cdns_clock_restart(cdns, !clock_stop0);
1942 		if (ret < 0) {
1943 			dev_err(dev, "unable to restart clock during resume\n");
1944 			return ret;
1945 		}
1946 
1947 		if (!clock_stop0) {
1948 			ret = sdw_cdns_exit_reset(cdns);
1949 			if (ret < 0) {
1950 				dev_err(dev, "unable to exit bus reset sequence during resume\n");
1951 				return ret;
1952 			}
1953 
1954 			if (multi_link) {
1955 				ret = intel_shim_sync_go(sdw);
1956 				if (ret < 0) {
1957 					dev_err(sdw->cdns.dev, "sync go failed during resume\n");
1958 					return ret;
1959 				}
1960 			}
1961 		}
1962 		sdw_cdns_check_self_clearing_bits(cdns, "intel_resume_runtime BUS_RESET",
1963 						  true, INTEL_MASTER_RESET_ITERATIONS);
1964 
1965 	} else if (!clock_stop_quirks) {
1966 
1967 		clock_stop0 = sdw_cdns_is_clock_stop(&sdw->cdns);
1968 		if (!clock_stop0)
1969 			dev_err(dev, "%s invalid configuration, clock was not stopped", __func__);
1970 
1971 		ret = intel_init(sdw);
1972 		if (ret) {
1973 			dev_err(dev, "%s failed: %d\n", __func__, ret);
1974 			return ret;
1975 		}
1976 
1977 		ret = sdw_cdns_enable_interrupt(cdns, true);
1978 		if (ret < 0) {
1979 			dev_err(dev, "cannot enable interrupts during resume\n");
1980 			return ret;
1981 		}
1982 
1983 		ret = sdw_cdns_clock_restart(cdns, false);
1984 		if (ret < 0) {
1985 			dev_err(dev, "unable to resume master during resume\n");
1986 			return ret;
1987 		}
1988 
1989 		sdw_cdns_check_self_clearing_bits(cdns, "intel_resume_runtime no_quirks",
1990 						  true, INTEL_MASTER_RESET_ITERATIONS);
1991 	} else {
1992 		dev_err(dev, "%s clock_stop_quirks %x unsupported\n",
1993 			__func__, clock_stop_quirks);
1994 		ret = -EINVAL;
1995 	}
1996 
1997 	return ret;
1998 }
1999 
2000 static const struct dev_pm_ops intel_pm = {
2001 	.prepare = intel_pm_prepare,
2002 	SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
2003 	SET_RUNTIME_PM_OPS(intel_suspend_runtime, intel_resume_runtime, NULL)
2004 };
2005 
2006 static const struct auxiliary_device_id intel_link_id_table[] = {
2007 	{ .name = "soundwire_intel.link" },
2008 	{},
2009 };
2010 MODULE_DEVICE_TABLE(auxiliary, intel_link_id_table);
2011 
2012 static struct auxiliary_driver sdw_intel_drv = {
2013 	.probe = intel_link_probe,
2014 	.remove = intel_link_remove,
2015 	.driver = {
2016 		/* auxiliary_driver_register() sets .name to be the modname */
2017 		.pm = &intel_pm,
2018 	},
2019 	.id_table = intel_link_id_table
2020 };
2021 module_auxiliary_driver(sdw_intel_drv);
2022 
2023 MODULE_LICENSE("Dual BSD/GPL");
2024 MODULE_DESCRIPTION("Intel Soundwire Link Driver");
2025