xref: /linux/drivers/soundwire/intel.c (revision 9009b455811b0fa1f6b0adfa94db136984db5a38)
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 // Copyright(c) 2015-17 Intel Corporation.
3 
4 /*
5  * Soundwire Intel Master Driver
6  */
7 
8 #include <linux/acpi.h>
9 #include <linux/debugfs.h>
10 #include <linux/delay.h>
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/platform_device.h>
15 #include <sound/pcm_params.h>
16 #include <linux/pm_runtime.h>
17 #include <sound/soc.h>
18 #include <linux/soundwire/sdw_registers.h>
19 #include <linux/soundwire/sdw.h>
20 #include <linux/soundwire/sdw_intel.h>
21 #include "cadence_master.h"
22 #include "bus.h"
23 #include "intel.h"
24 
25 #define INTEL_MASTER_SUSPEND_DELAY_MS	3000
26 
27 /*
28  * debug/config flags for the Intel SoundWire Master.
29  *
30  * Since we may have multiple masters active, we can have up to 8
31  * flags reused in each byte, with master0 using the ls-byte, etc.
32  */
33 
34 #define SDW_INTEL_MASTER_DISABLE_PM_RUNTIME		BIT(0)
35 #define SDW_INTEL_MASTER_DISABLE_CLOCK_STOP		BIT(1)
36 #define SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE	BIT(2)
37 #define SDW_INTEL_MASTER_DISABLE_MULTI_LINK		BIT(3)
38 
39 static int md_flags;
40 module_param_named(sdw_md_flags, md_flags, int, 0444);
41 MODULE_PARM_DESC(sdw_md_flags, "SoundWire Intel Master device flags (0x0 all off)");
42 
43 /* Intel SHIM Registers Definition */
44 #define SDW_SHIM_LCAP			0x0
45 #define SDW_SHIM_LCTL			0x4
46 #define SDW_SHIM_IPPTR			0x8
47 #define SDW_SHIM_SYNC			0xC
48 
49 #define SDW_SHIM_CTLSCAP(x)		(0x010 + 0x60 * (x))
50 #define SDW_SHIM_CTLS0CM(x)		(0x012 + 0x60 * (x))
51 #define SDW_SHIM_CTLS1CM(x)		(0x014 + 0x60 * (x))
52 #define SDW_SHIM_CTLS2CM(x)		(0x016 + 0x60 * (x))
53 #define SDW_SHIM_CTLS3CM(x)		(0x018 + 0x60 * (x))
54 #define SDW_SHIM_PCMSCAP(x)		(0x020 + 0x60 * (x))
55 
56 #define SDW_SHIM_PCMSYCHM(x, y)		(0x022 + (0x60 * (x)) + (0x2 * (y)))
57 #define SDW_SHIM_PCMSYCHC(x, y)		(0x042 + (0x60 * (x)) + (0x2 * (y)))
58 #define SDW_SHIM_PDMSCAP(x)		(0x062 + 0x60 * (x))
59 #define SDW_SHIM_IOCTL(x)		(0x06C + 0x60 * (x))
60 #define SDW_SHIM_CTMCTL(x)		(0x06E + 0x60 * (x))
61 
62 #define SDW_SHIM_WAKEEN			0x190
63 #define SDW_SHIM_WAKESTS		0x192
64 
65 #define SDW_SHIM_LCTL_SPA		BIT(0)
66 #define SDW_SHIM_LCTL_SPA_MASK		GENMASK(3, 0)
67 #define SDW_SHIM_LCTL_CPA		BIT(8)
68 #define SDW_SHIM_LCTL_CPA_MASK		GENMASK(11, 8)
69 
70 #define SDW_SHIM_SYNC_SYNCPRD_VAL_24	(24000 / SDW_CADENCE_GSYNC_KHZ - 1)
71 #define SDW_SHIM_SYNC_SYNCPRD_VAL_38_4	(38400 / SDW_CADENCE_GSYNC_KHZ - 1)
72 #define SDW_SHIM_SYNC_SYNCPRD		GENMASK(14, 0)
73 #define SDW_SHIM_SYNC_SYNCCPU		BIT(15)
74 #define SDW_SHIM_SYNC_CMDSYNC_MASK	GENMASK(19, 16)
75 #define SDW_SHIM_SYNC_CMDSYNC		BIT(16)
76 #define SDW_SHIM_SYNC_SYNCGO		BIT(24)
77 
78 #define SDW_SHIM_PCMSCAP_ISS		GENMASK(3, 0)
79 #define SDW_SHIM_PCMSCAP_OSS		GENMASK(7, 4)
80 #define SDW_SHIM_PCMSCAP_BSS		GENMASK(12, 8)
81 
82 #define SDW_SHIM_PCMSYCM_LCHN		GENMASK(3, 0)
83 #define SDW_SHIM_PCMSYCM_HCHN		GENMASK(7, 4)
84 #define SDW_SHIM_PCMSYCM_STREAM		GENMASK(13, 8)
85 #define SDW_SHIM_PCMSYCM_DIR		BIT(15)
86 
87 #define SDW_SHIM_PDMSCAP_ISS		GENMASK(3, 0)
88 #define SDW_SHIM_PDMSCAP_OSS		GENMASK(7, 4)
89 #define SDW_SHIM_PDMSCAP_BSS		GENMASK(12, 8)
90 #define SDW_SHIM_PDMSCAP_CPSS		GENMASK(15, 13)
91 
92 #define SDW_SHIM_IOCTL_MIF		BIT(0)
93 #define SDW_SHIM_IOCTL_CO		BIT(1)
94 #define SDW_SHIM_IOCTL_COE		BIT(2)
95 #define SDW_SHIM_IOCTL_DO		BIT(3)
96 #define SDW_SHIM_IOCTL_DOE		BIT(4)
97 #define SDW_SHIM_IOCTL_BKE		BIT(5)
98 #define SDW_SHIM_IOCTL_WPDD		BIT(6)
99 #define SDW_SHIM_IOCTL_CIBD		BIT(8)
100 #define SDW_SHIM_IOCTL_DIBD		BIT(9)
101 
102 #define SDW_SHIM_CTMCTL_DACTQE		BIT(0)
103 #define SDW_SHIM_CTMCTL_DODS		BIT(1)
104 #define SDW_SHIM_CTMCTL_DOAIS		GENMASK(4, 3)
105 
106 #define SDW_SHIM_WAKEEN_ENABLE		BIT(0)
107 #define SDW_SHIM_WAKESTS_STATUS		BIT(0)
108 
109 /* Intel ALH Register definitions */
110 #define SDW_ALH_STRMZCFG(x)		(0x000 + (0x4 * (x)))
111 #define SDW_ALH_NUM_STREAMS		64
112 
113 #define SDW_ALH_STRMZCFG_DMAT_VAL	0x3
114 #define SDW_ALH_STRMZCFG_DMAT		GENMASK(7, 0)
115 #define SDW_ALH_STRMZCFG_CHN		GENMASK(19, 16)
116 
117 enum intel_pdi_type {
118 	INTEL_PDI_IN = 0,
119 	INTEL_PDI_OUT = 1,
120 	INTEL_PDI_BD = 2,
121 };
122 
123 #define cdns_to_intel(_cdns) container_of(_cdns, struct sdw_intel, cdns)
124 
125 /*
126  * Read, write helpers for HW registers
127  */
128 static inline int intel_readl(void __iomem *base, int offset)
129 {
130 	return readl(base + offset);
131 }
132 
133 static inline void intel_writel(void __iomem *base, int offset, int value)
134 {
135 	writel(value, base + offset);
136 }
137 
138 static inline u16 intel_readw(void __iomem *base, int offset)
139 {
140 	return readw(base + offset);
141 }
142 
143 static inline void intel_writew(void __iomem *base, int offset, u16 value)
144 {
145 	writew(value, base + offset);
146 }
147 
148 static int intel_wait_bit(void __iomem *base, int offset, u32 mask, u32 target)
149 {
150 	int timeout = 10;
151 	u32 reg_read;
152 
153 	do {
154 		reg_read = readl(base + offset);
155 		if ((reg_read & mask) == target)
156 			return 0;
157 
158 		timeout--;
159 		usleep_range(50, 100);
160 	} while (timeout != 0);
161 
162 	return -EAGAIN;
163 }
164 
165 static int intel_clear_bit(void __iomem *base, int offset, u32 value, u32 mask)
166 {
167 	writel(value, base + offset);
168 	return intel_wait_bit(base, offset, mask, 0);
169 }
170 
171 static int intel_set_bit(void __iomem *base, int offset, u32 value, u32 mask)
172 {
173 	writel(value, base + offset);
174 	return intel_wait_bit(base, offset, mask, mask);
175 }
176 
177 /*
178  * debugfs
179  */
180 #ifdef CONFIG_DEBUG_FS
181 
182 #define RD_BUF (2 * PAGE_SIZE)
183 
184 static ssize_t intel_sprintf(void __iomem *mem, bool l,
185 			     char *buf, size_t pos, unsigned int reg)
186 {
187 	int value;
188 
189 	if (l)
190 		value = intel_readl(mem, reg);
191 	else
192 		value = intel_readw(mem, reg);
193 
194 	return scnprintf(buf + pos, RD_BUF - pos, "%4x\t%4x\n", reg, value);
195 }
196 
197 static int intel_reg_show(struct seq_file *s_file, void *data)
198 {
199 	struct sdw_intel *sdw = s_file->private;
200 	void __iomem *s = sdw->link_res->shim;
201 	void __iomem *a = sdw->link_res->alh;
202 	char *buf;
203 	ssize_t ret;
204 	int i, j;
205 	unsigned int links, reg;
206 
207 	buf = kzalloc(RD_BUF, GFP_KERNEL);
208 	if (!buf)
209 		return -ENOMEM;
210 
211 	links = intel_readl(s, SDW_SHIM_LCAP) & GENMASK(2, 0);
212 
213 	ret = scnprintf(buf, RD_BUF, "Register  Value\n");
214 	ret += scnprintf(buf + ret, RD_BUF - ret, "\nShim\n");
215 
216 	for (i = 0; i < links; i++) {
217 		reg = SDW_SHIM_LCAP + i * 4;
218 		ret += intel_sprintf(s, true, buf, ret, reg);
219 	}
220 
221 	for (i = 0; i < links; i++) {
222 		ret += scnprintf(buf + ret, RD_BUF - ret, "\nLink%d\n", i);
223 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLSCAP(i));
224 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS0CM(i));
225 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS1CM(i));
226 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS2CM(i));
227 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS3CM(i));
228 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_PCMSCAP(i));
229 
230 		ret += scnprintf(buf + ret, RD_BUF - ret, "\n PCMSyCH registers\n");
231 
232 		/*
233 		 * the value 10 is the number of PDIs. We will need a
234 		 * cleanup to remove hard-coded Intel configurations
235 		 * from cadence_master.c
236 		 */
237 		for (j = 0; j < 10; j++) {
238 			ret += intel_sprintf(s, false, buf, ret,
239 					SDW_SHIM_PCMSYCHM(i, j));
240 			ret += intel_sprintf(s, false, buf, ret,
241 					SDW_SHIM_PCMSYCHC(i, j));
242 		}
243 		ret += scnprintf(buf + ret, RD_BUF - ret, "\n PDMSCAP, IOCTL, CTMCTL\n");
244 
245 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_PDMSCAP(i));
246 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_IOCTL(i));
247 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTMCTL(i));
248 	}
249 
250 	ret += scnprintf(buf + ret, RD_BUF - ret, "\nWake registers\n");
251 	ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_WAKEEN);
252 	ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_WAKESTS);
253 
254 	ret += scnprintf(buf + ret, RD_BUF - ret, "\nALH STRMzCFG\n");
255 	for (i = 0; i < SDW_ALH_NUM_STREAMS; i++)
256 		ret += intel_sprintf(a, true, buf, ret, SDW_ALH_STRMZCFG(i));
257 
258 	seq_printf(s_file, "%s", buf);
259 	kfree(buf);
260 
261 	return 0;
262 }
263 DEFINE_SHOW_ATTRIBUTE(intel_reg);
264 
265 static int intel_set_m_datamode(void *data, u64 value)
266 {
267 	struct sdw_intel *sdw = data;
268 	struct sdw_bus *bus = &sdw->cdns.bus;
269 
270 	if (value > SDW_PORT_DATA_MODE_STATIC_1)
271 		return -EINVAL;
272 
273 	/* Userspace changed the hardware state behind the kernel's back */
274 	add_taint(TAINT_USER, LOCKDEP_STILL_OK);
275 
276 	bus->params.m_data_mode = value;
277 
278 	return 0;
279 }
280 DEFINE_DEBUGFS_ATTRIBUTE(intel_set_m_datamode_fops, NULL,
281 			 intel_set_m_datamode, "%llu\n");
282 
283 static int intel_set_s_datamode(void *data, u64 value)
284 {
285 	struct sdw_intel *sdw = data;
286 	struct sdw_bus *bus = &sdw->cdns.bus;
287 
288 	if (value > SDW_PORT_DATA_MODE_STATIC_1)
289 		return -EINVAL;
290 
291 	/* Userspace changed the hardware state behind the kernel's back */
292 	add_taint(TAINT_USER, LOCKDEP_STILL_OK);
293 
294 	bus->params.s_data_mode = value;
295 
296 	return 0;
297 }
298 DEFINE_DEBUGFS_ATTRIBUTE(intel_set_s_datamode_fops, NULL,
299 			 intel_set_s_datamode, "%llu\n");
300 
301 static void intel_debugfs_init(struct sdw_intel *sdw)
302 {
303 	struct dentry *root = sdw->cdns.bus.debugfs;
304 
305 	if (!root)
306 		return;
307 
308 	sdw->debugfs = debugfs_create_dir("intel-sdw", root);
309 
310 	debugfs_create_file("intel-registers", 0400, sdw->debugfs, sdw,
311 			    &intel_reg_fops);
312 
313 	debugfs_create_file("intel-m-datamode", 0200, sdw->debugfs, sdw,
314 			    &intel_set_m_datamode_fops);
315 
316 	debugfs_create_file("intel-s-datamode", 0200, sdw->debugfs, sdw,
317 			    &intel_set_s_datamode_fops);
318 
319 	sdw_cdns_debugfs_init(&sdw->cdns, sdw->debugfs);
320 }
321 
322 static void intel_debugfs_exit(struct sdw_intel *sdw)
323 {
324 	debugfs_remove_recursive(sdw->debugfs);
325 }
326 #else
327 static void intel_debugfs_init(struct sdw_intel *sdw) {}
328 static void intel_debugfs_exit(struct sdw_intel *sdw) {}
329 #endif /* CONFIG_DEBUG_FS */
330 
331 /*
332  * shim ops
333  */
334 
335 static int intel_link_power_up(struct sdw_intel *sdw)
336 {
337 	unsigned int link_id = sdw->instance;
338 	void __iomem *shim = sdw->link_res->shim;
339 	u32 *shim_mask = sdw->link_res->shim_mask;
340 	struct sdw_bus *bus = &sdw->cdns.bus;
341 	struct sdw_master_prop *prop = &bus->prop;
342 	u32 spa_mask, cpa_mask;
343 	u32 link_control;
344 	int ret = 0;
345 	u32 syncprd;
346 	u32 sync_reg;
347 
348 	mutex_lock(sdw->link_res->shim_lock);
349 
350 	/*
351 	 * The hardware relies on an internal counter, typically 4kHz,
352 	 * to generate the SoundWire SSP - which defines a 'safe'
353 	 * synchronization point between commands and audio transport
354 	 * and allows for multi link synchronization. The SYNCPRD value
355 	 * is only dependent on the oscillator clock provided to
356 	 * the IP, so adjust based on _DSD properties reported in DSDT
357 	 * tables. The values reported are based on either 24MHz
358 	 * (CNL/CML) or 38.4 MHz (ICL/TGL+).
359 	 */
360 	if (prop->mclk_freq % 6000000)
361 		syncprd = SDW_SHIM_SYNC_SYNCPRD_VAL_38_4;
362 	else
363 		syncprd = SDW_SHIM_SYNC_SYNCPRD_VAL_24;
364 
365 	if (!*shim_mask) {
366 		dev_dbg(sdw->cdns.dev, "%s: powering up all links\n", __func__);
367 
368 		/* we first need to program the SyncPRD/CPU registers */
369 		dev_dbg(sdw->cdns.dev,
370 			"%s: first link up, programming SYNCPRD\n", __func__);
371 
372 		/* set SyncPRD period */
373 		sync_reg = intel_readl(shim, SDW_SHIM_SYNC);
374 		u32p_replace_bits(&sync_reg, syncprd, SDW_SHIM_SYNC_SYNCPRD);
375 
376 		/* Set SyncCPU bit */
377 		sync_reg |= SDW_SHIM_SYNC_SYNCCPU;
378 		intel_writel(shim, SDW_SHIM_SYNC, sync_reg);
379 
380 		/* Link power up sequence */
381 		link_control = intel_readl(shim, SDW_SHIM_LCTL);
382 
383 		/* only power-up enabled links */
384 		spa_mask = FIELD_PREP(SDW_SHIM_LCTL_SPA_MASK, sdw->link_res->link_mask);
385 		cpa_mask = FIELD_PREP(SDW_SHIM_LCTL_CPA_MASK, sdw->link_res->link_mask);
386 
387 		link_control |=  spa_mask;
388 
389 		ret = intel_set_bit(shim, SDW_SHIM_LCTL, link_control, cpa_mask);
390 		if (ret < 0) {
391 			dev_err(sdw->cdns.dev, "Failed to power up link: %d\n", ret);
392 			goto out;
393 		}
394 
395 		/* SyncCPU will change once link is active */
396 		ret = intel_wait_bit(shim, SDW_SHIM_SYNC,
397 				     SDW_SHIM_SYNC_SYNCCPU, 0);
398 		if (ret < 0) {
399 			dev_err(sdw->cdns.dev,
400 				"Failed to set SHIM_SYNC: %d\n", ret);
401 			goto out;
402 		}
403 	}
404 
405 	*shim_mask |= BIT(link_id);
406 
407 	sdw->cdns.link_up = true;
408 out:
409 	mutex_unlock(sdw->link_res->shim_lock);
410 
411 	return ret;
412 }
413 
414 /* this needs to be called with shim_lock */
415 static void intel_shim_glue_to_master_ip(struct sdw_intel *sdw)
416 {
417 	void __iomem *shim = sdw->link_res->shim;
418 	unsigned int link_id = sdw->instance;
419 	u16 ioctl;
420 
421 	/* Switch to MIP from Glue logic */
422 	ioctl = intel_readw(shim,  SDW_SHIM_IOCTL(link_id));
423 
424 	ioctl &= ~(SDW_SHIM_IOCTL_DOE);
425 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
426 	usleep_range(10, 15);
427 
428 	ioctl &= ~(SDW_SHIM_IOCTL_DO);
429 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
430 	usleep_range(10, 15);
431 
432 	ioctl |= (SDW_SHIM_IOCTL_MIF);
433 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
434 	usleep_range(10, 15);
435 
436 	ioctl &= ~(SDW_SHIM_IOCTL_BKE);
437 	ioctl &= ~(SDW_SHIM_IOCTL_COE);
438 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
439 	usleep_range(10, 15);
440 
441 	/* at this point Master IP has full control of the I/Os */
442 }
443 
444 /* this needs to be called with shim_lock */
445 static void intel_shim_master_ip_to_glue(struct sdw_intel *sdw)
446 {
447 	unsigned int link_id = sdw->instance;
448 	void __iomem *shim = sdw->link_res->shim;
449 	u16 ioctl;
450 
451 	/* Glue logic */
452 	ioctl = intel_readw(shim, SDW_SHIM_IOCTL(link_id));
453 	ioctl |= SDW_SHIM_IOCTL_BKE;
454 	ioctl |= SDW_SHIM_IOCTL_COE;
455 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
456 	usleep_range(10, 15);
457 
458 	ioctl &= ~(SDW_SHIM_IOCTL_MIF);
459 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
460 	usleep_range(10, 15);
461 
462 	/* at this point Integration Glue has full control of the I/Os */
463 }
464 
465 static int intel_shim_init(struct sdw_intel *sdw, bool clock_stop)
466 {
467 	void __iomem *shim = sdw->link_res->shim;
468 	unsigned int link_id = sdw->instance;
469 	int ret = 0;
470 	u16 ioctl = 0, act = 0;
471 
472 	mutex_lock(sdw->link_res->shim_lock);
473 
474 	/* Initialize Shim */
475 	ioctl |= SDW_SHIM_IOCTL_BKE;
476 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
477 	usleep_range(10, 15);
478 
479 	ioctl |= SDW_SHIM_IOCTL_WPDD;
480 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
481 	usleep_range(10, 15);
482 
483 	ioctl |= SDW_SHIM_IOCTL_DO;
484 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
485 	usleep_range(10, 15);
486 
487 	ioctl |= SDW_SHIM_IOCTL_DOE;
488 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
489 	usleep_range(10, 15);
490 
491 	intel_shim_glue_to_master_ip(sdw);
492 
493 	u16p_replace_bits(&act, 0x1, SDW_SHIM_CTMCTL_DOAIS);
494 	act |= SDW_SHIM_CTMCTL_DACTQE;
495 	act |= SDW_SHIM_CTMCTL_DODS;
496 	intel_writew(shim, SDW_SHIM_CTMCTL(link_id), act);
497 	usleep_range(10, 15);
498 
499 	mutex_unlock(sdw->link_res->shim_lock);
500 
501 	return ret;
502 }
503 
504 static void intel_shim_wake(struct sdw_intel *sdw, bool wake_enable)
505 {
506 	void __iomem *shim = sdw->link_res->shim;
507 	unsigned int link_id = sdw->instance;
508 	u16 wake_en, wake_sts;
509 
510 	mutex_lock(sdw->link_res->shim_lock);
511 	wake_en = intel_readw(shim, SDW_SHIM_WAKEEN);
512 
513 	if (wake_enable) {
514 		/* Enable the wakeup */
515 		wake_en |= (SDW_SHIM_WAKEEN_ENABLE << link_id);
516 		intel_writew(shim, SDW_SHIM_WAKEEN, wake_en);
517 	} else {
518 		/* Disable the wake up interrupt */
519 		wake_en &= ~(SDW_SHIM_WAKEEN_ENABLE << link_id);
520 		intel_writew(shim, SDW_SHIM_WAKEEN, wake_en);
521 
522 		/* Clear wake status */
523 		wake_sts = intel_readw(shim, SDW_SHIM_WAKESTS);
524 		wake_sts |= (SDW_SHIM_WAKEEN_ENABLE << link_id);
525 		intel_writew(shim, SDW_SHIM_WAKESTS_STATUS, wake_sts);
526 	}
527 	mutex_unlock(sdw->link_res->shim_lock);
528 }
529 
530 static int intel_link_power_down(struct sdw_intel *sdw)
531 {
532 	u32 link_control, spa_mask, cpa_mask;
533 	unsigned int link_id = sdw->instance;
534 	void __iomem *shim = sdw->link_res->shim;
535 	u32 *shim_mask = sdw->link_res->shim_mask;
536 	int ret = 0;
537 
538 	mutex_lock(sdw->link_res->shim_lock);
539 
540 	intel_shim_master_ip_to_glue(sdw);
541 
542 	if (!(*shim_mask & BIT(link_id)))
543 		dev_err(sdw->cdns.dev,
544 			"%s: Unbalanced power-up/down calls\n", __func__);
545 
546 	*shim_mask &= ~BIT(link_id);
547 
548 	if (!*shim_mask) {
549 
550 		dev_dbg(sdw->cdns.dev, "%s: powering down all links\n", __func__);
551 
552 		/* Link power down sequence */
553 		link_control = intel_readl(shim, SDW_SHIM_LCTL);
554 
555 		/* only power-down enabled links */
556 		spa_mask = FIELD_PREP(SDW_SHIM_LCTL_SPA_MASK, ~sdw->link_res->link_mask);
557 		cpa_mask = FIELD_PREP(SDW_SHIM_LCTL_CPA_MASK, sdw->link_res->link_mask);
558 
559 		link_control &=  spa_mask;
560 
561 		ret = intel_clear_bit(shim, SDW_SHIM_LCTL, link_control, cpa_mask);
562 	}
563 
564 	mutex_unlock(sdw->link_res->shim_lock);
565 
566 	if (ret < 0) {
567 		dev_err(sdw->cdns.dev, "%s: could not power down link\n", __func__);
568 
569 		return ret;
570 	}
571 
572 	sdw->cdns.link_up = false;
573 	return 0;
574 }
575 
576 static void intel_shim_sync_arm(struct sdw_intel *sdw)
577 {
578 	void __iomem *shim = sdw->link_res->shim;
579 	u32 sync_reg;
580 
581 	mutex_lock(sdw->link_res->shim_lock);
582 
583 	/* update SYNC register */
584 	sync_reg = intel_readl(shim, SDW_SHIM_SYNC);
585 	sync_reg |= (SDW_SHIM_SYNC_CMDSYNC << sdw->instance);
586 	intel_writel(shim, SDW_SHIM_SYNC, sync_reg);
587 
588 	mutex_unlock(sdw->link_res->shim_lock);
589 }
590 
591 static int intel_shim_sync_go_unlocked(struct sdw_intel *sdw)
592 {
593 	void __iomem *shim = sdw->link_res->shim;
594 	u32 sync_reg;
595 	int ret;
596 
597 	/* Read SYNC register */
598 	sync_reg = intel_readl(shim, SDW_SHIM_SYNC);
599 
600 	/*
601 	 * Set SyncGO bit to synchronously trigger a bank switch for
602 	 * all the masters. A write to SYNCGO bit clears CMDSYNC bit for all
603 	 * the Masters.
604 	 */
605 	sync_reg |= SDW_SHIM_SYNC_SYNCGO;
606 
607 	ret = intel_clear_bit(shim, SDW_SHIM_SYNC, sync_reg,
608 			      SDW_SHIM_SYNC_SYNCGO);
609 
610 	if (ret < 0)
611 		dev_err(sdw->cdns.dev, "SyncGO clear failed: %d\n", ret);
612 
613 	return ret;
614 }
615 
616 static int intel_shim_sync_go(struct sdw_intel *sdw)
617 {
618 	int ret;
619 
620 	mutex_lock(sdw->link_res->shim_lock);
621 
622 	ret = intel_shim_sync_go_unlocked(sdw);
623 
624 	mutex_unlock(sdw->link_res->shim_lock);
625 
626 	return ret;
627 }
628 
629 /*
630  * PDI routines
631  */
632 static void intel_pdi_init(struct sdw_intel *sdw,
633 			   struct sdw_cdns_stream_config *config)
634 {
635 	void __iomem *shim = sdw->link_res->shim;
636 	unsigned int link_id = sdw->instance;
637 	int pcm_cap, pdm_cap;
638 
639 	/* PCM Stream Capability */
640 	pcm_cap = intel_readw(shim, SDW_SHIM_PCMSCAP(link_id));
641 
642 	config->pcm_bd = FIELD_GET(SDW_SHIM_PCMSCAP_BSS, pcm_cap);
643 	config->pcm_in = FIELD_GET(SDW_SHIM_PCMSCAP_ISS, pcm_cap);
644 	config->pcm_out = FIELD_GET(SDW_SHIM_PCMSCAP_OSS, pcm_cap);
645 
646 	dev_dbg(sdw->cdns.dev, "PCM cap bd:%d in:%d out:%d\n",
647 		config->pcm_bd, config->pcm_in, config->pcm_out);
648 
649 	/* PDM Stream Capability */
650 	pdm_cap = intel_readw(shim, SDW_SHIM_PDMSCAP(link_id));
651 
652 	config->pdm_bd = FIELD_GET(SDW_SHIM_PDMSCAP_BSS, pdm_cap);
653 	config->pdm_in = FIELD_GET(SDW_SHIM_PDMSCAP_ISS, pdm_cap);
654 	config->pdm_out = FIELD_GET(SDW_SHIM_PDMSCAP_OSS, pdm_cap);
655 
656 	dev_dbg(sdw->cdns.dev, "PDM cap bd:%d in:%d out:%d\n",
657 		config->pdm_bd, config->pdm_in, config->pdm_out);
658 }
659 
660 static int
661 intel_pdi_get_ch_cap(struct sdw_intel *sdw, unsigned int pdi_num, bool pcm)
662 {
663 	void __iomem *shim = sdw->link_res->shim;
664 	unsigned int link_id = sdw->instance;
665 	int count;
666 
667 	if (pcm) {
668 		count = intel_readw(shim, SDW_SHIM_PCMSYCHC(link_id, pdi_num));
669 
670 		/*
671 		 * WORKAROUND: on all existing Intel controllers, pdi
672 		 * number 2 reports channel count as 1 even though it
673 		 * supports 8 channels. Performing hardcoding for pdi
674 		 * number 2.
675 		 */
676 		if (pdi_num == 2)
677 			count = 7;
678 
679 	} else {
680 		count = intel_readw(shim, SDW_SHIM_PDMSCAP(link_id));
681 		count = FIELD_GET(SDW_SHIM_PDMSCAP_CPSS, count);
682 	}
683 
684 	/* zero based values for channel count in register */
685 	count++;
686 
687 	return count;
688 }
689 
690 static int intel_pdi_get_ch_update(struct sdw_intel *sdw,
691 				   struct sdw_cdns_pdi *pdi,
692 				   unsigned int num_pdi,
693 				   unsigned int *num_ch, bool pcm)
694 {
695 	int i, ch_count = 0;
696 
697 	for (i = 0; i < num_pdi; i++) {
698 		pdi->ch_count = intel_pdi_get_ch_cap(sdw, pdi->num, pcm);
699 		ch_count += pdi->ch_count;
700 		pdi++;
701 	}
702 
703 	*num_ch = ch_count;
704 	return 0;
705 }
706 
707 static int intel_pdi_stream_ch_update(struct sdw_intel *sdw,
708 				      struct sdw_cdns_streams *stream, bool pcm)
709 {
710 	intel_pdi_get_ch_update(sdw, stream->bd, stream->num_bd,
711 				&stream->num_ch_bd, pcm);
712 
713 	intel_pdi_get_ch_update(sdw, stream->in, stream->num_in,
714 				&stream->num_ch_in, pcm);
715 
716 	intel_pdi_get_ch_update(sdw, stream->out, stream->num_out,
717 				&stream->num_ch_out, pcm);
718 
719 	return 0;
720 }
721 
722 static int intel_pdi_ch_update(struct sdw_intel *sdw)
723 {
724 	/* First update PCM streams followed by PDM streams */
725 	intel_pdi_stream_ch_update(sdw, &sdw->cdns.pcm, true);
726 	intel_pdi_stream_ch_update(sdw, &sdw->cdns.pdm, false);
727 
728 	return 0;
729 }
730 
731 static void
732 intel_pdi_shim_configure(struct sdw_intel *sdw, struct sdw_cdns_pdi *pdi)
733 {
734 	void __iomem *shim = sdw->link_res->shim;
735 	unsigned int link_id = sdw->instance;
736 	int pdi_conf = 0;
737 
738 	/* the Bulk and PCM streams are not contiguous */
739 	pdi->intel_alh_id = (link_id * 16) + pdi->num + 3;
740 	if (pdi->num >= 2)
741 		pdi->intel_alh_id += 2;
742 
743 	/*
744 	 * Program stream parameters to stream SHIM register
745 	 * This is applicable for PCM stream only.
746 	 */
747 	if (pdi->type != SDW_STREAM_PCM)
748 		return;
749 
750 	if (pdi->dir == SDW_DATA_DIR_RX)
751 		pdi_conf |= SDW_SHIM_PCMSYCM_DIR;
752 	else
753 		pdi_conf &= ~(SDW_SHIM_PCMSYCM_DIR);
754 
755 	u32p_replace_bits(&pdi_conf, pdi->intel_alh_id, SDW_SHIM_PCMSYCM_STREAM);
756 	u32p_replace_bits(&pdi_conf, pdi->l_ch_num, SDW_SHIM_PCMSYCM_LCHN);
757 	u32p_replace_bits(&pdi_conf, pdi->h_ch_num, SDW_SHIM_PCMSYCM_HCHN);
758 
759 	intel_writew(shim, SDW_SHIM_PCMSYCHM(link_id, pdi->num), pdi_conf);
760 }
761 
762 static void
763 intel_pdi_alh_configure(struct sdw_intel *sdw, struct sdw_cdns_pdi *pdi)
764 {
765 	void __iomem *alh = sdw->link_res->alh;
766 	unsigned int link_id = sdw->instance;
767 	unsigned int conf;
768 
769 	/* the Bulk and PCM streams are not contiguous */
770 	pdi->intel_alh_id = (link_id * 16) + pdi->num + 3;
771 	if (pdi->num >= 2)
772 		pdi->intel_alh_id += 2;
773 
774 	/* Program Stream config ALH register */
775 	conf = intel_readl(alh, SDW_ALH_STRMZCFG(pdi->intel_alh_id));
776 
777 	u32p_replace_bits(&conf, SDW_ALH_STRMZCFG_DMAT_VAL, SDW_ALH_STRMZCFG_DMAT);
778 	u32p_replace_bits(&conf, pdi->ch_count - 1, SDW_ALH_STRMZCFG_CHN);
779 
780 	intel_writel(alh, SDW_ALH_STRMZCFG(pdi->intel_alh_id), conf);
781 }
782 
783 static int intel_params_stream(struct sdw_intel *sdw,
784 			       struct snd_pcm_substream *substream,
785 			       struct snd_soc_dai *dai,
786 			       struct snd_pcm_hw_params *hw_params,
787 			       int link_id, int alh_stream_id)
788 {
789 	struct sdw_intel_link_res *res = sdw->link_res;
790 	struct sdw_intel_stream_params_data params_data;
791 
792 	params_data.substream = substream;
793 	params_data.dai = dai;
794 	params_data.hw_params = hw_params;
795 	params_data.link_id = link_id;
796 	params_data.alh_stream_id = alh_stream_id;
797 
798 	if (res->ops && res->ops->params_stream && res->dev)
799 		return res->ops->params_stream(res->dev,
800 					       &params_data);
801 	return -EIO;
802 }
803 
804 static int intel_free_stream(struct sdw_intel *sdw,
805 			     struct snd_pcm_substream *substream,
806 			     struct snd_soc_dai *dai,
807 			     int link_id)
808 {
809 	struct sdw_intel_link_res *res = sdw->link_res;
810 	struct sdw_intel_stream_free_data free_data;
811 
812 	free_data.substream = substream;
813 	free_data.dai = dai;
814 	free_data.link_id = link_id;
815 
816 	if (res->ops && res->ops->free_stream && res->dev)
817 		return res->ops->free_stream(res->dev,
818 					     &free_data);
819 
820 	return 0;
821 }
822 
823 /*
824  * bank switch routines
825  */
826 
827 static int intel_pre_bank_switch(struct sdw_bus *bus)
828 {
829 	struct sdw_cdns *cdns = bus_to_cdns(bus);
830 	struct sdw_intel *sdw = cdns_to_intel(cdns);
831 
832 	/* Write to register only for multi-link */
833 	if (!bus->multi_link)
834 		return 0;
835 
836 	intel_shim_sync_arm(sdw);
837 
838 	return 0;
839 }
840 
841 static int intel_post_bank_switch(struct sdw_bus *bus)
842 {
843 	struct sdw_cdns *cdns = bus_to_cdns(bus);
844 	struct sdw_intel *sdw = cdns_to_intel(cdns);
845 	void __iomem *shim = sdw->link_res->shim;
846 	int sync_reg, ret;
847 
848 	/* Write to register only for multi-link */
849 	if (!bus->multi_link)
850 		return 0;
851 
852 	mutex_lock(sdw->link_res->shim_lock);
853 
854 	/* Read SYNC register */
855 	sync_reg = intel_readl(shim, SDW_SHIM_SYNC);
856 
857 	/*
858 	 * post_bank_switch() ops is called from the bus in loop for
859 	 * all the Masters in the steam with the expectation that
860 	 * we trigger the bankswitch for the only first Master in the list
861 	 * and do nothing for the other Masters
862 	 *
863 	 * So, set the SYNCGO bit only if CMDSYNC bit is set for any Master.
864 	 */
865 	if (!(sync_reg & SDW_SHIM_SYNC_CMDSYNC_MASK)) {
866 		ret = 0;
867 		goto unlock;
868 	}
869 
870 	ret = intel_shim_sync_go_unlocked(sdw);
871 unlock:
872 	mutex_unlock(sdw->link_res->shim_lock);
873 
874 	if (ret < 0)
875 		dev_err(sdw->cdns.dev, "Post bank switch failed: %d\n", ret);
876 
877 	return ret;
878 }
879 
880 /*
881  * DAI routines
882  */
883 
884 static int intel_startup(struct snd_pcm_substream *substream,
885 			 struct snd_soc_dai *dai)
886 {
887 	struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
888 	int ret;
889 
890 	ret = pm_runtime_get_sync(cdns->dev);
891 	if (ret < 0 && ret != -EACCES) {
892 		dev_err_ratelimited(cdns->dev,
893 				    "pm_runtime_get_sync failed in %s, ret %d\n",
894 				    __func__, ret);
895 		pm_runtime_put_noidle(cdns->dev);
896 		return ret;
897 	}
898 	return 0;
899 }
900 
901 static int intel_hw_params(struct snd_pcm_substream *substream,
902 			   struct snd_pcm_hw_params *params,
903 			   struct snd_soc_dai *dai)
904 {
905 	struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
906 	struct sdw_intel *sdw = cdns_to_intel(cdns);
907 	struct sdw_cdns_dma_data *dma;
908 	struct sdw_cdns_pdi *pdi;
909 	struct sdw_stream_config sconfig;
910 	struct sdw_port_config *pconfig;
911 	int ch, dir;
912 	int ret;
913 	bool pcm = true;
914 
915 	dma = snd_soc_dai_get_dma_data(dai, substream);
916 	if (!dma)
917 		return -EIO;
918 
919 	ch = params_channels(params);
920 	if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
921 		dir = SDW_DATA_DIR_RX;
922 	else
923 		dir = SDW_DATA_DIR_TX;
924 
925 	if (dma->stream_type == SDW_STREAM_PDM)
926 		pcm = false;
927 
928 	if (pcm)
929 		pdi = sdw_cdns_alloc_pdi(cdns, &cdns->pcm, ch, dir, dai->id);
930 	else
931 		pdi = sdw_cdns_alloc_pdi(cdns, &cdns->pdm, ch, dir, dai->id);
932 
933 	if (!pdi) {
934 		ret = -EINVAL;
935 		goto error;
936 	}
937 
938 	/* do run-time configurations for SHIM, ALH and PDI/PORT */
939 	intel_pdi_shim_configure(sdw, pdi);
940 	intel_pdi_alh_configure(sdw, pdi);
941 	sdw_cdns_config_stream(cdns, ch, dir, pdi);
942 
943 	/* store pdi and hw_params, may be needed in prepare step */
944 	dma->suspended = false;
945 	dma->pdi = pdi;
946 	dma->hw_params = params;
947 
948 	/* Inform DSP about PDI stream number */
949 	ret = intel_params_stream(sdw, substream, dai, params,
950 				  sdw->instance,
951 				  pdi->intel_alh_id);
952 	if (ret)
953 		goto error;
954 
955 	sconfig.direction = dir;
956 	sconfig.ch_count = ch;
957 	sconfig.frame_rate = params_rate(params);
958 	sconfig.type = dma->stream_type;
959 
960 	if (dma->stream_type == SDW_STREAM_PDM) {
961 		sconfig.frame_rate *= 50;
962 		sconfig.bps = 1;
963 	} else {
964 		sconfig.bps = snd_pcm_format_width(params_format(params));
965 	}
966 
967 	/* Port configuration */
968 	pconfig = kzalloc(sizeof(*pconfig), GFP_KERNEL);
969 	if (!pconfig) {
970 		ret =  -ENOMEM;
971 		goto error;
972 	}
973 
974 	pconfig->num = pdi->num;
975 	pconfig->ch_mask = (1 << ch) - 1;
976 
977 	ret = sdw_stream_add_master(&cdns->bus, &sconfig,
978 				    pconfig, 1, dma->stream);
979 	if (ret)
980 		dev_err(cdns->dev, "add master to stream failed:%d\n", ret);
981 
982 	kfree(pconfig);
983 error:
984 	return ret;
985 }
986 
987 static int intel_prepare(struct snd_pcm_substream *substream,
988 			 struct snd_soc_dai *dai)
989 {
990 	struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
991 	struct sdw_intel *sdw = cdns_to_intel(cdns);
992 	struct sdw_cdns_dma_data *dma;
993 	int ch, dir;
994 	int ret = 0;
995 
996 	dma = snd_soc_dai_get_dma_data(dai, substream);
997 	if (!dma) {
998 		dev_err(dai->dev, "failed to get dma data in %s\n",
999 			__func__);
1000 		return -EIO;
1001 	}
1002 
1003 	if (dma->suspended) {
1004 		dma->suspended = false;
1005 
1006 		/*
1007 		 * .prepare() is called after system resume, where we
1008 		 * need to reinitialize the SHIM/ALH/Cadence IP.
1009 		 * .prepare() is also called to deal with underflows,
1010 		 * but in those cases we cannot touch ALH/SHIM
1011 		 * registers
1012 		 */
1013 
1014 		/* configure stream */
1015 		ch = params_channels(dma->hw_params);
1016 		if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
1017 			dir = SDW_DATA_DIR_RX;
1018 		else
1019 			dir = SDW_DATA_DIR_TX;
1020 
1021 		intel_pdi_shim_configure(sdw, dma->pdi);
1022 		intel_pdi_alh_configure(sdw, dma->pdi);
1023 		sdw_cdns_config_stream(cdns, ch, dir, dma->pdi);
1024 
1025 		/* Inform DSP about PDI stream number */
1026 		ret = intel_params_stream(sdw, substream, dai,
1027 					  dma->hw_params,
1028 					  sdw->instance,
1029 					  dma->pdi->intel_alh_id);
1030 	}
1031 
1032 	return ret;
1033 }
1034 
1035 static int
1036 intel_hw_free(struct snd_pcm_substream *substream, struct snd_soc_dai *dai)
1037 {
1038 	struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
1039 	struct sdw_intel *sdw = cdns_to_intel(cdns);
1040 	struct sdw_cdns_dma_data *dma;
1041 	int ret;
1042 
1043 	dma = snd_soc_dai_get_dma_data(dai, substream);
1044 	if (!dma)
1045 		return -EIO;
1046 
1047 	/*
1048 	 * The sdw stream state will transition to RELEASED when stream->
1049 	 * master_list is empty. So the stream state will transition to
1050 	 * DEPREPARED for the first cpu-dai and to RELEASED for the last
1051 	 * cpu-dai.
1052 	 */
1053 	ret = sdw_stream_remove_master(&cdns->bus, dma->stream);
1054 	if (ret < 0) {
1055 		dev_err(dai->dev, "remove master from stream %s failed: %d\n",
1056 			dma->stream->name, ret);
1057 		return ret;
1058 	}
1059 
1060 	ret = intel_free_stream(sdw, substream, dai, sdw->instance);
1061 	if (ret < 0) {
1062 		dev_err(dai->dev, "intel_free_stream: failed %d\n", ret);
1063 		return ret;
1064 	}
1065 
1066 	dma->hw_params = NULL;
1067 	dma->pdi = NULL;
1068 
1069 	return 0;
1070 }
1071 
1072 static void intel_shutdown(struct snd_pcm_substream *substream,
1073 			   struct snd_soc_dai *dai)
1074 {
1075 	struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
1076 
1077 	pm_runtime_mark_last_busy(cdns->dev);
1078 	pm_runtime_put_autosuspend(cdns->dev);
1079 }
1080 
1081 static int intel_component_dais_suspend(struct snd_soc_component *component)
1082 {
1083 	struct sdw_cdns_dma_data *dma;
1084 	struct snd_soc_dai *dai;
1085 
1086 	for_each_component_dais(component, dai) {
1087 		/*
1088 		 * we don't have a .suspend dai_ops, and we don't have access
1089 		 * to the substream, so let's mark both capture and playback
1090 		 * DMA contexts as suspended
1091 		 */
1092 		dma = dai->playback_dma_data;
1093 		if (dma)
1094 			dma->suspended = true;
1095 
1096 		dma = dai->capture_dma_data;
1097 		if (dma)
1098 			dma->suspended = true;
1099 	}
1100 
1101 	return 0;
1102 }
1103 
1104 static int intel_pcm_set_sdw_stream(struct snd_soc_dai *dai,
1105 				    void *stream, int direction)
1106 {
1107 	return cdns_set_sdw_stream(dai, stream, true, direction);
1108 }
1109 
1110 static int intel_pdm_set_sdw_stream(struct snd_soc_dai *dai,
1111 				    void *stream, int direction)
1112 {
1113 	return cdns_set_sdw_stream(dai, stream, false, direction);
1114 }
1115 
1116 static void *intel_get_sdw_stream(struct snd_soc_dai *dai,
1117 				  int direction)
1118 {
1119 	struct sdw_cdns_dma_data *dma;
1120 
1121 	if (direction == SNDRV_PCM_STREAM_PLAYBACK)
1122 		dma = dai->playback_dma_data;
1123 	else
1124 		dma = dai->capture_dma_data;
1125 
1126 	if (!dma)
1127 		return ERR_PTR(-EINVAL);
1128 
1129 	return dma->stream;
1130 }
1131 
1132 static const struct snd_soc_dai_ops intel_pcm_dai_ops = {
1133 	.startup = intel_startup,
1134 	.hw_params = intel_hw_params,
1135 	.prepare = intel_prepare,
1136 	.hw_free = intel_hw_free,
1137 	.shutdown = intel_shutdown,
1138 	.set_sdw_stream = intel_pcm_set_sdw_stream,
1139 	.get_sdw_stream = intel_get_sdw_stream,
1140 };
1141 
1142 static const struct snd_soc_dai_ops intel_pdm_dai_ops = {
1143 	.startup = intel_startup,
1144 	.hw_params = intel_hw_params,
1145 	.prepare = intel_prepare,
1146 	.hw_free = intel_hw_free,
1147 	.shutdown = intel_shutdown,
1148 	.set_sdw_stream = intel_pdm_set_sdw_stream,
1149 	.get_sdw_stream = intel_get_sdw_stream,
1150 };
1151 
1152 static const struct snd_soc_component_driver dai_component = {
1153 	.name           = "soundwire",
1154 	.suspend	= intel_component_dais_suspend
1155 };
1156 
1157 static int intel_create_dai(struct sdw_cdns *cdns,
1158 			    struct snd_soc_dai_driver *dais,
1159 			    enum intel_pdi_type type,
1160 			    u32 num, u32 off, u32 max_ch, bool pcm)
1161 {
1162 	int i;
1163 
1164 	if (num == 0)
1165 		return 0;
1166 
1167 	 /* TODO: Read supported rates/formats from hardware */
1168 	for (i = off; i < (off + num); i++) {
1169 		dais[i].name = devm_kasprintf(cdns->dev, GFP_KERNEL,
1170 					      "SDW%d Pin%d",
1171 					      cdns->instance, i);
1172 		if (!dais[i].name)
1173 			return -ENOMEM;
1174 
1175 		if (type == INTEL_PDI_BD || type == INTEL_PDI_OUT) {
1176 			dais[i].playback.channels_min = 1;
1177 			dais[i].playback.channels_max = max_ch;
1178 			dais[i].playback.rates = SNDRV_PCM_RATE_48000;
1179 			dais[i].playback.formats = SNDRV_PCM_FMTBIT_S16_LE;
1180 		}
1181 
1182 		if (type == INTEL_PDI_BD || type == INTEL_PDI_IN) {
1183 			dais[i].capture.channels_min = 1;
1184 			dais[i].capture.channels_max = max_ch;
1185 			dais[i].capture.rates = SNDRV_PCM_RATE_48000;
1186 			dais[i].capture.formats = SNDRV_PCM_FMTBIT_S16_LE;
1187 		}
1188 
1189 		if (pcm)
1190 			dais[i].ops = &intel_pcm_dai_ops;
1191 		else
1192 			dais[i].ops = &intel_pdm_dai_ops;
1193 	}
1194 
1195 	return 0;
1196 }
1197 
1198 static int intel_register_dai(struct sdw_intel *sdw)
1199 {
1200 	struct sdw_cdns *cdns = &sdw->cdns;
1201 	struct sdw_cdns_streams *stream;
1202 	struct snd_soc_dai_driver *dais;
1203 	int num_dai, ret, off = 0;
1204 
1205 	/* DAIs are created based on total number of PDIs supported */
1206 	num_dai = cdns->pcm.num_pdi + cdns->pdm.num_pdi;
1207 
1208 	dais = devm_kcalloc(cdns->dev, num_dai, sizeof(*dais), GFP_KERNEL);
1209 	if (!dais)
1210 		return -ENOMEM;
1211 
1212 	/* Create PCM DAIs */
1213 	stream = &cdns->pcm;
1214 
1215 	ret = intel_create_dai(cdns, dais, INTEL_PDI_IN, cdns->pcm.num_in,
1216 			       off, stream->num_ch_in, true);
1217 	if (ret)
1218 		return ret;
1219 
1220 	off += cdns->pcm.num_in;
1221 	ret = intel_create_dai(cdns, dais, INTEL_PDI_OUT, cdns->pcm.num_out,
1222 			       off, stream->num_ch_out, true);
1223 	if (ret)
1224 		return ret;
1225 
1226 	off += cdns->pcm.num_out;
1227 	ret = intel_create_dai(cdns, dais, INTEL_PDI_BD, cdns->pcm.num_bd,
1228 			       off, stream->num_ch_bd, true);
1229 	if (ret)
1230 		return ret;
1231 
1232 	/* Create PDM DAIs */
1233 	stream = &cdns->pdm;
1234 	off += cdns->pcm.num_bd;
1235 	ret = intel_create_dai(cdns, dais, INTEL_PDI_IN, cdns->pdm.num_in,
1236 			       off, stream->num_ch_in, false);
1237 	if (ret)
1238 		return ret;
1239 
1240 	off += cdns->pdm.num_in;
1241 	ret = intel_create_dai(cdns, dais, INTEL_PDI_OUT, cdns->pdm.num_out,
1242 			       off, stream->num_ch_out, false);
1243 	if (ret)
1244 		return ret;
1245 
1246 	off += cdns->pdm.num_out;
1247 	ret = intel_create_dai(cdns, dais, INTEL_PDI_BD, cdns->pdm.num_bd,
1248 			       off, stream->num_ch_bd, false);
1249 	if (ret)
1250 		return ret;
1251 
1252 	return snd_soc_register_component(cdns->dev, &dai_component,
1253 					  dais, num_dai);
1254 }
1255 
1256 static int sdw_master_read_intel_prop(struct sdw_bus *bus)
1257 {
1258 	struct sdw_master_prop *prop = &bus->prop;
1259 	struct fwnode_handle *link;
1260 	char name[32];
1261 	u32 quirk_mask;
1262 
1263 	/* Find master handle */
1264 	snprintf(name, sizeof(name),
1265 		 "mipi-sdw-link-%d-subproperties", bus->link_id);
1266 
1267 	link = device_get_named_child_node(bus->dev, name);
1268 	if (!link) {
1269 		dev_err(bus->dev, "Master node %s not found\n", name);
1270 		return -EIO;
1271 	}
1272 
1273 	fwnode_property_read_u32(link,
1274 				 "intel-sdw-ip-clock",
1275 				 &prop->mclk_freq);
1276 
1277 	/* the values reported by BIOS are the 2x clock, not the bus clock */
1278 	prop->mclk_freq /= 2;
1279 
1280 	fwnode_property_read_u32(link,
1281 				 "intel-quirk-mask",
1282 				 &quirk_mask);
1283 
1284 	if (quirk_mask & SDW_INTEL_QUIRK_MASK_BUS_DISABLE)
1285 		prop->hw_disabled = true;
1286 
1287 	prop->quirks = SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH |
1288 		SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY;
1289 
1290 	return 0;
1291 }
1292 
1293 static int intel_prop_read(struct sdw_bus *bus)
1294 {
1295 	/* Initialize with default handler to read all DisCo properties */
1296 	sdw_master_read_prop(bus);
1297 
1298 	/* read Intel-specific properties */
1299 	sdw_master_read_intel_prop(bus);
1300 
1301 	return 0;
1302 }
1303 
1304 static struct sdw_master_ops sdw_intel_ops = {
1305 	.read_prop = sdw_master_read_prop,
1306 	.override_adr = sdw_dmi_override_adr,
1307 	.xfer_msg = cdns_xfer_msg,
1308 	.xfer_msg_defer = cdns_xfer_msg_defer,
1309 	.reset_page_addr = cdns_reset_page_addr,
1310 	.set_bus_conf = cdns_bus_conf,
1311 	.pre_bank_switch = intel_pre_bank_switch,
1312 	.post_bank_switch = intel_post_bank_switch,
1313 };
1314 
1315 static int intel_init(struct sdw_intel *sdw)
1316 {
1317 	bool clock_stop;
1318 
1319 	/* Initialize shim and controller */
1320 	intel_link_power_up(sdw);
1321 
1322 	clock_stop = sdw_cdns_is_clock_stop(&sdw->cdns);
1323 
1324 	intel_shim_init(sdw, clock_stop);
1325 
1326 	return 0;
1327 }
1328 
1329 /*
1330  * probe and init
1331  */
1332 static int intel_master_probe(struct platform_device *pdev)
1333 {
1334 	struct device *dev = &pdev->dev;
1335 	struct sdw_intel *sdw;
1336 	struct sdw_cdns *cdns;
1337 	struct sdw_bus *bus;
1338 	int ret;
1339 
1340 	sdw = devm_kzalloc(dev, sizeof(*sdw), GFP_KERNEL);
1341 	if (!sdw)
1342 		return -ENOMEM;
1343 
1344 	cdns = &sdw->cdns;
1345 	bus = &cdns->bus;
1346 
1347 	sdw->instance = pdev->id;
1348 	sdw->link_res = dev_get_platdata(dev);
1349 	cdns->dev = dev;
1350 	cdns->registers = sdw->link_res->registers;
1351 	cdns->instance = sdw->instance;
1352 	cdns->msg_count = 0;
1353 
1354 	bus->link_id = pdev->id;
1355 
1356 	sdw_cdns_probe(cdns);
1357 
1358 	/* Set property read ops */
1359 	sdw_intel_ops.read_prop = intel_prop_read;
1360 	bus->ops = &sdw_intel_ops;
1361 
1362 	/* set driver data, accessed by snd_soc_dai_get_drvdata() */
1363 	dev_set_drvdata(dev, cdns);
1364 
1365 	/* use generic bandwidth allocation algorithm */
1366 	sdw->cdns.bus.compute_params = sdw_compute_params;
1367 
1368 	ret = sdw_bus_master_add(bus, dev, dev->fwnode);
1369 	if (ret) {
1370 		dev_err(dev, "sdw_bus_master_add fail: %d\n", ret);
1371 		return ret;
1372 	}
1373 
1374 	if (bus->prop.hw_disabled)
1375 		dev_info(dev,
1376 			 "SoundWire master %d is disabled, will be ignored\n",
1377 			 bus->link_id);
1378 	/*
1379 	 * Ignore BIOS err_threshold, it's a really bad idea when dealing
1380 	 * with multiple hardware synchronized links
1381 	 */
1382 	bus->prop.err_threshold = 0;
1383 
1384 	return 0;
1385 }
1386 
1387 int intel_master_startup(struct platform_device *pdev)
1388 {
1389 	struct sdw_cdns_stream_config config;
1390 	struct device *dev = &pdev->dev;
1391 	struct sdw_cdns *cdns = dev_get_drvdata(dev);
1392 	struct sdw_intel *sdw = cdns_to_intel(cdns);
1393 	struct sdw_bus *bus = &cdns->bus;
1394 	int link_flags;
1395 	bool multi_link;
1396 	u32 clock_stop_quirks;
1397 	int ret;
1398 
1399 	if (bus->prop.hw_disabled) {
1400 		dev_info(dev,
1401 			 "SoundWire master %d is disabled, ignoring\n",
1402 			 sdw->instance);
1403 		return 0;
1404 	}
1405 
1406 	link_flags = md_flags >> (bus->link_id * 8);
1407 	multi_link = !(link_flags & SDW_INTEL_MASTER_DISABLE_MULTI_LINK);
1408 	if (!multi_link) {
1409 		dev_dbg(dev, "Multi-link is disabled\n");
1410 		bus->multi_link = false;
1411 	} else {
1412 		/*
1413 		 * hardware-based synchronization is required regardless
1414 		 * of the number of segments used by a stream: SSP-based
1415 		 * synchronization is gated by gsync when the multi-master
1416 		 * mode is set.
1417 		 */
1418 		bus->multi_link = true;
1419 		bus->hw_sync_min_links = 1;
1420 	}
1421 
1422 	/* Initialize shim, controller */
1423 	ret = intel_init(sdw);
1424 	if (ret)
1425 		goto err_init;
1426 
1427 	/* Read the PDI config and initialize cadence PDI */
1428 	intel_pdi_init(sdw, &config);
1429 	ret = sdw_cdns_pdi_init(cdns, config);
1430 	if (ret)
1431 		goto err_init;
1432 
1433 	intel_pdi_ch_update(sdw);
1434 
1435 	ret = sdw_cdns_enable_interrupt(cdns, true);
1436 	if (ret < 0) {
1437 		dev_err(dev, "cannot enable interrupts\n");
1438 		goto err_init;
1439 	}
1440 
1441 	/*
1442 	 * follow recommended programming flows to avoid timeouts when
1443 	 * gsync is enabled
1444 	 */
1445 	if (multi_link)
1446 		intel_shim_sync_arm(sdw);
1447 
1448 	ret = sdw_cdns_init(cdns);
1449 	if (ret < 0) {
1450 		dev_err(dev, "unable to initialize Cadence IP\n");
1451 		goto err_interrupt;
1452 	}
1453 
1454 	ret = sdw_cdns_exit_reset(cdns);
1455 	if (ret < 0) {
1456 		dev_err(dev, "unable to exit bus reset sequence\n");
1457 		goto err_interrupt;
1458 	}
1459 
1460 	if (multi_link) {
1461 		ret = intel_shim_sync_go(sdw);
1462 		if (ret < 0) {
1463 			dev_err(dev, "sync go failed: %d\n", ret);
1464 			goto err_interrupt;
1465 		}
1466 	}
1467 
1468 	/* Register DAIs */
1469 	ret = intel_register_dai(sdw);
1470 	if (ret) {
1471 		dev_err(dev, "DAI registration failed: %d\n", ret);
1472 		snd_soc_unregister_component(dev);
1473 		goto err_interrupt;
1474 	}
1475 
1476 	intel_debugfs_init(sdw);
1477 
1478 	/* Enable runtime PM */
1479 	if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME)) {
1480 		pm_runtime_set_autosuspend_delay(dev,
1481 						 INTEL_MASTER_SUSPEND_DELAY_MS);
1482 		pm_runtime_use_autosuspend(dev);
1483 		pm_runtime_mark_last_busy(dev);
1484 
1485 		pm_runtime_set_active(dev);
1486 		pm_runtime_enable(dev);
1487 	}
1488 
1489 	clock_stop_quirks = sdw->link_res->clock_stop_quirks;
1490 	if (clock_stop_quirks & SDW_INTEL_CLK_STOP_NOT_ALLOWED) {
1491 		/*
1492 		 * To keep the clock running we need to prevent
1493 		 * pm_runtime suspend from happening by increasing the
1494 		 * reference count.
1495 		 * This quirk is specified by the parent PCI device in
1496 		 * case of specific latency requirements. It will have
1497 		 * no effect if pm_runtime is disabled by the user via
1498 		 * a module parameter for testing purposes.
1499 		 */
1500 		pm_runtime_get_noresume(dev);
1501 	}
1502 
1503 	/*
1504 	 * The runtime PM status of Slave devices is "Unsupported"
1505 	 * until they report as ATTACHED. If they don't, e.g. because
1506 	 * there are no Slave devices populated or if the power-on is
1507 	 * delayed or dependent on a power switch, the Master will
1508 	 * remain active and prevent its parent from suspending.
1509 	 *
1510 	 * Conditionally force the pm_runtime core to re-evaluate the
1511 	 * Master status in the absence of any Slave activity. A quirk
1512 	 * is provided to e.g. deal with Slaves that may be powered on
1513 	 * with a delay. A more complete solution would require the
1514 	 * definition of Master properties.
1515 	 */
1516 	if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE))
1517 		pm_runtime_idle(dev);
1518 
1519 	return 0;
1520 
1521 err_interrupt:
1522 	sdw_cdns_enable_interrupt(cdns, false);
1523 err_init:
1524 	return ret;
1525 }
1526 
1527 static int intel_master_remove(struct platform_device *pdev)
1528 {
1529 	struct device *dev = &pdev->dev;
1530 	struct sdw_cdns *cdns = dev_get_drvdata(dev);
1531 	struct sdw_intel *sdw = cdns_to_intel(cdns);
1532 	struct sdw_bus *bus = &cdns->bus;
1533 
1534 	/*
1535 	 * Since pm_runtime is already disabled, we don't decrease
1536 	 * the refcount when the clock_stop_quirk is
1537 	 * SDW_INTEL_CLK_STOP_NOT_ALLOWED
1538 	 */
1539 	if (!bus->prop.hw_disabled) {
1540 		intel_debugfs_exit(sdw);
1541 		sdw_cdns_enable_interrupt(cdns, false);
1542 		snd_soc_unregister_component(dev);
1543 	}
1544 	sdw_bus_master_delete(bus);
1545 
1546 	return 0;
1547 }
1548 
1549 int intel_master_process_wakeen_event(struct platform_device *pdev)
1550 {
1551 	struct device *dev = &pdev->dev;
1552 	struct sdw_intel *sdw;
1553 	struct sdw_bus *bus;
1554 	void __iomem *shim;
1555 	u16 wake_sts;
1556 
1557 	sdw = platform_get_drvdata(pdev);
1558 	bus = &sdw->cdns.bus;
1559 
1560 	if (bus->prop.hw_disabled) {
1561 		dev_dbg(dev, "SoundWire master %d is disabled, ignoring\n", bus->link_id);
1562 		return 0;
1563 	}
1564 
1565 	shim = sdw->link_res->shim;
1566 	wake_sts = intel_readw(shim, SDW_SHIM_WAKESTS);
1567 
1568 	if (!(wake_sts & BIT(sdw->instance)))
1569 		return 0;
1570 
1571 	/* disable WAKEEN interrupt ASAP to prevent interrupt flood */
1572 	intel_shim_wake(sdw, false);
1573 
1574 	/*
1575 	 * resume the Master, which will generate a bus reset and result in
1576 	 * Slaves re-attaching and be re-enumerated. The SoundWire physical
1577 	 * device which generated the wake will trigger an interrupt, which
1578 	 * will in turn cause the corresponding Linux Slave device to be
1579 	 * resumed and the Slave codec driver to check the status.
1580 	 */
1581 	pm_request_resume(dev);
1582 
1583 	return 0;
1584 }
1585 
1586 /*
1587  * PM calls
1588  */
1589 
1590 static int __maybe_unused intel_suspend(struct device *dev)
1591 {
1592 	struct sdw_cdns *cdns = dev_get_drvdata(dev);
1593 	struct sdw_intel *sdw = cdns_to_intel(cdns);
1594 	struct sdw_bus *bus = &cdns->bus;
1595 	u32 clock_stop_quirks;
1596 	int ret;
1597 
1598 	if (bus->prop.hw_disabled) {
1599 		dev_dbg(dev, "SoundWire master %d is disabled, ignoring\n",
1600 			bus->link_id);
1601 		return 0;
1602 	}
1603 
1604 	if (pm_runtime_suspended(dev)) {
1605 		dev_dbg(dev, "%s: pm_runtime status: suspended\n", __func__);
1606 
1607 		clock_stop_quirks = sdw->link_res->clock_stop_quirks;
1608 
1609 		if ((clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET ||
1610 		     !clock_stop_quirks) &&
1611 		    !pm_runtime_suspended(dev->parent)) {
1612 
1613 			/*
1614 			 * if we've enabled clock stop, and the parent
1615 			 * is still active, disable shim wake. The
1616 			 * SHIM registers are not accessible if the
1617 			 * parent is already pm_runtime suspended so
1618 			 * it's too late to change that configuration
1619 			 */
1620 
1621 			intel_shim_wake(sdw, false);
1622 		}
1623 
1624 		return 0;
1625 	}
1626 
1627 	ret = sdw_cdns_enable_interrupt(cdns, false);
1628 	if (ret < 0) {
1629 		dev_err(dev, "cannot disable interrupts on suspend\n");
1630 		return ret;
1631 	}
1632 
1633 	ret = intel_link_power_down(sdw);
1634 	if (ret) {
1635 		dev_err(dev, "Link power down failed: %d\n", ret);
1636 		return ret;
1637 	}
1638 
1639 	intel_shim_wake(sdw, false);
1640 
1641 	return 0;
1642 }
1643 
1644 static int __maybe_unused intel_suspend_runtime(struct device *dev)
1645 {
1646 	struct sdw_cdns *cdns = dev_get_drvdata(dev);
1647 	struct sdw_intel *sdw = cdns_to_intel(cdns);
1648 	struct sdw_bus *bus = &cdns->bus;
1649 	u32 clock_stop_quirks;
1650 	int ret;
1651 
1652 	if (bus->prop.hw_disabled) {
1653 		dev_dbg(dev, "SoundWire master %d is disabled, ignoring\n",
1654 			bus->link_id);
1655 		return 0;
1656 	}
1657 
1658 	clock_stop_quirks = sdw->link_res->clock_stop_quirks;
1659 
1660 	if (clock_stop_quirks & SDW_INTEL_CLK_STOP_TEARDOWN) {
1661 
1662 		ret = sdw_cdns_enable_interrupt(cdns, false);
1663 		if (ret < 0) {
1664 			dev_err(dev, "cannot disable interrupts on suspend\n");
1665 			return ret;
1666 		}
1667 
1668 		ret = intel_link_power_down(sdw);
1669 		if (ret) {
1670 			dev_err(dev, "Link power down failed: %d\n", ret);
1671 			return ret;
1672 		}
1673 
1674 		intel_shim_wake(sdw, false);
1675 
1676 	} else if (clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET ||
1677 		   !clock_stop_quirks) {
1678 		bool wake_enable = true;
1679 
1680 		ret = sdw_cdns_clock_stop(cdns, true);
1681 		if (ret < 0) {
1682 			dev_err(dev, "cannot enable clock stop on suspend\n");
1683 			wake_enable = false;
1684 		}
1685 
1686 		ret = sdw_cdns_enable_interrupt(cdns, false);
1687 		if (ret < 0) {
1688 			dev_err(dev, "cannot disable interrupts on suspend\n");
1689 			return ret;
1690 		}
1691 
1692 		ret = intel_link_power_down(sdw);
1693 		if (ret) {
1694 			dev_err(dev, "Link power down failed: %d\n", ret);
1695 			return ret;
1696 		}
1697 
1698 		intel_shim_wake(sdw, wake_enable);
1699 	} else {
1700 		dev_err(dev, "%s clock_stop_quirks %x unsupported\n",
1701 			__func__, clock_stop_quirks);
1702 		ret = -EINVAL;
1703 	}
1704 
1705 	return ret;
1706 }
1707 
1708 static int __maybe_unused intel_resume(struct device *dev)
1709 {
1710 	struct sdw_cdns *cdns = dev_get_drvdata(dev);
1711 	struct sdw_intel *sdw = cdns_to_intel(cdns);
1712 	struct sdw_bus *bus = &cdns->bus;
1713 	int link_flags;
1714 	bool multi_link;
1715 	int ret;
1716 
1717 	if (bus->prop.hw_disabled) {
1718 		dev_dbg(dev, "SoundWire master %d is disabled, ignoring\n",
1719 			bus->link_id);
1720 		return 0;
1721 	}
1722 
1723 	link_flags = md_flags >> (bus->link_id * 8);
1724 	multi_link = !(link_flags & SDW_INTEL_MASTER_DISABLE_MULTI_LINK);
1725 
1726 	if (pm_runtime_suspended(dev)) {
1727 		dev_dbg(dev, "%s: pm_runtime status was suspended, forcing active\n", __func__);
1728 
1729 		/* follow required sequence from runtime_pm.rst */
1730 		pm_runtime_disable(dev);
1731 		pm_runtime_set_active(dev);
1732 		pm_runtime_mark_last_busy(dev);
1733 		pm_runtime_enable(dev);
1734 
1735 		link_flags = md_flags >> (bus->link_id * 8);
1736 
1737 		if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE))
1738 			pm_runtime_idle(dev);
1739 	}
1740 
1741 	ret = intel_init(sdw);
1742 	if (ret) {
1743 		dev_err(dev, "%s failed: %d\n", __func__, ret);
1744 		return ret;
1745 	}
1746 
1747 	/*
1748 	 * make sure all Slaves are tagged as UNATTACHED and provide
1749 	 * reason for reinitialization
1750 	 */
1751 	sdw_clear_slave_status(bus, SDW_UNATTACH_REQUEST_MASTER_RESET);
1752 
1753 	ret = sdw_cdns_enable_interrupt(cdns, true);
1754 	if (ret < 0) {
1755 		dev_err(dev, "cannot enable interrupts during resume\n");
1756 		return ret;
1757 	}
1758 
1759 	/*
1760 	 * follow recommended programming flows to avoid timeouts when
1761 	 * gsync is enabled
1762 	 */
1763 	if (multi_link)
1764 		intel_shim_sync_arm(sdw);
1765 
1766 	ret = sdw_cdns_init(&sdw->cdns);
1767 	if (ret < 0) {
1768 		dev_err(dev, "unable to initialize Cadence IP during resume\n");
1769 		return ret;
1770 	}
1771 
1772 	ret = sdw_cdns_exit_reset(cdns);
1773 	if (ret < 0) {
1774 		dev_err(dev, "unable to exit bus reset sequence during resume\n");
1775 		return ret;
1776 	}
1777 
1778 	if (multi_link) {
1779 		ret = intel_shim_sync_go(sdw);
1780 		if (ret < 0) {
1781 			dev_err(dev, "sync go failed during resume\n");
1782 			return ret;
1783 		}
1784 	}
1785 
1786 	/*
1787 	 * after system resume, the pm_runtime suspend() may kick in
1788 	 * during the enumeration, before any children device force the
1789 	 * master device to remain active.  Using pm_runtime_get()
1790 	 * routines is not really possible, since it'd prevent the
1791 	 * master from suspending.
1792 	 * A reasonable compromise is to update the pm_runtime
1793 	 * counters and delay the pm_runtime suspend by several
1794 	 * seconds, by when all enumeration should be complete.
1795 	 */
1796 	pm_runtime_mark_last_busy(dev);
1797 
1798 	return ret;
1799 }
1800 
1801 static int __maybe_unused intel_resume_runtime(struct device *dev)
1802 {
1803 	struct sdw_cdns *cdns = dev_get_drvdata(dev);
1804 	struct sdw_intel *sdw = cdns_to_intel(cdns);
1805 	struct sdw_bus *bus = &cdns->bus;
1806 	u32 clock_stop_quirks;
1807 	bool clock_stop0;
1808 	int link_flags;
1809 	bool multi_link;
1810 	int status;
1811 	int ret;
1812 
1813 	if (bus->prop.hw_disabled) {
1814 		dev_dbg(dev, "SoundWire master %d is disabled, ignoring\n",
1815 			bus->link_id);
1816 		return 0;
1817 	}
1818 
1819 	link_flags = md_flags >> (bus->link_id * 8);
1820 	multi_link = !(link_flags & SDW_INTEL_MASTER_DISABLE_MULTI_LINK);
1821 
1822 	clock_stop_quirks = sdw->link_res->clock_stop_quirks;
1823 
1824 	if (clock_stop_quirks & SDW_INTEL_CLK_STOP_TEARDOWN) {
1825 		ret = intel_init(sdw);
1826 		if (ret) {
1827 			dev_err(dev, "%s failed: %d\n", __func__, ret);
1828 			return ret;
1829 		}
1830 
1831 		/*
1832 		 * make sure all Slaves are tagged as UNATTACHED and provide
1833 		 * reason for reinitialization
1834 		 */
1835 		sdw_clear_slave_status(bus, SDW_UNATTACH_REQUEST_MASTER_RESET);
1836 
1837 		ret = sdw_cdns_enable_interrupt(cdns, true);
1838 		if (ret < 0) {
1839 			dev_err(dev, "cannot enable interrupts during resume\n");
1840 			return ret;
1841 		}
1842 
1843 		/*
1844 		 * follow recommended programming flows to avoid
1845 		 * timeouts when gsync is enabled
1846 		 */
1847 		if (multi_link)
1848 			intel_shim_sync_arm(sdw);
1849 
1850 		ret = sdw_cdns_init(&sdw->cdns);
1851 		if (ret < 0) {
1852 			dev_err(dev, "unable to initialize Cadence IP during resume\n");
1853 			return ret;
1854 		}
1855 
1856 		ret = sdw_cdns_exit_reset(cdns);
1857 		if (ret < 0) {
1858 			dev_err(dev, "unable to exit bus reset sequence during resume\n");
1859 			return ret;
1860 		}
1861 
1862 		if (multi_link) {
1863 			ret = intel_shim_sync_go(sdw);
1864 			if (ret < 0) {
1865 				dev_err(dev, "sync go failed during resume\n");
1866 				return ret;
1867 			}
1868 		}
1869 	} else if (clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET) {
1870 		ret = intel_init(sdw);
1871 		if (ret) {
1872 			dev_err(dev, "%s failed: %d\n", __func__, ret);
1873 			return ret;
1874 		}
1875 
1876 		/*
1877 		 * An exception condition occurs for the CLK_STOP_BUS_RESET
1878 		 * case if one or more masters remain active. In this condition,
1879 		 * all the masters are powered on for they are in the same power
1880 		 * domain. Master can preserve its context for clock stop0, so
1881 		 * there is no need to clear slave status and reset bus.
1882 		 */
1883 		clock_stop0 = sdw_cdns_is_clock_stop(&sdw->cdns);
1884 
1885 		if (!clock_stop0) {
1886 
1887 			/*
1888 			 * make sure all Slaves are tagged as UNATTACHED and
1889 			 * provide reason for reinitialization
1890 			 */
1891 
1892 			status = SDW_UNATTACH_REQUEST_MASTER_RESET;
1893 			sdw_clear_slave_status(bus, status);
1894 
1895 			ret = sdw_cdns_enable_interrupt(cdns, true);
1896 			if (ret < 0) {
1897 				dev_err(dev, "cannot enable interrupts during resume\n");
1898 				return ret;
1899 			}
1900 
1901 			/*
1902 			 * follow recommended programming flows to avoid
1903 			 * timeouts when gsync is enabled
1904 			 */
1905 			if (multi_link)
1906 				intel_shim_sync_arm(sdw);
1907 
1908 			/*
1909 			 * Re-initialize the IP since it was powered-off
1910 			 */
1911 			sdw_cdns_init(&sdw->cdns);
1912 
1913 		} else {
1914 			ret = sdw_cdns_enable_interrupt(cdns, true);
1915 			if (ret < 0) {
1916 				dev_err(dev, "cannot enable interrupts during resume\n");
1917 				return ret;
1918 			}
1919 		}
1920 
1921 		ret = sdw_cdns_clock_restart(cdns, !clock_stop0);
1922 		if (ret < 0) {
1923 			dev_err(dev, "unable to restart clock during resume\n");
1924 			return ret;
1925 		}
1926 
1927 		if (!clock_stop0) {
1928 			ret = sdw_cdns_exit_reset(cdns);
1929 			if (ret < 0) {
1930 				dev_err(dev, "unable to exit bus reset sequence during resume\n");
1931 				return ret;
1932 			}
1933 
1934 			if (multi_link) {
1935 				ret = intel_shim_sync_go(sdw);
1936 				if (ret < 0) {
1937 					dev_err(sdw->cdns.dev, "sync go failed during resume\n");
1938 					return ret;
1939 				}
1940 			}
1941 		}
1942 	} else if (!clock_stop_quirks) {
1943 
1944 		clock_stop0 = sdw_cdns_is_clock_stop(&sdw->cdns);
1945 		if (!clock_stop0)
1946 			dev_err(dev, "%s invalid configuration, clock was not stopped", __func__);
1947 
1948 		ret = intel_init(sdw);
1949 		if (ret) {
1950 			dev_err(dev, "%s failed: %d\n", __func__, ret);
1951 			return ret;
1952 		}
1953 
1954 		ret = sdw_cdns_enable_interrupt(cdns, true);
1955 		if (ret < 0) {
1956 			dev_err(dev, "cannot enable interrupts during resume\n");
1957 			return ret;
1958 		}
1959 
1960 		ret = sdw_cdns_clock_restart(cdns, false);
1961 		if (ret < 0) {
1962 			dev_err(dev, "unable to resume master during resume\n");
1963 			return ret;
1964 		}
1965 	} else {
1966 		dev_err(dev, "%s clock_stop_quirks %x unsupported\n",
1967 			__func__, clock_stop_quirks);
1968 		ret = -EINVAL;
1969 	}
1970 
1971 	return ret;
1972 }
1973 
1974 static const struct dev_pm_ops intel_pm = {
1975 	SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1976 	SET_RUNTIME_PM_OPS(intel_suspend_runtime, intel_resume_runtime, NULL)
1977 };
1978 
1979 static struct platform_driver sdw_intel_drv = {
1980 	.probe = intel_master_probe,
1981 	.remove = intel_master_remove,
1982 	.driver = {
1983 		.name = "intel-sdw",
1984 		.pm = &intel_pm,
1985 	}
1986 };
1987 
1988 module_platform_driver(sdw_intel_drv);
1989 
1990 MODULE_LICENSE("Dual BSD/GPL");
1991 MODULE_ALIAS("platform:intel-sdw");
1992 MODULE_DESCRIPTION("Intel Soundwire Master Driver");
1993