xref: /linux/drivers/soundwire/intel.c (revision 249ebf3f65f8530beb2cbfb91bff1d83ba88d23c)
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 // Copyright(c) 2015-17 Intel Corporation.
3 
4 /*
5  * Soundwire Intel Master Driver
6  */
7 
8 #include <linux/acpi.h>
9 #include <linux/debugfs.h>
10 #include <linux/delay.h>
11 #include <linux/io.h>
12 #include <sound/pcm_params.h>
13 #include <linux/pm_runtime.h>
14 #include <sound/soc.h>
15 #include <linux/soundwire/sdw_registers.h>
16 #include <linux/soundwire/sdw.h>
17 #include <linux/soundwire/sdw_intel.h>
18 #include "cadence_master.h"
19 #include "bus.h"
20 #include "intel.h"
21 
22 static int intel_wait_bit(void __iomem *base, int offset, u32 mask, u32 target)
23 {
24 	int timeout = 10;
25 	u32 reg_read;
26 
27 	do {
28 		reg_read = readl(base + offset);
29 		if ((reg_read & mask) == target)
30 			return 0;
31 
32 		timeout--;
33 		usleep_range(50, 100);
34 	} while (timeout != 0);
35 
36 	return -EAGAIN;
37 }
38 
39 static int intel_clear_bit(void __iomem *base, int offset, u32 value, u32 mask)
40 {
41 	writel(value, base + offset);
42 	return intel_wait_bit(base, offset, mask, 0);
43 }
44 
45 static int intel_set_bit(void __iomem *base, int offset, u32 value, u32 mask)
46 {
47 	writel(value, base + offset);
48 	return intel_wait_bit(base, offset, mask, mask);
49 }
50 
51 /*
52  * debugfs
53  */
54 #ifdef CONFIG_DEBUG_FS
55 
56 #define RD_BUF (2 * PAGE_SIZE)
57 
58 static ssize_t intel_sprintf(void __iomem *mem, bool l,
59 			     char *buf, size_t pos, unsigned int reg)
60 {
61 	int value;
62 
63 	if (l)
64 		value = intel_readl(mem, reg);
65 	else
66 		value = intel_readw(mem, reg);
67 
68 	return scnprintf(buf + pos, RD_BUF - pos, "%4x\t%4x\n", reg, value);
69 }
70 
71 static int intel_reg_show(struct seq_file *s_file, void *data)
72 {
73 	struct sdw_intel *sdw = s_file->private;
74 	void __iomem *s = sdw->link_res->shim;
75 	void __iomem *a = sdw->link_res->alh;
76 	char *buf;
77 	ssize_t ret;
78 	int i, j;
79 	unsigned int links, reg;
80 
81 	buf = kzalloc(RD_BUF, GFP_KERNEL);
82 	if (!buf)
83 		return -ENOMEM;
84 
85 	links = intel_readl(s, SDW_SHIM_LCAP) & SDW_SHIM_LCAP_LCOUNT_MASK;
86 
87 	ret = scnprintf(buf, RD_BUF, "Register  Value\n");
88 	ret += scnprintf(buf + ret, RD_BUF - ret, "\nShim\n");
89 
90 	for (i = 0; i < links; i++) {
91 		reg = SDW_SHIM_LCAP + i * 4;
92 		ret += intel_sprintf(s, true, buf, ret, reg);
93 	}
94 
95 	for (i = 0; i < links; i++) {
96 		ret += scnprintf(buf + ret, RD_BUF - ret, "\nLink%d\n", i);
97 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLSCAP(i));
98 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS0CM(i));
99 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS1CM(i));
100 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS2CM(i));
101 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS3CM(i));
102 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_PCMSCAP(i));
103 
104 		ret += scnprintf(buf + ret, RD_BUF - ret, "\n PCMSyCH registers\n");
105 
106 		/*
107 		 * the value 10 is the number of PDIs. We will need a
108 		 * cleanup to remove hard-coded Intel configurations
109 		 * from cadence_master.c
110 		 */
111 		for (j = 0; j < 10; j++) {
112 			ret += intel_sprintf(s, false, buf, ret,
113 					SDW_SHIM_PCMSYCHM(i, j));
114 			ret += intel_sprintf(s, false, buf, ret,
115 					SDW_SHIM_PCMSYCHC(i, j));
116 		}
117 		ret += scnprintf(buf + ret, RD_BUF - ret, "\n IOCTL, CTMCTL\n");
118 
119 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_IOCTL(i));
120 		ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTMCTL(i));
121 	}
122 
123 	ret += scnprintf(buf + ret, RD_BUF - ret, "\nWake registers\n");
124 	ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_WAKEEN);
125 	ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_WAKESTS);
126 
127 	ret += scnprintf(buf + ret, RD_BUF - ret, "\nALH STRMzCFG\n");
128 	for (i = 0; i < SDW_ALH_NUM_STREAMS; i++)
129 		ret += intel_sprintf(a, true, buf, ret, SDW_ALH_STRMZCFG(i));
130 
131 	seq_printf(s_file, "%s", buf);
132 	kfree(buf);
133 
134 	return 0;
135 }
136 DEFINE_SHOW_ATTRIBUTE(intel_reg);
137 
138 static int intel_set_m_datamode(void *data, u64 value)
139 {
140 	struct sdw_intel *sdw = data;
141 	struct sdw_bus *bus = &sdw->cdns.bus;
142 
143 	if (value > SDW_PORT_DATA_MODE_STATIC_1)
144 		return -EINVAL;
145 
146 	/* Userspace changed the hardware state behind the kernel's back */
147 	add_taint(TAINT_USER, LOCKDEP_STILL_OK);
148 
149 	bus->params.m_data_mode = value;
150 
151 	return 0;
152 }
153 DEFINE_DEBUGFS_ATTRIBUTE(intel_set_m_datamode_fops, NULL,
154 			 intel_set_m_datamode, "%llu\n");
155 
156 static int intel_set_s_datamode(void *data, u64 value)
157 {
158 	struct sdw_intel *sdw = data;
159 	struct sdw_bus *bus = &sdw->cdns.bus;
160 
161 	if (value > SDW_PORT_DATA_MODE_STATIC_1)
162 		return -EINVAL;
163 
164 	/* Userspace changed the hardware state behind the kernel's back */
165 	add_taint(TAINT_USER, LOCKDEP_STILL_OK);
166 
167 	bus->params.s_data_mode = value;
168 
169 	return 0;
170 }
171 DEFINE_DEBUGFS_ATTRIBUTE(intel_set_s_datamode_fops, NULL,
172 			 intel_set_s_datamode, "%llu\n");
173 
174 static void intel_debugfs_init(struct sdw_intel *sdw)
175 {
176 	struct dentry *root = sdw->cdns.bus.debugfs;
177 
178 	if (!root)
179 		return;
180 
181 	sdw->debugfs = debugfs_create_dir("intel-sdw", root);
182 
183 	debugfs_create_file("intel-registers", 0400, sdw->debugfs, sdw,
184 			    &intel_reg_fops);
185 
186 	debugfs_create_file("intel-m-datamode", 0200, sdw->debugfs, sdw,
187 			    &intel_set_m_datamode_fops);
188 
189 	debugfs_create_file("intel-s-datamode", 0200, sdw->debugfs, sdw,
190 			    &intel_set_s_datamode_fops);
191 
192 	sdw_cdns_debugfs_init(&sdw->cdns, sdw->debugfs);
193 }
194 
195 static void intel_debugfs_exit(struct sdw_intel *sdw)
196 {
197 	debugfs_remove_recursive(sdw->debugfs);
198 }
199 #else
200 static void intel_debugfs_init(struct sdw_intel *sdw) {}
201 static void intel_debugfs_exit(struct sdw_intel *sdw) {}
202 #endif /* CONFIG_DEBUG_FS */
203 
204 /*
205  * shim ops
206  */
207 /* this needs to be called with shim_lock */
208 static void intel_shim_glue_to_master_ip(struct sdw_intel *sdw)
209 {
210 	void __iomem *shim = sdw->link_res->shim;
211 	unsigned int link_id = sdw->instance;
212 	u16 ioctl;
213 
214 	/* Switch to MIP from Glue logic */
215 	ioctl = intel_readw(shim,  SDW_SHIM_IOCTL(link_id));
216 
217 	ioctl &= ~(SDW_SHIM_IOCTL_DOE);
218 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
219 	usleep_range(10, 15);
220 
221 	ioctl &= ~(SDW_SHIM_IOCTL_DO);
222 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
223 	usleep_range(10, 15);
224 
225 	ioctl |= (SDW_SHIM_IOCTL_MIF);
226 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
227 	usleep_range(10, 15);
228 
229 	ioctl &= ~(SDW_SHIM_IOCTL_BKE);
230 	ioctl &= ~(SDW_SHIM_IOCTL_COE);
231 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
232 	usleep_range(10, 15);
233 
234 	/* at this point Master IP has full control of the I/Os */
235 }
236 
237 /* this needs to be called with shim_lock */
238 static void intel_shim_master_ip_to_glue(struct sdw_intel *sdw)
239 {
240 	unsigned int link_id = sdw->instance;
241 	void __iomem *shim = sdw->link_res->shim;
242 	u16 ioctl;
243 
244 	/* Glue logic */
245 	ioctl = intel_readw(shim, SDW_SHIM_IOCTL(link_id));
246 	ioctl |= SDW_SHIM_IOCTL_BKE;
247 	ioctl |= SDW_SHIM_IOCTL_COE;
248 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
249 	usleep_range(10, 15);
250 
251 	ioctl &= ~(SDW_SHIM_IOCTL_MIF);
252 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
253 	usleep_range(10, 15);
254 
255 	/* at this point Integration Glue has full control of the I/Os */
256 }
257 
258 /* this needs to be called with shim_lock */
259 static void intel_shim_init(struct sdw_intel *sdw)
260 {
261 	void __iomem *shim = sdw->link_res->shim;
262 	unsigned int link_id = sdw->instance;
263 	u16 ioctl = 0, act;
264 
265 	/* Initialize Shim */
266 	ioctl |= SDW_SHIM_IOCTL_BKE;
267 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
268 	usleep_range(10, 15);
269 
270 	ioctl |= SDW_SHIM_IOCTL_WPDD;
271 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
272 	usleep_range(10, 15);
273 
274 	ioctl |= SDW_SHIM_IOCTL_DO;
275 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
276 	usleep_range(10, 15);
277 
278 	ioctl |= SDW_SHIM_IOCTL_DOE;
279 	intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
280 	usleep_range(10, 15);
281 
282 	intel_shim_glue_to_master_ip(sdw);
283 
284 	act = intel_readw(shim, SDW_SHIM_CTMCTL(link_id));
285 	u16p_replace_bits(&act, 0x1, SDW_SHIM_CTMCTL_DOAIS);
286 	act |= SDW_SHIM_CTMCTL_DACTQE;
287 	act |= SDW_SHIM_CTMCTL_DODS;
288 	intel_writew(shim, SDW_SHIM_CTMCTL(link_id), act);
289 	usleep_range(10, 15);
290 }
291 
292 static int intel_shim_check_wake(struct sdw_intel *sdw)
293 {
294 	void __iomem *shim;
295 	u16 wake_sts;
296 
297 	shim = sdw->link_res->shim;
298 	wake_sts = intel_readw(shim, SDW_SHIM_WAKESTS);
299 
300 	return wake_sts & BIT(sdw->instance);
301 }
302 
303 static void intel_shim_wake(struct sdw_intel *sdw, bool wake_enable)
304 {
305 	void __iomem *shim = sdw->link_res->shim;
306 	unsigned int link_id = sdw->instance;
307 	u16 wake_en, wake_sts;
308 
309 	mutex_lock(sdw->link_res->shim_lock);
310 	wake_en = intel_readw(shim, SDW_SHIM_WAKEEN);
311 
312 	if (wake_enable) {
313 		/* Enable the wakeup */
314 		wake_en |= (SDW_SHIM_WAKEEN_ENABLE << link_id);
315 		intel_writew(shim, SDW_SHIM_WAKEEN, wake_en);
316 	} else {
317 		/* Disable the wake up interrupt */
318 		wake_en &= ~(SDW_SHIM_WAKEEN_ENABLE << link_id);
319 		intel_writew(shim, SDW_SHIM_WAKEEN, wake_en);
320 
321 		/* Clear wake status */
322 		wake_sts = intel_readw(shim, SDW_SHIM_WAKESTS);
323 		wake_sts |= (SDW_SHIM_WAKESTS_STATUS << link_id);
324 		intel_writew(shim, SDW_SHIM_WAKESTS, wake_sts);
325 	}
326 	mutex_unlock(sdw->link_res->shim_lock);
327 }
328 
329 static bool intel_check_cmdsync_unlocked(struct sdw_intel *sdw)
330 {
331 	void __iomem *shim = sdw->link_res->shim;
332 	int sync_reg;
333 
334 	sync_reg = intel_readl(shim, SDW_SHIM_SYNC);
335 	return !!(sync_reg & SDW_SHIM_SYNC_CMDSYNC_MASK);
336 }
337 
338 static int intel_link_power_up(struct sdw_intel *sdw)
339 {
340 	unsigned int link_id = sdw->instance;
341 	void __iomem *shim = sdw->link_res->shim;
342 	u32 *shim_mask = sdw->link_res->shim_mask;
343 	struct sdw_bus *bus = &sdw->cdns.bus;
344 	struct sdw_master_prop *prop = &bus->prop;
345 	u32 spa_mask, cpa_mask;
346 	u32 link_control;
347 	int ret = 0;
348 	u32 clock_source;
349 	u32 syncprd;
350 	u32 sync_reg;
351 	bool lcap_mlcs;
352 
353 	mutex_lock(sdw->link_res->shim_lock);
354 
355 	/*
356 	 * The hardware relies on an internal counter, typically 4kHz,
357 	 * to generate the SoundWire SSP - which defines a 'safe'
358 	 * synchronization point between commands and audio transport
359 	 * and allows for multi link synchronization. The SYNCPRD value
360 	 * is only dependent on the oscillator clock provided to
361 	 * the IP, so adjust based on _DSD properties reported in DSDT
362 	 * tables. The values reported are based on either 24MHz
363 	 * (CNL/CML) or 38.4 MHz (ICL/TGL+). On MeteorLake additional
364 	 * frequencies are available with the MLCS clock source selection.
365 	 */
366 	lcap_mlcs = intel_readl(shim, SDW_SHIM_LCAP) & SDW_SHIM_LCAP_MLCS_MASK;
367 
368 	if (prop->mclk_freq % 6000000) {
369 		if (prop->mclk_freq % 2400000) {
370 			if (lcap_mlcs) {
371 				syncprd = SDW_SHIM_SYNC_SYNCPRD_VAL_24_576;
372 				clock_source = SDW_SHIM_MLCS_CARDINAL_CLK;
373 			} else {
374 				dev_err(sdw->cdns.dev, "%s: invalid clock configuration, mclk %d lcap_mlcs %d\n",
375 					__func__, prop->mclk_freq, lcap_mlcs);
376 				ret = -EINVAL;
377 				goto out;
378 			}
379 		} else {
380 			syncprd = SDW_SHIM_SYNC_SYNCPRD_VAL_38_4;
381 			clock_source = SDW_SHIM_MLCS_XTAL_CLK;
382 		}
383 	} else {
384 		if (lcap_mlcs) {
385 			syncprd = SDW_SHIM_SYNC_SYNCPRD_VAL_96;
386 			clock_source = SDW_SHIM_MLCS_AUDIO_PLL_CLK;
387 		} else {
388 			syncprd = SDW_SHIM_SYNC_SYNCPRD_VAL_24;
389 			clock_source = SDW_SHIM_MLCS_XTAL_CLK;
390 		}
391 	}
392 
393 	if (!*shim_mask) {
394 		dev_dbg(sdw->cdns.dev, "powering up all links\n");
395 
396 		/* we first need to program the SyncPRD/CPU registers */
397 		dev_dbg(sdw->cdns.dev,
398 			"first link up, programming SYNCPRD\n");
399 
400 		/* set SyncPRD period */
401 		sync_reg = intel_readl(shim, SDW_SHIM_SYNC);
402 		u32p_replace_bits(&sync_reg, syncprd, SDW_SHIM_SYNC_SYNCPRD);
403 
404 		/* Set SyncCPU bit */
405 		sync_reg |= SDW_SHIM_SYNC_SYNCCPU;
406 		intel_writel(shim, SDW_SHIM_SYNC, sync_reg);
407 
408 		/* Link power up sequence */
409 		link_control = intel_readl(shim, SDW_SHIM_LCTL);
410 
411 		/* only power-up enabled links */
412 		spa_mask = FIELD_PREP(SDW_SHIM_LCTL_SPA_MASK, sdw->link_res->link_mask);
413 		cpa_mask = FIELD_PREP(SDW_SHIM_LCTL_CPA_MASK, sdw->link_res->link_mask);
414 
415 		link_control |=  spa_mask;
416 
417 		ret = intel_set_bit(shim, SDW_SHIM_LCTL, link_control, cpa_mask);
418 		if (ret < 0) {
419 			dev_err(sdw->cdns.dev, "Failed to power up link: %d\n", ret);
420 			goto out;
421 		}
422 
423 		/* SyncCPU will change once link is active */
424 		ret = intel_wait_bit(shim, SDW_SHIM_SYNC,
425 				     SDW_SHIM_SYNC_SYNCCPU, 0);
426 		if (ret < 0) {
427 			dev_err(sdw->cdns.dev,
428 				"Failed to set SHIM_SYNC: %d\n", ret);
429 			goto out;
430 		}
431 
432 		/* update link clock if needed */
433 		if (lcap_mlcs) {
434 			link_control = intel_readl(shim, SDW_SHIM_LCTL);
435 			u32p_replace_bits(&link_control, clock_source, SDW_SHIM_LCTL_MLCS_MASK);
436 			intel_writel(shim, SDW_SHIM_LCTL, link_control);
437 		}
438 	}
439 
440 	*shim_mask |= BIT(link_id);
441 
442 	sdw->cdns.link_up = true;
443 
444 	intel_shim_init(sdw);
445 
446 out:
447 	mutex_unlock(sdw->link_res->shim_lock);
448 
449 	return ret;
450 }
451 
452 static int intel_link_power_down(struct sdw_intel *sdw)
453 {
454 	u32 link_control, spa_mask, cpa_mask;
455 	unsigned int link_id = sdw->instance;
456 	void __iomem *shim = sdw->link_res->shim;
457 	u32 *shim_mask = sdw->link_res->shim_mask;
458 	int ret = 0;
459 
460 	mutex_lock(sdw->link_res->shim_lock);
461 
462 	if (!(*shim_mask & BIT(link_id)))
463 		dev_err(sdw->cdns.dev,
464 			"%s: Unbalanced power-up/down calls\n", __func__);
465 
466 	sdw->cdns.link_up = false;
467 
468 	intel_shim_master_ip_to_glue(sdw);
469 
470 	*shim_mask &= ~BIT(link_id);
471 
472 	if (!*shim_mask) {
473 
474 		dev_dbg(sdw->cdns.dev, "powering down all links\n");
475 
476 		/* Link power down sequence */
477 		link_control = intel_readl(shim, SDW_SHIM_LCTL);
478 
479 		/* only power-down enabled links */
480 		spa_mask = FIELD_PREP(SDW_SHIM_LCTL_SPA_MASK, ~sdw->link_res->link_mask);
481 		cpa_mask = FIELD_PREP(SDW_SHIM_LCTL_CPA_MASK, sdw->link_res->link_mask);
482 
483 		link_control &=  spa_mask;
484 
485 		ret = intel_clear_bit(shim, SDW_SHIM_LCTL, link_control, cpa_mask);
486 		if (ret < 0) {
487 			dev_err(sdw->cdns.dev, "%s: could not power down link\n", __func__);
488 
489 			/*
490 			 * we leave the sdw->cdns.link_up flag as false since we've disabled
491 			 * the link at this point and cannot handle interrupts any longer.
492 			 */
493 		}
494 	}
495 
496 	mutex_unlock(sdw->link_res->shim_lock);
497 
498 	return ret;
499 }
500 
501 static void intel_shim_sync_arm(struct sdw_intel *sdw)
502 {
503 	void __iomem *shim = sdw->link_res->shim;
504 	u32 sync_reg;
505 
506 	mutex_lock(sdw->link_res->shim_lock);
507 
508 	/* update SYNC register */
509 	sync_reg = intel_readl(shim, SDW_SHIM_SYNC);
510 	sync_reg |= (SDW_SHIM_SYNC_CMDSYNC << sdw->instance);
511 	intel_writel(shim, SDW_SHIM_SYNC, sync_reg);
512 
513 	mutex_unlock(sdw->link_res->shim_lock);
514 }
515 
516 static int intel_shim_sync_go_unlocked(struct sdw_intel *sdw)
517 {
518 	void __iomem *shim = sdw->link_res->shim;
519 	u32 sync_reg;
520 
521 	/* Read SYNC register */
522 	sync_reg = intel_readl(shim, SDW_SHIM_SYNC);
523 
524 	/*
525 	 * Set SyncGO bit to synchronously trigger a bank switch for
526 	 * all the masters. A write to SYNCGO bit clears CMDSYNC bit for all
527 	 * the Masters.
528 	 */
529 	sync_reg |= SDW_SHIM_SYNC_SYNCGO;
530 
531 	intel_writel(shim, SDW_SHIM_SYNC, sync_reg);
532 
533 	return 0;
534 }
535 
536 static int intel_shim_sync_go(struct sdw_intel *sdw)
537 {
538 	int ret;
539 
540 	mutex_lock(sdw->link_res->shim_lock);
541 
542 	ret = intel_shim_sync_go_unlocked(sdw);
543 
544 	mutex_unlock(sdw->link_res->shim_lock);
545 
546 	return ret;
547 }
548 
549 /*
550  * PDI routines
551  */
552 static void intel_pdi_init(struct sdw_intel *sdw,
553 			   struct sdw_cdns_stream_config *config)
554 {
555 	void __iomem *shim = sdw->link_res->shim;
556 	unsigned int link_id = sdw->instance;
557 	int pcm_cap;
558 
559 	/* PCM Stream Capability */
560 	pcm_cap = intel_readw(shim, SDW_SHIM_PCMSCAP(link_id));
561 
562 	config->pcm_bd = FIELD_GET(SDW_SHIM_PCMSCAP_BSS, pcm_cap);
563 	config->pcm_in = FIELD_GET(SDW_SHIM_PCMSCAP_ISS, pcm_cap);
564 	config->pcm_out = FIELD_GET(SDW_SHIM_PCMSCAP_OSS, pcm_cap);
565 
566 	dev_dbg(sdw->cdns.dev, "PCM cap bd:%d in:%d out:%d\n",
567 		config->pcm_bd, config->pcm_in, config->pcm_out);
568 }
569 
570 static int
571 intel_pdi_get_ch_cap(struct sdw_intel *sdw, unsigned int pdi_num)
572 {
573 	void __iomem *shim = sdw->link_res->shim;
574 	unsigned int link_id = sdw->instance;
575 	int count;
576 
577 	count = intel_readw(shim, SDW_SHIM_PCMSYCHC(link_id, pdi_num));
578 
579 	/*
580 	 * WORKAROUND: on all existing Intel controllers, pdi
581 	 * number 2 reports channel count as 1 even though it
582 	 * supports 8 channels. Performing hardcoding for pdi
583 	 * number 2.
584 	 */
585 	if (pdi_num == 2)
586 		count = 7;
587 
588 	/* zero based values for channel count in register */
589 	count++;
590 
591 	return count;
592 }
593 
594 static int intel_pdi_get_ch_update(struct sdw_intel *sdw,
595 				   struct sdw_cdns_pdi *pdi,
596 				   unsigned int num_pdi,
597 				   unsigned int *num_ch)
598 {
599 	int i, ch_count = 0;
600 
601 	for (i = 0; i < num_pdi; i++) {
602 		pdi->ch_count = intel_pdi_get_ch_cap(sdw, pdi->num);
603 		ch_count += pdi->ch_count;
604 		pdi++;
605 	}
606 
607 	*num_ch = ch_count;
608 	return 0;
609 }
610 
611 static int intel_pdi_stream_ch_update(struct sdw_intel *sdw,
612 				      struct sdw_cdns_streams *stream)
613 {
614 	intel_pdi_get_ch_update(sdw, stream->bd, stream->num_bd,
615 				&stream->num_ch_bd);
616 
617 	intel_pdi_get_ch_update(sdw, stream->in, stream->num_in,
618 				&stream->num_ch_in);
619 
620 	intel_pdi_get_ch_update(sdw, stream->out, stream->num_out,
621 				&stream->num_ch_out);
622 
623 	return 0;
624 }
625 
626 static void
627 intel_pdi_shim_configure(struct sdw_intel *sdw, struct sdw_cdns_pdi *pdi)
628 {
629 	void __iomem *shim = sdw->link_res->shim;
630 	unsigned int link_id = sdw->instance;
631 	int pdi_conf = 0;
632 
633 	/* the Bulk and PCM streams are not contiguous */
634 	pdi->intel_alh_id = (link_id * 16) + pdi->num + 3;
635 	if (pdi->num >= 2)
636 		pdi->intel_alh_id += 2;
637 
638 	/*
639 	 * Program stream parameters to stream SHIM register
640 	 * This is applicable for PCM stream only.
641 	 */
642 	if (pdi->type != SDW_STREAM_PCM)
643 		return;
644 
645 	if (pdi->dir == SDW_DATA_DIR_RX)
646 		pdi_conf |= SDW_SHIM_PCMSYCM_DIR;
647 	else
648 		pdi_conf &= ~(SDW_SHIM_PCMSYCM_DIR);
649 
650 	u32p_replace_bits(&pdi_conf, pdi->intel_alh_id, SDW_SHIM_PCMSYCM_STREAM);
651 	u32p_replace_bits(&pdi_conf, pdi->l_ch_num, SDW_SHIM_PCMSYCM_LCHN);
652 	u32p_replace_bits(&pdi_conf, pdi->h_ch_num, SDW_SHIM_PCMSYCM_HCHN);
653 
654 	intel_writew(shim, SDW_SHIM_PCMSYCHM(link_id, pdi->num), pdi_conf);
655 }
656 
657 static void
658 intel_pdi_alh_configure(struct sdw_intel *sdw, struct sdw_cdns_pdi *pdi)
659 {
660 	void __iomem *alh = sdw->link_res->alh;
661 	unsigned int link_id = sdw->instance;
662 	unsigned int conf;
663 
664 	/* the Bulk and PCM streams are not contiguous */
665 	pdi->intel_alh_id = (link_id * 16) + pdi->num + 3;
666 	if (pdi->num >= 2)
667 		pdi->intel_alh_id += 2;
668 
669 	/* Program Stream config ALH register */
670 	conf = intel_readl(alh, SDW_ALH_STRMZCFG(pdi->intel_alh_id));
671 
672 	u32p_replace_bits(&conf, SDW_ALH_STRMZCFG_DMAT_VAL, SDW_ALH_STRMZCFG_DMAT);
673 	u32p_replace_bits(&conf, pdi->ch_count - 1, SDW_ALH_STRMZCFG_CHN);
674 
675 	intel_writel(alh, SDW_ALH_STRMZCFG(pdi->intel_alh_id), conf);
676 }
677 
678 static int intel_params_stream(struct sdw_intel *sdw,
679 			       struct snd_pcm_substream *substream,
680 			       struct snd_soc_dai *dai,
681 			       struct snd_pcm_hw_params *hw_params,
682 			       int link_id, int alh_stream_id)
683 {
684 	struct sdw_intel_link_res *res = sdw->link_res;
685 	struct sdw_intel_stream_params_data params_data;
686 
687 	params_data.substream = substream;
688 	params_data.dai = dai;
689 	params_data.hw_params = hw_params;
690 	params_data.link_id = link_id;
691 	params_data.alh_stream_id = alh_stream_id;
692 
693 	if (res->ops && res->ops->params_stream && res->dev)
694 		return res->ops->params_stream(res->dev,
695 					       &params_data);
696 	return -EIO;
697 }
698 
699 /*
700  * DAI routines
701  */
702 
703 static int intel_free_stream(struct sdw_intel *sdw,
704 			     struct snd_pcm_substream *substream,
705 			     struct snd_soc_dai *dai,
706 			     int link_id)
707 {
708 	struct sdw_intel_link_res *res = sdw->link_res;
709 	struct sdw_intel_stream_free_data free_data;
710 
711 	free_data.substream = substream;
712 	free_data.dai = dai;
713 	free_data.link_id = link_id;
714 
715 	if (res->ops && res->ops->free_stream && res->dev)
716 		return res->ops->free_stream(res->dev, &free_data);
717 
718 	return 0;
719 }
720 
721 static int intel_hw_params(struct snd_pcm_substream *substream,
722 			   struct snd_pcm_hw_params *params,
723 			   struct snd_soc_dai *dai)
724 {
725 	struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
726 	struct sdw_intel *sdw = cdns_to_intel(cdns);
727 	struct sdw_cdns_dai_runtime *dai_runtime;
728 	struct sdw_cdns_pdi *pdi;
729 	struct sdw_stream_config sconfig;
730 	struct sdw_port_config *pconfig;
731 	int ch, dir;
732 	int ret;
733 
734 	dai_runtime = cdns->dai_runtime_array[dai->id];
735 	if (!dai_runtime)
736 		return -EIO;
737 
738 	ch = params_channels(params);
739 	if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
740 		dir = SDW_DATA_DIR_RX;
741 	else
742 		dir = SDW_DATA_DIR_TX;
743 
744 	pdi = sdw_cdns_alloc_pdi(cdns, &cdns->pcm, ch, dir, dai->id);
745 
746 	if (!pdi) {
747 		ret = -EINVAL;
748 		goto error;
749 	}
750 
751 	/* do run-time configurations for SHIM, ALH and PDI/PORT */
752 	intel_pdi_shim_configure(sdw, pdi);
753 	intel_pdi_alh_configure(sdw, pdi);
754 	sdw_cdns_config_stream(cdns, ch, dir, pdi);
755 
756 	/* store pdi and hw_params, may be needed in prepare step */
757 	dai_runtime->paused = false;
758 	dai_runtime->suspended = false;
759 	dai_runtime->pdi = pdi;
760 
761 	/* Inform DSP about PDI stream number */
762 	ret = intel_params_stream(sdw, substream, dai, params,
763 				  sdw->instance,
764 				  pdi->intel_alh_id);
765 	if (ret)
766 		goto error;
767 
768 	sconfig.direction = dir;
769 	sconfig.ch_count = ch;
770 	sconfig.frame_rate = params_rate(params);
771 	sconfig.type = dai_runtime->stream_type;
772 
773 	sconfig.bps = snd_pcm_format_width(params_format(params));
774 
775 	/* Port configuration */
776 	pconfig = kzalloc(sizeof(*pconfig), GFP_KERNEL);
777 	if (!pconfig) {
778 		ret =  -ENOMEM;
779 		goto error;
780 	}
781 
782 	pconfig->num = pdi->num;
783 	pconfig->ch_mask = (1 << ch) - 1;
784 
785 	ret = sdw_stream_add_master(&cdns->bus, &sconfig,
786 				    pconfig, 1, dai_runtime->stream);
787 	if (ret)
788 		dev_err(cdns->dev, "add master to stream failed:%d\n", ret);
789 
790 	kfree(pconfig);
791 error:
792 	return ret;
793 }
794 
795 static int intel_prepare(struct snd_pcm_substream *substream,
796 			 struct snd_soc_dai *dai)
797 {
798 	struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
799 	struct sdw_intel *sdw = cdns_to_intel(cdns);
800 	struct sdw_cdns_dai_runtime *dai_runtime;
801 	int ch, dir;
802 	int ret = 0;
803 
804 	dai_runtime = cdns->dai_runtime_array[dai->id];
805 	if (!dai_runtime) {
806 		dev_err(dai->dev, "failed to get dai runtime in %s\n",
807 			__func__);
808 		return -EIO;
809 	}
810 
811 	if (dai_runtime->suspended) {
812 		struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
813 		struct snd_pcm_hw_params *hw_params;
814 
815 		hw_params = &rtd->dpcm[substream->stream].hw_params;
816 
817 		dai_runtime->suspended = false;
818 
819 		/*
820 		 * .prepare() is called after system resume, where we
821 		 * need to reinitialize the SHIM/ALH/Cadence IP.
822 		 * .prepare() is also called to deal with underflows,
823 		 * but in those cases we cannot touch ALH/SHIM
824 		 * registers
825 		 */
826 
827 		/* configure stream */
828 		ch = params_channels(hw_params);
829 		if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
830 			dir = SDW_DATA_DIR_RX;
831 		else
832 			dir = SDW_DATA_DIR_TX;
833 
834 		intel_pdi_shim_configure(sdw, dai_runtime->pdi);
835 		intel_pdi_alh_configure(sdw, dai_runtime->pdi);
836 		sdw_cdns_config_stream(cdns, ch, dir, dai_runtime->pdi);
837 
838 		/* Inform DSP about PDI stream number */
839 		ret = intel_params_stream(sdw, substream, dai,
840 					  hw_params,
841 					  sdw->instance,
842 					  dai_runtime->pdi->intel_alh_id);
843 	}
844 
845 	return ret;
846 }
847 
848 static int
849 intel_hw_free(struct snd_pcm_substream *substream, struct snd_soc_dai *dai)
850 {
851 	struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
852 	struct sdw_intel *sdw = cdns_to_intel(cdns);
853 	struct sdw_cdns_dai_runtime *dai_runtime;
854 	int ret;
855 
856 	dai_runtime = cdns->dai_runtime_array[dai->id];
857 	if (!dai_runtime)
858 		return -EIO;
859 
860 	/*
861 	 * The sdw stream state will transition to RELEASED when stream->
862 	 * master_list is empty. So the stream state will transition to
863 	 * DEPREPARED for the first cpu-dai and to RELEASED for the last
864 	 * cpu-dai.
865 	 */
866 	ret = sdw_stream_remove_master(&cdns->bus, dai_runtime->stream);
867 	if (ret < 0) {
868 		dev_err(dai->dev, "remove master from stream %s failed: %d\n",
869 			dai_runtime->stream->name, ret);
870 		return ret;
871 	}
872 
873 	ret = intel_free_stream(sdw, substream, dai, sdw->instance);
874 	if (ret < 0) {
875 		dev_err(dai->dev, "intel_free_stream: failed %d\n", ret);
876 		return ret;
877 	}
878 
879 	dai_runtime->pdi = NULL;
880 
881 	return 0;
882 }
883 
884 static int intel_pcm_set_sdw_stream(struct snd_soc_dai *dai,
885 				    void *stream, int direction)
886 {
887 	return cdns_set_sdw_stream(dai, stream, direction);
888 }
889 
890 static void *intel_get_sdw_stream(struct snd_soc_dai *dai,
891 				  int direction)
892 {
893 	struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
894 	struct sdw_cdns_dai_runtime *dai_runtime;
895 
896 	dai_runtime = cdns->dai_runtime_array[dai->id];
897 	if (!dai_runtime)
898 		return ERR_PTR(-EINVAL);
899 
900 	return dai_runtime->stream;
901 }
902 
903 static int intel_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai)
904 {
905 	struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
906 	struct sdw_cdns_dai_runtime *dai_runtime;
907 	int ret = 0;
908 
909 	dai_runtime = cdns->dai_runtime_array[dai->id];
910 	if (!dai_runtime) {
911 		dev_err(dai->dev, "failed to get dai runtime in %s\n",
912 			__func__);
913 		return -EIO;
914 	}
915 
916 	switch (cmd) {
917 	case SNDRV_PCM_TRIGGER_SUSPEND:
918 
919 		/*
920 		 * The .prepare callback is used to deal with xruns and resume operations.
921 		 * In the case of xruns, the DMAs and SHIM registers cannot be touched,
922 		 * but for resume operations the DMAs and SHIM registers need to be initialized.
923 		 * the .trigger callback is used to track the suspend case only.
924 		 */
925 
926 		dai_runtime->suspended = true;
927 
928 		break;
929 
930 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
931 		dai_runtime->paused = true;
932 		break;
933 	case SNDRV_PCM_TRIGGER_STOP:
934 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
935 		dai_runtime->paused = false;
936 		break;
937 	default:
938 		break;
939 	}
940 
941 	return ret;
942 }
943 
944 static int intel_component_probe(struct snd_soc_component *component)
945 {
946 	int ret;
947 
948 	/*
949 	 * make sure the device is pm_runtime_active before initiating
950 	 * bus transactions during the card registration.
951 	 * We use pm_runtime_resume() here, without taking a reference
952 	 * and releasing it immediately.
953 	 */
954 	ret = pm_runtime_resume(component->dev);
955 	if (ret < 0 && ret != -EACCES)
956 		return ret;
957 
958 	return 0;
959 }
960 
961 static int intel_component_dais_suspend(struct snd_soc_component *component)
962 {
963 	struct snd_soc_dai *dai;
964 
965 	/*
966 	 * In the corner case where a SUSPEND happens during a PAUSE, the ALSA core
967 	 * does not throw the TRIGGER_SUSPEND. This leaves the DAIs in an unbalanced state.
968 	 * Since the component suspend is called last, we can trap this corner case
969 	 * and force the DAIs to release their resources.
970 	 */
971 	for_each_component_dais(component, dai) {
972 		struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
973 		struct sdw_cdns_dai_runtime *dai_runtime;
974 
975 		dai_runtime = cdns->dai_runtime_array[dai->id];
976 
977 		if (!dai_runtime)
978 			continue;
979 
980 		if (dai_runtime->suspended)
981 			continue;
982 
983 		if (dai_runtime->paused)
984 			dai_runtime->suspended = true;
985 	}
986 
987 	return 0;
988 }
989 
990 static const struct snd_soc_dai_ops intel_pcm_dai_ops = {
991 	.hw_params = intel_hw_params,
992 	.prepare = intel_prepare,
993 	.hw_free = intel_hw_free,
994 	.trigger = intel_trigger,
995 	.set_stream = intel_pcm_set_sdw_stream,
996 	.get_stream = intel_get_sdw_stream,
997 };
998 
999 static const struct snd_soc_component_driver dai_component = {
1000 	.name			= "soundwire",
1001 	.probe			= intel_component_probe,
1002 	.suspend		= intel_component_dais_suspend,
1003 	.legacy_dai_naming	= 1,
1004 };
1005 
1006 static int intel_create_dai(struct sdw_cdns *cdns,
1007 			    struct snd_soc_dai_driver *dais,
1008 			    enum intel_pdi_type type,
1009 			    u32 num, u32 off, u32 max_ch)
1010 {
1011 	int i;
1012 
1013 	if (num == 0)
1014 		return 0;
1015 
1016 	for (i = off; i < (off + num); i++) {
1017 		dais[i].name = devm_kasprintf(cdns->dev, GFP_KERNEL,
1018 					      "SDW%d Pin%d",
1019 					      cdns->instance, i);
1020 		if (!dais[i].name)
1021 			return -ENOMEM;
1022 
1023 		if (type == INTEL_PDI_BD || type == INTEL_PDI_OUT) {
1024 			dais[i].playback.channels_min = 1;
1025 			dais[i].playback.channels_max = max_ch;
1026 		}
1027 
1028 		if (type == INTEL_PDI_BD || type == INTEL_PDI_IN) {
1029 			dais[i].capture.channels_min = 1;
1030 			dais[i].capture.channels_max = max_ch;
1031 		}
1032 
1033 		dais[i].ops = &intel_pcm_dai_ops;
1034 	}
1035 
1036 	return 0;
1037 }
1038 
1039 static int intel_register_dai(struct sdw_intel *sdw)
1040 {
1041 	struct sdw_cdns_dai_runtime **dai_runtime_array;
1042 	struct sdw_cdns_stream_config config;
1043 	struct sdw_cdns *cdns = &sdw->cdns;
1044 	struct sdw_cdns_streams *stream;
1045 	struct snd_soc_dai_driver *dais;
1046 	int num_dai, ret, off = 0;
1047 
1048 	/* Read the PDI config and initialize cadence PDI */
1049 	intel_pdi_init(sdw, &config);
1050 	ret = sdw_cdns_pdi_init(cdns, config);
1051 	if (ret)
1052 		return ret;
1053 
1054 	intel_pdi_stream_ch_update(sdw, &sdw->cdns.pcm);
1055 
1056 	/* DAIs are created based on total number of PDIs supported */
1057 	num_dai = cdns->pcm.num_pdi;
1058 
1059 	dai_runtime_array = devm_kcalloc(cdns->dev, num_dai,
1060 					 sizeof(struct sdw_cdns_dai_runtime *),
1061 					 GFP_KERNEL);
1062 	if (!dai_runtime_array)
1063 		return -ENOMEM;
1064 	cdns->dai_runtime_array = dai_runtime_array;
1065 
1066 	dais = devm_kcalloc(cdns->dev, num_dai, sizeof(*dais), GFP_KERNEL);
1067 	if (!dais)
1068 		return -ENOMEM;
1069 
1070 	/* Create PCM DAIs */
1071 	stream = &cdns->pcm;
1072 
1073 	ret = intel_create_dai(cdns, dais, INTEL_PDI_IN, cdns->pcm.num_in,
1074 			       off, stream->num_ch_in);
1075 	if (ret)
1076 		return ret;
1077 
1078 	off += cdns->pcm.num_in;
1079 	ret = intel_create_dai(cdns, dais, INTEL_PDI_OUT, cdns->pcm.num_out,
1080 			       off, stream->num_ch_out);
1081 	if (ret)
1082 		return ret;
1083 
1084 	off += cdns->pcm.num_out;
1085 	ret = intel_create_dai(cdns, dais, INTEL_PDI_BD, cdns->pcm.num_bd,
1086 			       off, stream->num_ch_bd);
1087 	if (ret)
1088 		return ret;
1089 
1090 	return devm_snd_soc_register_component(cdns->dev, &dai_component,
1091 					       dais, num_dai);
1092 }
1093 
1094 
1095 const struct sdw_intel_hw_ops sdw_intel_cnl_hw_ops = {
1096 	.debugfs_init = intel_debugfs_init,
1097 	.debugfs_exit = intel_debugfs_exit,
1098 
1099 	.register_dai = intel_register_dai,
1100 
1101 	.check_clock_stop = intel_check_clock_stop,
1102 	.start_bus = intel_start_bus,
1103 	.start_bus_after_reset = intel_start_bus_after_reset,
1104 	.start_bus_after_clock_stop = intel_start_bus_after_clock_stop,
1105 	.stop_bus = intel_stop_bus,
1106 
1107 	.link_power_up = intel_link_power_up,
1108 	.link_power_down = intel_link_power_down,
1109 
1110 	.shim_check_wake = intel_shim_check_wake,
1111 	.shim_wake = intel_shim_wake,
1112 
1113 	.pre_bank_switch = intel_pre_bank_switch,
1114 	.post_bank_switch = intel_post_bank_switch,
1115 
1116 	.sync_arm = intel_shim_sync_arm,
1117 	.sync_go_unlocked = intel_shim_sync_go_unlocked,
1118 	.sync_go = intel_shim_sync_go,
1119 	.sync_check_cmdsync_unlocked = intel_check_cmdsync_unlocked,
1120 };
1121 EXPORT_SYMBOL_NS(sdw_intel_cnl_hw_ops, SOUNDWIRE_INTEL);
1122