1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) 2 // Copyright(c) 2015-17 Intel Corporation. 3 4 #include <linux/acpi.h> 5 #include <linux/delay.h> 6 #include <linux/mod_devicetable.h> 7 #include <linux/pm_runtime.h> 8 #include <linux/soundwire/sdw_registers.h> 9 #include <linux/soundwire/sdw.h> 10 #include <linux/soundwire/sdw_type.h> 11 #include <linux/string_choices.h> 12 #include "bus.h" 13 #include "irq.h" 14 #include "sysfs_local.h" 15 16 static DEFINE_IDA(sdw_bus_ida); 17 18 static int sdw_get_id(struct sdw_bus *bus) 19 { 20 int rc = ida_alloc(&sdw_bus_ida, GFP_KERNEL); 21 22 if (rc < 0) 23 return rc; 24 25 bus->id = rc; 26 27 if (bus->controller_id == -1) 28 bus->controller_id = rc; 29 30 return 0; 31 } 32 33 /** 34 * sdw_bus_master_add() - add a bus Master instance 35 * @bus: bus instance 36 * @parent: parent device 37 * @fwnode: firmware node handle 38 * 39 * Initializes the bus instance, read properties and create child 40 * devices. 41 */ 42 int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent, 43 struct fwnode_handle *fwnode) 44 { 45 struct sdw_master_prop *prop = NULL; 46 int ret; 47 48 if (!parent) { 49 pr_err("SoundWire parent device is not set\n"); 50 return -ENODEV; 51 } 52 53 ret = sdw_get_id(bus); 54 if (ret < 0) { 55 dev_err(parent, "Failed to get bus id\n"); 56 return ret; 57 } 58 59 ida_init(&bus->slave_ida); 60 61 ret = sdw_master_device_add(bus, parent, fwnode); 62 if (ret < 0) { 63 dev_err(parent, "Failed to add master device at link %d\n", 64 bus->link_id); 65 return ret; 66 } 67 68 if (!bus->ops) { 69 dev_err(bus->dev, "SoundWire Bus ops are not set\n"); 70 return -EINVAL; 71 } 72 73 if (!bus->compute_params) { 74 dev_err(bus->dev, 75 "Bandwidth allocation not configured, compute_params no set\n"); 76 return -EINVAL; 77 } 78 79 /* 80 * Give each bus_lock and msg_lock a unique key so that lockdep won't 81 * trigger a deadlock warning when the locks of several buses are 82 * grabbed during configuration of a multi-bus stream. 83 */ 84 lockdep_register_key(&bus->msg_lock_key); 85 __mutex_init(&bus->msg_lock, "msg_lock", &bus->msg_lock_key); 86 87 lockdep_register_key(&bus->bus_lock_key); 88 __mutex_init(&bus->bus_lock, "bus_lock", &bus->bus_lock_key); 89 90 INIT_LIST_HEAD(&bus->slaves); 91 INIT_LIST_HEAD(&bus->m_rt_list); 92 93 /* 94 * Initialize multi_link flag 95 */ 96 bus->multi_link = false; 97 if (bus->ops->read_prop) { 98 ret = bus->ops->read_prop(bus); 99 if (ret < 0) { 100 dev_err(bus->dev, 101 "Bus read properties failed:%d\n", ret); 102 return ret; 103 } 104 } 105 106 sdw_bus_debugfs_init(bus); 107 108 /* 109 * Device numbers in SoundWire are 0 through 15. Enumeration device 110 * number (0), Broadcast device number (15), Group numbers (12 and 111 * 13) and Master device number (14) are not used for assignment so 112 * mask these and other higher bits. 113 */ 114 115 /* Set higher order bits */ 116 *bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM); 117 118 /* Set enumeration device number and broadcast device number */ 119 set_bit(SDW_ENUM_DEV_NUM, bus->assigned); 120 set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned); 121 122 /* Set group device numbers and master device number */ 123 set_bit(SDW_GROUP12_DEV_NUM, bus->assigned); 124 set_bit(SDW_GROUP13_DEV_NUM, bus->assigned); 125 set_bit(SDW_MASTER_DEV_NUM, bus->assigned); 126 127 ret = sdw_irq_create(bus, fwnode); 128 if (ret) 129 return ret; 130 131 /* 132 * SDW is an enumerable bus, but devices can be powered off. So, 133 * they won't be able to report as present. 134 * 135 * Create Slave devices based on Slaves described in 136 * the respective firmware (ACPI/DT) 137 */ 138 if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev)) 139 ret = sdw_acpi_find_slaves(bus); 140 else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node) 141 ret = sdw_of_find_slaves(bus); 142 else 143 ret = -ENOTSUPP; /* No ACPI/DT so error out */ 144 145 if (ret < 0) { 146 dev_err(bus->dev, "Finding slaves failed:%d\n", ret); 147 sdw_irq_delete(bus); 148 return ret; 149 } 150 151 /* 152 * Initialize clock values based on Master properties. The max 153 * frequency is read from max_clk_freq property. Current assumption 154 * is that the bus will start at highest clock frequency when 155 * powered on. 156 * 157 * Default active bank will be 0 as out of reset the Slaves have 158 * to start with bank 0 (Table 40 of Spec) 159 */ 160 prop = &bus->prop; 161 bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR; 162 bus->params.curr_dr_freq = bus->params.max_dr_freq; 163 bus->params.curr_bank = SDW_BANK0; 164 bus->params.next_bank = SDW_BANK1; 165 166 return 0; 167 } 168 EXPORT_SYMBOL(sdw_bus_master_add); 169 170 static int sdw_delete_slave(struct device *dev, void *data) 171 { 172 struct sdw_slave *slave = dev_to_sdw_dev(dev); 173 struct sdw_bus *bus = slave->bus; 174 175 pm_runtime_disable(dev); 176 177 sdw_slave_debugfs_exit(slave); 178 179 mutex_lock(&bus->bus_lock); 180 181 if (slave->dev_num) { /* clear dev_num if assigned */ 182 clear_bit(slave->dev_num, bus->assigned); 183 if (bus->ops && bus->ops->put_device_num) 184 bus->ops->put_device_num(bus, slave); 185 } 186 list_del_init(&slave->node); 187 mutex_unlock(&bus->bus_lock); 188 189 device_unregister(dev); 190 return 0; 191 } 192 193 /** 194 * sdw_bus_master_delete() - delete the bus master instance 195 * @bus: bus to be deleted 196 * 197 * Remove the instance, delete the child devices. 198 */ 199 void sdw_bus_master_delete(struct sdw_bus *bus) 200 { 201 device_for_each_child(bus->dev, NULL, sdw_delete_slave); 202 203 sdw_irq_delete(bus); 204 205 sdw_master_device_del(bus); 206 207 sdw_bus_debugfs_exit(bus); 208 lockdep_unregister_key(&bus->bus_lock_key); 209 lockdep_unregister_key(&bus->msg_lock_key); 210 ida_free(&sdw_bus_ida, bus->id); 211 } 212 EXPORT_SYMBOL(sdw_bus_master_delete); 213 214 /* 215 * SDW IO Calls 216 */ 217 218 static inline int find_response_code(enum sdw_command_response resp) 219 { 220 switch (resp) { 221 case SDW_CMD_OK: 222 return 0; 223 224 case SDW_CMD_IGNORED: 225 return -ENODATA; 226 227 case SDW_CMD_TIMEOUT: 228 return -ETIMEDOUT; 229 230 default: 231 return -EIO; 232 } 233 } 234 235 static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg) 236 { 237 int retry = bus->prop.err_threshold; 238 enum sdw_command_response resp; 239 int ret = 0, i; 240 241 for (i = 0; i <= retry; i++) { 242 resp = bus->ops->xfer_msg(bus, msg); 243 ret = find_response_code(resp); 244 245 /* if cmd is ok or ignored return */ 246 if (ret == 0 || ret == -ENODATA) 247 return ret; 248 } 249 250 return ret; 251 } 252 253 static inline int do_transfer_defer(struct sdw_bus *bus, 254 struct sdw_msg *msg) 255 { 256 struct sdw_defer *defer = &bus->defer_msg; 257 int retry = bus->prop.err_threshold; 258 enum sdw_command_response resp; 259 int ret = 0, i; 260 261 defer->msg = msg; 262 defer->length = msg->len; 263 init_completion(&defer->complete); 264 265 for (i = 0; i <= retry; i++) { 266 resp = bus->ops->xfer_msg_defer(bus); 267 ret = find_response_code(resp); 268 /* if cmd is ok or ignored return */ 269 if (ret == 0 || ret == -ENODATA) 270 return ret; 271 } 272 273 return ret; 274 } 275 276 static int sdw_transfer_unlocked(struct sdw_bus *bus, struct sdw_msg *msg) 277 { 278 int ret; 279 280 ret = do_transfer(bus, msg); 281 if (ret != 0 && ret != -ENODATA) 282 dev_err(bus->dev, "trf on Slave %d failed:%d %s addr %x count %d\n", 283 msg->dev_num, ret, 284 str_write_read(msg->flags & SDW_MSG_FLAG_WRITE), 285 msg->addr, msg->len); 286 287 return ret; 288 } 289 290 /** 291 * sdw_transfer() - Synchronous transfer message to a SDW Slave device 292 * @bus: SDW bus 293 * @msg: SDW message to be xfered 294 */ 295 int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg) 296 { 297 int ret; 298 299 mutex_lock(&bus->msg_lock); 300 301 ret = sdw_transfer_unlocked(bus, msg); 302 303 mutex_unlock(&bus->msg_lock); 304 305 return ret; 306 } 307 308 /** 309 * sdw_show_ping_status() - Direct report of PING status, to be used by Peripheral drivers 310 * @bus: SDW bus 311 * @sync_delay: Delay before reading status 312 */ 313 void sdw_show_ping_status(struct sdw_bus *bus, bool sync_delay) 314 { 315 u32 status; 316 317 if (!bus->ops->read_ping_status) 318 return; 319 320 /* 321 * wait for peripheral to sync if desired. 10-15ms should be more than 322 * enough in most cases. 323 */ 324 if (sync_delay) 325 usleep_range(10000, 15000); 326 327 mutex_lock(&bus->msg_lock); 328 329 status = bus->ops->read_ping_status(bus); 330 331 mutex_unlock(&bus->msg_lock); 332 333 if (!status) 334 dev_warn(bus->dev, "%s: no peripherals attached\n", __func__); 335 else 336 dev_dbg(bus->dev, "PING status: %#x\n", status); 337 } 338 EXPORT_SYMBOL(sdw_show_ping_status); 339 340 /** 341 * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device 342 * @bus: SDW bus 343 * @msg: SDW message to be xfered 344 * 345 * Caller needs to hold the msg_lock lock while calling this 346 */ 347 int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg) 348 { 349 int ret; 350 351 if (!bus->ops->xfer_msg_defer) 352 return -ENOTSUPP; 353 354 ret = do_transfer_defer(bus, msg); 355 if (ret != 0 && ret != -ENODATA) 356 dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n", 357 msg->dev_num, ret); 358 359 return ret; 360 } 361 362 int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave, 363 u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf) 364 { 365 memset(msg, 0, sizeof(*msg)); 366 msg->addr = addr; /* addr is 16 bit and truncated here */ 367 msg->len = count; 368 msg->dev_num = dev_num; 369 msg->flags = flags; 370 msg->buf = buf; 371 372 if (addr < SDW_REG_NO_PAGE) /* no paging area */ 373 return 0; 374 375 if (addr >= SDW_REG_MAX) { /* illegal addr */ 376 pr_err("SDW: Invalid address %x passed\n", addr); 377 return -EINVAL; 378 } 379 380 if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */ 381 if (slave && !slave->prop.paging_support) 382 return 0; 383 /* no need for else as that will fall-through to paging */ 384 } 385 386 /* paging mandatory */ 387 if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) { 388 pr_err("SDW: Invalid device for paging :%d\n", dev_num); 389 return -EINVAL; 390 } 391 392 if (!slave) { 393 pr_err("SDW: No slave for paging addr\n"); 394 return -EINVAL; 395 } 396 397 if (!slave->prop.paging_support) { 398 dev_err(&slave->dev, 399 "address %x needs paging but no support\n", addr); 400 return -EINVAL; 401 } 402 403 msg->addr_page1 = FIELD_GET(SDW_SCP_ADDRPAGE1_MASK, addr); 404 msg->addr_page2 = FIELD_GET(SDW_SCP_ADDRPAGE2_MASK, addr); 405 msg->addr |= BIT(15); 406 msg->page = true; 407 408 return 0; 409 } 410 411 /* 412 * Read/Write IO functions. 413 */ 414 415 static int sdw_ntransfer_no_pm(struct sdw_slave *slave, u32 addr, u8 flags, 416 size_t count, u8 *val) 417 { 418 struct sdw_msg msg; 419 size_t size; 420 int ret; 421 422 while (count) { 423 // Only handle bytes up to next page boundary 424 size = min_t(size_t, count, (SDW_REGADDR + 1) - (addr & SDW_REGADDR)); 425 426 ret = sdw_fill_msg(&msg, slave, addr, size, slave->dev_num, flags, val); 427 if (ret < 0) 428 return ret; 429 430 ret = sdw_transfer(slave->bus, &msg); 431 if (ret < 0 && !slave->is_mockup_device) 432 return ret; 433 434 addr += size; 435 val += size; 436 count -= size; 437 } 438 439 return 0; 440 } 441 442 /** 443 * sdw_nread_no_pm() - Read "n" contiguous SDW Slave registers with no PM 444 * @slave: SDW Slave 445 * @addr: Register address 446 * @count: length 447 * @val: Buffer for values to be read 448 * 449 * Note that if the message crosses a page boundary each page will be 450 * transferred under a separate invocation of the msg_lock. 451 */ 452 int sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val) 453 { 454 return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_READ, count, val); 455 } 456 EXPORT_SYMBOL(sdw_nread_no_pm); 457 458 /** 459 * sdw_nwrite_no_pm() - Write "n" contiguous SDW Slave registers with no PM 460 * @slave: SDW Slave 461 * @addr: Register address 462 * @count: length 463 * @val: Buffer for values to be written 464 * 465 * Note that if the message crosses a page boundary each page will be 466 * transferred under a separate invocation of the msg_lock. 467 */ 468 int sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val) 469 { 470 return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_WRITE, count, (u8 *)val); 471 } 472 EXPORT_SYMBOL(sdw_nwrite_no_pm); 473 474 /** 475 * sdw_write_no_pm() - Write a SDW Slave register with no PM 476 * @slave: SDW Slave 477 * @addr: Register address 478 * @value: Register value 479 */ 480 int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value) 481 { 482 return sdw_nwrite_no_pm(slave, addr, 1, &value); 483 } 484 EXPORT_SYMBOL(sdw_write_no_pm); 485 486 static int 487 sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr) 488 { 489 struct sdw_msg msg; 490 u8 buf; 491 int ret; 492 493 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num, 494 SDW_MSG_FLAG_READ, &buf); 495 if (ret < 0) 496 return ret; 497 498 ret = sdw_transfer(bus, &msg); 499 if (ret < 0) 500 return ret; 501 502 return buf; 503 } 504 505 static int 506 sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value) 507 { 508 struct sdw_msg msg; 509 int ret; 510 511 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num, 512 SDW_MSG_FLAG_WRITE, &value); 513 if (ret < 0) 514 return ret; 515 516 return sdw_transfer(bus, &msg); 517 } 518 519 int sdw_bread_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr) 520 { 521 struct sdw_msg msg; 522 u8 buf; 523 int ret; 524 525 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num, 526 SDW_MSG_FLAG_READ, &buf); 527 if (ret < 0) 528 return ret; 529 530 ret = sdw_transfer_unlocked(bus, &msg); 531 if (ret < 0) 532 return ret; 533 534 return buf; 535 } 536 EXPORT_SYMBOL(sdw_bread_no_pm_unlocked); 537 538 int sdw_bwrite_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value) 539 { 540 struct sdw_msg msg; 541 int ret; 542 543 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num, 544 SDW_MSG_FLAG_WRITE, &value); 545 if (ret < 0) 546 return ret; 547 548 return sdw_transfer_unlocked(bus, &msg); 549 } 550 EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked); 551 552 /** 553 * sdw_read_no_pm() - Read a SDW Slave register with no PM 554 * @slave: SDW Slave 555 * @addr: Register address 556 */ 557 int sdw_read_no_pm(struct sdw_slave *slave, u32 addr) 558 { 559 u8 buf; 560 int ret; 561 562 ret = sdw_nread_no_pm(slave, addr, 1, &buf); 563 if (ret < 0) 564 return ret; 565 else 566 return buf; 567 } 568 EXPORT_SYMBOL(sdw_read_no_pm); 569 570 int sdw_update_no_pm(struct sdw_slave *slave, u32 addr, u8 mask, u8 val) 571 { 572 int tmp; 573 574 tmp = sdw_read_no_pm(slave, addr); 575 if (tmp < 0) 576 return tmp; 577 578 tmp = (tmp & ~mask) | val; 579 return sdw_write_no_pm(slave, addr, tmp); 580 } 581 EXPORT_SYMBOL(sdw_update_no_pm); 582 583 /* Read-Modify-Write Slave register */ 584 int sdw_update(struct sdw_slave *slave, u32 addr, u8 mask, u8 val) 585 { 586 int tmp; 587 588 tmp = sdw_read(slave, addr); 589 if (tmp < 0) 590 return tmp; 591 592 tmp = (tmp & ~mask) | val; 593 return sdw_write(slave, addr, tmp); 594 } 595 EXPORT_SYMBOL(sdw_update); 596 597 /** 598 * sdw_nread() - Read "n" contiguous SDW Slave registers 599 * @slave: SDW Slave 600 * @addr: Register address 601 * @count: length 602 * @val: Buffer for values to be read 603 * 604 * This version of the function will take a PM reference to the slave 605 * device. 606 * Note that if the message crosses a page boundary each page will be 607 * transferred under a separate invocation of the msg_lock. 608 */ 609 int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val) 610 { 611 int ret; 612 613 ret = pm_runtime_get_sync(&slave->dev); 614 if (ret < 0 && ret != -EACCES) { 615 pm_runtime_put_noidle(&slave->dev); 616 return ret; 617 } 618 619 ret = sdw_nread_no_pm(slave, addr, count, val); 620 621 pm_runtime_mark_last_busy(&slave->dev); 622 pm_runtime_put(&slave->dev); 623 624 return ret; 625 } 626 EXPORT_SYMBOL(sdw_nread); 627 628 /** 629 * sdw_nwrite() - Write "n" contiguous SDW Slave registers 630 * @slave: SDW Slave 631 * @addr: Register address 632 * @count: length 633 * @val: Buffer for values to be written 634 * 635 * This version of the function will take a PM reference to the slave 636 * device. 637 * Note that if the message crosses a page boundary each page will be 638 * transferred under a separate invocation of the msg_lock. 639 */ 640 int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val) 641 { 642 int ret; 643 644 ret = pm_runtime_get_sync(&slave->dev); 645 if (ret < 0 && ret != -EACCES) { 646 pm_runtime_put_noidle(&slave->dev); 647 return ret; 648 } 649 650 ret = sdw_nwrite_no_pm(slave, addr, count, val); 651 652 pm_runtime_mark_last_busy(&slave->dev); 653 pm_runtime_put(&slave->dev); 654 655 return ret; 656 } 657 EXPORT_SYMBOL(sdw_nwrite); 658 659 /** 660 * sdw_read() - Read a SDW Slave register 661 * @slave: SDW Slave 662 * @addr: Register address 663 * 664 * This version of the function will take a PM reference to the slave 665 * device. 666 */ 667 int sdw_read(struct sdw_slave *slave, u32 addr) 668 { 669 u8 buf; 670 int ret; 671 672 ret = sdw_nread(slave, addr, 1, &buf); 673 if (ret < 0) 674 return ret; 675 676 return buf; 677 } 678 EXPORT_SYMBOL(sdw_read); 679 680 /** 681 * sdw_write() - Write a SDW Slave register 682 * @slave: SDW Slave 683 * @addr: Register address 684 * @value: Register value 685 * 686 * This version of the function will take a PM reference to the slave 687 * device. 688 */ 689 int sdw_write(struct sdw_slave *slave, u32 addr, u8 value) 690 { 691 return sdw_nwrite(slave, addr, 1, &value); 692 } 693 EXPORT_SYMBOL(sdw_write); 694 695 /* 696 * SDW alert handling 697 */ 698 699 /* called with bus_lock held */ 700 static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i) 701 { 702 struct sdw_slave *slave; 703 704 list_for_each_entry(slave, &bus->slaves, node) { 705 if (slave->dev_num == i) 706 return slave; 707 } 708 709 return NULL; 710 } 711 712 int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id) 713 { 714 if (slave->id.mfg_id != id.mfg_id || 715 slave->id.part_id != id.part_id || 716 slave->id.class_id != id.class_id || 717 (slave->id.unique_id != SDW_IGNORED_UNIQUE_ID && 718 slave->id.unique_id != id.unique_id)) 719 return -ENODEV; 720 721 return 0; 722 } 723 EXPORT_SYMBOL(sdw_compare_devid); 724 725 /* called with bus_lock held */ 726 static int sdw_get_device_num(struct sdw_slave *slave) 727 { 728 struct sdw_bus *bus = slave->bus; 729 int bit; 730 731 if (bus->ops && bus->ops->get_device_num) { 732 bit = bus->ops->get_device_num(bus, slave); 733 if (bit < 0) 734 goto err; 735 } else { 736 bit = find_first_zero_bit(bus->assigned, SDW_MAX_DEVICES); 737 if (bit == SDW_MAX_DEVICES) { 738 bit = -ENODEV; 739 goto err; 740 } 741 } 742 743 /* 744 * Do not update dev_num in Slave data structure here, 745 * Update once program dev_num is successful 746 */ 747 set_bit(bit, bus->assigned); 748 749 err: 750 return bit; 751 } 752 753 static int sdw_assign_device_num(struct sdw_slave *slave) 754 { 755 struct sdw_bus *bus = slave->bus; 756 struct device *dev = bus->dev; 757 int ret; 758 759 /* check first if device number is assigned, if so reuse that */ 760 if (!slave->dev_num) { 761 if (!slave->dev_num_sticky) { 762 int dev_num; 763 764 mutex_lock(&slave->bus->bus_lock); 765 dev_num = sdw_get_device_num(slave); 766 mutex_unlock(&slave->bus->bus_lock); 767 if (dev_num < 0) { 768 dev_err(dev, "Get dev_num failed: %d\n", dev_num); 769 return dev_num; 770 } 771 772 slave->dev_num_sticky = dev_num; 773 } else { 774 dev_dbg(dev, "Slave already registered, reusing dev_num: %d\n", 775 slave->dev_num_sticky); 776 } 777 } 778 779 /* Clear the slave->dev_num to transfer message on device 0 */ 780 slave->dev_num = 0; 781 782 ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, slave->dev_num_sticky); 783 if (ret < 0) { 784 dev_err(dev, "Program device_num %d failed: %d\n", 785 slave->dev_num_sticky, ret); 786 return ret; 787 } 788 789 /* After xfer of msg, restore dev_num */ 790 slave->dev_num = slave->dev_num_sticky; 791 792 if (bus->ops && bus->ops->new_peripheral_assigned) 793 bus->ops->new_peripheral_assigned(bus, slave, slave->dev_num); 794 795 return 0; 796 } 797 798 void sdw_extract_slave_id(struct sdw_bus *bus, 799 u64 addr, struct sdw_slave_id *id) 800 { 801 dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr); 802 803 id->sdw_version = SDW_VERSION(addr); 804 id->unique_id = SDW_UNIQUE_ID(addr); 805 id->mfg_id = SDW_MFG_ID(addr); 806 id->part_id = SDW_PART_ID(addr); 807 id->class_id = SDW_CLASS_ID(addr); 808 809 dev_dbg(bus->dev, 810 "SDW Slave class_id 0x%02x, mfg_id 0x%04x, part_id 0x%04x, unique_id 0x%x, version 0x%x\n", 811 id->class_id, id->mfg_id, id->part_id, id->unique_id, id->sdw_version); 812 } 813 EXPORT_SYMBOL(sdw_extract_slave_id); 814 815 bool is_clock_scaling_supported_by_slave(struct sdw_slave *slave) 816 { 817 /* 818 * Dynamic scaling is a defined by SDCA. However, some devices expose the class ID but 819 * can't support dynamic scaling. We might need a quirk to handle such devices. 820 */ 821 return slave->id.class_id; 822 } 823 EXPORT_SYMBOL(is_clock_scaling_supported_by_slave); 824 825 static int sdw_program_device_num(struct sdw_bus *bus, bool *programmed) 826 { 827 u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0}; 828 struct sdw_slave *slave, *_s; 829 struct sdw_slave_id id; 830 struct sdw_msg msg; 831 bool found; 832 int count = 0, ret; 833 u64 addr; 834 835 *programmed = false; 836 837 /* No Slave, so use raw xfer api */ 838 ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0, 839 SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf); 840 if (ret < 0) 841 return ret; 842 843 do { 844 ret = sdw_transfer(bus, &msg); 845 if (ret == -ENODATA) { /* end of device id reads */ 846 dev_dbg(bus->dev, "No more devices to enumerate\n"); 847 ret = 0; 848 break; 849 } 850 if (ret < 0) { 851 dev_err(bus->dev, "DEVID read fail:%d\n", ret); 852 break; 853 } 854 855 /* 856 * Construct the addr and extract. Cast the higher shift 857 * bits to avoid truncation due to size limit. 858 */ 859 addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) | 860 ((u64)buf[2] << 24) | ((u64)buf[1] << 32) | 861 ((u64)buf[0] << 40); 862 863 sdw_extract_slave_id(bus, addr, &id); 864 865 found = false; 866 /* Now compare with entries */ 867 list_for_each_entry_safe(slave, _s, &bus->slaves, node) { 868 if (sdw_compare_devid(slave, id) == 0) { 869 found = true; 870 871 /* 872 * To prevent skipping state-machine stages don't 873 * program a device until we've seen it UNATTACH. 874 * Must return here because no other device on #0 875 * can be detected until this one has been 876 * assigned a device ID. 877 */ 878 if (slave->status != SDW_SLAVE_UNATTACHED) 879 return 0; 880 881 /* 882 * Assign a new dev_num to this Slave and 883 * not mark it present. It will be marked 884 * present after it reports ATTACHED on new 885 * dev_num 886 */ 887 ret = sdw_assign_device_num(slave); 888 if (ret < 0) { 889 dev_err(bus->dev, 890 "Assign dev_num failed:%d\n", 891 ret); 892 return ret; 893 } 894 895 *programmed = true; 896 897 break; 898 } 899 } 900 901 if (!found) { 902 /* TODO: Park this device in Group 13 */ 903 904 /* 905 * add Slave device even if there is no platform 906 * firmware description. There will be no driver probe 907 * but the user/integration will be able to see the 908 * device, enumeration status and device number in sysfs 909 */ 910 sdw_slave_add(bus, &id, NULL); 911 912 dev_err(bus->dev, "Slave Entry not found\n"); 913 } 914 915 count++; 916 917 /* 918 * Check till error out or retry (count) exhausts. 919 * Device can drop off and rejoin during enumeration 920 * so count till twice the bound. 921 */ 922 923 } while (ret == 0 && count < (SDW_MAX_DEVICES * 2)); 924 925 return ret; 926 } 927 928 static void sdw_modify_slave_status(struct sdw_slave *slave, 929 enum sdw_slave_status status) 930 { 931 struct sdw_bus *bus = slave->bus; 932 933 mutex_lock(&bus->bus_lock); 934 935 dev_vdbg(bus->dev, 936 "changing status slave %d status %d new status %d\n", 937 slave->dev_num, slave->status, status); 938 939 if (status == SDW_SLAVE_UNATTACHED) { 940 dev_dbg(&slave->dev, 941 "initializing enumeration and init completion for Slave %d\n", 942 slave->dev_num); 943 944 reinit_completion(&slave->enumeration_complete); 945 reinit_completion(&slave->initialization_complete); 946 947 } else if ((status == SDW_SLAVE_ATTACHED) && 948 (slave->status == SDW_SLAVE_UNATTACHED)) { 949 dev_dbg(&slave->dev, 950 "signaling enumeration completion for Slave %d\n", 951 slave->dev_num); 952 953 complete_all(&slave->enumeration_complete); 954 } 955 slave->status = status; 956 mutex_unlock(&bus->bus_lock); 957 } 958 959 static int sdw_slave_clk_stop_callback(struct sdw_slave *slave, 960 enum sdw_clk_stop_mode mode, 961 enum sdw_clk_stop_type type) 962 { 963 int ret = 0; 964 965 mutex_lock(&slave->sdw_dev_lock); 966 967 if (slave->probed) { 968 struct device *dev = &slave->dev; 969 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver); 970 971 if (drv->ops && drv->ops->clk_stop) 972 ret = drv->ops->clk_stop(slave, mode, type); 973 } 974 975 mutex_unlock(&slave->sdw_dev_lock); 976 977 return ret; 978 } 979 980 static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave, 981 enum sdw_clk_stop_mode mode, 982 bool prepare) 983 { 984 bool wake_en; 985 u32 val = 0; 986 int ret; 987 988 wake_en = slave->prop.wake_capable; 989 990 if (prepare) { 991 val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP; 992 993 if (mode == SDW_CLK_STOP_MODE1) 994 val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1; 995 996 if (wake_en) 997 val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN; 998 } else { 999 ret = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL); 1000 if (ret < 0) { 1001 if (ret != -ENODATA) 1002 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL read failed:%d\n", ret); 1003 return ret; 1004 } 1005 val = ret; 1006 val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP); 1007 } 1008 1009 ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val); 1010 1011 if (ret < 0 && ret != -ENODATA) 1012 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL write failed:%d\n", ret); 1013 1014 return ret; 1015 } 1016 1017 static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num, bool prepare) 1018 { 1019 int retry = bus->clk_stop_timeout; 1020 int val; 1021 1022 do { 1023 val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT); 1024 if (val < 0) { 1025 if (val != -ENODATA) 1026 dev_err(bus->dev, "SDW_SCP_STAT bread failed:%d\n", val); 1027 return val; 1028 } 1029 val &= SDW_SCP_STAT_CLK_STP_NF; 1030 if (!val) { 1031 dev_dbg(bus->dev, "clock stop %s done slave:%d\n", 1032 prepare ? "prepare" : "deprepare", 1033 dev_num); 1034 return 0; 1035 } 1036 1037 usleep_range(1000, 1500); 1038 retry--; 1039 } while (retry); 1040 1041 dev_dbg(bus->dev, "clock stop %s did not complete for slave:%d\n", 1042 prepare ? "prepare" : "deprepare", 1043 dev_num); 1044 1045 return -ETIMEDOUT; 1046 } 1047 1048 /** 1049 * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop 1050 * 1051 * @bus: SDW bus instance 1052 * 1053 * Query Slave for clock stop mode and prepare for that mode. 1054 */ 1055 int sdw_bus_prep_clk_stop(struct sdw_bus *bus) 1056 { 1057 bool simple_clk_stop = true; 1058 struct sdw_slave *slave; 1059 bool is_slave = false; 1060 int ret = 0; 1061 1062 /* 1063 * In order to save on transition time, prepare 1064 * each Slave and then wait for all Slave(s) to be 1065 * prepared for clock stop. 1066 * If one of the Slave devices has lost sync and 1067 * replies with Command Ignored/-ENODATA, we continue 1068 * the loop 1069 */ 1070 list_for_each_entry(slave, &bus->slaves, node) { 1071 if (!slave->dev_num) 1072 continue; 1073 1074 if (slave->status != SDW_SLAVE_ATTACHED && 1075 slave->status != SDW_SLAVE_ALERT) 1076 continue; 1077 1078 /* Identify if Slave(s) are available on Bus */ 1079 is_slave = true; 1080 1081 ret = sdw_slave_clk_stop_callback(slave, 1082 SDW_CLK_STOP_MODE0, 1083 SDW_CLK_PRE_PREPARE); 1084 if (ret < 0 && ret != -ENODATA) { 1085 dev_err(&slave->dev, "clock stop pre-prepare cb failed:%d\n", ret); 1086 return ret; 1087 } 1088 1089 /* Only prepare a Slave device if needed */ 1090 if (!slave->prop.simple_clk_stop_capable) { 1091 simple_clk_stop = false; 1092 1093 ret = sdw_slave_clk_stop_prepare(slave, 1094 SDW_CLK_STOP_MODE0, 1095 true); 1096 if (ret < 0 && ret != -ENODATA) { 1097 dev_err(&slave->dev, "clock stop prepare failed:%d\n", ret); 1098 return ret; 1099 } 1100 } 1101 } 1102 1103 /* Skip remaining clock stop preparation if no Slave is attached */ 1104 if (!is_slave) 1105 return 0; 1106 1107 /* 1108 * Don't wait for all Slaves to be ready if they follow the simple 1109 * state machine 1110 */ 1111 if (!simple_clk_stop) { 1112 ret = sdw_bus_wait_for_clk_prep_deprep(bus, 1113 SDW_BROADCAST_DEV_NUM, true); 1114 /* 1115 * if there are no Slave devices present and the reply is 1116 * Command_Ignored/-ENODATA, we don't need to continue with the 1117 * flow and can just return here. The error code is not modified 1118 * and its handling left as an exercise for the caller. 1119 */ 1120 if (ret < 0) 1121 return ret; 1122 } 1123 1124 /* Inform slaves that prep is done */ 1125 list_for_each_entry(slave, &bus->slaves, node) { 1126 if (!slave->dev_num) 1127 continue; 1128 1129 if (slave->status != SDW_SLAVE_ATTACHED && 1130 slave->status != SDW_SLAVE_ALERT) 1131 continue; 1132 1133 ret = sdw_slave_clk_stop_callback(slave, 1134 SDW_CLK_STOP_MODE0, 1135 SDW_CLK_POST_PREPARE); 1136 1137 if (ret < 0 && ret != -ENODATA) { 1138 dev_err(&slave->dev, "clock stop post-prepare cb failed:%d\n", ret); 1139 return ret; 1140 } 1141 } 1142 1143 return 0; 1144 } 1145 EXPORT_SYMBOL(sdw_bus_prep_clk_stop); 1146 1147 /** 1148 * sdw_bus_clk_stop: stop bus clock 1149 * 1150 * @bus: SDW bus instance 1151 * 1152 * After preparing the Slaves for clock stop, stop the clock by broadcasting 1153 * write to SCP_CTRL register. 1154 */ 1155 int sdw_bus_clk_stop(struct sdw_bus *bus) 1156 { 1157 int ret; 1158 1159 /* 1160 * broadcast clock stop now, attached Slaves will ACK this, 1161 * unattached will ignore 1162 */ 1163 ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM, 1164 SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW); 1165 if (ret < 0) { 1166 if (ret != -ENODATA) 1167 dev_err(bus->dev, "ClockStopNow Broadcast msg failed %d\n", ret); 1168 return ret; 1169 } 1170 1171 return 0; 1172 } 1173 EXPORT_SYMBOL(sdw_bus_clk_stop); 1174 1175 /** 1176 * sdw_bus_exit_clk_stop: Exit clock stop mode 1177 * 1178 * @bus: SDW bus instance 1179 * 1180 * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves 1181 * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate 1182 * back. 1183 */ 1184 int sdw_bus_exit_clk_stop(struct sdw_bus *bus) 1185 { 1186 bool simple_clk_stop = true; 1187 struct sdw_slave *slave; 1188 bool is_slave = false; 1189 int ret; 1190 1191 /* 1192 * In order to save on transition time, de-prepare 1193 * each Slave and then wait for all Slave(s) to be 1194 * de-prepared after clock resume. 1195 */ 1196 list_for_each_entry(slave, &bus->slaves, node) { 1197 if (!slave->dev_num) 1198 continue; 1199 1200 if (slave->status != SDW_SLAVE_ATTACHED && 1201 slave->status != SDW_SLAVE_ALERT) 1202 continue; 1203 1204 /* Identify if Slave(s) are available on Bus */ 1205 is_slave = true; 1206 1207 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0, 1208 SDW_CLK_PRE_DEPREPARE); 1209 if (ret < 0) 1210 dev_warn(&slave->dev, "clock stop pre-deprepare cb failed:%d\n", ret); 1211 1212 /* Only de-prepare a Slave device if needed */ 1213 if (!slave->prop.simple_clk_stop_capable) { 1214 simple_clk_stop = false; 1215 1216 ret = sdw_slave_clk_stop_prepare(slave, SDW_CLK_STOP_MODE0, 1217 false); 1218 1219 if (ret < 0) 1220 dev_warn(&slave->dev, "clock stop deprepare failed:%d\n", ret); 1221 } 1222 } 1223 1224 /* Skip remaining clock stop de-preparation if no Slave is attached */ 1225 if (!is_slave) 1226 return 0; 1227 1228 /* 1229 * Don't wait for all Slaves to be ready if they follow the simple 1230 * state machine 1231 */ 1232 if (!simple_clk_stop) { 1233 ret = sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM, false); 1234 if (ret < 0) 1235 dev_warn(bus->dev, "clock stop deprepare wait failed:%d\n", ret); 1236 } 1237 1238 list_for_each_entry(slave, &bus->slaves, node) { 1239 if (!slave->dev_num) 1240 continue; 1241 1242 if (slave->status != SDW_SLAVE_ATTACHED && 1243 slave->status != SDW_SLAVE_ALERT) 1244 continue; 1245 1246 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0, 1247 SDW_CLK_POST_DEPREPARE); 1248 if (ret < 0) 1249 dev_warn(&slave->dev, "clock stop post-deprepare cb failed:%d\n", ret); 1250 } 1251 1252 return 0; 1253 } 1254 EXPORT_SYMBOL(sdw_bus_exit_clk_stop); 1255 1256 int sdw_configure_dpn_intr(struct sdw_slave *slave, 1257 int port, bool enable, int mask) 1258 { 1259 u32 addr; 1260 int ret; 1261 u8 val = 0; 1262 1263 if (slave->bus->params.s_data_mode != SDW_PORT_DATA_MODE_NORMAL) { 1264 dev_dbg(&slave->dev, "TEST FAIL interrupt %s\n", 1265 str_on_off(enable)); 1266 mask |= SDW_DPN_INT_TEST_FAIL; 1267 } 1268 1269 addr = SDW_DPN_INTMASK(port); 1270 1271 /* Set/Clear port ready interrupt mask */ 1272 if (enable) { 1273 val |= mask; 1274 val |= SDW_DPN_INT_PORT_READY; 1275 } else { 1276 val &= ~(mask); 1277 val &= ~SDW_DPN_INT_PORT_READY; 1278 } 1279 1280 ret = sdw_update_no_pm(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val); 1281 if (ret < 0) 1282 dev_err(&slave->dev, 1283 "SDW_DPN_INTMASK write failed:%d\n", val); 1284 1285 return ret; 1286 } 1287 1288 int sdw_slave_get_scale_index(struct sdw_slave *slave, u8 *base) 1289 { 1290 u32 mclk_freq = slave->bus->prop.mclk_freq; 1291 u32 curr_freq = slave->bus->params.curr_dr_freq >> 1; 1292 unsigned int scale; 1293 u8 scale_index; 1294 1295 if (!mclk_freq) { 1296 dev_err(&slave->dev, 1297 "no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n"); 1298 return -EINVAL; 1299 } 1300 1301 /* 1302 * map base frequency using Table 89 of SoundWire 1.2 spec. 1303 * The order of the tests just follows the specification, this 1304 * is not a selection between possible values or a search for 1305 * the best value but just a mapping. Only one case per platform 1306 * is relevant. 1307 * Some BIOS have inconsistent values for mclk_freq but a 1308 * correct root so we force the mclk_freq to avoid variations. 1309 */ 1310 if (!(19200000 % mclk_freq)) { 1311 mclk_freq = 19200000; 1312 *base = SDW_SCP_BASE_CLOCK_19200000_HZ; 1313 } else if (!(22579200 % mclk_freq)) { 1314 mclk_freq = 22579200; 1315 *base = SDW_SCP_BASE_CLOCK_22579200_HZ; 1316 } else if (!(24576000 % mclk_freq)) { 1317 mclk_freq = 24576000; 1318 *base = SDW_SCP_BASE_CLOCK_24576000_HZ; 1319 } else if (!(32000000 % mclk_freq)) { 1320 mclk_freq = 32000000; 1321 *base = SDW_SCP_BASE_CLOCK_32000000_HZ; 1322 } else if (!(96000000 % mclk_freq)) { 1323 mclk_freq = 24000000; 1324 *base = SDW_SCP_BASE_CLOCK_24000000_HZ; 1325 } else { 1326 dev_err(&slave->dev, 1327 "Unsupported clock base, mclk %d\n", 1328 mclk_freq); 1329 return -EINVAL; 1330 } 1331 1332 if (mclk_freq % curr_freq) { 1333 dev_err(&slave->dev, 1334 "mclk %d is not multiple of bus curr_freq %d\n", 1335 mclk_freq, curr_freq); 1336 return -EINVAL; 1337 } 1338 1339 scale = mclk_freq / curr_freq; 1340 1341 /* 1342 * map scale to Table 90 of SoundWire 1.2 spec - and check 1343 * that the scale is a power of two and maximum 64 1344 */ 1345 scale_index = ilog2(scale); 1346 1347 if (BIT(scale_index) != scale || scale_index > 6) { 1348 dev_err(&slave->dev, 1349 "No match found for scale %d, bus mclk %d curr_freq %d\n", 1350 scale, mclk_freq, curr_freq); 1351 return -EINVAL; 1352 } 1353 scale_index++; 1354 1355 dev_dbg(&slave->dev, 1356 "Configured bus base %d, scale %d, mclk %d, curr_freq %d\n", 1357 *base, scale_index, mclk_freq, curr_freq); 1358 1359 return scale_index; 1360 } 1361 EXPORT_SYMBOL(sdw_slave_get_scale_index); 1362 1363 static int sdw_slave_set_frequency(struct sdw_slave *slave) 1364 { 1365 int scale_index; 1366 u8 base; 1367 int ret; 1368 1369 /* 1370 * frequency base and scale registers are required for SDCA 1371 * devices. They may also be used for 1.2+/non-SDCA devices. 1372 * Driver can set the property directly, for now there's no 1373 * DisCo property to discover support for the scaling registers 1374 * from platform firmware. 1375 */ 1376 if (!slave->id.class_id && !slave->prop.clock_reg_supported) 1377 return 0; 1378 1379 scale_index = sdw_slave_get_scale_index(slave, &base); 1380 if (scale_index < 0) 1381 return scale_index; 1382 1383 ret = sdw_write_no_pm(slave, SDW_SCP_BUS_CLOCK_BASE, base); 1384 if (ret < 0) { 1385 dev_err(&slave->dev, 1386 "SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret); 1387 return ret; 1388 } 1389 1390 /* initialize scale for both banks */ 1391 ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B0, scale_index); 1392 if (ret < 0) { 1393 dev_err(&slave->dev, 1394 "SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret); 1395 return ret; 1396 } 1397 ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B1, scale_index); 1398 if (ret < 0) 1399 dev_err(&slave->dev, 1400 "SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret); 1401 1402 return ret; 1403 } 1404 1405 static int sdw_initialize_slave(struct sdw_slave *slave) 1406 { 1407 struct sdw_slave_prop *prop = &slave->prop; 1408 int status; 1409 int ret; 1410 u8 val; 1411 1412 ret = sdw_slave_set_frequency(slave); 1413 if (ret < 0) 1414 return ret; 1415 1416 if (slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH) { 1417 /* Clear bus clash interrupt before enabling interrupt mask */ 1418 status = sdw_read_no_pm(slave, SDW_SCP_INT1); 1419 if (status < 0) { 1420 dev_err(&slave->dev, 1421 "SDW_SCP_INT1 (BUS_CLASH) read failed:%d\n", status); 1422 return status; 1423 } 1424 if (status & SDW_SCP_INT1_BUS_CLASH) { 1425 dev_warn(&slave->dev, "Bus clash detected before INT mask is enabled\n"); 1426 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_BUS_CLASH); 1427 if (ret < 0) { 1428 dev_err(&slave->dev, 1429 "SDW_SCP_INT1 (BUS_CLASH) write failed:%d\n", ret); 1430 return ret; 1431 } 1432 } 1433 } 1434 if ((slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY) && 1435 !(prop->quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY)) { 1436 /* Clear parity interrupt before enabling interrupt mask */ 1437 status = sdw_read_no_pm(slave, SDW_SCP_INT1); 1438 if (status < 0) { 1439 dev_err(&slave->dev, 1440 "SDW_SCP_INT1 (PARITY) read failed:%d\n", status); 1441 return status; 1442 } 1443 if (status & SDW_SCP_INT1_PARITY) { 1444 dev_warn(&slave->dev, "PARITY error detected before INT mask is enabled\n"); 1445 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_PARITY); 1446 if (ret < 0) { 1447 dev_err(&slave->dev, 1448 "SDW_SCP_INT1 (PARITY) write failed:%d\n", ret); 1449 return ret; 1450 } 1451 } 1452 } 1453 1454 /* 1455 * Set SCP_INT1_MASK register, typically bus clash and 1456 * implementation-defined interrupt mask. The Parity detection 1457 * may not always be correct on startup so its use is 1458 * device-dependent, it might e.g. only be enabled in 1459 * steady-state after a couple of frames. 1460 */ 1461 val = prop->scp_int1_mask; 1462 1463 /* Enable SCP interrupts */ 1464 ret = sdw_update_no_pm(slave, SDW_SCP_INTMASK1, val, val); 1465 if (ret < 0) { 1466 dev_err(&slave->dev, 1467 "SDW_SCP_INTMASK1 write failed:%d\n", ret); 1468 return ret; 1469 } 1470 1471 /* No need to continue if DP0 is not present */ 1472 if (!prop->dp0_prop) 1473 return 0; 1474 1475 /* Enable DP0 interrupts */ 1476 val = prop->dp0_prop->imp_def_interrupts; 1477 val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE; 1478 1479 ret = sdw_update_no_pm(slave, SDW_DP0_INTMASK, val, val); 1480 if (ret < 0) 1481 dev_err(&slave->dev, 1482 "SDW_DP0_INTMASK read failed:%d\n", ret); 1483 return ret; 1484 } 1485 1486 static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status) 1487 { 1488 u8 clear, impl_int_mask; 1489 int status, status2, ret, count = 0; 1490 1491 status = sdw_read_no_pm(slave, SDW_DP0_INT); 1492 if (status < 0) { 1493 dev_err(&slave->dev, 1494 "SDW_DP0_INT read failed:%d\n", status); 1495 return status; 1496 } 1497 1498 do { 1499 clear = status & ~(SDW_DP0_INTERRUPTS | SDW_DP0_SDCA_CASCADE); 1500 1501 if (status & SDW_DP0_INT_TEST_FAIL) { 1502 dev_err(&slave->dev, "Test fail for port 0\n"); 1503 clear |= SDW_DP0_INT_TEST_FAIL; 1504 } 1505 1506 /* 1507 * Assumption: PORT_READY interrupt will be received only for 1508 * ports implementing Channel Prepare state machine (CP_SM) 1509 */ 1510 1511 if (status & SDW_DP0_INT_PORT_READY) { 1512 complete(&slave->port_ready[0]); 1513 clear |= SDW_DP0_INT_PORT_READY; 1514 } 1515 1516 if (status & SDW_DP0_INT_BRA_FAILURE) { 1517 dev_err(&slave->dev, "BRA failed\n"); 1518 clear |= SDW_DP0_INT_BRA_FAILURE; 1519 } 1520 1521 impl_int_mask = SDW_DP0_INT_IMPDEF1 | 1522 SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3; 1523 1524 if (status & impl_int_mask) { 1525 clear |= impl_int_mask; 1526 *slave_status = clear; 1527 } 1528 1529 /* clear the interrupts but don't touch reserved and SDCA_CASCADE fields */ 1530 ret = sdw_write_no_pm(slave, SDW_DP0_INT, clear); 1531 if (ret < 0) { 1532 dev_err(&slave->dev, 1533 "SDW_DP0_INT write failed:%d\n", ret); 1534 return ret; 1535 } 1536 1537 /* Read DP0 interrupt again */ 1538 status2 = sdw_read_no_pm(slave, SDW_DP0_INT); 1539 if (status2 < 0) { 1540 dev_err(&slave->dev, 1541 "SDW_DP0_INT read failed:%d\n", status2); 1542 return status2; 1543 } 1544 /* filter to limit loop to interrupts identified in the first status read */ 1545 status &= status2; 1546 1547 count++; 1548 1549 /* we can get alerts while processing so keep retrying */ 1550 } while ((status & SDW_DP0_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY)); 1551 1552 if (count == SDW_READ_INTR_CLEAR_RETRY) 1553 dev_warn(&slave->dev, "Reached MAX_RETRY on DP0 read\n"); 1554 1555 return ret; 1556 } 1557 1558 static int sdw_handle_port_interrupt(struct sdw_slave *slave, 1559 int port, u8 *slave_status) 1560 { 1561 u8 clear, impl_int_mask; 1562 int status, status2, ret, count = 0; 1563 u32 addr; 1564 1565 if (port == 0) 1566 return sdw_handle_dp0_interrupt(slave, slave_status); 1567 1568 addr = SDW_DPN_INT(port); 1569 status = sdw_read_no_pm(slave, addr); 1570 if (status < 0) { 1571 dev_err(&slave->dev, 1572 "SDW_DPN_INT read failed:%d\n", status); 1573 1574 return status; 1575 } 1576 1577 do { 1578 clear = status & ~SDW_DPN_INTERRUPTS; 1579 1580 if (status & SDW_DPN_INT_TEST_FAIL) { 1581 dev_err(&slave->dev, "Test fail for port:%d\n", port); 1582 clear |= SDW_DPN_INT_TEST_FAIL; 1583 } 1584 1585 /* 1586 * Assumption: PORT_READY interrupt will be received only 1587 * for ports implementing CP_SM. 1588 */ 1589 if (status & SDW_DPN_INT_PORT_READY) { 1590 complete(&slave->port_ready[port]); 1591 clear |= SDW_DPN_INT_PORT_READY; 1592 } 1593 1594 impl_int_mask = SDW_DPN_INT_IMPDEF1 | 1595 SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3; 1596 1597 if (status & impl_int_mask) { 1598 clear |= impl_int_mask; 1599 *slave_status = clear; 1600 } 1601 1602 /* clear the interrupt but don't touch reserved fields */ 1603 ret = sdw_write_no_pm(slave, addr, clear); 1604 if (ret < 0) { 1605 dev_err(&slave->dev, 1606 "SDW_DPN_INT write failed:%d\n", ret); 1607 return ret; 1608 } 1609 1610 /* Read DPN interrupt again */ 1611 status2 = sdw_read_no_pm(slave, addr); 1612 if (status2 < 0) { 1613 dev_err(&slave->dev, 1614 "SDW_DPN_INT read failed:%d\n", status2); 1615 return status2; 1616 } 1617 /* filter to limit loop to interrupts identified in the first status read */ 1618 status &= status2; 1619 1620 count++; 1621 1622 /* we can get alerts while processing so keep retrying */ 1623 } while ((status & SDW_DPN_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY)); 1624 1625 if (count == SDW_READ_INTR_CLEAR_RETRY) 1626 dev_warn(&slave->dev, "Reached MAX_RETRY on port read"); 1627 1628 return ret; 1629 } 1630 1631 static int sdw_handle_slave_alerts(struct sdw_slave *slave) 1632 { 1633 struct sdw_slave_intr_status slave_intr; 1634 u8 clear = 0, bit, port_status[15] = {0}; 1635 int port_num, stat, ret, count = 0; 1636 unsigned long port; 1637 bool slave_notify; 1638 u8 sdca_cascade = 0; 1639 u8 buf, buf2[2]; 1640 bool parity_check; 1641 bool parity_quirk; 1642 1643 sdw_modify_slave_status(slave, SDW_SLAVE_ALERT); 1644 1645 ret = pm_runtime_get_sync(&slave->dev); 1646 if (ret < 0 && ret != -EACCES) { 1647 dev_err(&slave->dev, "Failed to resume device: %d\n", ret); 1648 pm_runtime_put_noidle(&slave->dev); 1649 return ret; 1650 } 1651 1652 /* Read Intstat 1, Intstat 2 and Intstat 3 registers */ 1653 ret = sdw_read_no_pm(slave, SDW_SCP_INT1); 1654 if (ret < 0) { 1655 dev_err(&slave->dev, 1656 "SDW_SCP_INT1 read failed:%d\n", ret); 1657 goto io_err; 1658 } 1659 buf = ret; 1660 1661 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2); 1662 if (ret < 0) { 1663 dev_err(&slave->dev, 1664 "SDW_SCP_INT2/3 read failed:%d\n", ret); 1665 goto io_err; 1666 } 1667 1668 if (slave->id.class_id) { 1669 ret = sdw_read_no_pm(slave, SDW_DP0_INT); 1670 if (ret < 0) { 1671 dev_err(&slave->dev, 1672 "SDW_DP0_INT read failed:%d\n", ret); 1673 goto io_err; 1674 } 1675 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE; 1676 } 1677 1678 do { 1679 slave_notify = false; 1680 1681 /* 1682 * Check parity, bus clash and Slave (impl defined) 1683 * interrupt 1684 */ 1685 if (buf & SDW_SCP_INT1_PARITY) { 1686 parity_check = slave->prop.scp_int1_mask & SDW_SCP_INT1_PARITY; 1687 parity_quirk = !slave->first_interrupt_done && 1688 (slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY); 1689 1690 if (parity_check && !parity_quirk) 1691 dev_err(&slave->dev, "Parity error detected\n"); 1692 clear |= SDW_SCP_INT1_PARITY; 1693 } 1694 1695 if (buf & SDW_SCP_INT1_BUS_CLASH) { 1696 if (slave->prop.scp_int1_mask & SDW_SCP_INT1_BUS_CLASH) 1697 dev_err(&slave->dev, "Bus clash detected\n"); 1698 clear |= SDW_SCP_INT1_BUS_CLASH; 1699 } 1700 1701 /* 1702 * When bus clash or parity errors are detected, such errors 1703 * are unlikely to be recoverable errors. 1704 * TODO: In such scenario, reset bus. Make this configurable 1705 * via sysfs property with bus reset being the default. 1706 */ 1707 1708 if (buf & SDW_SCP_INT1_IMPL_DEF) { 1709 if (slave->prop.scp_int1_mask & SDW_SCP_INT1_IMPL_DEF) { 1710 dev_dbg(&slave->dev, "Slave impl defined interrupt\n"); 1711 slave_notify = true; 1712 } 1713 clear |= SDW_SCP_INT1_IMPL_DEF; 1714 } 1715 1716 /* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */ 1717 if (sdca_cascade) 1718 slave_notify = true; 1719 1720 /* Check port 0 - 3 interrupts */ 1721 port = buf & SDW_SCP_INT1_PORT0_3; 1722 1723 /* To get port number corresponding to bits, shift it */ 1724 port = FIELD_GET(SDW_SCP_INT1_PORT0_3, port); 1725 for_each_set_bit(bit, &port, 8) { 1726 sdw_handle_port_interrupt(slave, bit, 1727 &port_status[bit]); 1728 } 1729 1730 /* Check if cascade 2 interrupt is present */ 1731 if (buf & SDW_SCP_INT1_SCP2_CASCADE) { 1732 port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10; 1733 for_each_set_bit(bit, &port, 8) { 1734 /* scp2 ports start from 4 */ 1735 port_num = bit + 4; 1736 sdw_handle_port_interrupt(slave, 1737 port_num, 1738 &port_status[port_num]); 1739 } 1740 } 1741 1742 /* now check last cascade */ 1743 if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) { 1744 port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14; 1745 for_each_set_bit(bit, &port, 8) { 1746 /* scp3 ports start from 11 */ 1747 port_num = bit + 11; 1748 sdw_handle_port_interrupt(slave, 1749 port_num, 1750 &port_status[port_num]); 1751 } 1752 } 1753 1754 /* Update the Slave driver */ 1755 if (slave_notify) { 1756 mutex_lock(&slave->sdw_dev_lock); 1757 1758 if (slave->probed) { 1759 struct device *dev = &slave->dev; 1760 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver); 1761 1762 if (slave->prop.use_domain_irq && slave->irq) 1763 handle_nested_irq(slave->irq); 1764 1765 if (drv->ops && drv->ops->interrupt_callback) { 1766 slave_intr.sdca_cascade = sdca_cascade; 1767 slave_intr.control_port = clear; 1768 memcpy(slave_intr.port, &port_status, 1769 sizeof(slave_intr.port)); 1770 1771 drv->ops->interrupt_callback(slave, &slave_intr); 1772 } 1773 } 1774 1775 mutex_unlock(&slave->sdw_dev_lock); 1776 } 1777 1778 /* Ack interrupt */ 1779 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, clear); 1780 if (ret < 0) { 1781 dev_err(&slave->dev, 1782 "SDW_SCP_INT1 write failed:%d\n", ret); 1783 goto io_err; 1784 } 1785 1786 /* at this point all initial interrupt sources were handled */ 1787 slave->first_interrupt_done = true; 1788 1789 /* 1790 * Read status again to ensure no new interrupts arrived 1791 * while servicing interrupts. 1792 */ 1793 ret = sdw_read_no_pm(slave, SDW_SCP_INT1); 1794 if (ret < 0) { 1795 dev_err(&slave->dev, 1796 "SDW_SCP_INT1 recheck read failed:%d\n", ret); 1797 goto io_err; 1798 } 1799 buf = ret; 1800 1801 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2); 1802 if (ret < 0) { 1803 dev_err(&slave->dev, 1804 "SDW_SCP_INT2/3 recheck read failed:%d\n", ret); 1805 goto io_err; 1806 } 1807 1808 if (slave->id.class_id) { 1809 ret = sdw_read_no_pm(slave, SDW_DP0_INT); 1810 if (ret < 0) { 1811 dev_err(&slave->dev, 1812 "SDW_DP0_INT recheck read failed:%d\n", ret); 1813 goto io_err; 1814 } 1815 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE; 1816 } 1817 1818 /* 1819 * Make sure no interrupts are pending 1820 */ 1821 stat = buf || buf2[0] || buf2[1] || sdca_cascade; 1822 1823 /* 1824 * Exit loop if Slave is continuously in ALERT state even 1825 * after servicing the interrupt multiple times. 1826 */ 1827 count++; 1828 1829 /* we can get alerts while processing so keep retrying */ 1830 } while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY); 1831 1832 if (count == SDW_READ_INTR_CLEAR_RETRY) 1833 dev_warn(&slave->dev, "Reached MAX_RETRY on alert read\n"); 1834 1835 io_err: 1836 pm_runtime_mark_last_busy(&slave->dev); 1837 pm_runtime_put_autosuspend(&slave->dev); 1838 1839 return ret; 1840 } 1841 1842 static int sdw_update_slave_status(struct sdw_slave *slave, 1843 enum sdw_slave_status status) 1844 { 1845 int ret = 0; 1846 1847 mutex_lock(&slave->sdw_dev_lock); 1848 1849 if (slave->probed) { 1850 struct device *dev = &slave->dev; 1851 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver); 1852 1853 if (drv->ops && drv->ops->update_status) 1854 ret = drv->ops->update_status(slave, status); 1855 } 1856 1857 mutex_unlock(&slave->sdw_dev_lock); 1858 1859 return ret; 1860 } 1861 1862 /** 1863 * sdw_handle_slave_status() - Handle Slave status 1864 * @bus: SDW bus instance 1865 * @status: Status for all Slave(s) 1866 */ 1867 int sdw_handle_slave_status(struct sdw_bus *bus, 1868 enum sdw_slave_status status[]) 1869 { 1870 enum sdw_slave_status prev_status; 1871 struct sdw_slave *slave; 1872 bool attached_initializing, id_programmed; 1873 int i, ret = 0; 1874 1875 /* first check if any Slaves fell off the bus */ 1876 for (i = 1; i <= SDW_MAX_DEVICES; i++) { 1877 mutex_lock(&bus->bus_lock); 1878 if (test_bit(i, bus->assigned) == false) { 1879 mutex_unlock(&bus->bus_lock); 1880 continue; 1881 } 1882 mutex_unlock(&bus->bus_lock); 1883 1884 slave = sdw_get_slave(bus, i); 1885 if (!slave) 1886 continue; 1887 1888 if (status[i] == SDW_SLAVE_UNATTACHED && 1889 slave->status != SDW_SLAVE_UNATTACHED) { 1890 dev_warn(&slave->dev, "Slave %d state check1: UNATTACHED, status was %d\n", 1891 i, slave->status); 1892 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED); 1893 1894 /* Ensure driver knows that peripheral unattached */ 1895 ret = sdw_update_slave_status(slave, status[i]); 1896 if (ret < 0) 1897 dev_warn(&slave->dev, "Update Slave status failed:%d\n", ret); 1898 } 1899 } 1900 1901 if (status[0] == SDW_SLAVE_ATTACHED) { 1902 dev_dbg(bus->dev, "Slave attached, programming device number\n"); 1903 1904 /* 1905 * Programming a device number will have side effects, 1906 * so we deal with other devices at a later time. 1907 * This relies on those devices reporting ATTACHED, which will 1908 * trigger another call to this function. This will only 1909 * happen if at least one device ID was programmed. 1910 * Error returns from sdw_program_device_num() are currently 1911 * ignored because there's no useful recovery that can be done. 1912 * Returning the error here could result in the current status 1913 * of other devices not being handled, because if no device IDs 1914 * were programmed there's nothing to guarantee a status change 1915 * to trigger another call to this function. 1916 */ 1917 sdw_program_device_num(bus, &id_programmed); 1918 if (id_programmed) 1919 return 0; 1920 } 1921 1922 /* Continue to check other slave statuses */ 1923 for (i = 1; i <= SDW_MAX_DEVICES; i++) { 1924 mutex_lock(&bus->bus_lock); 1925 if (test_bit(i, bus->assigned) == false) { 1926 mutex_unlock(&bus->bus_lock); 1927 continue; 1928 } 1929 mutex_unlock(&bus->bus_lock); 1930 1931 slave = sdw_get_slave(bus, i); 1932 if (!slave) 1933 continue; 1934 1935 attached_initializing = false; 1936 1937 switch (status[i]) { 1938 case SDW_SLAVE_UNATTACHED: 1939 if (slave->status == SDW_SLAVE_UNATTACHED) 1940 break; 1941 1942 dev_warn(&slave->dev, "Slave %d state check2: UNATTACHED, status was %d\n", 1943 i, slave->status); 1944 1945 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED); 1946 break; 1947 1948 case SDW_SLAVE_ALERT: 1949 ret = sdw_handle_slave_alerts(slave); 1950 if (ret < 0) 1951 dev_err(&slave->dev, 1952 "Slave %d alert handling failed: %d\n", 1953 i, ret); 1954 break; 1955 1956 case SDW_SLAVE_ATTACHED: 1957 if (slave->status == SDW_SLAVE_ATTACHED) 1958 break; 1959 1960 prev_status = slave->status; 1961 sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED); 1962 1963 if (prev_status == SDW_SLAVE_ALERT) 1964 break; 1965 1966 attached_initializing = true; 1967 1968 ret = sdw_initialize_slave(slave); 1969 if (ret < 0) 1970 dev_err(&slave->dev, 1971 "Slave %d initialization failed: %d\n", 1972 i, ret); 1973 1974 break; 1975 1976 default: 1977 dev_err(&slave->dev, "Invalid slave %d status:%d\n", 1978 i, status[i]); 1979 break; 1980 } 1981 1982 ret = sdw_update_slave_status(slave, status[i]); 1983 if (ret < 0) 1984 dev_err(&slave->dev, 1985 "Update Slave status failed:%d\n", ret); 1986 if (attached_initializing) { 1987 dev_dbg(&slave->dev, 1988 "signaling initialization completion for Slave %d\n", 1989 slave->dev_num); 1990 1991 complete_all(&slave->initialization_complete); 1992 1993 /* 1994 * If the manager became pm_runtime active, the peripherals will be 1995 * restarted and attach, but their pm_runtime status may remain 1996 * suspended. If the 'update_slave_status' callback initiates 1997 * any sort of deferred processing, this processing would not be 1998 * cancelled on pm_runtime suspend. 1999 * To avoid such zombie states, we queue a request to resume. 2000 * This would be a no-op in case the peripheral was being resumed 2001 * by e.g. the ALSA/ASoC framework. 2002 */ 2003 pm_request_resume(&slave->dev); 2004 } 2005 } 2006 2007 return ret; 2008 } 2009 EXPORT_SYMBOL(sdw_handle_slave_status); 2010 2011 void sdw_clear_slave_status(struct sdw_bus *bus, u32 request) 2012 { 2013 struct sdw_slave *slave; 2014 int i; 2015 2016 /* Check all non-zero devices */ 2017 for (i = 1; i <= SDW_MAX_DEVICES; i++) { 2018 mutex_lock(&bus->bus_lock); 2019 if (test_bit(i, bus->assigned) == false) { 2020 mutex_unlock(&bus->bus_lock); 2021 continue; 2022 } 2023 mutex_unlock(&bus->bus_lock); 2024 2025 slave = sdw_get_slave(bus, i); 2026 if (!slave) 2027 continue; 2028 2029 if (slave->status != SDW_SLAVE_UNATTACHED) { 2030 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED); 2031 slave->first_interrupt_done = false; 2032 sdw_update_slave_status(slave, SDW_SLAVE_UNATTACHED); 2033 } 2034 2035 /* keep track of request, used in pm_runtime resume */ 2036 slave->unattach_request = request; 2037 } 2038 } 2039 EXPORT_SYMBOL(sdw_clear_slave_status); 2040 2041 int sdw_bpt_send_async(struct sdw_bus *bus, struct sdw_slave *slave, struct sdw_bpt_msg *msg) 2042 { 2043 if (msg->len > SDW_BPT_MSG_MAX_BYTES) { 2044 dev_err(bus->dev, "Invalid BPT message length %d\n", msg->len); 2045 return -EINVAL; 2046 } 2047 2048 /* check device is enumerated */ 2049 if (slave->dev_num == SDW_ENUM_DEV_NUM || 2050 slave->dev_num > SDW_MAX_DEVICES) { 2051 dev_err(&slave->dev, "Invalid device number %d\n", slave->dev_num); 2052 return -ENODEV; 2053 } 2054 2055 /* make sure all callbacks are defined */ 2056 if (!bus->ops->bpt_send_async || 2057 !bus->ops->bpt_wait) { 2058 dev_err(bus->dev, "BPT callbacks not defined\n"); 2059 return -EOPNOTSUPP; 2060 } 2061 2062 return bus->ops->bpt_send_async(bus, slave, msg); 2063 } 2064 EXPORT_SYMBOL(sdw_bpt_send_async); 2065 2066 int sdw_bpt_wait(struct sdw_bus *bus, struct sdw_slave *slave, struct sdw_bpt_msg *msg) 2067 { 2068 return bus->ops->bpt_wait(bus, slave, msg); 2069 } 2070 EXPORT_SYMBOL(sdw_bpt_wait); 2071 2072 int sdw_bpt_send_sync(struct sdw_bus *bus, struct sdw_slave *slave, struct sdw_bpt_msg *msg) 2073 { 2074 int ret; 2075 2076 ret = sdw_bpt_send_async(bus, slave, msg); 2077 if (ret < 0) 2078 return ret; 2079 2080 return sdw_bpt_wait(bus, slave, msg); 2081 } 2082 EXPORT_SYMBOL(sdw_bpt_send_sync); 2083