1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) 2 // Copyright(c) 2015-17 Intel Corporation. 3 4 #include <linux/acpi.h> 5 #include <linux/delay.h> 6 #include <linux/mod_devicetable.h> 7 #include <linux/pm_runtime.h> 8 #include <linux/soundwire/sdw_registers.h> 9 #include <linux/soundwire/sdw.h> 10 #include <linux/soundwire/sdw_type.h> 11 #include "bus.h" 12 #include "sysfs_local.h" 13 14 static DEFINE_IDA(sdw_bus_ida); 15 static DEFINE_IDA(sdw_peripheral_ida); 16 17 static int sdw_get_id(struct sdw_bus *bus) 18 { 19 int rc = ida_alloc(&sdw_bus_ida, GFP_KERNEL); 20 21 if (rc < 0) 22 return rc; 23 24 bus->id = rc; 25 return 0; 26 } 27 28 /** 29 * sdw_bus_master_add() - add a bus Master instance 30 * @bus: bus instance 31 * @parent: parent device 32 * @fwnode: firmware node handle 33 * 34 * Initializes the bus instance, read properties and create child 35 * devices. 36 */ 37 int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent, 38 struct fwnode_handle *fwnode) 39 { 40 struct sdw_master_prop *prop = NULL; 41 int ret; 42 43 if (!parent) { 44 pr_err("SoundWire parent device is not set\n"); 45 return -ENODEV; 46 } 47 48 ret = sdw_get_id(bus); 49 if (ret < 0) { 50 dev_err(parent, "Failed to get bus id\n"); 51 return ret; 52 } 53 54 ret = sdw_master_device_add(bus, parent, fwnode); 55 if (ret < 0) { 56 dev_err(parent, "Failed to add master device at link %d\n", 57 bus->link_id); 58 return ret; 59 } 60 61 if (!bus->ops) { 62 dev_err(bus->dev, "SoundWire Bus ops are not set\n"); 63 return -EINVAL; 64 } 65 66 if (!bus->compute_params) { 67 dev_err(bus->dev, 68 "Bandwidth allocation not configured, compute_params no set\n"); 69 return -EINVAL; 70 } 71 72 mutex_init(&bus->msg_lock); 73 mutex_init(&bus->bus_lock); 74 INIT_LIST_HEAD(&bus->slaves); 75 INIT_LIST_HEAD(&bus->m_rt_list); 76 77 /* 78 * Initialize multi_link flag 79 */ 80 bus->multi_link = false; 81 if (bus->ops->read_prop) { 82 ret = bus->ops->read_prop(bus); 83 if (ret < 0) { 84 dev_err(bus->dev, 85 "Bus read properties failed:%d\n", ret); 86 return ret; 87 } 88 } 89 90 sdw_bus_debugfs_init(bus); 91 92 /* 93 * Device numbers in SoundWire are 0 through 15. Enumeration device 94 * number (0), Broadcast device number (15), Group numbers (12 and 95 * 13) and Master device number (14) are not used for assignment so 96 * mask these and other higher bits. 97 */ 98 99 /* Set higher order bits */ 100 *bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM); 101 102 /* Set enumuration device number and broadcast device number */ 103 set_bit(SDW_ENUM_DEV_NUM, bus->assigned); 104 set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned); 105 106 /* Set group device numbers and master device number */ 107 set_bit(SDW_GROUP12_DEV_NUM, bus->assigned); 108 set_bit(SDW_GROUP13_DEV_NUM, bus->assigned); 109 set_bit(SDW_MASTER_DEV_NUM, bus->assigned); 110 111 /* 112 * SDW is an enumerable bus, but devices can be powered off. So, 113 * they won't be able to report as present. 114 * 115 * Create Slave devices based on Slaves described in 116 * the respective firmware (ACPI/DT) 117 */ 118 if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev)) 119 ret = sdw_acpi_find_slaves(bus); 120 else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node) 121 ret = sdw_of_find_slaves(bus); 122 else 123 ret = -ENOTSUPP; /* No ACPI/DT so error out */ 124 125 if (ret < 0) { 126 dev_err(bus->dev, "Finding slaves failed:%d\n", ret); 127 return ret; 128 } 129 130 /* 131 * Initialize clock values based on Master properties. The max 132 * frequency is read from max_clk_freq property. Current assumption 133 * is that the bus will start at highest clock frequency when 134 * powered on. 135 * 136 * Default active bank will be 0 as out of reset the Slaves have 137 * to start with bank 0 (Table 40 of Spec) 138 */ 139 prop = &bus->prop; 140 bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR; 141 bus->params.curr_dr_freq = bus->params.max_dr_freq; 142 bus->params.curr_bank = SDW_BANK0; 143 bus->params.next_bank = SDW_BANK1; 144 145 return 0; 146 } 147 EXPORT_SYMBOL(sdw_bus_master_add); 148 149 static int sdw_delete_slave(struct device *dev, void *data) 150 { 151 struct sdw_slave *slave = dev_to_sdw_dev(dev); 152 struct sdw_bus *bus = slave->bus; 153 154 pm_runtime_disable(dev); 155 156 sdw_slave_debugfs_exit(slave); 157 158 mutex_lock(&bus->bus_lock); 159 160 if (slave->dev_num) { /* clear dev_num if assigned */ 161 clear_bit(slave->dev_num, bus->assigned); 162 if (bus->dev_num_ida_min) 163 ida_free(&sdw_peripheral_ida, slave->dev_num); 164 } 165 list_del_init(&slave->node); 166 mutex_unlock(&bus->bus_lock); 167 168 device_unregister(dev); 169 return 0; 170 } 171 172 /** 173 * sdw_bus_master_delete() - delete the bus master instance 174 * @bus: bus to be deleted 175 * 176 * Remove the instance, delete the child devices. 177 */ 178 void sdw_bus_master_delete(struct sdw_bus *bus) 179 { 180 device_for_each_child(bus->dev, NULL, sdw_delete_slave); 181 sdw_master_device_del(bus); 182 183 sdw_bus_debugfs_exit(bus); 184 ida_free(&sdw_bus_ida, bus->id); 185 } 186 EXPORT_SYMBOL(sdw_bus_master_delete); 187 188 /* 189 * SDW IO Calls 190 */ 191 192 static inline int find_response_code(enum sdw_command_response resp) 193 { 194 switch (resp) { 195 case SDW_CMD_OK: 196 return 0; 197 198 case SDW_CMD_IGNORED: 199 return -ENODATA; 200 201 case SDW_CMD_TIMEOUT: 202 return -ETIMEDOUT; 203 204 default: 205 return -EIO; 206 } 207 } 208 209 static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg) 210 { 211 int retry = bus->prop.err_threshold; 212 enum sdw_command_response resp; 213 int ret = 0, i; 214 215 for (i = 0; i <= retry; i++) { 216 resp = bus->ops->xfer_msg(bus, msg); 217 ret = find_response_code(resp); 218 219 /* if cmd is ok or ignored return */ 220 if (ret == 0 || ret == -ENODATA) 221 return ret; 222 } 223 224 return ret; 225 } 226 227 static inline int do_transfer_defer(struct sdw_bus *bus, 228 struct sdw_msg *msg) 229 { 230 struct sdw_defer *defer = &bus->defer_msg; 231 int retry = bus->prop.err_threshold; 232 enum sdw_command_response resp; 233 int ret = 0, i; 234 235 defer->msg = msg; 236 defer->length = msg->len; 237 init_completion(&defer->complete); 238 239 for (i = 0; i <= retry; i++) { 240 resp = bus->ops->xfer_msg_defer(bus); 241 ret = find_response_code(resp); 242 /* if cmd is ok or ignored return */ 243 if (ret == 0 || ret == -ENODATA) 244 return ret; 245 } 246 247 return ret; 248 } 249 250 static int sdw_transfer_unlocked(struct sdw_bus *bus, struct sdw_msg *msg) 251 { 252 int ret; 253 254 ret = do_transfer(bus, msg); 255 if (ret != 0 && ret != -ENODATA) 256 dev_err(bus->dev, "trf on Slave %d failed:%d %s addr %x count %d\n", 257 msg->dev_num, ret, 258 (msg->flags & SDW_MSG_FLAG_WRITE) ? "write" : "read", 259 msg->addr, msg->len); 260 261 return ret; 262 } 263 264 /** 265 * sdw_transfer() - Synchronous transfer message to a SDW Slave device 266 * @bus: SDW bus 267 * @msg: SDW message to be xfered 268 */ 269 int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg) 270 { 271 int ret; 272 273 mutex_lock(&bus->msg_lock); 274 275 ret = sdw_transfer_unlocked(bus, msg); 276 277 mutex_unlock(&bus->msg_lock); 278 279 return ret; 280 } 281 282 /** 283 * sdw_show_ping_status() - Direct report of PING status, to be used by Peripheral drivers 284 * @bus: SDW bus 285 * @sync_delay: Delay before reading status 286 */ 287 void sdw_show_ping_status(struct sdw_bus *bus, bool sync_delay) 288 { 289 u32 status; 290 291 if (!bus->ops->read_ping_status) 292 return; 293 294 /* 295 * wait for peripheral to sync if desired. 10-15ms should be more than 296 * enough in most cases. 297 */ 298 if (sync_delay) 299 usleep_range(10000, 15000); 300 301 mutex_lock(&bus->msg_lock); 302 303 status = bus->ops->read_ping_status(bus); 304 305 mutex_unlock(&bus->msg_lock); 306 307 if (!status) 308 dev_warn(bus->dev, "%s: no peripherals attached\n", __func__); 309 else 310 dev_dbg(bus->dev, "PING status: %#x\n", status); 311 } 312 EXPORT_SYMBOL(sdw_show_ping_status); 313 314 /** 315 * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device 316 * @bus: SDW bus 317 * @msg: SDW message to be xfered 318 * 319 * Caller needs to hold the msg_lock lock while calling this 320 */ 321 int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg) 322 { 323 int ret; 324 325 if (!bus->ops->xfer_msg_defer) 326 return -ENOTSUPP; 327 328 ret = do_transfer_defer(bus, msg); 329 if (ret != 0 && ret != -ENODATA) 330 dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n", 331 msg->dev_num, ret); 332 333 return ret; 334 } 335 336 int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave, 337 u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf) 338 { 339 memset(msg, 0, sizeof(*msg)); 340 msg->addr = addr; /* addr is 16 bit and truncated here */ 341 msg->len = count; 342 msg->dev_num = dev_num; 343 msg->flags = flags; 344 msg->buf = buf; 345 346 if (addr < SDW_REG_NO_PAGE) /* no paging area */ 347 return 0; 348 349 if (addr >= SDW_REG_MAX) { /* illegal addr */ 350 pr_err("SDW: Invalid address %x passed\n", addr); 351 return -EINVAL; 352 } 353 354 if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */ 355 if (slave && !slave->prop.paging_support) 356 return 0; 357 /* no need for else as that will fall-through to paging */ 358 } 359 360 /* paging mandatory */ 361 if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) { 362 pr_err("SDW: Invalid device for paging :%d\n", dev_num); 363 return -EINVAL; 364 } 365 366 if (!slave) { 367 pr_err("SDW: No slave for paging addr\n"); 368 return -EINVAL; 369 } 370 371 if (!slave->prop.paging_support) { 372 dev_err(&slave->dev, 373 "address %x needs paging but no support\n", addr); 374 return -EINVAL; 375 } 376 377 msg->addr_page1 = FIELD_GET(SDW_SCP_ADDRPAGE1_MASK, addr); 378 msg->addr_page2 = FIELD_GET(SDW_SCP_ADDRPAGE2_MASK, addr); 379 msg->addr |= BIT(15); 380 msg->page = true; 381 382 return 0; 383 } 384 385 /* 386 * Read/Write IO functions. 387 * no_pm versions can only be called by the bus, e.g. while enumerating or 388 * handling suspend-resume sequences. 389 * all clients need to use the pm versions 390 */ 391 392 int sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val) 393 { 394 struct sdw_msg msg; 395 int ret; 396 397 ret = sdw_fill_msg(&msg, slave, addr, count, 398 slave->dev_num, SDW_MSG_FLAG_READ, val); 399 if (ret < 0) 400 return ret; 401 402 ret = sdw_transfer(slave->bus, &msg); 403 if (slave->is_mockup_device) 404 ret = 0; 405 return ret; 406 } 407 EXPORT_SYMBOL(sdw_nread_no_pm); 408 409 int sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val) 410 { 411 struct sdw_msg msg; 412 int ret; 413 414 ret = sdw_fill_msg(&msg, slave, addr, count, 415 slave->dev_num, SDW_MSG_FLAG_WRITE, (u8 *)val); 416 if (ret < 0) 417 return ret; 418 419 ret = sdw_transfer(slave->bus, &msg); 420 if (slave->is_mockup_device) 421 ret = 0; 422 return ret; 423 } 424 EXPORT_SYMBOL(sdw_nwrite_no_pm); 425 426 int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value) 427 { 428 return sdw_nwrite_no_pm(slave, addr, 1, &value); 429 } 430 EXPORT_SYMBOL(sdw_write_no_pm); 431 432 static int 433 sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr) 434 { 435 struct sdw_msg msg; 436 u8 buf; 437 int ret; 438 439 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num, 440 SDW_MSG_FLAG_READ, &buf); 441 if (ret < 0) 442 return ret; 443 444 ret = sdw_transfer(bus, &msg); 445 if (ret < 0) 446 return ret; 447 448 return buf; 449 } 450 451 static int 452 sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value) 453 { 454 struct sdw_msg msg; 455 int ret; 456 457 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num, 458 SDW_MSG_FLAG_WRITE, &value); 459 if (ret < 0) 460 return ret; 461 462 return sdw_transfer(bus, &msg); 463 } 464 465 int sdw_bread_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr) 466 { 467 struct sdw_msg msg; 468 u8 buf; 469 int ret; 470 471 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num, 472 SDW_MSG_FLAG_READ, &buf); 473 if (ret < 0) 474 return ret; 475 476 ret = sdw_transfer_unlocked(bus, &msg); 477 if (ret < 0) 478 return ret; 479 480 return buf; 481 } 482 EXPORT_SYMBOL(sdw_bread_no_pm_unlocked); 483 484 int sdw_bwrite_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value) 485 { 486 struct sdw_msg msg; 487 int ret; 488 489 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num, 490 SDW_MSG_FLAG_WRITE, &value); 491 if (ret < 0) 492 return ret; 493 494 return sdw_transfer_unlocked(bus, &msg); 495 } 496 EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked); 497 498 int sdw_read_no_pm(struct sdw_slave *slave, u32 addr) 499 { 500 u8 buf; 501 int ret; 502 503 ret = sdw_nread_no_pm(slave, addr, 1, &buf); 504 if (ret < 0) 505 return ret; 506 else 507 return buf; 508 } 509 EXPORT_SYMBOL(sdw_read_no_pm); 510 511 int sdw_update_no_pm(struct sdw_slave *slave, u32 addr, u8 mask, u8 val) 512 { 513 int tmp; 514 515 tmp = sdw_read_no_pm(slave, addr); 516 if (tmp < 0) 517 return tmp; 518 519 tmp = (tmp & ~mask) | val; 520 return sdw_write_no_pm(slave, addr, tmp); 521 } 522 EXPORT_SYMBOL(sdw_update_no_pm); 523 524 /* Read-Modify-Write Slave register */ 525 int sdw_update(struct sdw_slave *slave, u32 addr, u8 mask, u8 val) 526 { 527 int tmp; 528 529 tmp = sdw_read(slave, addr); 530 if (tmp < 0) 531 return tmp; 532 533 tmp = (tmp & ~mask) | val; 534 return sdw_write(slave, addr, tmp); 535 } 536 EXPORT_SYMBOL(sdw_update); 537 538 /** 539 * sdw_nread() - Read "n" contiguous SDW Slave registers 540 * @slave: SDW Slave 541 * @addr: Register address 542 * @count: length 543 * @val: Buffer for values to be read 544 */ 545 int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val) 546 { 547 int ret; 548 549 ret = pm_runtime_resume_and_get(&slave->dev); 550 if (ret < 0 && ret != -EACCES) 551 return ret; 552 553 ret = sdw_nread_no_pm(slave, addr, count, val); 554 555 pm_runtime_mark_last_busy(&slave->dev); 556 pm_runtime_put(&slave->dev); 557 558 return ret; 559 } 560 EXPORT_SYMBOL(sdw_nread); 561 562 /** 563 * sdw_nwrite() - Write "n" contiguous SDW Slave registers 564 * @slave: SDW Slave 565 * @addr: Register address 566 * @count: length 567 * @val: Buffer for values to be written 568 */ 569 int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val) 570 { 571 int ret; 572 573 ret = pm_runtime_resume_and_get(&slave->dev); 574 if (ret < 0 && ret != -EACCES) 575 return ret; 576 577 ret = sdw_nwrite_no_pm(slave, addr, count, val); 578 579 pm_runtime_mark_last_busy(&slave->dev); 580 pm_runtime_put(&slave->dev); 581 582 return ret; 583 } 584 EXPORT_SYMBOL(sdw_nwrite); 585 586 /** 587 * sdw_read() - Read a SDW Slave register 588 * @slave: SDW Slave 589 * @addr: Register address 590 */ 591 int sdw_read(struct sdw_slave *slave, u32 addr) 592 { 593 u8 buf; 594 int ret; 595 596 ret = sdw_nread(slave, addr, 1, &buf); 597 if (ret < 0) 598 return ret; 599 600 return buf; 601 } 602 EXPORT_SYMBOL(sdw_read); 603 604 /** 605 * sdw_write() - Write a SDW Slave register 606 * @slave: SDW Slave 607 * @addr: Register address 608 * @value: Register value 609 */ 610 int sdw_write(struct sdw_slave *slave, u32 addr, u8 value) 611 { 612 return sdw_nwrite(slave, addr, 1, &value); 613 } 614 EXPORT_SYMBOL(sdw_write); 615 616 /* 617 * SDW alert handling 618 */ 619 620 /* called with bus_lock held */ 621 static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i) 622 { 623 struct sdw_slave *slave; 624 625 list_for_each_entry(slave, &bus->slaves, node) { 626 if (slave->dev_num == i) 627 return slave; 628 } 629 630 return NULL; 631 } 632 633 int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id) 634 { 635 if (slave->id.mfg_id != id.mfg_id || 636 slave->id.part_id != id.part_id || 637 slave->id.class_id != id.class_id || 638 (slave->id.unique_id != SDW_IGNORED_UNIQUE_ID && 639 slave->id.unique_id != id.unique_id)) 640 return -ENODEV; 641 642 return 0; 643 } 644 EXPORT_SYMBOL(sdw_compare_devid); 645 646 /* called with bus_lock held */ 647 static int sdw_get_device_num(struct sdw_slave *slave) 648 { 649 int bit; 650 651 if (slave->bus->dev_num_ida_min) { 652 bit = ida_alloc_range(&sdw_peripheral_ida, 653 slave->bus->dev_num_ida_min, SDW_MAX_DEVICES, 654 GFP_KERNEL); 655 if (bit < 0) 656 goto err; 657 } else { 658 bit = find_first_zero_bit(slave->bus->assigned, SDW_MAX_DEVICES); 659 if (bit == SDW_MAX_DEVICES) { 660 bit = -ENODEV; 661 goto err; 662 } 663 } 664 665 /* 666 * Do not update dev_num in Slave data structure here, 667 * Update once program dev_num is successful 668 */ 669 set_bit(bit, slave->bus->assigned); 670 671 err: 672 return bit; 673 } 674 675 static int sdw_assign_device_num(struct sdw_slave *slave) 676 { 677 struct sdw_bus *bus = slave->bus; 678 int ret, dev_num; 679 bool new_device = false; 680 681 /* check first if device number is assigned, if so reuse that */ 682 if (!slave->dev_num) { 683 if (!slave->dev_num_sticky) { 684 mutex_lock(&slave->bus->bus_lock); 685 dev_num = sdw_get_device_num(slave); 686 mutex_unlock(&slave->bus->bus_lock); 687 if (dev_num < 0) { 688 dev_err(bus->dev, "Get dev_num failed: %d\n", 689 dev_num); 690 return dev_num; 691 } 692 slave->dev_num = dev_num; 693 slave->dev_num_sticky = dev_num; 694 new_device = true; 695 } else { 696 slave->dev_num = slave->dev_num_sticky; 697 } 698 } 699 700 if (!new_device) 701 dev_dbg(bus->dev, 702 "Slave already registered, reusing dev_num:%d\n", 703 slave->dev_num); 704 705 /* Clear the slave->dev_num to transfer message on device 0 */ 706 dev_num = slave->dev_num; 707 slave->dev_num = 0; 708 709 ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, dev_num); 710 if (ret < 0) { 711 dev_err(bus->dev, "Program device_num %d failed: %d\n", 712 dev_num, ret); 713 return ret; 714 } 715 716 /* After xfer of msg, restore dev_num */ 717 slave->dev_num = slave->dev_num_sticky; 718 719 return 0; 720 } 721 722 void sdw_extract_slave_id(struct sdw_bus *bus, 723 u64 addr, struct sdw_slave_id *id) 724 { 725 dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr); 726 727 id->sdw_version = SDW_VERSION(addr); 728 id->unique_id = SDW_UNIQUE_ID(addr); 729 id->mfg_id = SDW_MFG_ID(addr); 730 id->part_id = SDW_PART_ID(addr); 731 id->class_id = SDW_CLASS_ID(addr); 732 733 dev_dbg(bus->dev, 734 "SDW Slave class_id 0x%02x, mfg_id 0x%04x, part_id 0x%04x, unique_id 0x%x, version 0x%x\n", 735 id->class_id, id->mfg_id, id->part_id, id->unique_id, id->sdw_version); 736 } 737 EXPORT_SYMBOL(sdw_extract_slave_id); 738 739 static int sdw_program_device_num(struct sdw_bus *bus, bool *programmed) 740 { 741 u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0}; 742 struct sdw_slave *slave, *_s; 743 struct sdw_slave_id id; 744 struct sdw_msg msg; 745 bool found; 746 int count = 0, ret; 747 u64 addr; 748 749 *programmed = false; 750 751 /* No Slave, so use raw xfer api */ 752 ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0, 753 SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf); 754 if (ret < 0) 755 return ret; 756 757 do { 758 ret = sdw_transfer(bus, &msg); 759 if (ret == -ENODATA) { /* end of device id reads */ 760 dev_dbg(bus->dev, "No more devices to enumerate\n"); 761 ret = 0; 762 break; 763 } 764 if (ret < 0) { 765 dev_err(bus->dev, "DEVID read fail:%d\n", ret); 766 break; 767 } 768 769 /* 770 * Construct the addr and extract. Cast the higher shift 771 * bits to avoid truncation due to size limit. 772 */ 773 addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) | 774 ((u64)buf[2] << 24) | ((u64)buf[1] << 32) | 775 ((u64)buf[0] << 40); 776 777 sdw_extract_slave_id(bus, addr, &id); 778 779 found = false; 780 /* Now compare with entries */ 781 list_for_each_entry_safe(slave, _s, &bus->slaves, node) { 782 if (sdw_compare_devid(slave, id) == 0) { 783 found = true; 784 785 /* 786 * To prevent skipping state-machine stages don't 787 * program a device until we've seen it UNATTACH. 788 * Must return here because no other device on #0 789 * can be detected until this one has been 790 * assigned a device ID. 791 */ 792 if (slave->status != SDW_SLAVE_UNATTACHED) 793 return 0; 794 795 /* 796 * Assign a new dev_num to this Slave and 797 * not mark it present. It will be marked 798 * present after it reports ATTACHED on new 799 * dev_num 800 */ 801 ret = sdw_assign_device_num(slave); 802 if (ret < 0) { 803 dev_err(bus->dev, 804 "Assign dev_num failed:%d\n", 805 ret); 806 return ret; 807 } 808 809 *programmed = true; 810 811 break; 812 } 813 } 814 815 if (!found) { 816 /* TODO: Park this device in Group 13 */ 817 818 /* 819 * add Slave device even if there is no platform 820 * firmware description. There will be no driver probe 821 * but the user/integration will be able to see the 822 * device, enumeration status and device number in sysfs 823 */ 824 sdw_slave_add(bus, &id, NULL); 825 826 dev_err(bus->dev, "Slave Entry not found\n"); 827 } 828 829 count++; 830 831 /* 832 * Check till error out or retry (count) exhausts. 833 * Device can drop off and rejoin during enumeration 834 * so count till twice the bound. 835 */ 836 837 } while (ret == 0 && count < (SDW_MAX_DEVICES * 2)); 838 839 return ret; 840 } 841 842 static void sdw_modify_slave_status(struct sdw_slave *slave, 843 enum sdw_slave_status status) 844 { 845 struct sdw_bus *bus = slave->bus; 846 847 mutex_lock(&bus->bus_lock); 848 849 dev_vdbg(bus->dev, 850 "changing status slave %d status %d new status %d\n", 851 slave->dev_num, slave->status, status); 852 853 if (status == SDW_SLAVE_UNATTACHED) { 854 dev_dbg(&slave->dev, 855 "initializing enumeration and init completion for Slave %d\n", 856 slave->dev_num); 857 858 init_completion(&slave->enumeration_complete); 859 init_completion(&slave->initialization_complete); 860 861 } else if ((status == SDW_SLAVE_ATTACHED) && 862 (slave->status == SDW_SLAVE_UNATTACHED)) { 863 dev_dbg(&slave->dev, 864 "signaling enumeration completion for Slave %d\n", 865 slave->dev_num); 866 867 complete(&slave->enumeration_complete); 868 } 869 slave->status = status; 870 mutex_unlock(&bus->bus_lock); 871 } 872 873 static int sdw_slave_clk_stop_callback(struct sdw_slave *slave, 874 enum sdw_clk_stop_mode mode, 875 enum sdw_clk_stop_type type) 876 { 877 int ret = 0; 878 879 mutex_lock(&slave->sdw_dev_lock); 880 881 if (slave->probed) { 882 struct device *dev = &slave->dev; 883 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver); 884 885 if (drv->ops && drv->ops->clk_stop) 886 ret = drv->ops->clk_stop(slave, mode, type); 887 } 888 889 mutex_unlock(&slave->sdw_dev_lock); 890 891 return ret; 892 } 893 894 static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave, 895 enum sdw_clk_stop_mode mode, 896 bool prepare) 897 { 898 bool wake_en; 899 u32 val = 0; 900 int ret; 901 902 wake_en = slave->prop.wake_capable; 903 904 if (prepare) { 905 val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP; 906 907 if (mode == SDW_CLK_STOP_MODE1) 908 val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1; 909 910 if (wake_en) 911 val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN; 912 } else { 913 ret = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL); 914 if (ret < 0) { 915 if (ret != -ENODATA) 916 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL read failed:%d\n", ret); 917 return ret; 918 } 919 val = ret; 920 val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP); 921 } 922 923 ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val); 924 925 if (ret < 0 && ret != -ENODATA) 926 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL write failed:%d\n", ret); 927 928 return ret; 929 } 930 931 static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num) 932 { 933 int retry = bus->clk_stop_timeout; 934 int val; 935 936 do { 937 val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT); 938 if (val < 0) { 939 if (val != -ENODATA) 940 dev_err(bus->dev, "SDW_SCP_STAT bread failed:%d\n", val); 941 return val; 942 } 943 val &= SDW_SCP_STAT_CLK_STP_NF; 944 if (!val) { 945 dev_dbg(bus->dev, "clock stop prep/de-prep done slave:%d\n", 946 dev_num); 947 return 0; 948 } 949 950 usleep_range(1000, 1500); 951 retry--; 952 } while (retry); 953 954 dev_err(bus->dev, "clock stop prep/de-prep failed slave:%d\n", 955 dev_num); 956 957 return -ETIMEDOUT; 958 } 959 960 /** 961 * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop 962 * 963 * @bus: SDW bus instance 964 * 965 * Query Slave for clock stop mode and prepare for that mode. 966 */ 967 int sdw_bus_prep_clk_stop(struct sdw_bus *bus) 968 { 969 bool simple_clk_stop = true; 970 struct sdw_slave *slave; 971 bool is_slave = false; 972 int ret = 0; 973 974 /* 975 * In order to save on transition time, prepare 976 * each Slave and then wait for all Slave(s) to be 977 * prepared for clock stop. 978 * If one of the Slave devices has lost sync and 979 * replies with Command Ignored/-ENODATA, we continue 980 * the loop 981 */ 982 list_for_each_entry(slave, &bus->slaves, node) { 983 if (!slave->dev_num) 984 continue; 985 986 if (slave->status != SDW_SLAVE_ATTACHED && 987 slave->status != SDW_SLAVE_ALERT) 988 continue; 989 990 /* Identify if Slave(s) are available on Bus */ 991 is_slave = true; 992 993 ret = sdw_slave_clk_stop_callback(slave, 994 SDW_CLK_STOP_MODE0, 995 SDW_CLK_PRE_PREPARE); 996 if (ret < 0 && ret != -ENODATA) { 997 dev_err(&slave->dev, "clock stop pre-prepare cb failed:%d\n", ret); 998 return ret; 999 } 1000 1001 /* Only prepare a Slave device if needed */ 1002 if (!slave->prop.simple_clk_stop_capable) { 1003 simple_clk_stop = false; 1004 1005 ret = sdw_slave_clk_stop_prepare(slave, 1006 SDW_CLK_STOP_MODE0, 1007 true); 1008 if (ret < 0 && ret != -ENODATA) { 1009 dev_err(&slave->dev, "clock stop prepare failed:%d\n", ret); 1010 return ret; 1011 } 1012 } 1013 } 1014 1015 /* Skip remaining clock stop preparation if no Slave is attached */ 1016 if (!is_slave) 1017 return 0; 1018 1019 /* 1020 * Don't wait for all Slaves to be ready if they follow the simple 1021 * state machine 1022 */ 1023 if (!simple_clk_stop) { 1024 ret = sdw_bus_wait_for_clk_prep_deprep(bus, 1025 SDW_BROADCAST_DEV_NUM); 1026 /* 1027 * if there are no Slave devices present and the reply is 1028 * Command_Ignored/-ENODATA, we don't need to continue with the 1029 * flow and can just return here. The error code is not modified 1030 * and its handling left as an exercise for the caller. 1031 */ 1032 if (ret < 0) 1033 return ret; 1034 } 1035 1036 /* Inform slaves that prep is done */ 1037 list_for_each_entry(slave, &bus->slaves, node) { 1038 if (!slave->dev_num) 1039 continue; 1040 1041 if (slave->status != SDW_SLAVE_ATTACHED && 1042 slave->status != SDW_SLAVE_ALERT) 1043 continue; 1044 1045 ret = sdw_slave_clk_stop_callback(slave, 1046 SDW_CLK_STOP_MODE0, 1047 SDW_CLK_POST_PREPARE); 1048 1049 if (ret < 0 && ret != -ENODATA) { 1050 dev_err(&slave->dev, "clock stop post-prepare cb failed:%d\n", ret); 1051 return ret; 1052 } 1053 } 1054 1055 return 0; 1056 } 1057 EXPORT_SYMBOL(sdw_bus_prep_clk_stop); 1058 1059 /** 1060 * sdw_bus_clk_stop: stop bus clock 1061 * 1062 * @bus: SDW bus instance 1063 * 1064 * After preparing the Slaves for clock stop, stop the clock by broadcasting 1065 * write to SCP_CTRL register. 1066 */ 1067 int sdw_bus_clk_stop(struct sdw_bus *bus) 1068 { 1069 int ret; 1070 1071 /* 1072 * broadcast clock stop now, attached Slaves will ACK this, 1073 * unattached will ignore 1074 */ 1075 ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM, 1076 SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW); 1077 if (ret < 0) { 1078 if (ret != -ENODATA) 1079 dev_err(bus->dev, "ClockStopNow Broadcast msg failed %d\n", ret); 1080 return ret; 1081 } 1082 1083 return 0; 1084 } 1085 EXPORT_SYMBOL(sdw_bus_clk_stop); 1086 1087 /** 1088 * sdw_bus_exit_clk_stop: Exit clock stop mode 1089 * 1090 * @bus: SDW bus instance 1091 * 1092 * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves 1093 * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate 1094 * back. 1095 */ 1096 int sdw_bus_exit_clk_stop(struct sdw_bus *bus) 1097 { 1098 bool simple_clk_stop = true; 1099 struct sdw_slave *slave; 1100 bool is_slave = false; 1101 int ret; 1102 1103 /* 1104 * In order to save on transition time, de-prepare 1105 * each Slave and then wait for all Slave(s) to be 1106 * de-prepared after clock resume. 1107 */ 1108 list_for_each_entry(slave, &bus->slaves, node) { 1109 if (!slave->dev_num) 1110 continue; 1111 1112 if (slave->status != SDW_SLAVE_ATTACHED && 1113 slave->status != SDW_SLAVE_ALERT) 1114 continue; 1115 1116 /* Identify if Slave(s) are available on Bus */ 1117 is_slave = true; 1118 1119 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0, 1120 SDW_CLK_PRE_DEPREPARE); 1121 if (ret < 0) 1122 dev_warn(&slave->dev, "clock stop pre-deprepare cb failed:%d\n", ret); 1123 1124 /* Only de-prepare a Slave device if needed */ 1125 if (!slave->prop.simple_clk_stop_capable) { 1126 simple_clk_stop = false; 1127 1128 ret = sdw_slave_clk_stop_prepare(slave, SDW_CLK_STOP_MODE0, 1129 false); 1130 1131 if (ret < 0) 1132 dev_warn(&slave->dev, "clock stop deprepare failed:%d\n", ret); 1133 } 1134 } 1135 1136 /* Skip remaining clock stop de-preparation if no Slave is attached */ 1137 if (!is_slave) 1138 return 0; 1139 1140 /* 1141 * Don't wait for all Slaves to be ready if they follow the simple 1142 * state machine 1143 */ 1144 if (!simple_clk_stop) { 1145 ret = sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM); 1146 if (ret < 0) 1147 dev_warn(bus->dev, "clock stop deprepare wait failed:%d\n", ret); 1148 } 1149 1150 list_for_each_entry(slave, &bus->slaves, node) { 1151 if (!slave->dev_num) 1152 continue; 1153 1154 if (slave->status != SDW_SLAVE_ATTACHED && 1155 slave->status != SDW_SLAVE_ALERT) 1156 continue; 1157 1158 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0, 1159 SDW_CLK_POST_DEPREPARE); 1160 if (ret < 0) 1161 dev_warn(&slave->dev, "clock stop post-deprepare cb failed:%d\n", ret); 1162 } 1163 1164 return 0; 1165 } 1166 EXPORT_SYMBOL(sdw_bus_exit_clk_stop); 1167 1168 int sdw_configure_dpn_intr(struct sdw_slave *slave, 1169 int port, bool enable, int mask) 1170 { 1171 u32 addr; 1172 int ret; 1173 u8 val = 0; 1174 1175 if (slave->bus->params.s_data_mode != SDW_PORT_DATA_MODE_NORMAL) { 1176 dev_dbg(&slave->dev, "TEST FAIL interrupt %s\n", 1177 enable ? "on" : "off"); 1178 mask |= SDW_DPN_INT_TEST_FAIL; 1179 } 1180 1181 addr = SDW_DPN_INTMASK(port); 1182 1183 /* Set/Clear port ready interrupt mask */ 1184 if (enable) { 1185 val |= mask; 1186 val |= SDW_DPN_INT_PORT_READY; 1187 } else { 1188 val &= ~(mask); 1189 val &= ~SDW_DPN_INT_PORT_READY; 1190 } 1191 1192 ret = sdw_update_no_pm(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val); 1193 if (ret < 0) 1194 dev_err(&slave->dev, 1195 "SDW_DPN_INTMASK write failed:%d\n", val); 1196 1197 return ret; 1198 } 1199 1200 static int sdw_slave_set_frequency(struct sdw_slave *slave) 1201 { 1202 u32 mclk_freq = slave->bus->prop.mclk_freq; 1203 u32 curr_freq = slave->bus->params.curr_dr_freq >> 1; 1204 unsigned int scale; 1205 u8 scale_index; 1206 u8 base; 1207 int ret; 1208 1209 /* 1210 * frequency base and scale registers are required for SDCA 1211 * devices. They may also be used for 1.2+/non-SDCA devices. 1212 * Driver can set the property, we will need a DisCo property 1213 * to discover this case from platform firmware. 1214 */ 1215 if (!slave->id.class_id && !slave->prop.clock_reg_supported) 1216 return 0; 1217 1218 if (!mclk_freq) { 1219 dev_err(&slave->dev, 1220 "no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n"); 1221 return -EINVAL; 1222 } 1223 1224 /* 1225 * map base frequency using Table 89 of SoundWire 1.2 spec. 1226 * The order of the tests just follows the specification, this 1227 * is not a selection between possible values or a search for 1228 * the best value but just a mapping. Only one case per platform 1229 * is relevant. 1230 * Some BIOS have inconsistent values for mclk_freq but a 1231 * correct root so we force the mclk_freq to avoid variations. 1232 */ 1233 if (!(19200000 % mclk_freq)) { 1234 mclk_freq = 19200000; 1235 base = SDW_SCP_BASE_CLOCK_19200000_HZ; 1236 } else if (!(24000000 % mclk_freq)) { 1237 mclk_freq = 24000000; 1238 base = SDW_SCP_BASE_CLOCK_24000000_HZ; 1239 } else if (!(24576000 % mclk_freq)) { 1240 mclk_freq = 24576000; 1241 base = SDW_SCP_BASE_CLOCK_24576000_HZ; 1242 } else if (!(22579200 % mclk_freq)) { 1243 mclk_freq = 22579200; 1244 base = SDW_SCP_BASE_CLOCK_22579200_HZ; 1245 } else if (!(32000000 % mclk_freq)) { 1246 mclk_freq = 32000000; 1247 base = SDW_SCP_BASE_CLOCK_32000000_HZ; 1248 } else { 1249 dev_err(&slave->dev, 1250 "Unsupported clock base, mclk %d\n", 1251 mclk_freq); 1252 return -EINVAL; 1253 } 1254 1255 if (mclk_freq % curr_freq) { 1256 dev_err(&slave->dev, 1257 "mclk %d is not multiple of bus curr_freq %d\n", 1258 mclk_freq, curr_freq); 1259 return -EINVAL; 1260 } 1261 1262 scale = mclk_freq / curr_freq; 1263 1264 /* 1265 * map scale to Table 90 of SoundWire 1.2 spec - and check 1266 * that the scale is a power of two and maximum 64 1267 */ 1268 scale_index = ilog2(scale); 1269 1270 if (BIT(scale_index) != scale || scale_index > 6) { 1271 dev_err(&slave->dev, 1272 "No match found for scale %d, bus mclk %d curr_freq %d\n", 1273 scale, mclk_freq, curr_freq); 1274 return -EINVAL; 1275 } 1276 scale_index++; 1277 1278 ret = sdw_write_no_pm(slave, SDW_SCP_BUS_CLOCK_BASE, base); 1279 if (ret < 0) { 1280 dev_err(&slave->dev, 1281 "SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret); 1282 return ret; 1283 } 1284 1285 /* initialize scale for both banks */ 1286 ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B0, scale_index); 1287 if (ret < 0) { 1288 dev_err(&slave->dev, 1289 "SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret); 1290 return ret; 1291 } 1292 ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B1, scale_index); 1293 if (ret < 0) 1294 dev_err(&slave->dev, 1295 "SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret); 1296 1297 dev_dbg(&slave->dev, 1298 "Configured bus base %d, scale %d, mclk %d, curr_freq %d\n", 1299 base, scale_index, mclk_freq, curr_freq); 1300 1301 return ret; 1302 } 1303 1304 static int sdw_initialize_slave(struct sdw_slave *slave) 1305 { 1306 struct sdw_slave_prop *prop = &slave->prop; 1307 int status; 1308 int ret; 1309 u8 val; 1310 1311 ret = sdw_slave_set_frequency(slave); 1312 if (ret < 0) 1313 return ret; 1314 1315 if (slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH) { 1316 /* Clear bus clash interrupt before enabling interrupt mask */ 1317 status = sdw_read_no_pm(slave, SDW_SCP_INT1); 1318 if (status < 0) { 1319 dev_err(&slave->dev, 1320 "SDW_SCP_INT1 (BUS_CLASH) read failed:%d\n", status); 1321 return status; 1322 } 1323 if (status & SDW_SCP_INT1_BUS_CLASH) { 1324 dev_warn(&slave->dev, "Bus clash detected before INT mask is enabled\n"); 1325 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_BUS_CLASH); 1326 if (ret < 0) { 1327 dev_err(&slave->dev, 1328 "SDW_SCP_INT1 (BUS_CLASH) write failed:%d\n", ret); 1329 return ret; 1330 } 1331 } 1332 } 1333 if ((slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY) && 1334 !(slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY)) { 1335 /* Clear parity interrupt before enabling interrupt mask */ 1336 status = sdw_read_no_pm(slave, SDW_SCP_INT1); 1337 if (status < 0) { 1338 dev_err(&slave->dev, 1339 "SDW_SCP_INT1 (PARITY) read failed:%d\n", status); 1340 return status; 1341 } 1342 if (status & SDW_SCP_INT1_PARITY) { 1343 dev_warn(&slave->dev, "PARITY error detected before INT mask is enabled\n"); 1344 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_PARITY); 1345 if (ret < 0) { 1346 dev_err(&slave->dev, 1347 "SDW_SCP_INT1 (PARITY) write failed:%d\n", ret); 1348 return ret; 1349 } 1350 } 1351 } 1352 1353 /* 1354 * Set SCP_INT1_MASK register, typically bus clash and 1355 * implementation-defined interrupt mask. The Parity detection 1356 * may not always be correct on startup so its use is 1357 * device-dependent, it might e.g. only be enabled in 1358 * steady-state after a couple of frames. 1359 */ 1360 val = slave->prop.scp_int1_mask; 1361 1362 /* Enable SCP interrupts */ 1363 ret = sdw_update_no_pm(slave, SDW_SCP_INTMASK1, val, val); 1364 if (ret < 0) { 1365 dev_err(&slave->dev, 1366 "SDW_SCP_INTMASK1 write failed:%d\n", ret); 1367 return ret; 1368 } 1369 1370 /* No need to continue if DP0 is not present */ 1371 if (!slave->prop.dp0_prop) 1372 return 0; 1373 1374 /* Enable DP0 interrupts */ 1375 val = prop->dp0_prop->imp_def_interrupts; 1376 val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE; 1377 1378 ret = sdw_update_no_pm(slave, SDW_DP0_INTMASK, val, val); 1379 if (ret < 0) 1380 dev_err(&slave->dev, 1381 "SDW_DP0_INTMASK read failed:%d\n", ret); 1382 return ret; 1383 } 1384 1385 static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status) 1386 { 1387 u8 clear, impl_int_mask; 1388 int status, status2, ret, count = 0; 1389 1390 status = sdw_read_no_pm(slave, SDW_DP0_INT); 1391 if (status < 0) { 1392 dev_err(&slave->dev, 1393 "SDW_DP0_INT read failed:%d\n", status); 1394 return status; 1395 } 1396 1397 do { 1398 clear = status & ~SDW_DP0_INTERRUPTS; 1399 1400 if (status & SDW_DP0_INT_TEST_FAIL) { 1401 dev_err(&slave->dev, "Test fail for port 0\n"); 1402 clear |= SDW_DP0_INT_TEST_FAIL; 1403 } 1404 1405 /* 1406 * Assumption: PORT_READY interrupt will be received only for 1407 * ports implementing Channel Prepare state machine (CP_SM) 1408 */ 1409 1410 if (status & SDW_DP0_INT_PORT_READY) { 1411 complete(&slave->port_ready[0]); 1412 clear |= SDW_DP0_INT_PORT_READY; 1413 } 1414 1415 if (status & SDW_DP0_INT_BRA_FAILURE) { 1416 dev_err(&slave->dev, "BRA failed\n"); 1417 clear |= SDW_DP0_INT_BRA_FAILURE; 1418 } 1419 1420 impl_int_mask = SDW_DP0_INT_IMPDEF1 | 1421 SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3; 1422 1423 if (status & impl_int_mask) { 1424 clear |= impl_int_mask; 1425 *slave_status = clear; 1426 } 1427 1428 /* clear the interrupts but don't touch reserved and SDCA_CASCADE fields */ 1429 ret = sdw_write_no_pm(slave, SDW_DP0_INT, clear); 1430 if (ret < 0) { 1431 dev_err(&slave->dev, 1432 "SDW_DP0_INT write failed:%d\n", ret); 1433 return ret; 1434 } 1435 1436 /* Read DP0 interrupt again */ 1437 status2 = sdw_read_no_pm(slave, SDW_DP0_INT); 1438 if (status2 < 0) { 1439 dev_err(&slave->dev, 1440 "SDW_DP0_INT read failed:%d\n", status2); 1441 return status2; 1442 } 1443 /* filter to limit loop to interrupts identified in the first status read */ 1444 status &= status2; 1445 1446 count++; 1447 1448 /* we can get alerts while processing so keep retrying */ 1449 } while ((status & SDW_DP0_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY)); 1450 1451 if (count == SDW_READ_INTR_CLEAR_RETRY) 1452 dev_warn(&slave->dev, "Reached MAX_RETRY on DP0 read\n"); 1453 1454 return ret; 1455 } 1456 1457 static int sdw_handle_port_interrupt(struct sdw_slave *slave, 1458 int port, u8 *slave_status) 1459 { 1460 u8 clear, impl_int_mask; 1461 int status, status2, ret, count = 0; 1462 u32 addr; 1463 1464 if (port == 0) 1465 return sdw_handle_dp0_interrupt(slave, slave_status); 1466 1467 addr = SDW_DPN_INT(port); 1468 status = sdw_read_no_pm(slave, addr); 1469 if (status < 0) { 1470 dev_err(&slave->dev, 1471 "SDW_DPN_INT read failed:%d\n", status); 1472 1473 return status; 1474 } 1475 1476 do { 1477 clear = status & ~SDW_DPN_INTERRUPTS; 1478 1479 if (status & SDW_DPN_INT_TEST_FAIL) { 1480 dev_err(&slave->dev, "Test fail for port:%d\n", port); 1481 clear |= SDW_DPN_INT_TEST_FAIL; 1482 } 1483 1484 /* 1485 * Assumption: PORT_READY interrupt will be received only 1486 * for ports implementing CP_SM. 1487 */ 1488 if (status & SDW_DPN_INT_PORT_READY) { 1489 complete(&slave->port_ready[port]); 1490 clear |= SDW_DPN_INT_PORT_READY; 1491 } 1492 1493 impl_int_mask = SDW_DPN_INT_IMPDEF1 | 1494 SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3; 1495 1496 if (status & impl_int_mask) { 1497 clear |= impl_int_mask; 1498 *slave_status = clear; 1499 } 1500 1501 /* clear the interrupt but don't touch reserved fields */ 1502 ret = sdw_write_no_pm(slave, addr, clear); 1503 if (ret < 0) { 1504 dev_err(&slave->dev, 1505 "SDW_DPN_INT write failed:%d\n", ret); 1506 return ret; 1507 } 1508 1509 /* Read DPN interrupt again */ 1510 status2 = sdw_read_no_pm(slave, addr); 1511 if (status2 < 0) { 1512 dev_err(&slave->dev, 1513 "SDW_DPN_INT read failed:%d\n", status2); 1514 return status2; 1515 } 1516 /* filter to limit loop to interrupts identified in the first status read */ 1517 status &= status2; 1518 1519 count++; 1520 1521 /* we can get alerts while processing so keep retrying */ 1522 } while ((status & SDW_DPN_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY)); 1523 1524 if (count == SDW_READ_INTR_CLEAR_RETRY) 1525 dev_warn(&slave->dev, "Reached MAX_RETRY on port read"); 1526 1527 return ret; 1528 } 1529 1530 static int sdw_handle_slave_alerts(struct sdw_slave *slave) 1531 { 1532 struct sdw_slave_intr_status slave_intr; 1533 u8 clear = 0, bit, port_status[15] = {0}; 1534 int port_num, stat, ret, count = 0; 1535 unsigned long port; 1536 bool slave_notify; 1537 u8 sdca_cascade = 0; 1538 u8 buf, buf2[2], _buf, _buf2[2]; 1539 bool parity_check; 1540 bool parity_quirk; 1541 1542 sdw_modify_slave_status(slave, SDW_SLAVE_ALERT); 1543 1544 ret = pm_runtime_resume_and_get(&slave->dev); 1545 if (ret < 0 && ret != -EACCES) { 1546 dev_err(&slave->dev, "Failed to resume device: %d\n", ret); 1547 return ret; 1548 } 1549 1550 /* Read Intstat 1, Intstat 2 and Intstat 3 registers */ 1551 ret = sdw_read_no_pm(slave, SDW_SCP_INT1); 1552 if (ret < 0) { 1553 dev_err(&slave->dev, 1554 "SDW_SCP_INT1 read failed:%d\n", ret); 1555 goto io_err; 1556 } 1557 buf = ret; 1558 1559 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2); 1560 if (ret < 0) { 1561 dev_err(&slave->dev, 1562 "SDW_SCP_INT2/3 read failed:%d\n", ret); 1563 goto io_err; 1564 } 1565 1566 if (slave->id.class_id) { 1567 ret = sdw_read_no_pm(slave, SDW_DP0_INT); 1568 if (ret < 0) { 1569 dev_err(&slave->dev, 1570 "SDW_DP0_INT read failed:%d\n", ret); 1571 goto io_err; 1572 } 1573 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE; 1574 } 1575 1576 do { 1577 slave_notify = false; 1578 1579 /* 1580 * Check parity, bus clash and Slave (impl defined) 1581 * interrupt 1582 */ 1583 if (buf & SDW_SCP_INT1_PARITY) { 1584 parity_check = slave->prop.scp_int1_mask & SDW_SCP_INT1_PARITY; 1585 parity_quirk = !slave->first_interrupt_done && 1586 (slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY); 1587 1588 if (parity_check && !parity_quirk) 1589 dev_err(&slave->dev, "Parity error detected\n"); 1590 clear |= SDW_SCP_INT1_PARITY; 1591 } 1592 1593 if (buf & SDW_SCP_INT1_BUS_CLASH) { 1594 if (slave->prop.scp_int1_mask & SDW_SCP_INT1_BUS_CLASH) 1595 dev_err(&slave->dev, "Bus clash detected\n"); 1596 clear |= SDW_SCP_INT1_BUS_CLASH; 1597 } 1598 1599 /* 1600 * When bus clash or parity errors are detected, such errors 1601 * are unlikely to be recoverable errors. 1602 * TODO: In such scenario, reset bus. Make this configurable 1603 * via sysfs property with bus reset being the default. 1604 */ 1605 1606 if (buf & SDW_SCP_INT1_IMPL_DEF) { 1607 if (slave->prop.scp_int1_mask & SDW_SCP_INT1_IMPL_DEF) { 1608 dev_dbg(&slave->dev, "Slave impl defined interrupt\n"); 1609 slave_notify = true; 1610 } 1611 clear |= SDW_SCP_INT1_IMPL_DEF; 1612 } 1613 1614 /* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */ 1615 if (sdca_cascade) 1616 slave_notify = true; 1617 1618 /* Check port 0 - 3 interrupts */ 1619 port = buf & SDW_SCP_INT1_PORT0_3; 1620 1621 /* To get port number corresponding to bits, shift it */ 1622 port = FIELD_GET(SDW_SCP_INT1_PORT0_3, port); 1623 for_each_set_bit(bit, &port, 8) { 1624 sdw_handle_port_interrupt(slave, bit, 1625 &port_status[bit]); 1626 } 1627 1628 /* Check if cascade 2 interrupt is present */ 1629 if (buf & SDW_SCP_INT1_SCP2_CASCADE) { 1630 port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10; 1631 for_each_set_bit(bit, &port, 8) { 1632 /* scp2 ports start from 4 */ 1633 port_num = bit + 4; 1634 sdw_handle_port_interrupt(slave, 1635 port_num, 1636 &port_status[port_num]); 1637 } 1638 } 1639 1640 /* now check last cascade */ 1641 if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) { 1642 port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14; 1643 for_each_set_bit(bit, &port, 8) { 1644 /* scp3 ports start from 11 */ 1645 port_num = bit + 11; 1646 sdw_handle_port_interrupt(slave, 1647 port_num, 1648 &port_status[port_num]); 1649 } 1650 } 1651 1652 /* Update the Slave driver */ 1653 if (slave_notify) { 1654 mutex_lock(&slave->sdw_dev_lock); 1655 1656 if (slave->probed) { 1657 struct device *dev = &slave->dev; 1658 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver); 1659 1660 if (drv->ops && drv->ops->interrupt_callback) { 1661 slave_intr.sdca_cascade = sdca_cascade; 1662 slave_intr.control_port = clear; 1663 memcpy(slave_intr.port, &port_status, 1664 sizeof(slave_intr.port)); 1665 1666 drv->ops->interrupt_callback(slave, &slave_intr); 1667 } 1668 } 1669 1670 mutex_unlock(&slave->sdw_dev_lock); 1671 } 1672 1673 /* Ack interrupt */ 1674 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, clear); 1675 if (ret < 0) { 1676 dev_err(&slave->dev, 1677 "SDW_SCP_INT1 write failed:%d\n", ret); 1678 goto io_err; 1679 } 1680 1681 /* at this point all initial interrupt sources were handled */ 1682 slave->first_interrupt_done = true; 1683 1684 /* 1685 * Read status again to ensure no new interrupts arrived 1686 * while servicing interrupts. 1687 */ 1688 ret = sdw_read_no_pm(slave, SDW_SCP_INT1); 1689 if (ret < 0) { 1690 dev_err(&slave->dev, 1691 "SDW_SCP_INT1 recheck read failed:%d\n", ret); 1692 goto io_err; 1693 } 1694 _buf = ret; 1695 1696 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, _buf2); 1697 if (ret < 0) { 1698 dev_err(&slave->dev, 1699 "SDW_SCP_INT2/3 recheck read failed:%d\n", ret); 1700 goto io_err; 1701 } 1702 1703 if (slave->id.class_id) { 1704 ret = sdw_read_no_pm(slave, SDW_DP0_INT); 1705 if (ret < 0) { 1706 dev_err(&slave->dev, 1707 "SDW_DP0_INT recheck read failed:%d\n", ret); 1708 goto io_err; 1709 } 1710 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE; 1711 } 1712 1713 /* 1714 * Make sure no interrupts are pending, but filter to limit loop 1715 * to interrupts identified in the first status read 1716 */ 1717 buf &= _buf; 1718 buf2[0] &= _buf2[0]; 1719 buf2[1] &= _buf2[1]; 1720 stat = buf || buf2[0] || buf2[1] || sdca_cascade; 1721 1722 /* 1723 * Exit loop if Slave is continuously in ALERT state even 1724 * after servicing the interrupt multiple times. 1725 */ 1726 count++; 1727 1728 /* we can get alerts while processing so keep retrying */ 1729 } while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY); 1730 1731 if (count == SDW_READ_INTR_CLEAR_RETRY) 1732 dev_warn(&slave->dev, "Reached MAX_RETRY on alert read\n"); 1733 1734 io_err: 1735 pm_runtime_mark_last_busy(&slave->dev); 1736 pm_runtime_put_autosuspend(&slave->dev); 1737 1738 return ret; 1739 } 1740 1741 static int sdw_update_slave_status(struct sdw_slave *slave, 1742 enum sdw_slave_status status) 1743 { 1744 int ret = 0; 1745 1746 mutex_lock(&slave->sdw_dev_lock); 1747 1748 if (slave->probed) { 1749 struct device *dev = &slave->dev; 1750 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver); 1751 1752 if (drv->ops && drv->ops->update_status) 1753 ret = drv->ops->update_status(slave, status); 1754 } 1755 1756 mutex_unlock(&slave->sdw_dev_lock); 1757 1758 return ret; 1759 } 1760 1761 /** 1762 * sdw_handle_slave_status() - Handle Slave status 1763 * @bus: SDW bus instance 1764 * @status: Status for all Slave(s) 1765 */ 1766 int sdw_handle_slave_status(struct sdw_bus *bus, 1767 enum sdw_slave_status status[]) 1768 { 1769 enum sdw_slave_status prev_status; 1770 struct sdw_slave *slave; 1771 bool attached_initializing, id_programmed; 1772 int i, ret = 0; 1773 1774 /* first check if any Slaves fell off the bus */ 1775 for (i = 1; i <= SDW_MAX_DEVICES; i++) { 1776 mutex_lock(&bus->bus_lock); 1777 if (test_bit(i, bus->assigned) == false) { 1778 mutex_unlock(&bus->bus_lock); 1779 continue; 1780 } 1781 mutex_unlock(&bus->bus_lock); 1782 1783 slave = sdw_get_slave(bus, i); 1784 if (!slave) 1785 continue; 1786 1787 if (status[i] == SDW_SLAVE_UNATTACHED && 1788 slave->status != SDW_SLAVE_UNATTACHED) { 1789 dev_warn(&slave->dev, "Slave %d state check1: UNATTACHED, status was %d\n", 1790 i, slave->status); 1791 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED); 1792 1793 /* Ensure driver knows that peripheral unattached */ 1794 ret = sdw_update_slave_status(slave, status[i]); 1795 if (ret < 0) 1796 dev_warn(&slave->dev, "Update Slave status failed:%d\n", ret); 1797 } 1798 } 1799 1800 if (status[0] == SDW_SLAVE_ATTACHED) { 1801 dev_dbg(bus->dev, "Slave attached, programming device number\n"); 1802 1803 /* 1804 * Programming a device number will have side effects, 1805 * so we deal with other devices at a later time. 1806 * This relies on those devices reporting ATTACHED, which will 1807 * trigger another call to this function. This will only 1808 * happen if at least one device ID was programmed. 1809 * Error returns from sdw_program_device_num() are currently 1810 * ignored because there's no useful recovery that can be done. 1811 * Returning the error here could result in the current status 1812 * of other devices not being handled, because if no device IDs 1813 * were programmed there's nothing to guarantee a status change 1814 * to trigger another call to this function. 1815 */ 1816 sdw_program_device_num(bus, &id_programmed); 1817 if (id_programmed) 1818 return 0; 1819 } 1820 1821 /* Continue to check other slave statuses */ 1822 for (i = 1; i <= SDW_MAX_DEVICES; i++) { 1823 mutex_lock(&bus->bus_lock); 1824 if (test_bit(i, bus->assigned) == false) { 1825 mutex_unlock(&bus->bus_lock); 1826 continue; 1827 } 1828 mutex_unlock(&bus->bus_lock); 1829 1830 slave = sdw_get_slave(bus, i); 1831 if (!slave) 1832 continue; 1833 1834 attached_initializing = false; 1835 1836 switch (status[i]) { 1837 case SDW_SLAVE_UNATTACHED: 1838 if (slave->status == SDW_SLAVE_UNATTACHED) 1839 break; 1840 1841 dev_warn(&slave->dev, "Slave %d state check2: UNATTACHED, status was %d\n", 1842 i, slave->status); 1843 1844 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED); 1845 break; 1846 1847 case SDW_SLAVE_ALERT: 1848 ret = sdw_handle_slave_alerts(slave); 1849 if (ret < 0) 1850 dev_err(&slave->dev, 1851 "Slave %d alert handling failed: %d\n", 1852 i, ret); 1853 break; 1854 1855 case SDW_SLAVE_ATTACHED: 1856 if (slave->status == SDW_SLAVE_ATTACHED) 1857 break; 1858 1859 prev_status = slave->status; 1860 sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED); 1861 1862 if (prev_status == SDW_SLAVE_ALERT) 1863 break; 1864 1865 attached_initializing = true; 1866 1867 ret = sdw_initialize_slave(slave); 1868 if (ret < 0) 1869 dev_err(&slave->dev, 1870 "Slave %d initialization failed: %d\n", 1871 i, ret); 1872 1873 break; 1874 1875 default: 1876 dev_err(&slave->dev, "Invalid slave %d status:%d\n", 1877 i, status[i]); 1878 break; 1879 } 1880 1881 ret = sdw_update_slave_status(slave, status[i]); 1882 if (ret < 0) 1883 dev_err(&slave->dev, 1884 "Update Slave status failed:%d\n", ret); 1885 if (attached_initializing) { 1886 dev_dbg(&slave->dev, 1887 "signaling initialization completion for Slave %d\n", 1888 slave->dev_num); 1889 1890 complete(&slave->initialization_complete); 1891 1892 /* 1893 * If the manager became pm_runtime active, the peripherals will be 1894 * restarted and attach, but their pm_runtime status may remain 1895 * suspended. If the 'update_slave_status' callback initiates 1896 * any sort of deferred processing, this processing would not be 1897 * cancelled on pm_runtime suspend. 1898 * To avoid such zombie states, we queue a request to resume. 1899 * This would be a no-op in case the peripheral was being resumed 1900 * by e.g. the ALSA/ASoC framework. 1901 */ 1902 pm_request_resume(&slave->dev); 1903 } 1904 } 1905 1906 return ret; 1907 } 1908 EXPORT_SYMBOL(sdw_handle_slave_status); 1909 1910 void sdw_clear_slave_status(struct sdw_bus *bus, u32 request) 1911 { 1912 struct sdw_slave *slave; 1913 int i; 1914 1915 /* Check all non-zero devices */ 1916 for (i = 1; i <= SDW_MAX_DEVICES; i++) { 1917 mutex_lock(&bus->bus_lock); 1918 if (test_bit(i, bus->assigned) == false) { 1919 mutex_unlock(&bus->bus_lock); 1920 continue; 1921 } 1922 mutex_unlock(&bus->bus_lock); 1923 1924 slave = sdw_get_slave(bus, i); 1925 if (!slave) 1926 continue; 1927 1928 if (slave->status != SDW_SLAVE_UNATTACHED) { 1929 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED); 1930 slave->first_interrupt_done = false; 1931 sdw_update_slave_status(slave, SDW_SLAVE_UNATTACHED); 1932 } 1933 1934 /* keep track of request, used in pm_runtime resume */ 1935 slave->unattach_request = request; 1936 } 1937 } 1938 EXPORT_SYMBOL(sdw_clear_slave_status); 1939