1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) 2 // Copyright(c) 2015-17 Intel Corporation. 3 4 #include <linux/acpi.h> 5 #include <linux/delay.h> 6 #include <linux/mod_devicetable.h> 7 #include <linux/pm_runtime.h> 8 #include <linux/soundwire/sdw_registers.h> 9 #include <linux/soundwire/sdw.h> 10 #include <linux/soundwire/sdw_type.h> 11 #include "bus.h" 12 #include "sysfs_local.h" 13 14 static DEFINE_IDA(sdw_bus_ida); 15 static DEFINE_IDA(sdw_peripheral_ida); 16 17 static int sdw_get_id(struct sdw_bus *bus) 18 { 19 int rc = ida_alloc(&sdw_bus_ida, GFP_KERNEL); 20 21 if (rc < 0) 22 return rc; 23 24 bus->id = rc; 25 return 0; 26 } 27 28 /** 29 * sdw_bus_master_add() - add a bus Master instance 30 * @bus: bus instance 31 * @parent: parent device 32 * @fwnode: firmware node handle 33 * 34 * Initializes the bus instance, read properties and create child 35 * devices. 36 */ 37 int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent, 38 struct fwnode_handle *fwnode) 39 { 40 struct sdw_master_prop *prop = NULL; 41 int ret; 42 43 if (!parent) { 44 pr_err("SoundWire parent device is not set\n"); 45 return -ENODEV; 46 } 47 48 ret = sdw_get_id(bus); 49 if (ret < 0) { 50 dev_err(parent, "Failed to get bus id\n"); 51 return ret; 52 } 53 54 ret = sdw_master_device_add(bus, parent, fwnode); 55 if (ret < 0) { 56 dev_err(parent, "Failed to add master device at link %d\n", 57 bus->link_id); 58 return ret; 59 } 60 61 if (!bus->ops) { 62 dev_err(bus->dev, "SoundWire Bus ops are not set\n"); 63 return -EINVAL; 64 } 65 66 if (!bus->compute_params) { 67 dev_err(bus->dev, 68 "Bandwidth allocation not configured, compute_params no set\n"); 69 return -EINVAL; 70 } 71 72 mutex_init(&bus->msg_lock); 73 mutex_init(&bus->bus_lock); 74 INIT_LIST_HEAD(&bus->slaves); 75 INIT_LIST_HEAD(&bus->m_rt_list); 76 77 /* 78 * Initialize multi_link flag 79 */ 80 bus->multi_link = false; 81 if (bus->ops->read_prop) { 82 ret = bus->ops->read_prop(bus); 83 if (ret < 0) { 84 dev_err(bus->dev, 85 "Bus read properties failed:%d\n", ret); 86 return ret; 87 } 88 } 89 90 sdw_bus_debugfs_init(bus); 91 92 /* 93 * Device numbers in SoundWire are 0 through 15. Enumeration device 94 * number (0), Broadcast device number (15), Group numbers (12 and 95 * 13) and Master device number (14) are not used for assignment so 96 * mask these and other higher bits. 97 */ 98 99 /* Set higher order bits */ 100 *bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM); 101 102 /* Set enumuration device number and broadcast device number */ 103 set_bit(SDW_ENUM_DEV_NUM, bus->assigned); 104 set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned); 105 106 /* Set group device numbers and master device number */ 107 set_bit(SDW_GROUP12_DEV_NUM, bus->assigned); 108 set_bit(SDW_GROUP13_DEV_NUM, bus->assigned); 109 set_bit(SDW_MASTER_DEV_NUM, bus->assigned); 110 111 /* 112 * SDW is an enumerable bus, but devices can be powered off. So, 113 * they won't be able to report as present. 114 * 115 * Create Slave devices based on Slaves described in 116 * the respective firmware (ACPI/DT) 117 */ 118 if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev)) 119 ret = sdw_acpi_find_slaves(bus); 120 else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node) 121 ret = sdw_of_find_slaves(bus); 122 else 123 ret = -ENOTSUPP; /* No ACPI/DT so error out */ 124 125 if (ret < 0) { 126 dev_err(bus->dev, "Finding slaves failed:%d\n", ret); 127 return ret; 128 } 129 130 /* 131 * Initialize clock values based on Master properties. The max 132 * frequency is read from max_clk_freq property. Current assumption 133 * is that the bus will start at highest clock frequency when 134 * powered on. 135 * 136 * Default active bank will be 0 as out of reset the Slaves have 137 * to start with bank 0 (Table 40 of Spec) 138 */ 139 prop = &bus->prop; 140 bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR; 141 bus->params.curr_dr_freq = bus->params.max_dr_freq; 142 bus->params.curr_bank = SDW_BANK0; 143 bus->params.next_bank = SDW_BANK1; 144 145 return 0; 146 } 147 EXPORT_SYMBOL(sdw_bus_master_add); 148 149 static int sdw_delete_slave(struct device *dev, void *data) 150 { 151 struct sdw_slave *slave = dev_to_sdw_dev(dev); 152 struct sdw_bus *bus = slave->bus; 153 154 pm_runtime_disable(dev); 155 156 sdw_slave_debugfs_exit(slave); 157 158 mutex_lock(&bus->bus_lock); 159 160 if (slave->dev_num) { /* clear dev_num if assigned */ 161 clear_bit(slave->dev_num, bus->assigned); 162 if (bus->dev_num_ida_min) 163 ida_free(&sdw_peripheral_ida, slave->dev_num); 164 } 165 list_del_init(&slave->node); 166 mutex_unlock(&bus->bus_lock); 167 168 device_unregister(dev); 169 return 0; 170 } 171 172 /** 173 * sdw_bus_master_delete() - delete the bus master instance 174 * @bus: bus to be deleted 175 * 176 * Remove the instance, delete the child devices. 177 */ 178 void sdw_bus_master_delete(struct sdw_bus *bus) 179 { 180 device_for_each_child(bus->dev, NULL, sdw_delete_slave); 181 sdw_master_device_del(bus); 182 183 sdw_bus_debugfs_exit(bus); 184 ida_free(&sdw_bus_ida, bus->id); 185 } 186 EXPORT_SYMBOL(sdw_bus_master_delete); 187 188 /* 189 * SDW IO Calls 190 */ 191 192 static inline int find_response_code(enum sdw_command_response resp) 193 { 194 switch (resp) { 195 case SDW_CMD_OK: 196 return 0; 197 198 case SDW_CMD_IGNORED: 199 return -ENODATA; 200 201 case SDW_CMD_TIMEOUT: 202 return -ETIMEDOUT; 203 204 default: 205 return -EIO; 206 } 207 } 208 209 static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg) 210 { 211 int retry = bus->prop.err_threshold; 212 enum sdw_command_response resp; 213 int ret = 0, i; 214 215 for (i = 0; i <= retry; i++) { 216 resp = bus->ops->xfer_msg(bus, msg); 217 ret = find_response_code(resp); 218 219 /* if cmd is ok or ignored return */ 220 if (ret == 0 || ret == -ENODATA) 221 return ret; 222 } 223 224 return ret; 225 } 226 227 static inline int do_transfer_defer(struct sdw_bus *bus, 228 struct sdw_msg *msg) 229 { 230 struct sdw_defer *defer = &bus->defer_msg; 231 int retry = bus->prop.err_threshold; 232 enum sdw_command_response resp; 233 int ret = 0, i; 234 235 defer->msg = msg; 236 defer->length = msg->len; 237 init_completion(&defer->complete); 238 239 for (i = 0; i <= retry; i++) { 240 resp = bus->ops->xfer_msg_defer(bus); 241 ret = find_response_code(resp); 242 /* if cmd is ok or ignored return */ 243 if (ret == 0 || ret == -ENODATA) 244 return ret; 245 } 246 247 return ret; 248 } 249 250 static int sdw_transfer_unlocked(struct sdw_bus *bus, struct sdw_msg *msg) 251 { 252 int ret; 253 254 ret = do_transfer(bus, msg); 255 if (ret != 0 && ret != -ENODATA) 256 dev_err(bus->dev, "trf on Slave %d failed:%d %s addr %x count %d\n", 257 msg->dev_num, ret, 258 (msg->flags & SDW_MSG_FLAG_WRITE) ? "write" : "read", 259 msg->addr, msg->len); 260 261 return ret; 262 } 263 264 /** 265 * sdw_transfer() - Synchronous transfer message to a SDW Slave device 266 * @bus: SDW bus 267 * @msg: SDW message to be xfered 268 */ 269 int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg) 270 { 271 int ret; 272 273 mutex_lock(&bus->msg_lock); 274 275 ret = sdw_transfer_unlocked(bus, msg); 276 277 mutex_unlock(&bus->msg_lock); 278 279 return ret; 280 } 281 282 /** 283 * sdw_show_ping_status() - Direct report of PING status, to be used by Peripheral drivers 284 * @bus: SDW bus 285 * @sync_delay: Delay before reading status 286 */ 287 void sdw_show_ping_status(struct sdw_bus *bus, bool sync_delay) 288 { 289 u32 status; 290 291 if (!bus->ops->read_ping_status) 292 return; 293 294 /* 295 * wait for peripheral to sync if desired. 10-15ms should be more than 296 * enough in most cases. 297 */ 298 if (sync_delay) 299 usleep_range(10000, 15000); 300 301 mutex_lock(&bus->msg_lock); 302 303 status = bus->ops->read_ping_status(bus); 304 305 mutex_unlock(&bus->msg_lock); 306 307 if (!status) 308 dev_warn(bus->dev, "%s: no peripherals attached\n", __func__); 309 else 310 dev_dbg(bus->dev, "PING status: %#x\n", status); 311 } 312 EXPORT_SYMBOL(sdw_show_ping_status); 313 314 /** 315 * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device 316 * @bus: SDW bus 317 * @msg: SDW message to be xfered 318 * 319 * Caller needs to hold the msg_lock lock while calling this 320 */ 321 int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg) 322 { 323 int ret; 324 325 if (!bus->ops->xfer_msg_defer) 326 return -ENOTSUPP; 327 328 ret = do_transfer_defer(bus, msg); 329 if (ret != 0 && ret != -ENODATA) 330 dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n", 331 msg->dev_num, ret); 332 333 return ret; 334 } 335 336 int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave, 337 u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf) 338 { 339 memset(msg, 0, sizeof(*msg)); 340 msg->addr = addr; /* addr is 16 bit and truncated here */ 341 msg->len = count; 342 msg->dev_num = dev_num; 343 msg->flags = flags; 344 msg->buf = buf; 345 346 if (addr < SDW_REG_NO_PAGE) /* no paging area */ 347 return 0; 348 349 if (addr >= SDW_REG_MAX) { /* illegal addr */ 350 pr_err("SDW: Invalid address %x passed\n", addr); 351 return -EINVAL; 352 } 353 354 if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */ 355 if (slave && !slave->prop.paging_support) 356 return 0; 357 /* no need for else as that will fall-through to paging */ 358 } 359 360 /* paging mandatory */ 361 if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) { 362 pr_err("SDW: Invalid device for paging :%d\n", dev_num); 363 return -EINVAL; 364 } 365 366 if (!slave) { 367 pr_err("SDW: No slave for paging addr\n"); 368 return -EINVAL; 369 } 370 371 if (!slave->prop.paging_support) { 372 dev_err(&slave->dev, 373 "address %x needs paging but no support\n", addr); 374 return -EINVAL; 375 } 376 377 msg->addr_page1 = FIELD_GET(SDW_SCP_ADDRPAGE1_MASK, addr); 378 msg->addr_page2 = FIELD_GET(SDW_SCP_ADDRPAGE2_MASK, addr); 379 msg->addr |= BIT(15); 380 msg->page = true; 381 382 return 0; 383 } 384 385 /* 386 * Read/Write IO functions. 387 */ 388 389 static int sdw_ntransfer_no_pm(struct sdw_slave *slave, u32 addr, u8 flags, 390 size_t count, u8 *val) 391 { 392 struct sdw_msg msg; 393 size_t size; 394 int ret; 395 396 while (count) { 397 // Only handle bytes up to next page boundary 398 size = min_t(size_t, count, (SDW_REGADDR + 1) - (addr & SDW_REGADDR)); 399 400 ret = sdw_fill_msg(&msg, slave, addr, size, slave->dev_num, flags, val); 401 if (ret < 0) 402 return ret; 403 404 ret = sdw_transfer(slave->bus, &msg); 405 if (ret < 0 && !slave->is_mockup_device) 406 return ret; 407 408 addr += size; 409 val += size; 410 count -= size; 411 } 412 413 return 0; 414 } 415 416 /** 417 * sdw_nread_no_pm() - Read "n" contiguous SDW Slave registers with no PM 418 * @slave: SDW Slave 419 * @addr: Register address 420 * @count: length 421 * @val: Buffer for values to be read 422 * 423 * Note that if the message crosses a page boundary each page will be 424 * transferred under a separate invocation of the msg_lock. 425 */ 426 int sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val) 427 { 428 return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_READ, count, val); 429 } 430 EXPORT_SYMBOL(sdw_nread_no_pm); 431 432 /** 433 * sdw_nwrite_no_pm() - Write "n" contiguous SDW Slave registers with no PM 434 * @slave: SDW Slave 435 * @addr: Register address 436 * @count: length 437 * @val: Buffer for values to be written 438 * 439 * Note that if the message crosses a page boundary each page will be 440 * transferred under a separate invocation of the msg_lock. 441 */ 442 int sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val) 443 { 444 return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_WRITE, count, (u8 *)val); 445 } 446 EXPORT_SYMBOL(sdw_nwrite_no_pm); 447 448 /** 449 * sdw_write_no_pm() - Write a SDW Slave register with no PM 450 * @slave: SDW Slave 451 * @addr: Register address 452 * @value: Register value 453 */ 454 int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value) 455 { 456 return sdw_nwrite_no_pm(slave, addr, 1, &value); 457 } 458 EXPORT_SYMBOL(sdw_write_no_pm); 459 460 static int 461 sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr) 462 { 463 struct sdw_msg msg; 464 u8 buf; 465 int ret; 466 467 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num, 468 SDW_MSG_FLAG_READ, &buf); 469 if (ret < 0) 470 return ret; 471 472 ret = sdw_transfer(bus, &msg); 473 if (ret < 0) 474 return ret; 475 476 return buf; 477 } 478 479 static int 480 sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value) 481 { 482 struct sdw_msg msg; 483 int ret; 484 485 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num, 486 SDW_MSG_FLAG_WRITE, &value); 487 if (ret < 0) 488 return ret; 489 490 return sdw_transfer(bus, &msg); 491 } 492 493 int sdw_bread_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr) 494 { 495 struct sdw_msg msg; 496 u8 buf; 497 int ret; 498 499 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num, 500 SDW_MSG_FLAG_READ, &buf); 501 if (ret < 0) 502 return ret; 503 504 ret = sdw_transfer_unlocked(bus, &msg); 505 if (ret < 0) 506 return ret; 507 508 return buf; 509 } 510 EXPORT_SYMBOL(sdw_bread_no_pm_unlocked); 511 512 int sdw_bwrite_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value) 513 { 514 struct sdw_msg msg; 515 int ret; 516 517 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num, 518 SDW_MSG_FLAG_WRITE, &value); 519 if (ret < 0) 520 return ret; 521 522 return sdw_transfer_unlocked(bus, &msg); 523 } 524 EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked); 525 526 /** 527 * sdw_read_no_pm() - Read a SDW Slave register with no PM 528 * @slave: SDW Slave 529 * @addr: Register address 530 */ 531 int sdw_read_no_pm(struct sdw_slave *slave, u32 addr) 532 { 533 u8 buf; 534 int ret; 535 536 ret = sdw_nread_no_pm(slave, addr, 1, &buf); 537 if (ret < 0) 538 return ret; 539 else 540 return buf; 541 } 542 EXPORT_SYMBOL(sdw_read_no_pm); 543 544 int sdw_update_no_pm(struct sdw_slave *slave, u32 addr, u8 mask, u8 val) 545 { 546 int tmp; 547 548 tmp = sdw_read_no_pm(slave, addr); 549 if (tmp < 0) 550 return tmp; 551 552 tmp = (tmp & ~mask) | val; 553 return sdw_write_no_pm(slave, addr, tmp); 554 } 555 EXPORT_SYMBOL(sdw_update_no_pm); 556 557 /* Read-Modify-Write Slave register */ 558 int sdw_update(struct sdw_slave *slave, u32 addr, u8 mask, u8 val) 559 { 560 int tmp; 561 562 tmp = sdw_read(slave, addr); 563 if (tmp < 0) 564 return tmp; 565 566 tmp = (tmp & ~mask) | val; 567 return sdw_write(slave, addr, tmp); 568 } 569 EXPORT_SYMBOL(sdw_update); 570 571 /** 572 * sdw_nread() - Read "n" contiguous SDW Slave registers 573 * @slave: SDW Slave 574 * @addr: Register address 575 * @count: length 576 * @val: Buffer for values to be read 577 * 578 * This version of the function will take a PM reference to the slave 579 * device. 580 * Note that if the message crosses a page boundary each page will be 581 * transferred under a separate invocation of the msg_lock. 582 */ 583 int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val) 584 { 585 int ret; 586 587 ret = pm_runtime_get_sync(&slave->dev); 588 if (ret < 0 && ret != -EACCES) { 589 pm_runtime_put_noidle(&slave->dev); 590 return ret; 591 } 592 593 ret = sdw_nread_no_pm(slave, addr, count, val); 594 595 pm_runtime_mark_last_busy(&slave->dev); 596 pm_runtime_put(&slave->dev); 597 598 return ret; 599 } 600 EXPORT_SYMBOL(sdw_nread); 601 602 /** 603 * sdw_nwrite() - Write "n" contiguous SDW Slave registers 604 * @slave: SDW Slave 605 * @addr: Register address 606 * @count: length 607 * @val: Buffer for values to be written 608 * 609 * This version of the function will take a PM reference to the slave 610 * device. 611 * Note that if the message crosses a page boundary each page will be 612 * transferred under a separate invocation of the msg_lock. 613 */ 614 int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val) 615 { 616 int ret; 617 618 ret = pm_runtime_get_sync(&slave->dev); 619 if (ret < 0 && ret != -EACCES) { 620 pm_runtime_put_noidle(&slave->dev); 621 return ret; 622 } 623 624 ret = sdw_nwrite_no_pm(slave, addr, count, val); 625 626 pm_runtime_mark_last_busy(&slave->dev); 627 pm_runtime_put(&slave->dev); 628 629 return ret; 630 } 631 EXPORT_SYMBOL(sdw_nwrite); 632 633 /** 634 * sdw_read() - Read a SDW Slave register 635 * @slave: SDW Slave 636 * @addr: Register address 637 * 638 * This version of the function will take a PM reference to the slave 639 * device. 640 */ 641 int sdw_read(struct sdw_slave *slave, u32 addr) 642 { 643 u8 buf; 644 int ret; 645 646 ret = sdw_nread(slave, addr, 1, &buf); 647 if (ret < 0) 648 return ret; 649 650 return buf; 651 } 652 EXPORT_SYMBOL(sdw_read); 653 654 /** 655 * sdw_write() - Write a SDW Slave register 656 * @slave: SDW Slave 657 * @addr: Register address 658 * @value: Register value 659 * 660 * This version of the function will take a PM reference to the slave 661 * device. 662 */ 663 int sdw_write(struct sdw_slave *slave, u32 addr, u8 value) 664 { 665 return sdw_nwrite(slave, addr, 1, &value); 666 } 667 EXPORT_SYMBOL(sdw_write); 668 669 /* 670 * SDW alert handling 671 */ 672 673 /* called with bus_lock held */ 674 static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i) 675 { 676 struct sdw_slave *slave; 677 678 list_for_each_entry(slave, &bus->slaves, node) { 679 if (slave->dev_num == i) 680 return slave; 681 } 682 683 return NULL; 684 } 685 686 int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id) 687 { 688 if (slave->id.mfg_id != id.mfg_id || 689 slave->id.part_id != id.part_id || 690 slave->id.class_id != id.class_id || 691 (slave->id.unique_id != SDW_IGNORED_UNIQUE_ID && 692 slave->id.unique_id != id.unique_id)) 693 return -ENODEV; 694 695 return 0; 696 } 697 EXPORT_SYMBOL(sdw_compare_devid); 698 699 /* called with bus_lock held */ 700 static int sdw_get_device_num(struct sdw_slave *slave) 701 { 702 int bit; 703 704 if (slave->bus->dev_num_ida_min) { 705 bit = ida_alloc_range(&sdw_peripheral_ida, 706 slave->bus->dev_num_ida_min, SDW_MAX_DEVICES, 707 GFP_KERNEL); 708 if (bit < 0) 709 goto err; 710 } else { 711 bit = find_first_zero_bit(slave->bus->assigned, SDW_MAX_DEVICES); 712 if (bit == SDW_MAX_DEVICES) { 713 bit = -ENODEV; 714 goto err; 715 } 716 } 717 718 /* 719 * Do not update dev_num in Slave data structure here, 720 * Update once program dev_num is successful 721 */ 722 set_bit(bit, slave->bus->assigned); 723 724 err: 725 return bit; 726 } 727 728 static int sdw_assign_device_num(struct sdw_slave *slave) 729 { 730 struct sdw_bus *bus = slave->bus; 731 int ret, dev_num; 732 bool new_device = false; 733 734 /* check first if device number is assigned, if so reuse that */ 735 if (!slave->dev_num) { 736 if (!slave->dev_num_sticky) { 737 mutex_lock(&slave->bus->bus_lock); 738 dev_num = sdw_get_device_num(slave); 739 mutex_unlock(&slave->bus->bus_lock); 740 if (dev_num < 0) { 741 dev_err(bus->dev, "Get dev_num failed: %d\n", 742 dev_num); 743 return dev_num; 744 } 745 slave->dev_num = dev_num; 746 slave->dev_num_sticky = dev_num; 747 new_device = true; 748 } else { 749 slave->dev_num = slave->dev_num_sticky; 750 } 751 } 752 753 if (!new_device) 754 dev_dbg(bus->dev, 755 "Slave already registered, reusing dev_num:%d\n", 756 slave->dev_num); 757 758 /* Clear the slave->dev_num to transfer message on device 0 */ 759 dev_num = slave->dev_num; 760 slave->dev_num = 0; 761 762 ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, dev_num); 763 if (ret < 0) { 764 dev_err(bus->dev, "Program device_num %d failed: %d\n", 765 dev_num, ret); 766 return ret; 767 } 768 769 /* After xfer of msg, restore dev_num */ 770 slave->dev_num = slave->dev_num_sticky; 771 772 return 0; 773 } 774 775 void sdw_extract_slave_id(struct sdw_bus *bus, 776 u64 addr, struct sdw_slave_id *id) 777 { 778 dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr); 779 780 id->sdw_version = SDW_VERSION(addr); 781 id->unique_id = SDW_UNIQUE_ID(addr); 782 id->mfg_id = SDW_MFG_ID(addr); 783 id->part_id = SDW_PART_ID(addr); 784 id->class_id = SDW_CLASS_ID(addr); 785 786 dev_dbg(bus->dev, 787 "SDW Slave class_id 0x%02x, mfg_id 0x%04x, part_id 0x%04x, unique_id 0x%x, version 0x%x\n", 788 id->class_id, id->mfg_id, id->part_id, id->unique_id, id->sdw_version); 789 } 790 EXPORT_SYMBOL(sdw_extract_slave_id); 791 792 static int sdw_program_device_num(struct sdw_bus *bus, bool *programmed) 793 { 794 u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0}; 795 struct sdw_slave *slave, *_s; 796 struct sdw_slave_id id; 797 struct sdw_msg msg; 798 bool found; 799 int count = 0, ret; 800 u64 addr; 801 802 *programmed = false; 803 804 /* No Slave, so use raw xfer api */ 805 ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0, 806 SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf); 807 if (ret < 0) 808 return ret; 809 810 do { 811 ret = sdw_transfer(bus, &msg); 812 if (ret == -ENODATA) { /* end of device id reads */ 813 dev_dbg(bus->dev, "No more devices to enumerate\n"); 814 ret = 0; 815 break; 816 } 817 if (ret < 0) { 818 dev_err(bus->dev, "DEVID read fail:%d\n", ret); 819 break; 820 } 821 822 /* 823 * Construct the addr and extract. Cast the higher shift 824 * bits to avoid truncation due to size limit. 825 */ 826 addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) | 827 ((u64)buf[2] << 24) | ((u64)buf[1] << 32) | 828 ((u64)buf[0] << 40); 829 830 sdw_extract_slave_id(bus, addr, &id); 831 832 found = false; 833 /* Now compare with entries */ 834 list_for_each_entry_safe(slave, _s, &bus->slaves, node) { 835 if (sdw_compare_devid(slave, id) == 0) { 836 found = true; 837 838 /* 839 * To prevent skipping state-machine stages don't 840 * program a device until we've seen it UNATTACH. 841 * Must return here because no other device on #0 842 * can be detected until this one has been 843 * assigned a device ID. 844 */ 845 if (slave->status != SDW_SLAVE_UNATTACHED) 846 return 0; 847 848 /* 849 * Assign a new dev_num to this Slave and 850 * not mark it present. It will be marked 851 * present after it reports ATTACHED on new 852 * dev_num 853 */ 854 ret = sdw_assign_device_num(slave); 855 if (ret < 0) { 856 dev_err(bus->dev, 857 "Assign dev_num failed:%d\n", 858 ret); 859 return ret; 860 } 861 862 *programmed = true; 863 864 break; 865 } 866 } 867 868 if (!found) { 869 /* TODO: Park this device in Group 13 */ 870 871 /* 872 * add Slave device even if there is no platform 873 * firmware description. There will be no driver probe 874 * but the user/integration will be able to see the 875 * device, enumeration status and device number in sysfs 876 */ 877 sdw_slave_add(bus, &id, NULL); 878 879 dev_err(bus->dev, "Slave Entry not found\n"); 880 } 881 882 count++; 883 884 /* 885 * Check till error out or retry (count) exhausts. 886 * Device can drop off and rejoin during enumeration 887 * so count till twice the bound. 888 */ 889 890 } while (ret == 0 && count < (SDW_MAX_DEVICES * 2)); 891 892 return ret; 893 } 894 895 static void sdw_modify_slave_status(struct sdw_slave *slave, 896 enum sdw_slave_status status) 897 { 898 struct sdw_bus *bus = slave->bus; 899 900 mutex_lock(&bus->bus_lock); 901 902 dev_vdbg(bus->dev, 903 "changing status slave %d status %d new status %d\n", 904 slave->dev_num, slave->status, status); 905 906 if (status == SDW_SLAVE_UNATTACHED) { 907 dev_dbg(&slave->dev, 908 "initializing enumeration and init completion for Slave %d\n", 909 slave->dev_num); 910 911 init_completion(&slave->enumeration_complete); 912 init_completion(&slave->initialization_complete); 913 914 } else if ((status == SDW_SLAVE_ATTACHED) && 915 (slave->status == SDW_SLAVE_UNATTACHED)) { 916 dev_dbg(&slave->dev, 917 "signaling enumeration completion for Slave %d\n", 918 slave->dev_num); 919 920 complete(&slave->enumeration_complete); 921 } 922 slave->status = status; 923 mutex_unlock(&bus->bus_lock); 924 } 925 926 static int sdw_slave_clk_stop_callback(struct sdw_slave *slave, 927 enum sdw_clk_stop_mode mode, 928 enum sdw_clk_stop_type type) 929 { 930 int ret = 0; 931 932 mutex_lock(&slave->sdw_dev_lock); 933 934 if (slave->probed) { 935 struct device *dev = &slave->dev; 936 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver); 937 938 if (drv->ops && drv->ops->clk_stop) 939 ret = drv->ops->clk_stop(slave, mode, type); 940 } 941 942 mutex_unlock(&slave->sdw_dev_lock); 943 944 return ret; 945 } 946 947 static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave, 948 enum sdw_clk_stop_mode mode, 949 bool prepare) 950 { 951 bool wake_en; 952 u32 val = 0; 953 int ret; 954 955 wake_en = slave->prop.wake_capable; 956 957 if (prepare) { 958 val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP; 959 960 if (mode == SDW_CLK_STOP_MODE1) 961 val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1; 962 963 if (wake_en) 964 val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN; 965 } else { 966 ret = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL); 967 if (ret < 0) { 968 if (ret != -ENODATA) 969 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL read failed:%d\n", ret); 970 return ret; 971 } 972 val = ret; 973 val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP); 974 } 975 976 ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val); 977 978 if (ret < 0 && ret != -ENODATA) 979 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL write failed:%d\n", ret); 980 981 return ret; 982 } 983 984 static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num) 985 { 986 int retry = bus->clk_stop_timeout; 987 int val; 988 989 do { 990 val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT); 991 if (val < 0) { 992 if (val != -ENODATA) 993 dev_err(bus->dev, "SDW_SCP_STAT bread failed:%d\n", val); 994 return val; 995 } 996 val &= SDW_SCP_STAT_CLK_STP_NF; 997 if (!val) { 998 dev_dbg(bus->dev, "clock stop prep/de-prep done slave:%d\n", 999 dev_num); 1000 return 0; 1001 } 1002 1003 usleep_range(1000, 1500); 1004 retry--; 1005 } while (retry); 1006 1007 dev_err(bus->dev, "clock stop prep/de-prep failed slave:%d\n", 1008 dev_num); 1009 1010 return -ETIMEDOUT; 1011 } 1012 1013 /** 1014 * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop 1015 * 1016 * @bus: SDW bus instance 1017 * 1018 * Query Slave for clock stop mode and prepare for that mode. 1019 */ 1020 int sdw_bus_prep_clk_stop(struct sdw_bus *bus) 1021 { 1022 bool simple_clk_stop = true; 1023 struct sdw_slave *slave; 1024 bool is_slave = false; 1025 int ret = 0; 1026 1027 /* 1028 * In order to save on transition time, prepare 1029 * each Slave and then wait for all Slave(s) to be 1030 * prepared for clock stop. 1031 * If one of the Slave devices has lost sync and 1032 * replies with Command Ignored/-ENODATA, we continue 1033 * the loop 1034 */ 1035 list_for_each_entry(slave, &bus->slaves, node) { 1036 if (!slave->dev_num) 1037 continue; 1038 1039 if (slave->status != SDW_SLAVE_ATTACHED && 1040 slave->status != SDW_SLAVE_ALERT) 1041 continue; 1042 1043 /* Identify if Slave(s) are available on Bus */ 1044 is_slave = true; 1045 1046 ret = sdw_slave_clk_stop_callback(slave, 1047 SDW_CLK_STOP_MODE0, 1048 SDW_CLK_PRE_PREPARE); 1049 if (ret < 0 && ret != -ENODATA) { 1050 dev_err(&slave->dev, "clock stop pre-prepare cb failed:%d\n", ret); 1051 return ret; 1052 } 1053 1054 /* Only prepare a Slave device if needed */ 1055 if (!slave->prop.simple_clk_stop_capable) { 1056 simple_clk_stop = false; 1057 1058 ret = sdw_slave_clk_stop_prepare(slave, 1059 SDW_CLK_STOP_MODE0, 1060 true); 1061 if (ret < 0 && ret != -ENODATA) { 1062 dev_err(&slave->dev, "clock stop prepare failed:%d\n", ret); 1063 return ret; 1064 } 1065 } 1066 } 1067 1068 /* Skip remaining clock stop preparation if no Slave is attached */ 1069 if (!is_slave) 1070 return 0; 1071 1072 /* 1073 * Don't wait for all Slaves to be ready if they follow the simple 1074 * state machine 1075 */ 1076 if (!simple_clk_stop) { 1077 ret = sdw_bus_wait_for_clk_prep_deprep(bus, 1078 SDW_BROADCAST_DEV_NUM); 1079 /* 1080 * if there are no Slave devices present and the reply is 1081 * Command_Ignored/-ENODATA, we don't need to continue with the 1082 * flow and can just return here. The error code is not modified 1083 * and its handling left as an exercise for the caller. 1084 */ 1085 if (ret < 0) 1086 return ret; 1087 } 1088 1089 /* Inform slaves that prep is done */ 1090 list_for_each_entry(slave, &bus->slaves, node) { 1091 if (!slave->dev_num) 1092 continue; 1093 1094 if (slave->status != SDW_SLAVE_ATTACHED && 1095 slave->status != SDW_SLAVE_ALERT) 1096 continue; 1097 1098 ret = sdw_slave_clk_stop_callback(slave, 1099 SDW_CLK_STOP_MODE0, 1100 SDW_CLK_POST_PREPARE); 1101 1102 if (ret < 0 && ret != -ENODATA) { 1103 dev_err(&slave->dev, "clock stop post-prepare cb failed:%d\n", ret); 1104 return ret; 1105 } 1106 } 1107 1108 return 0; 1109 } 1110 EXPORT_SYMBOL(sdw_bus_prep_clk_stop); 1111 1112 /** 1113 * sdw_bus_clk_stop: stop bus clock 1114 * 1115 * @bus: SDW bus instance 1116 * 1117 * After preparing the Slaves for clock stop, stop the clock by broadcasting 1118 * write to SCP_CTRL register. 1119 */ 1120 int sdw_bus_clk_stop(struct sdw_bus *bus) 1121 { 1122 int ret; 1123 1124 /* 1125 * broadcast clock stop now, attached Slaves will ACK this, 1126 * unattached will ignore 1127 */ 1128 ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM, 1129 SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW); 1130 if (ret < 0) { 1131 if (ret != -ENODATA) 1132 dev_err(bus->dev, "ClockStopNow Broadcast msg failed %d\n", ret); 1133 return ret; 1134 } 1135 1136 return 0; 1137 } 1138 EXPORT_SYMBOL(sdw_bus_clk_stop); 1139 1140 /** 1141 * sdw_bus_exit_clk_stop: Exit clock stop mode 1142 * 1143 * @bus: SDW bus instance 1144 * 1145 * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves 1146 * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate 1147 * back. 1148 */ 1149 int sdw_bus_exit_clk_stop(struct sdw_bus *bus) 1150 { 1151 bool simple_clk_stop = true; 1152 struct sdw_slave *slave; 1153 bool is_slave = false; 1154 int ret; 1155 1156 /* 1157 * In order to save on transition time, de-prepare 1158 * each Slave and then wait for all Slave(s) to be 1159 * de-prepared after clock resume. 1160 */ 1161 list_for_each_entry(slave, &bus->slaves, node) { 1162 if (!slave->dev_num) 1163 continue; 1164 1165 if (slave->status != SDW_SLAVE_ATTACHED && 1166 slave->status != SDW_SLAVE_ALERT) 1167 continue; 1168 1169 /* Identify if Slave(s) are available on Bus */ 1170 is_slave = true; 1171 1172 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0, 1173 SDW_CLK_PRE_DEPREPARE); 1174 if (ret < 0) 1175 dev_warn(&slave->dev, "clock stop pre-deprepare cb failed:%d\n", ret); 1176 1177 /* Only de-prepare a Slave device if needed */ 1178 if (!slave->prop.simple_clk_stop_capable) { 1179 simple_clk_stop = false; 1180 1181 ret = sdw_slave_clk_stop_prepare(slave, SDW_CLK_STOP_MODE0, 1182 false); 1183 1184 if (ret < 0) 1185 dev_warn(&slave->dev, "clock stop deprepare failed:%d\n", ret); 1186 } 1187 } 1188 1189 /* Skip remaining clock stop de-preparation if no Slave is attached */ 1190 if (!is_slave) 1191 return 0; 1192 1193 /* 1194 * Don't wait for all Slaves to be ready if they follow the simple 1195 * state machine 1196 */ 1197 if (!simple_clk_stop) { 1198 ret = sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM); 1199 if (ret < 0) 1200 dev_warn(bus->dev, "clock stop deprepare wait failed:%d\n", ret); 1201 } 1202 1203 list_for_each_entry(slave, &bus->slaves, node) { 1204 if (!slave->dev_num) 1205 continue; 1206 1207 if (slave->status != SDW_SLAVE_ATTACHED && 1208 slave->status != SDW_SLAVE_ALERT) 1209 continue; 1210 1211 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0, 1212 SDW_CLK_POST_DEPREPARE); 1213 if (ret < 0) 1214 dev_warn(&slave->dev, "clock stop post-deprepare cb failed:%d\n", ret); 1215 } 1216 1217 return 0; 1218 } 1219 EXPORT_SYMBOL(sdw_bus_exit_clk_stop); 1220 1221 int sdw_configure_dpn_intr(struct sdw_slave *slave, 1222 int port, bool enable, int mask) 1223 { 1224 u32 addr; 1225 int ret; 1226 u8 val = 0; 1227 1228 if (slave->bus->params.s_data_mode != SDW_PORT_DATA_MODE_NORMAL) { 1229 dev_dbg(&slave->dev, "TEST FAIL interrupt %s\n", 1230 enable ? "on" : "off"); 1231 mask |= SDW_DPN_INT_TEST_FAIL; 1232 } 1233 1234 addr = SDW_DPN_INTMASK(port); 1235 1236 /* Set/Clear port ready interrupt mask */ 1237 if (enable) { 1238 val |= mask; 1239 val |= SDW_DPN_INT_PORT_READY; 1240 } else { 1241 val &= ~(mask); 1242 val &= ~SDW_DPN_INT_PORT_READY; 1243 } 1244 1245 ret = sdw_update_no_pm(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val); 1246 if (ret < 0) 1247 dev_err(&slave->dev, 1248 "SDW_DPN_INTMASK write failed:%d\n", val); 1249 1250 return ret; 1251 } 1252 1253 static int sdw_slave_set_frequency(struct sdw_slave *slave) 1254 { 1255 u32 mclk_freq = slave->bus->prop.mclk_freq; 1256 u32 curr_freq = slave->bus->params.curr_dr_freq >> 1; 1257 unsigned int scale; 1258 u8 scale_index; 1259 u8 base; 1260 int ret; 1261 1262 /* 1263 * frequency base and scale registers are required for SDCA 1264 * devices. They may also be used for 1.2+/non-SDCA devices. 1265 * Driver can set the property, we will need a DisCo property 1266 * to discover this case from platform firmware. 1267 */ 1268 if (!slave->id.class_id && !slave->prop.clock_reg_supported) 1269 return 0; 1270 1271 if (!mclk_freq) { 1272 dev_err(&slave->dev, 1273 "no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n"); 1274 return -EINVAL; 1275 } 1276 1277 /* 1278 * map base frequency using Table 89 of SoundWire 1.2 spec. 1279 * The order of the tests just follows the specification, this 1280 * is not a selection between possible values or a search for 1281 * the best value but just a mapping. Only one case per platform 1282 * is relevant. 1283 * Some BIOS have inconsistent values for mclk_freq but a 1284 * correct root so we force the mclk_freq to avoid variations. 1285 */ 1286 if (!(19200000 % mclk_freq)) { 1287 mclk_freq = 19200000; 1288 base = SDW_SCP_BASE_CLOCK_19200000_HZ; 1289 } else if (!(24000000 % mclk_freq)) { 1290 mclk_freq = 24000000; 1291 base = SDW_SCP_BASE_CLOCK_24000000_HZ; 1292 } else if (!(24576000 % mclk_freq)) { 1293 mclk_freq = 24576000; 1294 base = SDW_SCP_BASE_CLOCK_24576000_HZ; 1295 } else if (!(22579200 % mclk_freq)) { 1296 mclk_freq = 22579200; 1297 base = SDW_SCP_BASE_CLOCK_22579200_HZ; 1298 } else if (!(32000000 % mclk_freq)) { 1299 mclk_freq = 32000000; 1300 base = SDW_SCP_BASE_CLOCK_32000000_HZ; 1301 } else { 1302 dev_err(&slave->dev, 1303 "Unsupported clock base, mclk %d\n", 1304 mclk_freq); 1305 return -EINVAL; 1306 } 1307 1308 if (mclk_freq % curr_freq) { 1309 dev_err(&slave->dev, 1310 "mclk %d is not multiple of bus curr_freq %d\n", 1311 mclk_freq, curr_freq); 1312 return -EINVAL; 1313 } 1314 1315 scale = mclk_freq / curr_freq; 1316 1317 /* 1318 * map scale to Table 90 of SoundWire 1.2 spec - and check 1319 * that the scale is a power of two and maximum 64 1320 */ 1321 scale_index = ilog2(scale); 1322 1323 if (BIT(scale_index) != scale || scale_index > 6) { 1324 dev_err(&slave->dev, 1325 "No match found for scale %d, bus mclk %d curr_freq %d\n", 1326 scale, mclk_freq, curr_freq); 1327 return -EINVAL; 1328 } 1329 scale_index++; 1330 1331 ret = sdw_write_no_pm(slave, SDW_SCP_BUS_CLOCK_BASE, base); 1332 if (ret < 0) { 1333 dev_err(&slave->dev, 1334 "SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret); 1335 return ret; 1336 } 1337 1338 /* initialize scale for both banks */ 1339 ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B0, scale_index); 1340 if (ret < 0) { 1341 dev_err(&slave->dev, 1342 "SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret); 1343 return ret; 1344 } 1345 ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B1, scale_index); 1346 if (ret < 0) 1347 dev_err(&slave->dev, 1348 "SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret); 1349 1350 dev_dbg(&slave->dev, 1351 "Configured bus base %d, scale %d, mclk %d, curr_freq %d\n", 1352 base, scale_index, mclk_freq, curr_freq); 1353 1354 return ret; 1355 } 1356 1357 static int sdw_initialize_slave(struct sdw_slave *slave) 1358 { 1359 struct sdw_slave_prop *prop = &slave->prop; 1360 int status; 1361 int ret; 1362 u8 val; 1363 1364 ret = sdw_slave_set_frequency(slave); 1365 if (ret < 0) 1366 return ret; 1367 1368 if (slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH) { 1369 /* Clear bus clash interrupt before enabling interrupt mask */ 1370 status = sdw_read_no_pm(slave, SDW_SCP_INT1); 1371 if (status < 0) { 1372 dev_err(&slave->dev, 1373 "SDW_SCP_INT1 (BUS_CLASH) read failed:%d\n", status); 1374 return status; 1375 } 1376 if (status & SDW_SCP_INT1_BUS_CLASH) { 1377 dev_warn(&slave->dev, "Bus clash detected before INT mask is enabled\n"); 1378 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_BUS_CLASH); 1379 if (ret < 0) { 1380 dev_err(&slave->dev, 1381 "SDW_SCP_INT1 (BUS_CLASH) write failed:%d\n", ret); 1382 return ret; 1383 } 1384 } 1385 } 1386 if ((slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY) && 1387 !(slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY)) { 1388 /* Clear parity interrupt before enabling interrupt mask */ 1389 status = sdw_read_no_pm(slave, SDW_SCP_INT1); 1390 if (status < 0) { 1391 dev_err(&slave->dev, 1392 "SDW_SCP_INT1 (PARITY) read failed:%d\n", status); 1393 return status; 1394 } 1395 if (status & SDW_SCP_INT1_PARITY) { 1396 dev_warn(&slave->dev, "PARITY error detected before INT mask is enabled\n"); 1397 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_PARITY); 1398 if (ret < 0) { 1399 dev_err(&slave->dev, 1400 "SDW_SCP_INT1 (PARITY) write failed:%d\n", ret); 1401 return ret; 1402 } 1403 } 1404 } 1405 1406 /* 1407 * Set SCP_INT1_MASK register, typically bus clash and 1408 * implementation-defined interrupt mask. The Parity detection 1409 * may not always be correct on startup so its use is 1410 * device-dependent, it might e.g. only be enabled in 1411 * steady-state after a couple of frames. 1412 */ 1413 val = slave->prop.scp_int1_mask; 1414 1415 /* Enable SCP interrupts */ 1416 ret = sdw_update_no_pm(slave, SDW_SCP_INTMASK1, val, val); 1417 if (ret < 0) { 1418 dev_err(&slave->dev, 1419 "SDW_SCP_INTMASK1 write failed:%d\n", ret); 1420 return ret; 1421 } 1422 1423 /* No need to continue if DP0 is not present */ 1424 if (!slave->prop.dp0_prop) 1425 return 0; 1426 1427 /* Enable DP0 interrupts */ 1428 val = prop->dp0_prop->imp_def_interrupts; 1429 val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE; 1430 1431 ret = sdw_update_no_pm(slave, SDW_DP0_INTMASK, val, val); 1432 if (ret < 0) 1433 dev_err(&slave->dev, 1434 "SDW_DP0_INTMASK read failed:%d\n", ret); 1435 return ret; 1436 } 1437 1438 static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status) 1439 { 1440 u8 clear, impl_int_mask; 1441 int status, status2, ret, count = 0; 1442 1443 status = sdw_read_no_pm(slave, SDW_DP0_INT); 1444 if (status < 0) { 1445 dev_err(&slave->dev, 1446 "SDW_DP0_INT read failed:%d\n", status); 1447 return status; 1448 } 1449 1450 do { 1451 clear = status & ~SDW_DP0_INTERRUPTS; 1452 1453 if (status & SDW_DP0_INT_TEST_FAIL) { 1454 dev_err(&slave->dev, "Test fail for port 0\n"); 1455 clear |= SDW_DP0_INT_TEST_FAIL; 1456 } 1457 1458 /* 1459 * Assumption: PORT_READY interrupt will be received only for 1460 * ports implementing Channel Prepare state machine (CP_SM) 1461 */ 1462 1463 if (status & SDW_DP0_INT_PORT_READY) { 1464 complete(&slave->port_ready[0]); 1465 clear |= SDW_DP0_INT_PORT_READY; 1466 } 1467 1468 if (status & SDW_DP0_INT_BRA_FAILURE) { 1469 dev_err(&slave->dev, "BRA failed\n"); 1470 clear |= SDW_DP0_INT_BRA_FAILURE; 1471 } 1472 1473 impl_int_mask = SDW_DP0_INT_IMPDEF1 | 1474 SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3; 1475 1476 if (status & impl_int_mask) { 1477 clear |= impl_int_mask; 1478 *slave_status = clear; 1479 } 1480 1481 /* clear the interrupts but don't touch reserved and SDCA_CASCADE fields */ 1482 ret = sdw_write_no_pm(slave, SDW_DP0_INT, clear); 1483 if (ret < 0) { 1484 dev_err(&slave->dev, 1485 "SDW_DP0_INT write failed:%d\n", ret); 1486 return ret; 1487 } 1488 1489 /* Read DP0 interrupt again */ 1490 status2 = sdw_read_no_pm(slave, SDW_DP0_INT); 1491 if (status2 < 0) { 1492 dev_err(&slave->dev, 1493 "SDW_DP0_INT read failed:%d\n", status2); 1494 return status2; 1495 } 1496 /* filter to limit loop to interrupts identified in the first status read */ 1497 status &= status2; 1498 1499 count++; 1500 1501 /* we can get alerts while processing so keep retrying */ 1502 } while ((status & SDW_DP0_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY)); 1503 1504 if (count == SDW_READ_INTR_CLEAR_RETRY) 1505 dev_warn(&slave->dev, "Reached MAX_RETRY on DP0 read\n"); 1506 1507 return ret; 1508 } 1509 1510 static int sdw_handle_port_interrupt(struct sdw_slave *slave, 1511 int port, u8 *slave_status) 1512 { 1513 u8 clear, impl_int_mask; 1514 int status, status2, ret, count = 0; 1515 u32 addr; 1516 1517 if (port == 0) 1518 return sdw_handle_dp0_interrupt(slave, slave_status); 1519 1520 addr = SDW_DPN_INT(port); 1521 status = sdw_read_no_pm(slave, addr); 1522 if (status < 0) { 1523 dev_err(&slave->dev, 1524 "SDW_DPN_INT read failed:%d\n", status); 1525 1526 return status; 1527 } 1528 1529 do { 1530 clear = status & ~SDW_DPN_INTERRUPTS; 1531 1532 if (status & SDW_DPN_INT_TEST_FAIL) { 1533 dev_err(&slave->dev, "Test fail for port:%d\n", port); 1534 clear |= SDW_DPN_INT_TEST_FAIL; 1535 } 1536 1537 /* 1538 * Assumption: PORT_READY interrupt will be received only 1539 * for ports implementing CP_SM. 1540 */ 1541 if (status & SDW_DPN_INT_PORT_READY) { 1542 complete(&slave->port_ready[port]); 1543 clear |= SDW_DPN_INT_PORT_READY; 1544 } 1545 1546 impl_int_mask = SDW_DPN_INT_IMPDEF1 | 1547 SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3; 1548 1549 if (status & impl_int_mask) { 1550 clear |= impl_int_mask; 1551 *slave_status = clear; 1552 } 1553 1554 /* clear the interrupt but don't touch reserved fields */ 1555 ret = sdw_write_no_pm(slave, addr, clear); 1556 if (ret < 0) { 1557 dev_err(&slave->dev, 1558 "SDW_DPN_INT write failed:%d\n", ret); 1559 return ret; 1560 } 1561 1562 /* Read DPN interrupt again */ 1563 status2 = sdw_read_no_pm(slave, addr); 1564 if (status2 < 0) { 1565 dev_err(&slave->dev, 1566 "SDW_DPN_INT read failed:%d\n", status2); 1567 return status2; 1568 } 1569 /* filter to limit loop to interrupts identified in the first status read */ 1570 status &= status2; 1571 1572 count++; 1573 1574 /* we can get alerts while processing so keep retrying */ 1575 } while ((status & SDW_DPN_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY)); 1576 1577 if (count == SDW_READ_INTR_CLEAR_RETRY) 1578 dev_warn(&slave->dev, "Reached MAX_RETRY on port read"); 1579 1580 return ret; 1581 } 1582 1583 static int sdw_handle_slave_alerts(struct sdw_slave *slave) 1584 { 1585 struct sdw_slave_intr_status slave_intr; 1586 u8 clear = 0, bit, port_status[15] = {0}; 1587 int port_num, stat, ret, count = 0; 1588 unsigned long port; 1589 bool slave_notify; 1590 u8 sdca_cascade = 0; 1591 u8 buf, buf2[2], _buf, _buf2[2]; 1592 bool parity_check; 1593 bool parity_quirk; 1594 1595 sdw_modify_slave_status(slave, SDW_SLAVE_ALERT); 1596 1597 ret = pm_runtime_get_sync(&slave->dev); 1598 if (ret < 0 && ret != -EACCES) { 1599 dev_err(&slave->dev, "Failed to resume device: %d\n", ret); 1600 pm_runtime_put_noidle(&slave->dev); 1601 return ret; 1602 } 1603 1604 /* Read Intstat 1, Intstat 2 and Intstat 3 registers */ 1605 ret = sdw_read_no_pm(slave, SDW_SCP_INT1); 1606 if (ret < 0) { 1607 dev_err(&slave->dev, 1608 "SDW_SCP_INT1 read failed:%d\n", ret); 1609 goto io_err; 1610 } 1611 buf = ret; 1612 1613 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2); 1614 if (ret < 0) { 1615 dev_err(&slave->dev, 1616 "SDW_SCP_INT2/3 read failed:%d\n", ret); 1617 goto io_err; 1618 } 1619 1620 if (slave->id.class_id) { 1621 ret = sdw_read_no_pm(slave, SDW_DP0_INT); 1622 if (ret < 0) { 1623 dev_err(&slave->dev, 1624 "SDW_DP0_INT read failed:%d\n", ret); 1625 goto io_err; 1626 } 1627 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE; 1628 } 1629 1630 do { 1631 slave_notify = false; 1632 1633 /* 1634 * Check parity, bus clash and Slave (impl defined) 1635 * interrupt 1636 */ 1637 if (buf & SDW_SCP_INT1_PARITY) { 1638 parity_check = slave->prop.scp_int1_mask & SDW_SCP_INT1_PARITY; 1639 parity_quirk = !slave->first_interrupt_done && 1640 (slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY); 1641 1642 if (parity_check && !parity_quirk) 1643 dev_err(&slave->dev, "Parity error detected\n"); 1644 clear |= SDW_SCP_INT1_PARITY; 1645 } 1646 1647 if (buf & SDW_SCP_INT1_BUS_CLASH) { 1648 if (slave->prop.scp_int1_mask & SDW_SCP_INT1_BUS_CLASH) 1649 dev_err(&slave->dev, "Bus clash detected\n"); 1650 clear |= SDW_SCP_INT1_BUS_CLASH; 1651 } 1652 1653 /* 1654 * When bus clash or parity errors are detected, such errors 1655 * are unlikely to be recoverable errors. 1656 * TODO: In such scenario, reset bus. Make this configurable 1657 * via sysfs property with bus reset being the default. 1658 */ 1659 1660 if (buf & SDW_SCP_INT1_IMPL_DEF) { 1661 if (slave->prop.scp_int1_mask & SDW_SCP_INT1_IMPL_DEF) { 1662 dev_dbg(&slave->dev, "Slave impl defined interrupt\n"); 1663 slave_notify = true; 1664 } 1665 clear |= SDW_SCP_INT1_IMPL_DEF; 1666 } 1667 1668 /* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */ 1669 if (sdca_cascade) 1670 slave_notify = true; 1671 1672 /* Check port 0 - 3 interrupts */ 1673 port = buf & SDW_SCP_INT1_PORT0_3; 1674 1675 /* To get port number corresponding to bits, shift it */ 1676 port = FIELD_GET(SDW_SCP_INT1_PORT0_3, port); 1677 for_each_set_bit(bit, &port, 8) { 1678 sdw_handle_port_interrupt(slave, bit, 1679 &port_status[bit]); 1680 } 1681 1682 /* Check if cascade 2 interrupt is present */ 1683 if (buf & SDW_SCP_INT1_SCP2_CASCADE) { 1684 port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10; 1685 for_each_set_bit(bit, &port, 8) { 1686 /* scp2 ports start from 4 */ 1687 port_num = bit + 4; 1688 sdw_handle_port_interrupt(slave, 1689 port_num, 1690 &port_status[port_num]); 1691 } 1692 } 1693 1694 /* now check last cascade */ 1695 if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) { 1696 port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14; 1697 for_each_set_bit(bit, &port, 8) { 1698 /* scp3 ports start from 11 */ 1699 port_num = bit + 11; 1700 sdw_handle_port_interrupt(slave, 1701 port_num, 1702 &port_status[port_num]); 1703 } 1704 } 1705 1706 /* Update the Slave driver */ 1707 if (slave_notify) { 1708 mutex_lock(&slave->sdw_dev_lock); 1709 1710 if (slave->probed) { 1711 struct device *dev = &slave->dev; 1712 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver); 1713 1714 if (drv->ops && drv->ops->interrupt_callback) { 1715 slave_intr.sdca_cascade = sdca_cascade; 1716 slave_intr.control_port = clear; 1717 memcpy(slave_intr.port, &port_status, 1718 sizeof(slave_intr.port)); 1719 1720 drv->ops->interrupt_callback(slave, &slave_intr); 1721 } 1722 } 1723 1724 mutex_unlock(&slave->sdw_dev_lock); 1725 } 1726 1727 /* Ack interrupt */ 1728 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, clear); 1729 if (ret < 0) { 1730 dev_err(&slave->dev, 1731 "SDW_SCP_INT1 write failed:%d\n", ret); 1732 goto io_err; 1733 } 1734 1735 /* at this point all initial interrupt sources were handled */ 1736 slave->first_interrupt_done = true; 1737 1738 /* 1739 * Read status again to ensure no new interrupts arrived 1740 * while servicing interrupts. 1741 */ 1742 ret = sdw_read_no_pm(slave, SDW_SCP_INT1); 1743 if (ret < 0) { 1744 dev_err(&slave->dev, 1745 "SDW_SCP_INT1 recheck read failed:%d\n", ret); 1746 goto io_err; 1747 } 1748 _buf = ret; 1749 1750 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, _buf2); 1751 if (ret < 0) { 1752 dev_err(&slave->dev, 1753 "SDW_SCP_INT2/3 recheck read failed:%d\n", ret); 1754 goto io_err; 1755 } 1756 1757 if (slave->id.class_id) { 1758 ret = sdw_read_no_pm(slave, SDW_DP0_INT); 1759 if (ret < 0) { 1760 dev_err(&slave->dev, 1761 "SDW_DP0_INT recheck read failed:%d\n", ret); 1762 goto io_err; 1763 } 1764 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE; 1765 } 1766 1767 /* 1768 * Make sure no interrupts are pending, but filter to limit loop 1769 * to interrupts identified in the first status read 1770 */ 1771 buf &= _buf; 1772 buf2[0] &= _buf2[0]; 1773 buf2[1] &= _buf2[1]; 1774 stat = buf || buf2[0] || buf2[1] || sdca_cascade; 1775 1776 /* 1777 * Exit loop if Slave is continuously in ALERT state even 1778 * after servicing the interrupt multiple times. 1779 */ 1780 count++; 1781 1782 /* we can get alerts while processing so keep retrying */ 1783 } while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY); 1784 1785 if (count == SDW_READ_INTR_CLEAR_RETRY) 1786 dev_warn(&slave->dev, "Reached MAX_RETRY on alert read\n"); 1787 1788 io_err: 1789 pm_runtime_mark_last_busy(&slave->dev); 1790 pm_runtime_put_autosuspend(&slave->dev); 1791 1792 return ret; 1793 } 1794 1795 static int sdw_update_slave_status(struct sdw_slave *slave, 1796 enum sdw_slave_status status) 1797 { 1798 int ret = 0; 1799 1800 mutex_lock(&slave->sdw_dev_lock); 1801 1802 if (slave->probed) { 1803 struct device *dev = &slave->dev; 1804 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver); 1805 1806 if (drv->ops && drv->ops->update_status) 1807 ret = drv->ops->update_status(slave, status); 1808 } 1809 1810 mutex_unlock(&slave->sdw_dev_lock); 1811 1812 return ret; 1813 } 1814 1815 /** 1816 * sdw_handle_slave_status() - Handle Slave status 1817 * @bus: SDW bus instance 1818 * @status: Status for all Slave(s) 1819 */ 1820 int sdw_handle_slave_status(struct sdw_bus *bus, 1821 enum sdw_slave_status status[]) 1822 { 1823 enum sdw_slave_status prev_status; 1824 struct sdw_slave *slave; 1825 bool attached_initializing, id_programmed; 1826 int i, ret = 0; 1827 1828 /* first check if any Slaves fell off the bus */ 1829 for (i = 1; i <= SDW_MAX_DEVICES; i++) { 1830 mutex_lock(&bus->bus_lock); 1831 if (test_bit(i, bus->assigned) == false) { 1832 mutex_unlock(&bus->bus_lock); 1833 continue; 1834 } 1835 mutex_unlock(&bus->bus_lock); 1836 1837 slave = sdw_get_slave(bus, i); 1838 if (!slave) 1839 continue; 1840 1841 if (status[i] == SDW_SLAVE_UNATTACHED && 1842 slave->status != SDW_SLAVE_UNATTACHED) { 1843 dev_warn(&slave->dev, "Slave %d state check1: UNATTACHED, status was %d\n", 1844 i, slave->status); 1845 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED); 1846 1847 /* Ensure driver knows that peripheral unattached */ 1848 ret = sdw_update_slave_status(slave, status[i]); 1849 if (ret < 0) 1850 dev_warn(&slave->dev, "Update Slave status failed:%d\n", ret); 1851 } 1852 } 1853 1854 if (status[0] == SDW_SLAVE_ATTACHED) { 1855 dev_dbg(bus->dev, "Slave attached, programming device number\n"); 1856 1857 /* 1858 * Programming a device number will have side effects, 1859 * so we deal with other devices at a later time. 1860 * This relies on those devices reporting ATTACHED, which will 1861 * trigger another call to this function. This will only 1862 * happen if at least one device ID was programmed. 1863 * Error returns from sdw_program_device_num() are currently 1864 * ignored because there's no useful recovery that can be done. 1865 * Returning the error here could result in the current status 1866 * of other devices not being handled, because if no device IDs 1867 * were programmed there's nothing to guarantee a status change 1868 * to trigger another call to this function. 1869 */ 1870 sdw_program_device_num(bus, &id_programmed); 1871 if (id_programmed) 1872 return 0; 1873 } 1874 1875 /* Continue to check other slave statuses */ 1876 for (i = 1; i <= SDW_MAX_DEVICES; i++) { 1877 mutex_lock(&bus->bus_lock); 1878 if (test_bit(i, bus->assigned) == false) { 1879 mutex_unlock(&bus->bus_lock); 1880 continue; 1881 } 1882 mutex_unlock(&bus->bus_lock); 1883 1884 slave = sdw_get_slave(bus, i); 1885 if (!slave) 1886 continue; 1887 1888 attached_initializing = false; 1889 1890 switch (status[i]) { 1891 case SDW_SLAVE_UNATTACHED: 1892 if (slave->status == SDW_SLAVE_UNATTACHED) 1893 break; 1894 1895 dev_warn(&slave->dev, "Slave %d state check2: UNATTACHED, status was %d\n", 1896 i, slave->status); 1897 1898 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED); 1899 break; 1900 1901 case SDW_SLAVE_ALERT: 1902 ret = sdw_handle_slave_alerts(slave); 1903 if (ret < 0) 1904 dev_err(&slave->dev, 1905 "Slave %d alert handling failed: %d\n", 1906 i, ret); 1907 break; 1908 1909 case SDW_SLAVE_ATTACHED: 1910 if (slave->status == SDW_SLAVE_ATTACHED) 1911 break; 1912 1913 prev_status = slave->status; 1914 sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED); 1915 1916 if (prev_status == SDW_SLAVE_ALERT) 1917 break; 1918 1919 attached_initializing = true; 1920 1921 ret = sdw_initialize_slave(slave); 1922 if (ret < 0) 1923 dev_err(&slave->dev, 1924 "Slave %d initialization failed: %d\n", 1925 i, ret); 1926 1927 break; 1928 1929 default: 1930 dev_err(&slave->dev, "Invalid slave %d status:%d\n", 1931 i, status[i]); 1932 break; 1933 } 1934 1935 ret = sdw_update_slave_status(slave, status[i]); 1936 if (ret < 0) 1937 dev_err(&slave->dev, 1938 "Update Slave status failed:%d\n", ret); 1939 if (attached_initializing) { 1940 dev_dbg(&slave->dev, 1941 "signaling initialization completion for Slave %d\n", 1942 slave->dev_num); 1943 1944 complete(&slave->initialization_complete); 1945 1946 /* 1947 * If the manager became pm_runtime active, the peripherals will be 1948 * restarted and attach, but their pm_runtime status may remain 1949 * suspended. If the 'update_slave_status' callback initiates 1950 * any sort of deferred processing, this processing would not be 1951 * cancelled on pm_runtime suspend. 1952 * To avoid such zombie states, we queue a request to resume. 1953 * This would be a no-op in case the peripheral was being resumed 1954 * by e.g. the ALSA/ASoC framework. 1955 */ 1956 pm_request_resume(&slave->dev); 1957 } 1958 } 1959 1960 return ret; 1961 } 1962 EXPORT_SYMBOL(sdw_handle_slave_status); 1963 1964 void sdw_clear_slave_status(struct sdw_bus *bus, u32 request) 1965 { 1966 struct sdw_slave *slave; 1967 int i; 1968 1969 /* Check all non-zero devices */ 1970 for (i = 1; i <= SDW_MAX_DEVICES; i++) { 1971 mutex_lock(&bus->bus_lock); 1972 if (test_bit(i, bus->assigned) == false) { 1973 mutex_unlock(&bus->bus_lock); 1974 continue; 1975 } 1976 mutex_unlock(&bus->bus_lock); 1977 1978 slave = sdw_get_slave(bus, i); 1979 if (!slave) 1980 continue; 1981 1982 if (slave->status != SDW_SLAVE_UNATTACHED) { 1983 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED); 1984 slave->first_interrupt_done = false; 1985 sdw_update_slave_status(slave, SDW_SLAVE_UNATTACHED); 1986 } 1987 1988 /* keep track of request, used in pm_runtime resume */ 1989 slave->unattach_request = request; 1990 } 1991 } 1992 EXPORT_SYMBOL(sdw_clear_slave_status); 1993