xref: /linux/drivers/soc/ti/knav_qmss_queue.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Keystone Queue Manager subsystem driver
4  *
5  * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
6  * Authors:	Sandeep Nair <sandeep_n@ti.com>
7  *		Cyril Chemparathy <cyril@ti.com>
8  *		Santosh Shilimkar <santosh.shilimkar@ti.com>
9  */
10 
11 #include <linux/debugfs.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/firmware.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/of.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/property.h>
23 #include <linux/slab.h>
24 #include <linux/soc/ti/knav_qmss.h>
25 
26 #include "knav_qmss.h"
27 
28 static struct knav_device *kdev;
29 static DEFINE_MUTEX(knav_dev_lock);
30 #define knav_dev_lock_held() \
31 	lockdep_is_held(&knav_dev_lock)
32 
33 /* Queue manager register indices in DTS */
34 #define KNAV_QUEUE_PEEK_REG_INDEX	0
35 #define KNAV_QUEUE_STATUS_REG_INDEX	1
36 #define KNAV_QUEUE_CONFIG_REG_INDEX	2
37 #define KNAV_QUEUE_REGION_REG_INDEX	3
38 #define KNAV_QUEUE_PUSH_REG_INDEX	4
39 #define KNAV_QUEUE_POP_REG_INDEX	5
40 
41 /* Queue manager register indices in DTS for QMSS in K2G NAVSS.
42  * There are no status and vbusm push registers on this version
43  * of QMSS. Push registers are same as pop, So all indices above 1
44  * are to be re-defined
45  */
46 #define KNAV_L_QUEUE_CONFIG_REG_INDEX	1
47 #define KNAV_L_QUEUE_REGION_REG_INDEX	2
48 #define KNAV_L_QUEUE_PUSH_REG_INDEX	3
49 
50 /* PDSP register indices in DTS */
51 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX	0
52 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX	1
53 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX	2
54 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX	3
55 
56 #define knav_queue_idx_to_inst(kdev, idx)			\
57 	(kdev->instances + (idx << kdev->inst_shift))
58 
59 #define for_each_handle_rcu(qh, inst)				\
60 	list_for_each_entry_rcu(qh, &inst->handles, list,	\
61 				knav_dev_lock_held())
62 
63 #define for_each_instance(idx, inst, kdev)		\
64 	for (idx = 0, inst = kdev->instances;		\
65 	     idx < (kdev)->num_queues_in_use;			\
66 	     idx++, inst = knav_queue_idx_to_inst(kdev, idx))
67 
68 /* All firmware file names end up here. List the firmware file names below.
69  * Newest followed by older ones. Search is done from start of the array
70  * until a firmware file is found.
71  */
72 static const char * const knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
73 
74 static bool device_ready;
75 bool knav_qmss_device_ready(void)
76 {
77 	return device_ready;
78 }
79 EXPORT_SYMBOL_GPL(knav_qmss_device_ready);
80 
81 /**
82  * knav_queue_notify: qmss queue notfier call
83  *
84  * @inst:		- qmss queue instance like accumulator
85  */
86 void knav_queue_notify(struct knav_queue_inst *inst)
87 {
88 	struct knav_queue *qh;
89 
90 	if (!inst)
91 		return;
92 
93 	rcu_read_lock();
94 	for_each_handle_rcu(qh, inst) {
95 		if (atomic_read(&qh->notifier_enabled) <= 0)
96 			continue;
97 		if (WARN_ON(!qh->notifier_fn))
98 			continue;
99 		this_cpu_inc(qh->stats->notifies);
100 		qh->notifier_fn(qh->notifier_fn_arg);
101 	}
102 	rcu_read_unlock();
103 }
104 EXPORT_SYMBOL_GPL(knav_queue_notify);
105 
106 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
107 {
108 	struct knav_queue_inst *inst = _instdata;
109 
110 	knav_queue_notify(inst);
111 	return IRQ_HANDLED;
112 }
113 
114 static int knav_queue_setup_irq(struct knav_range_info *range,
115 			  struct knav_queue_inst *inst)
116 {
117 	unsigned queue = inst->id - range->queue_base;
118 	int ret = 0, irq;
119 
120 	if (range->flags & RANGE_HAS_IRQ) {
121 		irq = range->irqs[queue].irq;
122 		ret = request_irq(irq, knav_queue_int_handler, IRQF_NO_AUTOEN,
123 				  inst->irq_name, inst);
124 		if (ret)
125 			return ret;
126 		if (range->irqs[queue].cpu_mask) {
127 			ret = irq_set_affinity_hint(irq, range->irqs[queue].cpu_mask);
128 			if (ret) {
129 				dev_warn(range->kdev->dev,
130 					 "Failed to set IRQ affinity\n");
131 				return ret;
132 			}
133 		}
134 	}
135 	return ret;
136 }
137 
138 static void knav_queue_free_irq(struct knav_queue_inst *inst)
139 {
140 	struct knav_range_info *range = inst->range;
141 	unsigned queue = inst->id - inst->range->queue_base;
142 	int irq;
143 
144 	if (range->flags & RANGE_HAS_IRQ) {
145 		irq = range->irqs[queue].irq;
146 		irq_set_affinity_hint(irq, NULL);
147 		free_irq(irq, inst);
148 	}
149 }
150 
151 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
152 {
153 	return !list_empty(&inst->handles);
154 }
155 
156 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
157 {
158 	return inst->range->flags & RANGE_RESERVED;
159 }
160 
161 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
162 {
163 	struct knav_queue *tmp;
164 
165 	rcu_read_lock();
166 	for_each_handle_rcu(tmp, inst) {
167 		if (tmp->flags & KNAV_QUEUE_SHARED) {
168 			rcu_read_unlock();
169 			return true;
170 		}
171 	}
172 	rcu_read_unlock();
173 	return false;
174 }
175 
176 static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
177 						unsigned type)
178 {
179 	if ((type == KNAV_QUEUE_QPEND) &&
180 	    (inst->range->flags & RANGE_HAS_IRQ)) {
181 		return true;
182 	} else if ((type == KNAV_QUEUE_ACC) &&
183 		(inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
184 		return true;
185 	} else if ((type == KNAV_QUEUE_GP) &&
186 		!(inst->range->flags &
187 			(RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
188 		return true;
189 	}
190 	return false;
191 }
192 
193 static inline struct knav_queue_inst *
194 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
195 {
196 	struct knav_queue_inst *inst;
197 	int idx;
198 
199 	for_each_instance(idx, inst, kdev) {
200 		if (inst->id == id)
201 			return inst;
202 	}
203 	return NULL;
204 }
205 
206 static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
207 {
208 	if (kdev->base_id <= id &&
209 	    kdev->base_id + kdev->num_queues > id) {
210 		id -= kdev->base_id;
211 		return knav_queue_match_id_to_inst(kdev, id);
212 	}
213 	return NULL;
214 }
215 
216 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
217 				      const char *name, unsigned flags)
218 {
219 	struct knav_queue *qh;
220 	unsigned id;
221 	int ret = 0;
222 
223 	qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
224 	if (!qh)
225 		return ERR_PTR(-ENOMEM);
226 
227 	qh->stats = alloc_percpu(struct knav_queue_stats);
228 	if (!qh->stats) {
229 		ret = -ENOMEM;
230 		goto err;
231 	}
232 
233 	qh->flags = flags;
234 	qh->inst = inst;
235 	id = inst->id - inst->qmgr->start_queue;
236 	qh->reg_push = &inst->qmgr->reg_push[id];
237 	qh->reg_pop = &inst->qmgr->reg_pop[id];
238 	qh->reg_peek = &inst->qmgr->reg_peek[id];
239 
240 	/* first opener? */
241 	if (!knav_queue_is_busy(inst)) {
242 		struct knav_range_info *range = inst->range;
243 
244 		inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
245 		if (range->ops && range->ops->open_queue)
246 			ret = range->ops->open_queue(range, inst, flags);
247 
248 		if (ret)
249 			goto err;
250 	}
251 	list_add_tail_rcu(&qh->list, &inst->handles);
252 	return qh;
253 
254 err:
255 	if (qh->stats)
256 		free_percpu(qh->stats);
257 	devm_kfree(inst->kdev->dev, qh);
258 	return ERR_PTR(ret);
259 }
260 
261 static struct knav_queue *
262 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
263 {
264 	struct knav_queue_inst *inst;
265 	struct knav_queue *qh;
266 
267 	mutex_lock(&knav_dev_lock);
268 
269 	qh = ERR_PTR(-ENODEV);
270 	inst = knav_queue_find_by_id(id);
271 	if (!inst)
272 		goto unlock_ret;
273 
274 	qh = ERR_PTR(-EEXIST);
275 	if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
276 		goto unlock_ret;
277 
278 	qh = ERR_PTR(-EBUSY);
279 	if ((flags & KNAV_QUEUE_SHARED) &&
280 	    (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
281 		goto unlock_ret;
282 
283 	qh = __knav_queue_open(inst, name, flags);
284 
285 unlock_ret:
286 	mutex_unlock(&knav_dev_lock);
287 
288 	return qh;
289 }
290 
291 static struct knav_queue *knav_queue_open_by_type(const char *name,
292 						unsigned type, unsigned flags)
293 {
294 	struct knav_queue_inst *inst;
295 	struct knav_queue *qh = ERR_PTR(-EINVAL);
296 	int idx;
297 
298 	mutex_lock(&knav_dev_lock);
299 
300 	for_each_instance(idx, inst, kdev) {
301 		if (knav_queue_is_reserved(inst))
302 			continue;
303 		if (!knav_queue_match_type(inst, type))
304 			continue;
305 		if (knav_queue_is_busy(inst))
306 			continue;
307 		qh = __knav_queue_open(inst, name, flags);
308 		goto unlock_ret;
309 	}
310 
311 unlock_ret:
312 	mutex_unlock(&knav_dev_lock);
313 	return qh;
314 }
315 
316 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
317 {
318 	struct knav_range_info *range = inst->range;
319 
320 	if (range->ops && range->ops->set_notify)
321 		range->ops->set_notify(range, inst, enabled);
322 }
323 
324 static int knav_queue_enable_notifier(struct knav_queue *qh)
325 {
326 	struct knav_queue_inst *inst = qh->inst;
327 	bool first;
328 
329 	if (WARN_ON(!qh->notifier_fn))
330 		return -EINVAL;
331 
332 	/* Adjust the per handle notifier count */
333 	first = (atomic_inc_return(&qh->notifier_enabled) == 1);
334 	if (!first)
335 		return 0; /* nothing to do */
336 
337 	/* Now adjust the per instance notifier count */
338 	first = (atomic_inc_return(&inst->num_notifiers) == 1);
339 	if (first)
340 		knav_queue_set_notify(inst, true);
341 
342 	return 0;
343 }
344 
345 static int knav_queue_disable_notifier(struct knav_queue *qh)
346 {
347 	struct knav_queue_inst *inst = qh->inst;
348 	bool last;
349 
350 	last = (atomic_dec_return(&qh->notifier_enabled) == 0);
351 	if (!last)
352 		return 0; /* nothing to do */
353 
354 	last = (atomic_dec_return(&inst->num_notifiers) == 0);
355 	if (last)
356 		knav_queue_set_notify(inst, false);
357 
358 	return 0;
359 }
360 
361 static int knav_queue_set_notifier(struct knav_queue *qh,
362 				struct knav_queue_notify_config *cfg)
363 {
364 	knav_queue_notify_fn old_fn = qh->notifier_fn;
365 
366 	if (!cfg)
367 		return -EINVAL;
368 
369 	if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
370 		return -ENOTSUPP;
371 
372 	if (!cfg->fn && old_fn)
373 		knav_queue_disable_notifier(qh);
374 
375 	qh->notifier_fn = cfg->fn;
376 	qh->notifier_fn_arg = cfg->fn_arg;
377 
378 	if (cfg->fn && !old_fn)
379 		knav_queue_enable_notifier(qh);
380 
381 	return 0;
382 }
383 
384 static int knav_gp_set_notify(struct knav_range_info *range,
385 			       struct knav_queue_inst *inst,
386 			       bool enabled)
387 {
388 	unsigned queue;
389 
390 	if (range->flags & RANGE_HAS_IRQ) {
391 		queue = inst->id - range->queue_base;
392 		if (enabled)
393 			enable_irq(range->irqs[queue].irq);
394 		else
395 			disable_irq_nosync(range->irqs[queue].irq);
396 	}
397 	return 0;
398 }
399 
400 static int knav_gp_open_queue(struct knav_range_info *range,
401 				struct knav_queue_inst *inst, unsigned flags)
402 {
403 	return knav_queue_setup_irq(range, inst);
404 }
405 
406 static int knav_gp_close_queue(struct knav_range_info *range,
407 				struct knav_queue_inst *inst)
408 {
409 	knav_queue_free_irq(inst);
410 	return 0;
411 }
412 
413 static const struct knav_range_ops knav_gp_range_ops = {
414 	.set_notify	= knav_gp_set_notify,
415 	.open_queue	= knav_gp_open_queue,
416 	.close_queue	= knav_gp_close_queue,
417 };
418 
419 
420 static int knav_queue_get_count(void *qhandle)
421 {
422 	struct knav_queue *qh = qhandle;
423 	struct knav_queue_inst *inst = qh->inst;
424 
425 	return readl_relaxed(&qh->reg_peek[0].entry_count) +
426 		atomic_read(&inst->desc_count);
427 }
428 
429 static void knav_queue_debug_show_instance(struct seq_file *s,
430 					struct knav_queue_inst *inst)
431 {
432 	struct knav_device *kdev = inst->kdev;
433 	struct knav_queue *qh;
434 	int cpu = 0;
435 	int pushes = 0;
436 	int pops = 0;
437 	int push_errors = 0;
438 	int pop_errors = 0;
439 	int notifies = 0;
440 
441 	if (!knav_queue_is_busy(inst))
442 		return;
443 
444 	seq_printf(s, "\tqueue id %d (%s)\n",
445 		   kdev->base_id + inst->id, inst->name);
446 	for_each_handle_rcu(qh, inst) {
447 		for_each_possible_cpu(cpu) {
448 			pushes += per_cpu_ptr(qh->stats, cpu)->pushes;
449 			pops += per_cpu_ptr(qh->stats, cpu)->pops;
450 			push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors;
451 			pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors;
452 			notifies += per_cpu_ptr(qh->stats, cpu)->notifies;
453 		}
454 
455 		seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n",
456 				qh,
457 				pushes,
458 				pops,
459 				knav_queue_get_count(qh),
460 				notifies,
461 				push_errors,
462 				pop_errors);
463 	}
464 }
465 
466 static int knav_queue_debug_show(struct seq_file *s, void *v)
467 {
468 	struct knav_queue_inst *inst;
469 	int idx;
470 
471 	mutex_lock(&knav_dev_lock);
472 	seq_printf(s, "%s: %u-%u\n",
473 		   dev_name(kdev->dev), kdev->base_id,
474 		   kdev->base_id + kdev->num_queues - 1);
475 	for_each_instance(idx, inst, kdev)
476 		knav_queue_debug_show_instance(s, inst);
477 	mutex_unlock(&knav_dev_lock);
478 
479 	return 0;
480 }
481 
482 DEFINE_SHOW_ATTRIBUTE(knav_queue_debug);
483 
484 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
485 					u32 flags)
486 {
487 	unsigned long end;
488 	u32 val = 0;
489 
490 	end = jiffies + msecs_to_jiffies(timeout);
491 	while (time_after(end, jiffies)) {
492 		val = readl_relaxed(addr);
493 		if (flags)
494 			val &= flags;
495 		if (!val)
496 			break;
497 		cpu_relax();
498 	}
499 	return val ? -ETIMEDOUT : 0;
500 }
501 
502 
503 static int knav_queue_flush(struct knav_queue *qh)
504 {
505 	struct knav_queue_inst *inst = qh->inst;
506 	unsigned id = inst->id - inst->qmgr->start_queue;
507 
508 	atomic_set(&inst->desc_count, 0);
509 	writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
510 	return 0;
511 }
512 
513 /**
514  * knav_queue_open()	- open a hardware queue
515  * @name:		- name to give the queue handle
516  * @id:			- desired queue number if any or specifes the type
517  *			  of queue
518  * @flags:		- the following flags are applicable to queues:
519  *	KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
520  *			     exclusive by default.
521  *			     Subsequent attempts to open a shared queue should
522  *			     also have this flag.
523  *
524  * Returns a handle to the open hardware queue if successful. Use IS_ERR()
525  * to check the returned value for error codes.
526  */
527 void *knav_queue_open(const char *name, unsigned id,
528 					unsigned flags)
529 {
530 	struct knav_queue *qh = ERR_PTR(-EINVAL);
531 
532 	switch (id) {
533 	case KNAV_QUEUE_QPEND:
534 	case KNAV_QUEUE_ACC:
535 	case KNAV_QUEUE_GP:
536 		qh = knav_queue_open_by_type(name, id, flags);
537 		break;
538 
539 	default:
540 		qh = knav_queue_open_by_id(name, id, flags);
541 		break;
542 	}
543 	return qh;
544 }
545 EXPORT_SYMBOL_GPL(knav_queue_open);
546 
547 /**
548  * knav_queue_close()	- close a hardware queue handle
549  * @qhandle:		- handle to close
550  */
551 void knav_queue_close(void *qhandle)
552 {
553 	struct knav_queue *qh = qhandle;
554 	struct knav_queue_inst *inst = qh->inst;
555 
556 	while (atomic_read(&qh->notifier_enabled) > 0)
557 		knav_queue_disable_notifier(qh);
558 
559 	mutex_lock(&knav_dev_lock);
560 	list_del_rcu(&qh->list);
561 	mutex_unlock(&knav_dev_lock);
562 	synchronize_rcu();
563 	if (!knav_queue_is_busy(inst)) {
564 		struct knav_range_info *range = inst->range;
565 
566 		if (range->ops && range->ops->close_queue)
567 			range->ops->close_queue(range, inst);
568 	}
569 	free_percpu(qh->stats);
570 	devm_kfree(inst->kdev->dev, qh);
571 }
572 EXPORT_SYMBOL_GPL(knav_queue_close);
573 
574 /**
575  * knav_queue_device_control()	- Perform control operations on a queue
576  * @qhandle:			- queue handle
577  * @cmd:			- control commands
578  * @arg:			- command argument
579  *
580  * Returns 0 on success, errno otherwise.
581  */
582 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
583 				unsigned long arg)
584 {
585 	struct knav_queue *qh = qhandle;
586 	struct knav_queue_notify_config *cfg;
587 	int ret;
588 
589 	switch ((int)cmd) {
590 	case KNAV_QUEUE_GET_ID:
591 		ret = qh->inst->kdev->base_id + qh->inst->id;
592 		break;
593 
594 	case KNAV_QUEUE_FLUSH:
595 		ret = knav_queue_flush(qh);
596 		break;
597 
598 	case KNAV_QUEUE_SET_NOTIFIER:
599 		cfg = (void *)arg;
600 		ret = knav_queue_set_notifier(qh, cfg);
601 		break;
602 
603 	case KNAV_QUEUE_ENABLE_NOTIFY:
604 		ret = knav_queue_enable_notifier(qh);
605 		break;
606 
607 	case KNAV_QUEUE_DISABLE_NOTIFY:
608 		ret = knav_queue_disable_notifier(qh);
609 		break;
610 
611 	case KNAV_QUEUE_GET_COUNT:
612 		ret = knav_queue_get_count(qh);
613 		break;
614 
615 	default:
616 		ret = -ENOTSUPP;
617 		break;
618 	}
619 	return ret;
620 }
621 EXPORT_SYMBOL_GPL(knav_queue_device_control);
622 
623 
624 
625 /**
626  * knav_queue_push()	- push data (or descriptor) to the tail of a queue
627  * @qhandle:		- hardware queue handle
628  * @dma:		- DMA data to push
629  * @size:		- size of data to push
630  * @flags:		- can be used to pass additional information
631  *
632  * Returns 0 on success, errno otherwise.
633  */
634 int knav_queue_push(void *qhandle, dma_addr_t dma,
635 					unsigned size, unsigned flags)
636 {
637 	struct knav_queue *qh = qhandle;
638 	u32 val;
639 
640 	val = (u32)dma | ((size / 16) - 1);
641 	writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
642 
643 	this_cpu_inc(qh->stats->pushes);
644 	return 0;
645 }
646 EXPORT_SYMBOL_GPL(knav_queue_push);
647 
648 /**
649  * knav_queue_pop()	- pop data (or descriptor) from the head of a queue
650  * @qhandle:		- hardware queue handle
651  * @size:		- (optional) size of the data pop'ed.
652  *
653  * Returns a DMA address on success, 0 on failure.
654  */
655 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
656 {
657 	struct knav_queue *qh = qhandle;
658 	struct knav_queue_inst *inst = qh->inst;
659 	dma_addr_t dma;
660 	u32 val, idx;
661 
662 	/* are we accumulated? */
663 	if (inst->descs) {
664 		if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
665 			atomic_inc(&inst->desc_count);
666 			return 0;
667 		}
668 		idx  = atomic_inc_return(&inst->desc_head);
669 		idx &= ACC_DESCS_MASK;
670 		val = inst->descs[idx];
671 	} else {
672 		val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
673 		if (unlikely(!val))
674 			return 0;
675 	}
676 
677 	dma = val & DESC_PTR_MASK;
678 	if (size)
679 		*size = ((val & DESC_SIZE_MASK) + 1) * 16;
680 
681 	this_cpu_inc(qh->stats->pops);
682 	return dma;
683 }
684 EXPORT_SYMBOL_GPL(knav_queue_pop);
685 
686 /* carve out descriptors and push into queue */
687 static void kdesc_fill_pool(struct knav_pool *pool)
688 {
689 	struct knav_region *region;
690 	int i;
691 
692 	region = pool->region;
693 	pool->desc_size = region->desc_size;
694 	for (i = 0; i < pool->num_desc; i++) {
695 		int index = pool->region_offset + i;
696 		dma_addr_t dma_addr;
697 		unsigned dma_size;
698 		dma_addr = region->dma_start + (region->desc_size * index);
699 		dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
700 		dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
701 					   DMA_TO_DEVICE);
702 		knav_queue_push(pool->queue, dma_addr, dma_size, 0);
703 	}
704 }
705 
706 /* pop out descriptors and close the queue */
707 static void kdesc_empty_pool(struct knav_pool *pool)
708 {
709 	dma_addr_t dma;
710 	unsigned size;
711 	void *desc;
712 	int i;
713 
714 	if (!pool->queue)
715 		return;
716 
717 	for (i = 0;; i++) {
718 		dma = knav_queue_pop(pool->queue, &size);
719 		if (!dma)
720 			break;
721 		desc = knav_pool_desc_dma_to_virt(pool, dma);
722 		if (!desc) {
723 			dev_dbg(pool->kdev->dev,
724 				"couldn't unmap desc, continuing\n");
725 		}
726 	}
727 	WARN_ON(i != pool->num_desc);
728 	knav_queue_close(pool->queue);
729 }
730 
731 
732 /* Get the DMA address of a descriptor */
733 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
734 {
735 	struct knav_pool *pool = ph;
736 	return pool->region->dma_start + (virt - pool->region->virt_start);
737 }
738 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
739 
740 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
741 {
742 	struct knav_pool *pool = ph;
743 	return pool->region->virt_start + (dma - pool->region->dma_start);
744 }
745 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
746 
747 /**
748  * knav_pool_create()	- Create a pool of descriptors
749  * @name:		- name to give the pool handle
750  * @num_desc:		- numbers of descriptors in the pool
751  * @region_id:		- QMSS region id from which the descriptors are to be
752  *			  allocated.
753  *
754  * Returns a pool handle on success.
755  * Use IS_ERR_OR_NULL() to identify error values on return.
756  */
757 void *knav_pool_create(const char *name,
758 					int num_desc, int region_id)
759 {
760 	struct knav_region *reg_itr, *region = NULL;
761 	struct knav_pool *pool, *pi = NULL, *iter;
762 	struct list_head *node;
763 	unsigned last_offset;
764 	int ret;
765 
766 	if (!kdev)
767 		return ERR_PTR(-EPROBE_DEFER);
768 
769 	if (!kdev->dev)
770 		return ERR_PTR(-ENODEV);
771 
772 	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
773 	if (!pool) {
774 		dev_err(kdev->dev, "out of memory allocating pool\n");
775 		return ERR_PTR(-ENOMEM);
776 	}
777 
778 	for_each_region(kdev, reg_itr) {
779 		if (reg_itr->id != region_id)
780 			continue;
781 		region = reg_itr;
782 		break;
783 	}
784 
785 	if (!region) {
786 		dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
787 		ret = -EINVAL;
788 		goto err;
789 	}
790 
791 	pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
792 	if (IS_ERR(pool->queue)) {
793 		dev_err(kdev->dev,
794 			"failed to open queue for pool(%s), error %ld\n",
795 			name, PTR_ERR(pool->queue));
796 		ret = PTR_ERR(pool->queue);
797 		goto err;
798 	}
799 
800 	pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
801 	pool->kdev = kdev;
802 	pool->dev = kdev->dev;
803 
804 	mutex_lock(&knav_dev_lock);
805 
806 	if (num_desc > (region->num_desc - region->used_desc)) {
807 		dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
808 			region_id, name);
809 		ret = -ENOMEM;
810 		goto err_unlock;
811 	}
812 
813 	/* Region maintains a sorted (by region offset) list of pools
814 	 * use the first free slot which is large enough to accomodate
815 	 * the request
816 	 */
817 	last_offset = 0;
818 	node = &region->pools;
819 	list_for_each_entry(iter, &region->pools, region_inst) {
820 		if ((iter->region_offset - last_offset) >= num_desc) {
821 			pi = iter;
822 			break;
823 		}
824 		last_offset = iter->region_offset + iter->num_desc;
825 	}
826 
827 	if (pi) {
828 		node = &pi->region_inst;
829 		pool->region = region;
830 		pool->num_desc = num_desc;
831 		pool->region_offset = last_offset;
832 		region->used_desc += num_desc;
833 		list_add_tail(&pool->list, &kdev->pools);
834 		list_add_tail(&pool->region_inst, node);
835 	} else {
836 		dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
837 			name, region_id);
838 		ret = -ENOMEM;
839 		goto err_unlock;
840 	}
841 
842 	mutex_unlock(&knav_dev_lock);
843 	kdesc_fill_pool(pool);
844 	return pool;
845 
846 err_unlock:
847 	mutex_unlock(&knav_dev_lock);
848 err:
849 	kfree(pool->name);
850 	devm_kfree(kdev->dev, pool);
851 	return ERR_PTR(ret);
852 }
853 EXPORT_SYMBOL_GPL(knav_pool_create);
854 
855 /**
856  * knav_pool_destroy()	- Free a pool of descriptors
857  * @ph:		- pool handle
858  */
859 void knav_pool_destroy(void *ph)
860 {
861 	struct knav_pool *pool = ph;
862 
863 	if (!pool)
864 		return;
865 
866 	if (!pool->region)
867 		return;
868 
869 	kdesc_empty_pool(pool);
870 	mutex_lock(&knav_dev_lock);
871 
872 	pool->region->used_desc -= pool->num_desc;
873 	list_del(&pool->region_inst);
874 	list_del(&pool->list);
875 
876 	mutex_unlock(&knav_dev_lock);
877 	kfree(pool->name);
878 	devm_kfree(kdev->dev, pool);
879 }
880 EXPORT_SYMBOL_GPL(knav_pool_destroy);
881 
882 
883 /**
884  * knav_pool_desc_get()	- Get a descriptor from the pool
885  * @ph:		- pool handle
886  *
887  * Returns descriptor from the pool.
888  */
889 void *knav_pool_desc_get(void *ph)
890 {
891 	struct knav_pool *pool = ph;
892 	dma_addr_t dma;
893 	unsigned size;
894 	void *data;
895 
896 	dma = knav_queue_pop(pool->queue, &size);
897 	if (unlikely(!dma))
898 		return ERR_PTR(-ENOMEM);
899 	data = knav_pool_desc_dma_to_virt(pool, dma);
900 	return data;
901 }
902 EXPORT_SYMBOL_GPL(knav_pool_desc_get);
903 
904 /**
905  * knav_pool_desc_put()	- return a descriptor to the pool
906  * @ph:		- pool handle
907  * @desc:	- virtual address
908  */
909 void knav_pool_desc_put(void *ph, void *desc)
910 {
911 	struct knav_pool *pool = ph;
912 	dma_addr_t dma;
913 	dma = knav_pool_desc_virt_to_dma(pool, desc);
914 	knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
915 }
916 EXPORT_SYMBOL_GPL(knav_pool_desc_put);
917 
918 /**
919  * knav_pool_desc_map()	- Map descriptor for DMA transfer
920  * @ph:				- pool handle
921  * @desc:			- address of descriptor to map
922  * @size:			- size of descriptor to map
923  * @dma:			- DMA address return pointer
924  * @dma_sz:			- adjusted return pointer
925  *
926  * Returns 0 on success, errno otherwise.
927  */
928 int knav_pool_desc_map(void *ph, void *desc, unsigned size,
929 					dma_addr_t *dma, unsigned *dma_sz)
930 {
931 	struct knav_pool *pool = ph;
932 	*dma = knav_pool_desc_virt_to_dma(pool, desc);
933 	size = min(size, pool->region->desc_size);
934 	size = ALIGN(size, SMP_CACHE_BYTES);
935 	*dma_sz = size;
936 	dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
937 
938 	/* Ensure the descriptor reaches to the memory */
939 	__iowmb();
940 
941 	return 0;
942 }
943 EXPORT_SYMBOL_GPL(knav_pool_desc_map);
944 
945 /**
946  * knav_pool_desc_unmap()	- Unmap descriptor after DMA transfer
947  * @ph:				- pool handle
948  * @dma:			- DMA address of descriptor to unmap
949  * @dma_sz:			- size of descriptor to unmap
950  *
951  * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
952  * error values on return.
953  */
954 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
955 {
956 	struct knav_pool *pool = ph;
957 	unsigned desc_sz;
958 	void *desc;
959 
960 	desc_sz = min(dma_sz, pool->region->desc_size);
961 	desc = knav_pool_desc_dma_to_virt(pool, dma);
962 	dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
963 	prefetch(desc);
964 	return desc;
965 }
966 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
967 
968 /**
969  * knav_pool_count()	- Get the number of descriptors in pool.
970  * @ph:			- pool handle
971  * Returns number of elements in the pool.
972  */
973 int knav_pool_count(void *ph)
974 {
975 	struct knav_pool *pool = ph;
976 	return knav_queue_get_count(pool->queue);
977 }
978 EXPORT_SYMBOL_GPL(knav_pool_count);
979 
980 static void knav_queue_setup_region(struct knav_device *kdev,
981 					struct knav_region *region)
982 {
983 	unsigned hw_num_desc, hw_desc_size, size;
984 	struct knav_reg_region __iomem  *regs;
985 	struct knav_qmgr_info *qmgr;
986 	struct knav_pool *pool;
987 	int id = region->id;
988 	struct page *page;
989 
990 	/* unused region? */
991 	if (!region->num_desc) {
992 		dev_warn(kdev->dev, "unused region %s\n", region->name);
993 		return;
994 	}
995 
996 	/* get hardware descriptor value */
997 	hw_num_desc = ilog2(region->num_desc - 1) + 1;
998 
999 	/* did we force fit ourselves into nothingness? */
1000 	if (region->num_desc < 32) {
1001 		region->num_desc = 0;
1002 		dev_warn(kdev->dev, "too few descriptors in region %s\n",
1003 			 region->name);
1004 		return;
1005 	}
1006 
1007 	size = region->num_desc * region->desc_size;
1008 	region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
1009 						GFP_DMA32);
1010 	if (!region->virt_start) {
1011 		region->num_desc = 0;
1012 		dev_err(kdev->dev, "memory alloc failed for region %s\n",
1013 			region->name);
1014 		return;
1015 	}
1016 	region->virt_end = region->virt_start + size;
1017 	page = virt_to_page(region->virt_start);
1018 
1019 	region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1020 					 DMA_BIDIRECTIONAL);
1021 	if (dma_mapping_error(kdev->dev, region->dma_start)) {
1022 		dev_err(kdev->dev, "dma map failed for region %s\n",
1023 			region->name);
1024 		goto fail;
1025 	}
1026 	region->dma_end = region->dma_start + size;
1027 
1028 	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1029 	if (!pool) {
1030 		dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1031 		goto fail;
1032 	}
1033 	pool->num_desc = 0;
1034 	pool->region_offset = region->num_desc;
1035 	list_add(&pool->region_inst, &region->pools);
1036 
1037 	dev_dbg(kdev->dev,
1038 		"region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1039 		region->name, id, region->desc_size, region->num_desc,
1040 		region->link_index, &region->dma_start, &region->dma_end,
1041 		region->virt_start, region->virt_end);
1042 
1043 	hw_desc_size = (region->desc_size / 16) - 1;
1044 	hw_num_desc -= 5;
1045 
1046 	for_each_qmgr(kdev, qmgr) {
1047 		regs = qmgr->reg_region + id;
1048 		writel_relaxed((u32)region->dma_start, &regs->base);
1049 		writel_relaxed(region->link_index, &regs->start_index);
1050 		writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1051 			       &regs->size_count);
1052 	}
1053 	return;
1054 
1055 fail:
1056 	if (region->dma_start)
1057 		dma_unmap_page(kdev->dev, region->dma_start, size,
1058 				DMA_BIDIRECTIONAL);
1059 	if (region->virt_start)
1060 		free_pages_exact(region->virt_start, size);
1061 	region->num_desc = 0;
1062 	return;
1063 }
1064 
1065 static const char *knav_queue_find_name(struct device_node *node)
1066 {
1067 	const char *name;
1068 
1069 	if (of_property_read_string(node, "label", &name) < 0)
1070 		name = node->name;
1071 	if (!name)
1072 		name = "unknown";
1073 	return name;
1074 }
1075 
1076 static int knav_queue_setup_regions(struct knav_device *kdev,
1077 				    struct device_node *node)
1078 {
1079 	struct device *dev = kdev->dev;
1080 	struct device_node *regions __free(device_node) =
1081 			of_get_child_by_name(node, "descriptor-regions");
1082 	struct knav_region *region;
1083 	struct device_node *child;
1084 	u32 temp[2];
1085 	int ret;
1086 
1087 	if (!regions)
1088 		return dev_err_probe(dev, -ENODEV,
1089 				     "descriptor-regions not specified\n");
1090 
1091 	for_each_child_of_node(regions, child) {
1092 		region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1093 		if (!region) {
1094 			of_node_put(child);
1095 			dev_err(dev, "out of memory allocating region\n");
1096 			return -ENOMEM;
1097 		}
1098 
1099 		region->name = knav_queue_find_name(child);
1100 		of_property_read_u32(child, "id", &region->id);
1101 		ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1102 		if (!ret) {
1103 			region->num_desc  = temp[0];
1104 			region->desc_size = temp[1];
1105 		} else {
1106 			dev_err(dev, "invalid region info %s\n", region->name);
1107 			devm_kfree(dev, region);
1108 			continue;
1109 		}
1110 
1111 		ret = of_property_read_u32(child, "link-index",
1112 					   &region->link_index);
1113 		if (ret) {
1114 			dev_err(dev, "link index not found for %s\n",
1115 				region->name);
1116 			devm_kfree(dev, region);
1117 			continue;
1118 		}
1119 
1120 		INIT_LIST_HEAD(&region->pools);
1121 		list_add_tail(&region->list, &kdev->regions);
1122 	}
1123 	if (list_empty(&kdev->regions))
1124 		return dev_err_probe(dev, -ENODEV,
1125 				     "no valid region information found\n");
1126 
1127 	/* Next, we run through the regions and set things up */
1128 	for_each_region(kdev, region)
1129 		knav_queue_setup_region(kdev, region);
1130 
1131 	return 0;
1132 }
1133 
1134 static int knav_get_link_ram(struct knav_device *kdev,
1135 				       const char *name,
1136 				       struct knav_link_ram_block *block)
1137 {
1138 	struct platform_device *pdev = to_platform_device(kdev->dev);
1139 	struct device_node *node = pdev->dev.of_node;
1140 	u32 temp[2];
1141 
1142 	/*
1143 	 * Note: link ram resources are specified in "entry" sized units. In
1144 	 * reality, although entries are ~40bits in hardware, we treat them as
1145 	 * 64-bit entities here.
1146 	 *
1147 	 * For example, to specify the internal link ram for Keystone-I class
1148 	 * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1149 	 *
1150 	 * This gets a bit weird when other link rams are used.  For example,
1151 	 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1152 	 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1153 	 * which accounts for 64-bits per entry, for 16K entries.
1154 	 */
1155 	if (!of_property_read_u32_array(node, name , temp, 2)) {
1156 		if (temp[0]) {
1157 			/*
1158 			 * queue_base specified => using internal or onchip
1159 			 * link ram WARNING - we do not "reserve" this block
1160 			 */
1161 			block->dma = (dma_addr_t)temp[0];
1162 			block->virt = NULL;
1163 			block->size = temp[1];
1164 		} else {
1165 			block->size = temp[1];
1166 			/* queue_base not specific => allocate requested size */
1167 			block->virt = dmam_alloc_coherent(kdev->dev,
1168 						  8 * block->size, &block->dma,
1169 						  GFP_KERNEL);
1170 			if (!block->virt) {
1171 				dev_err(kdev->dev, "failed to alloc linkram\n");
1172 				return -ENOMEM;
1173 			}
1174 		}
1175 	} else {
1176 		return -ENODEV;
1177 	}
1178 	return 0;
1179 }
1180 
1181 static int knav_queue_setup_link_ram(struct knav_device *kdev)
1182 {
1183 	struct knav_link_ram_block *block;
1184 	struct knav_qmgr_info *qmgr;
1185 
1186 	for_each_qmgr(kdev, qmgr) {
1187 		block = &kdev->link_rams[0];
1188 		dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
1189 			&block->dma, block->virt, block->size);
1190 		writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
1191 		if (kdev->version == QMSS_66AK2G)
1192 			writel_relaxed(block->size,
1193 				       &qmgr->reg_config->link_ram_size0);
1194 		else
1195 			writel_relaxed(block->size - 1,
1196 				       &qmgr->reg_config->link_ram_size0);
1197 		block++;
1198 		if (!block->size)
1199 			continue;
1200 
1201 		dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
1202 			&block->dma, block->virt, block->size);
1203 		writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
1204 	}
1205 
1206 	return 0;
1207 }
1208 
1209 static int knav_setup_queue_range(struct knav_device *kdev,
1210 					struct device_node *node)
1211 {
1212 	struct device *dev = kdev->dev;
1213 	struct knav_range_info *range;
1214 	struct knav_qmgr_info *qmgr;
1215 	u32 temp[2], start, end, id, index;
1216 	int ret, i;
1217 
1218 	range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1219 	if (!range) {
1220 		dev_err(dev, "out of memory allocating range\n");
1221 		return -ENOMEM;
1222 	}
1223 
1224 	range->kdev = kdev;
1225 	range->name = knav_queue_find_name(node);
1226 	ret = of_property_read_u32_array(node, "qrange", temp, 2);
1227 	if (!ret) {
1228 		range->queue_base = temp[0] - kdev->base_id;
1229 		range->num_queues = temp[1];
1230 	} else {
1231 		dev_err(dev, "invalid queue range %s\n", range->name);
1232 		devm_kfree(dev, range);
1233 		return -EINVAL;
1234 	}
1235 
1236 	for (i = 0; i < RANGE_MAX_IRQS; i++) {
1237 		struct of_phandle_args oirq;
1238 
1239 		if (of_irq_parse_one(node, i, &oirq))
1240 			break;
1241 
1242 		range->irqs[i].irq = irq_create_of_mapping(&oirq);
1243 		if (range->irqs[i].irq == IRQ_NONE)
1244 			break;
1245 
1246 		range->num_irqs++;
1247 
1248 		if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) {
1249 			unsigned long mask;
1250 			int bit;
1251 
1252 			range->irqs[i].cpu_mask = devm_kzalloc(dev,
1253 							       cpumask_size(), GFP_KERNEL);
1254 			if (!range->irqs[i].cpu_mask)
1255 				return -ENOMEM;
1256 
1257 			mask = (oirq.args[2] & 0x0000ff00) >> 8;
1258 			for_each_set_bit(bit, &mask, BITS_PER_LONG)
1259 				cpumask_set_cpu(bit, range->irqs[i].cpu_mask);
1260 		}
1261 	}
1262 
1263 	range->num_irqs = min(range->num_irqs, range->num_queues);
1264 	if (range->num_irqs)
1265 		range->flags |= RANGE_HAS_IRQ;
1266 
1267 	if (of_property_read_bool(node, "qalloc-by-id"))
1268 		range->flags |= RANGE_RESERVED;
1269 
1270 	if (of_property_present(node, "accumulator")) {
1271 		ret = knav_init_acc_range(kdev, node, range);
1272 		if (ret < 0) {
1273 			devm_kfree(dev, range);
1274 			return ret;
1275 		}
1276 	} else {
1277 		range->ops = &knav_gp_range_ops;
1278 	}
1279 
1280 	/* set threshold to 1, and flush out the queues */
1281 	for_each_qmgr(kdev, qmgr) {
1282 		start = max(qmgr->start_queue, range->queue_base);
1283 		end   = min(qmgr->start_queue + qmgr->num_queues,
1284 			    range->queue_base + range->num_queues);
1285 		for (id = start; id < end; id++) {
1286 			index = id - qmgr->start_queue;
1287 			writel_relaxed(THRESH_GTE | 1,
1288 				       &qmgr->reg_peek[index].ptr_size_thresh);
1289 			writel_relaxed(0,
1290 				       &qmgr->reg_push[index].ptr_size_thresh);
1291 		}
1292 	}
1293 
1294 	list_add_tail(&range->list, &kdev->queue_ranges);
1295 	dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1296 		range->name, range->queue_base,
1297 		range->queue_base + range->num_queues - 1,
1298 		range->num_irqs,
1299 		(range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1300 		(range->flags & RANGE_RESERVED) ? ", reserved" : "",
1301 		(range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1302 	kdev->num_queues_in_use += range->num_queues;
1303 	return 0;
1304 }
1305 
1306 static int knav_setup_queue_pools(struct knav_device *kdev,
1307 				  struct device_node *node)
1308 {
1309 	struct device_node *queue_pools __free(device_node) =
1310 			of_get_child_by_name(node, "queue-pools");
1311 	struct device_node *type, *range;
1312 
1313 	if (!queue_pools)
1314 		return dev_err_probe(kdev->dev, -ENODEV,
1315 				     "queue-pools not specified\n");
1316 
1317 	for_each_child_of_node(queue_pools, type) {
1318 		for_each_child_of_node(type, range) {
1319 			/* return value ignored, we init the rest... */
1320 			knav_setup_queue_range(kdev, range);
1321 		}
1322 	}
1323 
1324 	/* ... and barf if they all failed! */
1325 	if (list_empty(&kdev->queue_ranges))
1326 		return dev_err_probe(kdev->dev, -ENODEV,
1327 				     "no valid queue range found\n");
1328 	return 0;
1329 }
1330 
1331 static void knav_free_queue_range(struct knav_device *kdev,
1332 				  struct knav_range_info *range)
1333 {
1334 	if (range->ops && range->ops->free_range)
1335 		range->ops->free_range(range);
1336 	list_del(&range->list);
1337 	devm_kfree(kdev->dev, range);
1338 }
1339 
1340 static void knav_free_queue_ranges(struct knav_device *kdev)
1341 {
1342 	struct knav_range_info *range;
1343 
1344 	for (;;) {
1345 		range = first_queue_range(kdev);
1346 		if (!range)
1347 			break;
1348 		knav_free_queue_range(kdev, range);
1349 	}
1350 }
1351 
1352 static void knav_queue_free_regions(struct knav_device *kdev)
1353 {
1354 	struct knav_region *region;
1355 	struct knav_pool *pool, *tmp;
1356 	unsigned size;
1357 
1358 	for (;;) {
1359 		region = first_region(kdev);
1360 		if (!region)
1361 			break;
1362 		list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1363 			knav_pool_destroy(pool);
1364 
1365 		size = region->virt_end - region->virt_start;
1366 		if (size)
1367 			free_pages_exact(region->virt_start, size);
1368 		list_del(&region->list);
1369 		devm_kfree(kdev->dev, region);
1370 	}
1371 }
1372 
1373 static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1374 					struct device_node *node, int index)
1375 {
1376 	struct resource res;
1377 	void __iomem *regs;
1378 	int ret;
1379 
1380 	ret = of_address_to_resource(node, index, &res);
1381 	if (ret) {
1382 		dev_err(kdev->dev, "Can't translate of node(%pOFn) address for index(%d)\n",
1383 			node, index);
1384 		return ERR_PTR(ret);
1385 	}
1386 
1387 	regs = devm_ioremap_resource(kdev->dev, &res);
1388 	if (IS_ERR(regs))
1389 		dev_err(kdev->dev, "Failed to map register base for index(%d) node(%pOFn)\n",
1390 			index, node);
1391 	return regs;
1392 }
1393 
1394 static int knav_queue_init_qmgrs(struct knav_device *kdev,
1395 				 struct device_node *node)
1396 {
1397 	struct device *dev = kdev->dev;
1398 	struct device_node *qmgrs __free(device_node) =
1399 			of_get_child_by_name(node, "qmgrs");
1400 	struct knav_qmgr_info *qmgr;
1401 	struct device_node *child;
1402 	u32 temp[2];
1403 	int ret;
1404 
1405 	if (!qmgrs)
1406 		return dev_err_probe(dev, -ENODEV,
1407 				     "queue manager info not specified\n");
1408 
1409 	for_each_child_of_node(qmgrs, child) {
1410 		qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1411 		if (!qmgr) {
1412 			of_node_put(child);
1413 			dev_err(dev, "out of memory allocating qmgr\n");
1414 			return -ENOMEM;
1415 		}
1416 
1417 		ret = of_property_read_u32_array(child, "managed-queues",
1418 						 temp, 2);
1419 		if (!ret) {
1420 			qmgr->start_queue = temp[0];
1421 			qmgr->num_queues = temp[1];
1422 		} else {
1423 			dev_err(dev, "invalid qmgr queue range\n");
1424 			devm_kfree(dev, qmgr);
1425 			continue;
1426 		}
1427 
1428 		dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1429 			 qmgr->start_queue, qmgr->num_queues);
1430 
1431 		qmgr->reg_peek =
1432 			knav_queue_map_reg(kdev, child,
1433 					   KNAV_QUEUE_PEEK_REG_INDEX);
1434 
1435 		if (kdev->version == QMSS) {
1436 			qmgr->reg_status =
1437 				knav_queue_map_reg(kdev, child,
1438 						   KNAV_QUEUE_STATUS_REG_INDEX);
1439 		}
1440 
1441 		qmgr->reg_config =
1442 			knav_queue_map_reg(kdev, child,
1443 					   (kdev->version == QMSS_66AK2G) ?
1444 					   KNAV_L_QUEUE_CONFIG_REG_INDEX :
1445 					   KNAV_QUEUE_CONFIG_REG_INDEX);
1446 		qmgr->reg_region =
1447 			knav_queue_map_reg(kdev, child,
1448 					   (kdev->version == QMSS_66AK2G) ?
1449 					   KNAV_L_QUEUE_REGION_REG_INDEX :
1450 					   KNAV_QUEUE_REGION_REG_INDEX);
1451 
1452 		qmgr->reg_push =
1453 			knav_queue_map_reg(kdev, child,
1454 					   (kdev->version == QMSS_66AK2G) ?
1455 					    KNAV_L_QUEUE_PUSH_REG_INDEX :
1456 					    KNAV_QUEUE_PUSH_REG_INDEX);
1457 
1458 		if (kdev->version == QMSS) {
1459 			qmgr->reg_pop =
1460 				knav_queue_map_reg(kdev, child,
1461 						   KNAV_QUEUE_POP_REG_INDEX);
1462 		}
1463 
1464 		if (IS_ERR(qmgr->reg_peek) ||
1465 		    ((kdev->version == QMSS) &&
1466 		    (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) ||
1467 		    IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1468 		    IS_ERR(qmgr->reg_push)) {
1469 			dev_err(dev, "failed to map qmgr regs\n");
1470 			if (kdev->version == QMSS) {
1471 				if (!IS_ERR(qmgr->reg_status))
1472 					devm_iounmap(dev, qmgr->reg_status);
1473 				if (!IS_ERR(qmgr->reg_pop))
1474 					devm_iounmap(dev, qmgr->reg_pop);
1475 			}
1476 			if (!IS_ERR(qmgr->reg_peek))
1477 				devm_iounmap(dev, qmgr->reg_peek);
1478 			if (!IS_ERR(qmgr->reg_config))
1479 				devm_iounmap(dev, qmgr->reg_config);
1480 			if (!IS_ERR(qmgr->reg_region))
1481 				devm_iounmap(dev, qmgr->reg_region);
1482 			if (!IS_ERR(qmgr->reg_push))
1483 				devm_iounmap(dev, qmgr->reg_push);
1484 			devm_kfree(dev, qmgr);
1485 			continue;
1486 		}
1487 
1488 		/* Use same push register for pop as well */
1489 		if (kdev->version == QMSS_66AK2G)
1490 			qmgr->reg_pop = qmgr->reg_push;
1491 
1492 		list_add_tail(&qmgr->list, &kdev->qmgrs);
1493 		dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1494 			 qmgr->start_queue, qmgr->num_queues,
1495 			 qmgr->reg_peek, qmgr->reg_status,
1496 			 qmgr->reg_config, qmgr->reg_region,
1497 			 qmgr->reg_push, qmgr->reg_pop);
1498 	}
1499 	return 0;
1500 }
1501 
1502 static int knav_queue_init_pdsps(struct knav_device *kdev,
1503 					struct device_node *pdsps)
1504 {
1505 	struct device *dev = kdev->dev;
1506 	struct knav_pdsp_info *pdsp;
1507 	struct device_node *child;
1508 
1509 	for_each_child_of_node(pdsps, child) {
1510 		pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1511 		if (!pdsp) {
1512 			of_node_put(child);
1513 			dev_err(dev, "out of memory allocating pdsp\n");
1514 			return -ENOMEM;
1515 		}
1516 		pdsp->name = knav_queue_find_name(child);
1517 		pdsp->iram =
1518 			knav_queue_map_reg(kdev, child,
1519 					   KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1520 		pdsp->regs =
1521 			knav_queue_map_reg(kdev, child,
1522 					   KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1523 		pdsp->intd =
1524 			knav_queue_map_reg(kdev, child,
1525 					   KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1526 		pdsp->command =
1527 			knav_queue_map_reg(kdev, child,
1528 					   KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1529 
1530 		if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1531 		    IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1532 			dev_err(dev, "failed to map pdsp %s regs\n",
1533 				pdsp->name);
1534 			if (!IS_ERR(pdsp->command))
1535 				devm_iounmap(dev, pdsp->command);
1536 			if (!IS_ERR(pdsp->iram))
1537 				devm_iounmap(dev, pdsp->iram);
1538 			if (!IS_ERR(pdsp->regs))
1539 				devm_iounmap(dev, pdsp->regs);
1540 			if (!IS_ERR(pdsp->intd))
1541 				devm_iounmap(dev, pdsp->intd);
1542 			devm_kfree(dev, pdsp);
1543 			continue;
1544 		}
1545 		of_property_read_u32(child, "id", &pdsp->id);
1546 		list_add_tail(&pdsp->list, &kdev->pdsps);
1547 		dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1548 			pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1549 			pdsp->intd);
1550 	}
1551 	return 0;
1552 }
1553 
1554 static int knav_queue_stop_pdsp(struct knav_device *kdev,
1555 			  struct knav_pdsp_info *pdsp)
1556 {
1557 	u32 val, timeout = 1000;
1558 	int ret;
1559 
1560 	val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1561 	writel_relaxed(val, &pdsp->regs->control);
1562 	ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1563 					PDSP_CTRL_RUNNING);
1564 	if (ret < 0) {
1565 		dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1566 		return ret;
1567 	}
1568 	pdsp->loaded = false;
1569 	pdsp->started = false;
1570 	return 0;
1571 }
1572 
1573 static int knav_queue_load_pdsp(struct knav_device *kdev,
1574 			  struct knav_pdsp_info *pdsp)
1575 {
1576 	int i, ret, fwlen;
1577 	const struct firmware *fw;
1578 	bool found = false;
1579 	u32 *fwdata;
1580 
1581 	for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1582 		if (knav_acc_firmwares[i]) {
1583 			ret = request_firmware_direct(&fw,
1584 						      knav_acc_firmwares[i],
1585 						      kdev->dev);
1586 			if (!ret) {
1587 				found = true;
1588 				break;
1589 			}
1590 		}
1591 	}
1592 
1593 	if (!found) {
1594 		dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1595 		return -ENODEV;
1596 	}
1597 
1598 	dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1599 		 knav_acc_firmwares[i]);
1600 
1601 	writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1602 	/* download the firmware */
1603 	fwdata = (u32 *)fw->data;
1604 	fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1605 	for (i = 0; i < fwlen; i++)
1606 		writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1607 
1608 	release_firmware(fw);
1609 	return 0;
1610 }
1611 
1612 static int knav_queue_start_pdsp(struct knav_device *kdev,
1613 			   struct knav_pdsp_info *pdsp)
1614 {
1615 	u32 val, timeout = 1000;
1616 	int ret;
1617 
1618 	/* write a command for sync */
1619 	writel_relaxed(0xffffffff, pdsp->command);
1620 	while (readl_relaxed(pdsp->command) != 0xffffffff)
1621 		cpu_relax();
1622 
1623 	/* soft reset the PDSP */
1624 	val  = readl_relaxed(&pdsp->regs->control);
1625 	val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1626 	writel_relaxed(val, &pdsp->regs->control);
1627 
1628 	/* enable pdsp */
1629 	val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1630 	writel_relaxed(val, &pdsp->regs->control);
1631 
1632 	/* wait for command register to clear */
1633 	ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1634 	if (ret < 0) {
1635 		dev_err(kdev->dev,
1636 			"timed out on pdsp %s command register wait\n",
1637 			pdsp->name);
1638 		return ret;
1639 	}
1640 	return 0;
1641 }
1642 
1643 static void knav_queue_stop_pdsps(struct knav_device *kdev)
1644 {
1645 	struct knav_pdsp_info *pdsp;
1646 
1647 	/* disable all pdsps */
1648 	for_each_pdsp(kdev, pdsp)
1649 		knav_queue_stop_pdsp(kdev, pdsp);
1650 }
1651 
1652 static int knav_queue_start_pdsps(struct knav_device *kdev)
1653 {
1654 	struct knav_pdsp_info *pdsp;
1655 	int ret;
1656 
1657 	knav_queue_stop_pdsps(kdev);
1658 	/* now load them all. We return success even if pdsp
1659 	 * is not loaded as acc channels are optional on having
1660 	 * firmware availability in the system. We set the loaded
1661 	 * and stated flag and when initialize the acc range, check
1662 	 * it and init the range only if pdsp is started.
1663 	 */
1664 	for_each_pdsp(kdev, pdsp) {
1665 		ret = knav_queue_load_pdsp(kdev, pdsp);
1666 		if (!ret)
1667 			pdsp->loaded = true;
1668 	}
1669 
1670 	for_each_pdsp(kdev, pdsp) {
1671 		if (pdsp->loaded) {
1672 			ret = knav_queue_start_pdsp(kdev, pdsp);
1673 			if (!ret)
1674 				pdsp->started = true;
1675 		}
1676 	}
1677 	return 0;
1678 }
1679 
1680 static int knav_queue_setup_pdsps(struct knav_device *kdev,
1681 				  struct device_node *node)
1682 {
1683 	struct device_node *pdsps __free(device_node) =
1684 			of_get_child_by_name(node, "pdsps");
1685 
1686 	if (pdsps) {
1687 		int ret;
1688 
1689 		ret = knav_queue_init_pdsps(kdev, pdsps);
1690 		if (ret)
1691 			return ret;
1692 
1693 		ret = knav_queue_start_pdsps(kdev);
1694 		if (ret)
1695 			return ret;
1696 	}
1697 	return 0;
1698 }
1699 
1700 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1701 {
1702 	struct knav_qmgr_info *qmgr;
1703 
1704 	for_each_qmgr(kdev, qmgr) {
1705 		if ((id >= qmgr->start_queue) &&
1706 		    (id < qmgr->start_queue + qmgr->num_queues))
1707 			return qmgr;
1708 	}
1709 	return NULL;
1710 }
1711 
1712 static int knav_queue_init_queue(struct knav_device *kdev,
1713 					struct knav_range_info *range,
1714 					struct knav_queue_inst *inst,
1715 					unsigned id)
1716 {
1717 	char irq_name[KNAV_NAME_SIZE];
1718 	inst->qmgr = knav_find_qmgr(id);
1719 	if (!inst->qmgr)
1720 		return -1;
1721 
1722 	INIT_LIST_HEAD(&inst->handles);
1723 	inst->kdev = kdev;
1724 	inst->range = range;
1725 	inst->irq_num = -1;
1726 	inst->id = id;
1727 	scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1728 	inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1729 
1730 	if (range->ops && range->ops->init_queue)
1731 		return range->ops->init_queue(range, inst);
1732 	else
1733 		return 0;
1734 }
1735 
1736 static int knav_queue_init_queues(struct knav_device *kdev)
1737 {
1738 	struct knav_range_info *range;
1739 	int size, id, base_idx;
1740 	int idx = 0, ret = 0;
1741 
1742 	/* how much do we need for instance data? */
1743 	size = sizeof(struct knav_queue_inst);
1744 
1745 	/* round this up to a power of 2, keep the index to instance
1746 	 * arithmetic fast.
1747 	 * */
1748 	kdev->inst_shift = order_base_2(size);
1749 	size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1750 	kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1751 	if (!kdev->instances)
1752 		return -ENOMEM;
1753 
1754 	for_each_queue_range(kdev, range) {
1755 		if (range->ops && range->ops->init_range)
1756 			range->ops->init_range(range);
1757 		base_idx = idx;
1758 		for (id = range->queue_base;
1759 		     id < range->queue_base + range->num_queues; id++, idx++) {
1760 			ret = knav_queue_init_queue(kdev, range,
1761 					knav_queue_idx_to_inst(kdev, idx), id);
1762 			if (ret < 0)
1763 				return ret;
1764 		}
1765 		range->queue_base_inst =
1766 			knav_queue_idx_to_inst(kdev, base_idx);
1767 	}
1768 	return 0;
1769 }
1770 
1771 /* Match table for of_platform binding */
1772 static const struct of_device_id keystone_qmss_of_match[] = {
1773 	{
1774 		.compatible = "ti,keystone-navigator-qmss",
1775 	},
1776 	{
1777 		.compatible = "ti,66ak2g-navss-qm",
1778 		.data	= (void *)QMSS_66AK2G,
1779 	},
1780 	{},
1781 };
1782 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1783 
1784 static int knav_queue_probe(struct platform_device *pdev)
1785 {
1786 	struct device_node *node = pdev->dev.of_node;
1787 	struct device *dev = &pdev->dev;
1788 	u32 temp[2];
1789 	int ret;
1790 
1791 	if (!node) {
1792 		dev_err(dev, "device tree info unavailable\n");
1793 		return -ENODEV;
1794 	}
1795 
1796 	kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1797 	if (!kdev) {
1798 		dev_err(dev, "memory allocation failed\n");
1799 		return -ENOMEM;
1800 	}
1801 
1802 	if (device_get_match_data(dev))
1803 		kdev->version = QMSS_66AK2G;
1804 
1805 	platform_set_drvdata(pdev, kdev);
1806 	kdev->dev = dev;
1807 	INIT_LIST_HEAD(&kdev->queue_ranges);
1808 	INIT_LIST_HEAD(&kdev->qmgrs);
1809 	INIT_LIST_HEAD(&kdev->pools);
1810 	INIT_LIST_HEAD(&kdev->regions);
1811 	INIT_LIST_HEAD(&kdev->pdsps);
1812 
1813 	pm_runtime_enable(&pdev->dev);
1814 	ret = pm_runtime_resume_and_get(&pdev->dev);
1815 	if (ret < 0) {
1816 		pm_runtime_disable(&pdev->dev);
1817 		dev_err(dev, "Failed to enable QMSS\n");
1818 		return ret;
1819 	}
1820 
1821 	if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1822 		dev_err(dev, "queue-range not specified\n");
1823 		ret = -ENODEV;
1824 		goto err;
1825 	}
1826 	kdev->base_id    = temp[0];
1827 	kdev->num_queues = temp[1];
1828 
1829 	/* Initialize queue managers using device tree configuration */
1830 	ret = knav_queue_init_qmgrs(kdev, node);
1831 	if (ret)
1832 		goto err;
1833 
1834 	/* get pdsp configuration values from device tree */
1835 	ret = knav_queue_setup_pdsps(kdev, node);
1836 	if (ret)
1837 		goto err;
1838 
1839 	/* get usable queue range values from device tree */
1840 	ret = knav_setup_queue_pools(kdev, node);
1841 	if (ret)
1842 		goto err;
1843 
1844 	ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1845 	if (ret) {
1846 		dev_err(kdev->dev, "could not setup linking ram\n");
1847 		goto err;
1848 	}
1849 
1850 	ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1851 	if (ret) {
1852 		/*
1853 		 * nothing really, we have one linking ram already, so we just
1854 		 * live within our means
1855 		 */
1856 	}
1857 
1858 	ret = knav_queue_setup_link_ram(kdev);
1859 	if (ret)
1860 		goto err;
1861 
1862 	ret = knav_queue_setup_regions(kdev, node);
1863 	if (ret)
1864 		goto err;
1865 
1866 	ret = knav_queue_init_queues(kdev);
1867 	if (ret < 0) {
1868 		dev_err(dev, "hwqueue initialization failed\n");
1869 		goto err;
1870 	}
1871 
1872 	debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1873 			    &knav_queue_debug_fops);
1874 	device_ready = true;
1875 	return 0;
1876 
1877 err:
1878 	knav_queue_stop_pdsps(kdev);
1879 	knav_queue_free_regions(kdev);
1880 	knav_free_queue_ranges(kdev);
1881 	pm_runtime_put_sync(&pdev->dev);
1882 	pm_runtime_disable(&pdev->dev);
1883 	return ret;
1884 }
1885 
1886 static void knav_queue_remove(struct platform_device *pdev)
1887 {
1888 	/* TODO: Free resources */
1889 	pm_runtime_put_sync(&pdev->dev);
1890 	pm_runtime_disable(&pdev->dev);
1891 }
1892 
1893 static struct platform_driver keystone_qmss_driver = {
1894 	.probe		= knav_queue_probe,
1895 	.remove		= knav_queue_remove,
1896 	.driver		= {
1897 		.name	= "keystone-navigator-qmss",
1898 		.of_match_table = keystone_qmss_of_match,
1899 	},
1900 };
1901 module_platform_driver(keystone_qmss_driver);
1902 
1903 MODULE_LICENSE("GPL v2");
1904 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1905 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1906 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");
1907