1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Keystone Queue Manager subsystem driver 4 * 5 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com 6 * Authors: Sandeep Nair <sandeep_n@ti.com> 7 * Cyril Chemparathy <cyril@ti.com> 8 * Santosh Shilimkar <santosh.shilimkar@ti.com> 9 */ 10 11 #include <linux/debugfs.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/firmware.h> 14 #include <linux/interrupt.h> 15 #include <linux/io.h> 16 #include <linux/module.h> 17 #include <linux/of.h> 18 #include <linux/of_address.h> 19 #include <linux/of_irq.h> 20 #include <linux/platform_device.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/property.h> 23 #include <linux/slab.h> 24 #include <linux/soc/ti/knav_qmss.h> 25 26 #include "knav_qmss.h" 27 28 static struct knav_device *kdev; 29 static DEFINE_MUTEX(knav_dev_lock); 30 #define knav_dev_lock_held() \ 31 lockdep_is_held(&knav_dev_lock) 32 33 /* Queue manager register indices in DTS */ 34 #define KNAV_QUEUE_PEEK_REG_INDEX 0 35 #define KNAV_QUEUE_STATUS_REG_INDEX 1 36 #define KNAV_QUEUE_CONFIG_REG_INDEX 2 37 #define KNAV_QUEUE_REGION_REG_INDEX 3 38 #define KNAV_QUEUE_PUSH_REG_INDEX 4 39 #define KNAV_QUEUE_POP_REG_INDEX 5 40 41 /* Queue manager register indices in DTS for QMSS in K2G NAVSS. 42 * There are no status and vbusm push registers on this version 43 * of QMSS. Push registers are same as pop, So all indices above 1 44 * are to be re-defined 45 */ 46 #define KNAV_L_QUEUE_CONFIG_REG_INDEX 1 47 #define KNAV_L_QUEUE_REGION_REG_INDEX 2 48 #define KNAV_L_QUEUE_PUSH_REG_INDEX 3 49 50 /* PDSP register indices in DTS */ 51 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX 0 52 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX 1 53 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX 2 54 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX 3 55 56 #define knav_queue_idx_to_inst(kdev, idx) \ 57 (kdev->instances + (idx << kdev->inst_shift)) 58 59 #define for_each_handle_rcu(qh, inst) \ 60 list_for_each_entry_rcu(qh, &inst->handles, list, \ 61 knav_dev_lock_held()) 62 63 #define for_each_instance(idx, inst, kdev) \ 64 for (idx = 0, inst = kdev->instances; \ 65 idx < (kdev)->num_queues_in_use; \ 66 idx++, inst = knav_queue_idx_to_inst(kdev, idx)) 67 68 /* All firmware file names end up here. List the firmware file names below. 69 * Newest followed by older ones. Search is done from start of the array 70 * until a firmware file is found. 71 */ 72 static const char * const knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"}; 73 74 static bool device_ready; 75 bool knav_qmss_device_ready(void) 76 { 77 return device_ready; 78 } 79 EXPORT_SYMBOL_GPL(knav_qmss_device_ready); 80 81 /** 82 * knav_queue_notify: qmss queue notfier call 83 * 84 * @inst: - qmss queue instance like accumulator 85 */ 86 void knav_queue_notify(struct knav_queue_inst *inst) 87 { 88 struct knav_queue *qh; 89 90 if (!inst) 91 return; 92 93 rcu_read_lock(); 94 for_each_handle_rcu(qh, inst) { 95 if (atomic_read(&qh->notifier_enabled) <= 0) 96 continue; 97 if (WARN_ON(!qh->notifier_fn)) 98 continue; 99 this_cpu_inc(qh->stats->notifies); 100 qh->notifier_fn(qh->notifier_fn_arg); 101 } 102 rcu_read_unlock(); 103 } 104 EXPORT_SYMBOL_GPL(knav_queue_notify); 105 106 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata) 107 { 108 struct knav_queue_inst *inst = _instdata; 109 110 knav_queue_notify(inst); 111 return IRQ_HANDLED; 112 } 113 114 static int knav_queue_setup_irq(struct knav_range_info *range, 115 struct knav_queue_inst *inst) 116 { 117 unsigned queue = inst->id - range->queue_base; 118 int ret = 0, irq; 119 120 if (range->flags & RANGE_HAS_IRQ) { 121 irq = range->irqs[queue].irq; 122 ret = request_irq(irq, knav_queue_int_handler, IRQF_NO_AUTOEN, 123 inst->irq_name, inst); 124 if (ret) 125 return ret; 126 if (range->irqs[queue].cpu_mask) { 127 ret = irq_set_affinity_hint(irq, range->irqs[queue].cpu_mask); 128 if (ret) { 129 dev_warn(range->kdev->dev, 130 "Failed to set IRQ affinity\n"); 131 return ret; 132 } 133 } 134 } 135 return ret; 136 } 137 138 static void knav_queue_free_irq(struct knav_queue_inst *inst) 139 { 140 struct knav_range_info *range = inst->range; 141 unsigned queue = inst->id - inst->range->queue_base; 142 int irq; 143 144 if (range->flags & RANGE_HAS_IRQ) { 145 irq = range->irqs[queue].irq; 146 irq_set_affinity_hint(irq, NULL); 147 free_irq(irq, inst); 148 } 149 } 150 151 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst) 152 { 153 return !list_empty(&inst->handles); 154 } 155 156 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst) 157 { 158 return inst->range->flags & RANGE_RESERVED; 159 } 160 161 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst) 162 { 163 struct knav_queue *tmp; 164 165 rcu_read_lock(); 166 for_each_handle_rcu(tmp, inst) { 167 if (tmp->flags & KNAV_QUEUE_SHARED) { 168 rcu_read_unlock(); 169 return true; 170 } 171 } 172 rcu_read_unlock(); 173 return false; 174 } 175 176 static inline bool knav_queue_match_type(struct knav_queue_inst *inst, 177 unsigned type) 178 { 179 if ((type == KNAV_QUEUE_QPEND) && 180 (inst->range->flags & RANGE_HAS_IRQ)) { 181 return true; 182 } else if ((type == KNAV_QUEUE_ACC) && 183 (inst->range->flags & RANGE_HAS_ACCUMULATOR)) { 184 return true; 185 } else if ((type == KNAV_QUEUE_GP) && 186 !(inst->range->flags & 187 (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) { 188 return true; 189 } 190 return false; 191 } 192 193 static inline struct knav_queue_inst * 194 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id) 195 { 196 struct knav_queue_inst *inst; 197 int idx; 198 199 for_each_instance(idx, inst, kdev) { 200 if (inst->id == id) 201 return inst; 202 } 203 return NULL; 204 } 205 206 static inline struct knav_queue_inst *knav_queue_find_by_id(int id) 207 { 208 if (kdev->base_id <= id && 209 kdev->base_id + kdev->num_queues > id) { 210 id -= kdev->base_id; 211 return knav_queue_match_id_to_inst(kdev, id); 212 } 213 return NULL; 214 } 215 216 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst, 217 const char *name, unsigned flags) 218 { 219 struct knav_queue *qh; 220 unsigned id; 221 int ret = 0; 222 223 qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL); 224 if (!qh) 225 return ERR_PTR(-ENOMEM); 226 227 qh->stats = alloc_percpu(struct knav_queue_stats); 228 if (!qh->stats) { 229 ret = -ENOMEM; 230 goto err; 231 } 232 233 qh->flags = flags; 234 qh->inst = inst; 235 id = inst->id - inst->qmgr->start_queue; 236 qh->reg_push = &inst->qmgr->reg_push[id]; 237 qh->reg_pop = &inst->qmgr->reg_pop[id]; 238 qh->reg_peek = &inst->qmgr->reg_peek[id]; 239 240 /* first opener? */ 241 if (!knav_queue_is_busy(inst)) { 242 struct knav_range_info *range = inst->range; 243 244 inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL); 245 if (range->ops && range->ops->open_queue) 246 ret = range->ops->open_queue(range, inst, flags); 247 248 if (ret) 249 goto err; 250 } 251 list_add_tail_rcu(&qh->list, &inst->handles); 252 return qh; 253 254 err: 255 if (qh->stats) 256 free_percpu(qh->stats); 257 devm_kfree(inst->kdev->dev, qh); 258 return ERR_PTR(ret); 259 } 260 261 static struct knav_queue * 262 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags) 263 { 264 struct knav_queue_inst *inst; 265 struct knav_queue *qh; 266 267 mutex_lock(&knav_dev_lock); 268 269 qh = ERR_PTR(-ENODEV); 270 inst = knav_queue_find_by_id(id); 271 if (!inst) 272 goto unlock_ret; 273 274 qh = ERR_PTR(-EEXIST); 275 if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst)) 276 goto unlock_ret; 277 278 qh = ERR_PTR(-EBUSY); 279 if ((flags & KNAV_QUEUE_SHARED) && 280 (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst))) 281 goto unlock_ret; 282 283 qh = __knav_queue_open(inst, name, flags); 284 285 unlock_ret: 286 mutex_unlock(&knav_dev_lock); 287 288 return qh; 289 } 290 291 static struct knav_queue *knav_queue_open_by_type(const char *name, 292 unsigned type, unsigned flags) 293 { 294 struct knav_queue_inst *inst; 295 struct knav_queue *qh = ERR_PTR(-EINVAL); 296 int idx; 297 298 mutex_lock(&knav_dev_lock); 299 300 for_each_instance(idx, inst, kdev) { 301 if (knav_queue_is_reserved(inst)) 302 continue; 303 if (!knav_queue_match_type(inst, type)) 304 continue; 305 if (knav_queue_is_busy(inst)) 306 continue; 307 qh = __knav_queue_open(inst, name, flags); 308 goto unlock_ret; 309 } 310 311 unlock_ret: 312 mutex_unlock(&knav_dev_lock); 313 return qh; 314 } 315 316 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled) 317 { 318 struct knav_range_info *range = inst->range; 319 320 if (range->ops && range->ops->set_notify) 321 range->ops->set_notify(range, inst, enabled); 322 } 323 324 static int knav_queue_enable_notifier(struct knav_queue *qh) 325 { 326 struct knav_queue_inst *inst = qh->inst; 327 bool first; 328 329 if (WARN_ON(!qh->notifier_fn)) 330 return -EINVAL; 331 332 /* Adjust the per handle notifier count */ 333 first = (atomic_inc_return(&qh->notifier_enabled) == 1); 334 if (!first) 335 return 0; /* nothing to do */ 336 337 /* Now adjust the per instance notifier count */ 338 first = (atomic_inc_return(&inst->num_notifiers) == 1); 339 if (first) 340 knav_queue_set_notify(inst, true); 341 342 return 0; 343 } 344 345 static int knav_queue_disable_notifier(struct knav_queue *qh) 346 { 347 struct knav_queue_inst *inst = qh->inst; 348 bool last; 349 350 last = (atomic_dec_return(&qh->notifier_enabled) == 0); 351 if (!last) 352 return 0; /* nothing to do */ 353 354 last = (atomic_dec_return(&inst->num_notifiers) == 0); 355 if (last) 356 knav_queue_set_notify(inst, false); 357 358 return 0; 359 } 360 361 static int knav_queue_set_notifier(struct knav_queue *qh, 362 struct knav_queue_notify_config *cfg) 363 { 364 knav_queue_notify_fn old_fn = qh->notifier_fn; 365 366 if (!cfg) 367 return -EINVAL; 368 369 if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) 370 return -ENOTSUPP; 371 372 if (!cfg->fn && old_fn) 373 knav_queue_disable_notifier(qh); 374 375 qh->notifier_fn = cfg->fn; 376 qh->notifier_fn_arg = cfg->fn_arg; 377 378 if (cfg->fn && !old_fn) 379 knav_queue_enable_notifier(qh); 380 381 return 0; 382 } 383 384 static int knav_gp_set_notify(struct knav_range_info *range, 385 struct knav_queue_inst *inst, 386 bool enabled) 387 { 388 unsigned queue; 389 390 if (range->flags & RANGE_HAS_IRQ) { 391 queue = inst->id - range->queue_base; 392 if (enabled) 393 enable_irq(range->irqs[queue].irq); 394 else 395 disable_irq_nosync(range->irqs[queue].irq); 396 } 397 return 0; 398 } 399 400 static int knav_gp_open_queue(struct knav_range_info *range, 401 struct knav_queue_inst *inst, unsigned flags) 402 { 403 return knav_queue_setup_irq(range, inst); 404 } 405 406 static int knav_gp_close_queue(struct knav_range_info *range, 407 struct knav_queue_inst *inst) 408 { 409 knav_queue_free_irq(inst); 410 return 0; 411 } 412 413 static const struct knav_range_ops knav_gp_range_ops = { 414 .set_notify = knav_gp_set_notify, 415 .open_queue = knav_gp_open_queue, 416 .close_queue = knav_gp_close_queue, 417 }; 418 419 420 static int knav_queue_get_count(void *qhandle) 421 { 422 struct knav_queue *qh = qhandle; 423 struct knav_queue_inst *inst = qh->inst; 424 425 return readl_relaxed(&qh->reg_peek[0].entry_count) + 426 atomic_read(&inst->desc_count); 427 } 428 429 static void knav_queue_debug_show_instance(struct seq_file *s, 430 struct knav_queue_inst *inst) 431 { 432 struct knav_device *kdev = inst->kdev; 433 struct knav_queue *qh; 434 int cpu = 0; 435 int pushes = 0; 436 int pops = 0; 437 int push_errors = 0; 438 int pop_errors = 0; 439 int notifies = 0; 440 441 if (!knav_queue_is_busy(inst)) 442 return; 443 444 seq_printf(s, "\tqueue id %d (%s)\n", 445 kdev->base_id + inst->id, inst->name); 446 for_each_handle_rcu(qh, inst) { 447 for_each_possible_cpu(cpu) { 448 pushes += per_cpu_ptr(qh->stats, cpu)->pushes; 449 pops += per_cpu_ptr(qh->stats, cpu)->pops; 450 push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors; 451 pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors; 452 notifies += per_cpu_ptr(qh->stats, cpu)->notifies; 453 } 454 455 seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n", 456 qh, 457 pushes, 458 pops, 459 knav_queue_get_count(qh), 460 notifies, 461 push_errors, 462 pop_errors); 463 } 464 } 465 466 static int knav_queue_debug_show(struct seq_file *s, void *v) 467 { 468 struct knav_queue_inst *inst; 469 int idx; 470 471 mutex_lock(&knav_dev_lock); 472 seq_printf(s, "%s: %u-%u\n", 473 dev_name(kdev->dev), kdev->base_id, 474 kdev->base_id + kdev->num_queues - 1); 475 for_each_instance(idx, inst, kdev) 476 knav_queue_debug_show_instance(s, inst); 477 mutex_unlock(&knav_dev_lock); 478 479 return 0; 480 } 481 482 DEFINE_SHOW_ATTRIBUTE(knav_queue_debug); 483 484 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout, 485 u32 flags) 486 { 487 unsigned long end; 488 u32 val = 0; 489 490 end = jiffies + msecs_to_jiffies(timeout); 491 while (time_after(end, jiffies)) { 492 val = readl_relaxed(addr); 493 if (flags) 494 val &= flags; 495 if (!val) 496 break; 497 cpu_relax(); 498 } 499 return val ? -ETIMEDOUT : 0; 500 } 501 502 503 static int knav_queue_flush(struct knav_queue *qh) 504 { 505 struct knav_queue_inst *inst = qh->inst; 506 unsigned id = inst->id - inst->qmgr->start_queue; 507 508 atomic_set(&inst->desc_count, 0); 509 writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh); 510 return 0; 511 } 512 513 /** 514 * knav_queue_open() - open a hardware queue 515 * @name: - name to give the queue handle 516 * @id: - desired queue number if any or specifes the type 517 * of queue 518 * @flags: - the following flags are applicable to queues: 519 * KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are 520 * exclusive by default. 521 * Subsequent attempts to open a shared queue should 522 * also have this flag. 523 * 524 * Returns a handle to the open hardware queue if successful. Use IS_ERR() 525 * to check the returned value for error codes. 526 */ 527 void *knav_queue_open(const char *name, unsigned id, 528 unsigned flags) 529 { 530 struct knav_queue *qh = ERR_PTR(-EINVAL); 531 532 switch (id) { 533 case KNAV_QUEUE_QPEND: 534 case KNAV_QUEUE_ACC: 535 case KNAV_QUEUE_GP: 536 qh = knav_queue_open_by_type(name, id, flags); 537 break; 538 539 default: 540 qh = knav_queue_open_by_id(name, id, flags); 541 break; 542 } 543 return qh; 544 } 545 EXPORT_SYMBOL_GPL(knav_queue_open); 546 547 /** 548 * knav_queue_close() - close a hardware queue handle 549 * @qhandle: - handle to close 550 */ 551 void knav_queue_close(void *qhandle) 552 { 553 struct knav_queue *qh = qhandle; 554 struct knav_queue_inst *inst = qh->inst; 555 556 while (atomic_read(&qh->notifier_enabled) > 0) 557 knav_queue_disable_notifier(qh); 558 559 mutex_lock(&knav_dev_lock); 560 list_del_rcu(&qh->list); 561 mutex_unlock(&knav_dev_lock); 562 synchronize_rcu(); 563 if (!knav_queue_is_busy(inst)) { 564 struct knav_range_info *range = inst->range; 565 566 if (range->ops && range->ops->close_queue) 567 range->ops->close_queue(range, inst); 568 } 569 free_percpu(qh->stats); 570 devm_kfree(inst->kdev->dev, qh); 571 } 572 EXPORT_SYMBOL_GPL(knav_queue_close); 573 574 /** 575 * knav_queue_device_control() - Perform control operations on a queue 576 * @qhandle: - queue handle 577 * @cmd: - control commands 578 * @arg: - command argument 579 * 580 * Returns 0 on success, errno otherwise. 581 */ 582 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd, 583 unsigned long arg) 584 { 585 struct knav_queue *qh = qhandle; 586 struct knav_queue_notify_config *cfg; 587 int ret; 588 589 switch ((int)cmd) { 590 case KNAV_QUEUE_GET_ID: 591 ret = qh->inst->kdev->base_id + qh->inst->id; 592 break; 593 594 case KNAV_QUEUE_FLUSH: 595 ret = knav_queue_flush(qh); 596 break; 597 598 case KNAV_QUEUE_SET_NOTIFIER: 599 cfg = (void *)arg; 600 ret = knav_queue_set_notifier(qh, cfg); 601 break; 602 603 case KNAV_QUEUE_ENABLE_NOTIFY: 604 ret = knav_queue_enable_notifier(qh); 605 break; 606 607 case KNAV_QUEUE_DISABLE_NOTIFY: 608 ret = knav_queue_disable_notifier(qh); 609 break; 610 611 case KNAV_QUEUE_GET_COUNT: 612 ret = knav_queue_get_count(qh); 613 break; 614 615 default: 616 ret = -ENOTSUPP; 617 break; 618 } 619 return ret; 620 } 621 EXPORT_SYMBOL_GPL(knav_queue_device_control); 622 623 624 625 /** 626 * knav_queue_push() - push data (or descriptor) to the tail of a queue 627 * @qhandle: - hardware queue handle 628 * @dma: - DMA data to push 629 * @size: - size of data to push 630 * @flags: - can be used to pass additional information 631 * 632 * Returns 0 on success, errno otherwise. 633 */ 634 int knav_queue_push(void *qhandle, dma_addr_t dma, 635 unsigned size, unsigned flags) 636 { 637 struct knav_queue *qh = qhandle; 638 u32 val; 639 640 val = (u32)dma | ((size / 16) - 1); 641 writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh); 642 643 this_cpu_inc(qh->stats->pushes); 644 return 0; 645 } 646 EXPORT_SYMBOL_GPL(knav_queue_push); 647 648 /** 649 * knav_queue_pop() - pop data (or descriptor) from the head of a queue 650 * @qhandle: - hardware queue handle 651 * @size: - (optional) size of the data pop'ed. 652 * 653 * Returns a DMA address on success, 0 on failure. 654 */ 655 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size) 656 { 657 struct knav_queue *qh = qhandle; 658 struct knav_queue_inst *inst = qh->inst; 659 dma_addr_t dma; 660 u32 val, idx; 661 662 /* are we accumulated? */ 663 if (inst->descs) { 664 if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) { 665 atomic_inc(&inst->desc_count); 666 return 0; 667 } 668 idx = atomic_inc_return(&inst->desc_head); 669 idx &= ACC_DESCS_MASK; 670 val = inst->descs[idx]; 671 } else { 672 val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh); 673 if (unlikely(!val)) 674 return 0; 675 } 676 677 dma = val & DESC_PTR_MASK; 678 if (size) 679 *size = ((val & DESC_SIZE_MASK) + 1) * 16; 680 681 this_cpu_inc(qh->stats->pops); 682 return dma; 683 } 684 EXPORT_SYMBOL_GPL(knav_queue_pop); 685 686 /* carve out descriptors and push into queue */ 687 static void kdesc_fill_pool(struct knav_pool *pool) 688 { 689 struct knav_region *region; 690 int i; 691 692 region = pool->region; 693 pool->desc_size = region->desc_size; 694 for (i = 0; i < pool->num_desc; i++) { 695 int index = pool->region_offset + i; 696 dma_addr_t dma_addr; 697 unsigned dma_size; 698 dma_addr = region->dma_start + (region->desc_size * index); 699 dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES); 700 dma_sync_single_for_device(pool->dev, dma_addr, dma_size, 701 DMA_TO_DEVICE); 702 knav_queue_push(pool->queue, dma_addr, dma_size, 0); 703 } 704 } 705 706 /* pop out descriptors and close the queue */ 707 static void kdesc_empty_pool(struct knav_pool *pool) 708 { 709 dma_addr_t dma; 710 unsigned size; 711 void *desc; 712 int i; 713 714 if (!pool->queue) 715 return; 716 717 for (i = 0;; i++) { 718 dma = knav_queue_pop(pool->queue, &size); 719 if (!dma) 720 break; 721 desc = knav_pool_desc_dma_to_virt(pool, dma); 722 if (!desc) { 723 dev_dbg(pool->kdev->dev, 724 "couldn't unmap desc, continuing\n"); 725 } 726 } 727 WARN_ON(i != pool->num_desc); 728 knav_queue_close(pool->queue); 729 } 730 731 732 /* Get the DMA address of a descriptor */ 733 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt) 734 { 735 struct knav_pool *pool = ph; 736 return pool->region->dma_start + (virt - pool->region->virt_start); 737 } 738 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma); 739 740 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma) 741 { 742 struct knav_pool *pool = ph; 743 return pool->region->virt_start + (dma - pool->region->dma_start); 744 } 745 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt); 746 747 /** 748 * knav_pool_create() - Create a pool of descriptors 749 * @name: - name to give the pool handle 750 * @num_desc: - numbers of descriptors in the pool 751 * @region_id: - QMSS region id from which the descriptors are to be 752 * allocated. 753 * 754 * Returns a pool handle on success. 755 * Use IS_ERR_OR_NULL() to identify error values on return. 756 */ 757 void *knav_pool_create(const char *name, 758 int num_desc, int region_id) 759 { 760 struct knav_region *reg_itr, *region = NULL; 761 struct knav_pool *pool, *pi = NULL, *iter; 762 struct list_head *node; 763 unsigned last_offset; 764 int ret; 765 766 if (!kdev) 767 return ERR_PTR(-EPROBE_DEFER); 768 769 if (!kdev->dev) 770 return ERR_PTR(-ENODEV); 771 772 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL); 773 if (!pool) { 774 dev_err(kdev->dev, "out of memory allocating pool\n"); 775 return ERR_PTR(-ENOMEM); 776 } 777 778 for_each_region(kdev, reg_itr) { 779 if (reg_itr->id != region_id) 780 continue; 781 region = reg_itr; 782 break; 783 } 784 785 if (!region) { 786 dev_err(kdev->dev, "region-id(%d) not found\n", region_id); 787 ret = -EINVAL; 788 goto err; 789 } 790 791 pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0); 792 if (IS_ERR(pool->queue)) { 793 dev_err(kdev->dev, 794 "failed to open queue for pool(%s), error %ld\n", 795 name, PTR_ERR(pool->queue)); 796 ret = PTR_ERR(pool->queue); 797 goto err; 798 } 799 800 pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL); 801 pool->kdev = kdev; 802 pool->dev = kdev->dev; 803 804 mutex_lock(&knav_dev_lock); 805 806 if (num_desc > (region->num_desc - region->used_desc)) { 807 dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n", 808 region_id, name); 809 ret = -ENOMEM; 810 goto err_unlock; 811 } 812 813 /* Region maintains a sorted (by region offset) list of pools 814 * use the first free slot which is large enough to accomodate 815 * the request 816 */ 817 last_offset = 0; 818 node = ®ion->pools; 819 list_for_each_entry(iter, ®ion->pools, region_inst) { 820 if ((iter->region_offset - last_offset) >= num_desc) { 821 pi = iter; 822 break; 823 } 824 last_offset = iter->region_offset + iter->num_desc; 825 } 826 827 if (pi) { 828 node = &pi->region_inst; 829 pool->region = region; 830 pool->num_desc = num_desc; 831 pool->region_offset = last_offset; 832 region->used_desc += num_desc; 833 list_add_tail(&pool->list, &kdev->pools); 834 list_add_tail(&pool->region_inst, node); 835 } else { 836 dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n", 837 name, region_id); 838 ret = -ENOMEM; 839 goto err_unlock; 840 } 841 842 mutex_unlock(&knav_dev_lock); 843 kdesc_fill_pool(pool); 844 return pool; 845 846 err_unlock: 847 mutex_unlock(&knav_dev_lock); 848 err: 849 kfree(pool->name); 850 devm_kfree(kdev->dev, pool); 851 return ERR_PTR(ret); 852 } 853 EXPORT_SYMBOL_GPL(knav_pool_create); 854 855 /** 856 * knav_pool_destroy() - Free a pool of descriptors 857 * @ph: - pool handle 858 */ 859 void knav_pool_destroy(void *ph) 860 { 861 struct knav_pool *pool = ph; 862 863 if (!pool) 864 return; 865 866 if (!pool->region) 867 return; 868 869 kdesc_empty_pool(pool); 870 mutex_lock(&knav_dev_lock); 871 872 pool->region->used_desc -= pool->num_desc; 873 list_del(&pool->region_inst); 874 list_del(&pool->list); 875 876 mutex_unlock(&knav_dev_lock); 877 kfree(pool->name); 878 devm_kfree(kdev->dev, pool); 879 } 880 EXPORT_SYMBOL_GPL(knav_pool_destroy); 881 882 883 /** 884 * knav_pool_desc_get() - Get a descriptor from the pool 885 * @ph: - pool handle 886 * 887 * Returns descriptor from the pool. 888 */ 889 void *knav_pool_desc_get(void *ph) 890 { 891 struct knav_pool *pool = ph; 892 dma_addr_t dma; 893 unsigned size; 894 void *data; 895 896 dma = knav_queue_pop(pool->queue, &size); 897 if (unlikely(!dma)) 898 return ERR_PTR(-ENOMEM); 899 data = knav_pool_desc_dma_to_virt(pool, dma); 900 return data; 901 } 902 EXPORT_SYMBOL_GPL(knav_pool_desc_get); 903 904 /** 905 * knav_pool_desc_put() - return a descriptor to the pool 906 * @ph: - pool handle 907 * @desc: - virtual address 908 */ 909 void knav_pool_desc_put(void *ph, void *desc) 910 { 911 struct knav_pool *pool = ph; 912 dma_addr_t dma; 913 dma = knav_pool_desc_virt_to_dma(pool, desc); 914 knav_queue_push(pool->queue, dma, pool->region->desc_size, 0); 915 } 916 EXPORT_SYMBOL_GPL(knav_pool_desc_put); 917 918 /** 919 * knav_pool_desc_map() - Map descriptor for DMA transfer 920 * @ph: - pool handle 921 * @desc: - address of descriptor to map 922 * @size: - size of descriptor to map 923 * @dma: - DMA address return pointer 924 * @dma_sz: - adjusted return pointer 925 * 926 * Returns 0 on success, errno otherwise. 927 */ 928 int knav_pool_desc_map(void *ph, void *desc, unsigned size, 929 dma_addr_t *dma, unsigned *dma_sz) 930 { 931 struct knav_pool *pool = ph; 932 *dma = knav_pool_desc_virt_to_dma(pool, desc); 933 size = min(size, pool->region->desc_size); 934 size = ALIGN(size, SMP_CACHE_BYTES); 935 *dma_sz = size; 936 dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE); 937 938 /* Ensure the descriptor reaches to the memory */ 939 __iowmb(); 940 941 return 0; 942 } 943 EXPORT_SYMBOL_GPL(knav_pool_desc_map); 944 945 /** 946 * knav_pool_desc_unmap() - Unmap descriptor after DMA transfer 947 * @ph: - pool handle 948 * @dma: - DMA address of descriptor to unmap 949 * @dma_sz: - size of descriptor to unmap 950 * 951 * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify 952 * error values on return. 953 */ 954 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz) 955 { 956 struct knav_pool *pool = ph; 957 unsigned desc_sz; 958 void *desc; 959 960 desc_sz = min(dma_sz, pool->region->desc_size); 961 desc = knav_pool_desc_dma_to_virt(pool, dma); 962 dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE); 963 prefetch(desc); 964 return desc; 965 } 966 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap); 967 968 /** 969 * knav_pool_count() - Get the number of descriptors in pool. 970 * @ph: - pool handle 971 * Returns number of elements in the pool. 972 */ 973 int knav_pool_count(void *ph) 974 { 975 struct knav_pool *pool = ph; 976 return knav_queue_get_count(pool->queue); 977 } 978 EXPORT_SYMBOL_GPL(knav_pool_count); 979 980 static void knav_queue_setup_region(struct knav_device *kdev, 981 struct knav_region *region) 982 { 983 unsigned hw_num_desc, hw_desc_size, size; 984 struct knav_reg_region __iomem *regs; 985 struct knav_qmgr_info *qmgr; 986 struct knav_pool *pool; 987 int id = region->id; 988 struct page *page; 989 990 /* unused region? */ 991 if (!region->num_desc) { 992 dev_warn(kdev->dev, "unused region %s\n", region->name); 993 return; 994 } 995 996 /* get hardware descriptor value */ 997 hw_num_desc = ilog2(region->num_desc - 1) + 1; 998 999 /* did we force fit ourselves into nothingness? */ 1000 if (region->num_desc < 32) { 1001 region->num_desc = 0; 1002 dev_warn(kdev->dev, "too few descriptors in region %s\n", 1003 region->name); 1004 return; 1005 } 1006 1007 size = region->num_desc * region->desc_size; 1008 region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA | 1009 GFP_DMA32); 1010 if (!region->virt_start) { 1011 region->num_desc = 0; 1012 dev_err(kdev->dev, "memory alloc failed for region %s\n", 1013 region->name); 1014 return; 1015 } 1016 region->virt_end = region->virt_start + size; 1017 page = virt_to_page(region->virt_start); 1018 1019 region->dma_start = dma_map_page(kdev->dev, page, 0, size, 1020 DMA_BIDIRECTIONAL); 1021 if (dma_mapping_error(kdev->dev, region->dma_start)) { 1022 dev_err(kdev->dev, "dma map failed for region %s\n", 1023 region->name); 1024 goto fail; 1025 } 1026 region->dma_end = region->dma_start + size; 1027 1028 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL); 1029 if (!pool) { 1030 dev_err(kdev->dev, "out of memory allocating dummy pool\n"); 1031 goto fail; 1032 } 1033 pool->num_desc = 0; 1034 pool->region_offset = region->num_desc; 1035 list_add(&pool->region_inst, ®ion->pools); 1036 1037 dev_dbg(kdev->dev, 1038 "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n", 1039 region->name, id, region->desc_size, region->num_desc, 1040 region->link_index, ®ion->dma_start, ®ion->dma_end, 1041 region->virt_start, region->virt_end); 1042 1043 hw_desc_size = (region->desc_size / 16) - 1; 1044 hw_num_desc -= 5; 1045 1046 for_each_qmgr(kdev, qmgr) { 1047 regs = qmgr->reg_region + id; 1048 writel_relaxed((u32)region->dma_start, ®s->base); 1049 writel_relaxed(region->link_index, ®s->start_index); 1050 writel_relaxed(hw_desc_size << 16 | hw_num_desc, 1051 ®s->size_count); 1052 } 1053 return; 1054 1055 fail: 1056 if (region->dma_start) 1057 dma_unmap_page(kdev->dev, region->dma_start, size, 1058 DMA_BIDIRECTIONAL); 1059 if (region->virt_start) 1060 free_pages_exact(region->virt_start, size); 1061 region->num_desc = 0; 1062 return; 1063 } 1064 1065 static const char *knav_queue_find_name(struct device_node *node) 1066 { 1067 const char *name; 1068 1069 if (of_property_read_string(node, "label", &name) < 0) 1070 name = node->name; 1071 if (!name) 1072 name = "unknown"; 1073 return name; 1074 } 1075 1076 static int knav_queue_setup_regions(struct knav_device *kdev, 1077 struct device_node *node) 1078 { 1079 struct device *dev = kdev->dev; 1080 struct device_node *regions __free(device_node) = 1081 of_get_child_by_name(node, "descriptor-regions"); 1082 struct knav_region *region; 1083 struct device_node *child; 1084 u32 temp[2]; 1085 int ret; 1086 1087 if (!regions) 1088 return dev_err_probe(dev, -ENODEV, 1089 "descriptor-regions not specified\n"); 1090 1091 for_each_child_of_node(regions, child) { 1092 region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL); 1093 if (!region) { 1094 of_node_put(child); 1095 dev_err(dev, "out of memory allocating region\n"); 1096 return -ENOMEM; 1097 } 1098 1099 region->name = knav_queue_find_name(child); 1100 of_property_read_u32(child, "id", ®ion->id); 1101 ret = of_property_read_u32_array(child, "region-spec", temp, 2); 1102 if (!ret) { 1103 region->num_desc = temp[0]; 1104 region->desc_size = temp[1]; 1105 } else { 1106 dev_err(dev, "invalid region info %s\n", region->name); 1107 devm_kfree(dev, region); 1108 continue; 1109 } 1110 1111 ret = of_property_read_u32(child, "link-index", 1112 ®ion->link_index); 1113 if (ret) { 1114 dev_err(dev, "link index not found for %s\n", 1115 region->name); 1116 devm_kfree(dev, region); 1117 continue; 1118 } 1119 1120 INIT_LIST_HEAD(®ion->pools); 1121 list_add_tail(®ion->list, &kdev->regions); 1122 } 1123 if (list_empty(&kdev->regions)) 1124 return dev_err_probe(dev, -ENODEV, 1125 "no valid region information found\n"); 1126 1127 /* Next, we run through the regions and set things up */ 1128 for_each_region(kdev, region) 1129 knav_queue_setup_region(kdev, region); 1130 1131 return 0; 1132 } 1133 1134 static int knav_get_link_ram(struct knav_device *kdev, 1135 const char *name, 1136 struct knav_link_ram_block *block) 1137 { 1138 struct platform_device *pdev = to_platform_device(kdev->dev); 1139 struct device_node *node = pdev->dev.of_node; 1140 u32 temp[2]; 1141 1142 /* 1143 * Note: link ram resources are specified in "entry" sized units. In 1144 * reality, although entries are ~40bits in hardware, we treat them as 1145 * 64-bit entities here. 1146 * 1147 * For example, to specify the internal link ram for Keystone-I class 1148 * devices, we would set the linkram0 resource to 0x80000-0x83fff. 1149 * 1150 * This gets a bit weird when other link rams are used. For example, 1151 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries 1152 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000, 1153 * which accounts for 64-bits per entry, for 16K entries. 1154 */ 1155 if (!of_property_read_u32_array(node, name , temp, 2)) { 1156 if (temp[0]) { 1157 /* 1158 * queue_base specified => using internal or onchip 1159 * link ram WARNING - we do not "reserve" this block 1160 */ 1161 block->dma = (dma_addr_t)temp[0]; 1162 block->virt = NULL; 1163 block->size = temp[1]; 1164 } else { 1165 block->size = temp[1]; 1166 /* queue_base not specific => allocate requested size */ 1167 block->virt = dmam_alloc_coherent(kdev->dev, 1168 8 * block->size, &block->dma, 1169 GFP_KERNEL); 1170 if (!block->virt) { 1171 dev_err(kdev->dev, "failed to alloc linkram\n"); 1172 return -ENOMEM; 1173 } 1174 } 1175 } else { 1176 return -ENODEV; 1177 } 1178 return 0; 1179 } 1180 1181 static int knav_queue_setup_link_ram(struct knav_device *kdev) 1182 { 1183 struct knav_link_ram_block *block; 1184 struct knav_qmgr_info *qmgr; 1185 1186 for_each_qmgr(kdev, qmgr) { 1187 block = &kdev->link_rams[0]; 1188 dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n", 1189 &block->dma, block->virt, block->size); 1190 writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0); 1191 if (kdev->version == QMSS_66AK2G) 1192 writel_relaxed(block->size, 1193 &qmgr->reg_config->link_ram_size0); 1194 else 1195 writel_relaxed(block->size - 1, 1196 &qmgr->reg_config->link_ram_size0); 1197 block++; 1198 if (!block->size) 1199 continue; 1200 1201 dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n", 1202 &block->dma, block->virt, block->size); 1203 writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1); 1204 } 1205 1206 return 0; 1207 } 1208 1209 static int knav_setup_queue_range(struct knav_device *kdev, 1210 struct device_node *node) 1211 { 1212 struct device *dev = kdev->dev; 1213 struct knav_range_info *range; 1214 struct knav_qmgr_info *qmgr; 1215 u32 temp[2], start, end, id, index; 1216 int ret, i; 1217 1218 range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL); 1219 if (!range) { 1220 dev_err(dev, "out of memory allocating range\n"); 1221 return -ENOMEM; 1222 } 1223 1224 range->kdev = kdev; 1225 range->name = knav_queue_find_name(node); 1226 ret = of_property_read_u32_array(node, "qrange", temp, 2); 1227 if (!ret) { 1228 range->queue_base = temp[0] - kdev->base_id; 1229 range->num_queues = temp[1]; 1230 } else { 1231 dev_err(dev, "invalid queue range %s\n", range->name); 1232 devm_kfree(dev, range); 1233 return -EINVAL; 1234 } 1235 1236 for (i = 0; i < RANGE_MAX_IRQS; i++) { 1237 struct of_phandle_args oirq; 1238 1239 if (of_irq_parse_one(node, i, &oirq)) 1240 break; 1241 1242 range->irqs[i].irq = irq_create_of_mapping(&oirq); 1243 if (range->irqs[i].irq == IRQ_NONE) 1244 break; 1245 1246 range->num_irqs++; 1247 1248 if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) { 1249 unsigned long mask; 1250 int bit; 1251 1252 range->irqs[i].cpu_mask = devm_kzalloc(dev, 1253 cpumask_size(), GFP_KERNEL); 1254 if (!range->irqs[i].cpu_mask) 1255 return -ENOMEM; 1256 1257 mask = (oirq.args[2] & 0x0000ff00) >> 8; 1258 for_each_set_bit(bit, &mask, BITS_PER_LONG) 1259 cpumask_set_cpu(bit, range->irqs[i].cpu_mask); 1260 } 1261 } 1262 1263 range->num_irqs = min(range->num_irqs, range->num_queues); 1264 if (range->num_irqs) 1265 range->flags |= RANGE_HAS_IRQ; 1266 1267 if (of_property_read_bool(node, "qalloc-by-id")) 1268 range->flags |= RANGE_RESERVED; 1269 1270 if (of_property_present(node, "accumulator")) { 1271 ret = knav_init_acc_range(kdev, node, range); 1272 if (ret < 0) { 1273 devm_kfree(dev, range); 1274 return ret; 1275 } 1276 } else { 1277 range->ops = &knav_gp_range_ops; 1278 } 1279 1280 /* set threshold to 1, and flush out the queues */ 1281 for_each_qmgr(kdev, qmgr) { 1282 start = max(qmgr->start_queue, range->queue_base); 1283 end = min(qmgr->start_queue + qmgr->num_queues, 1284 range->queue_base + range->num_queues); 1285 for (id = start; id < end; id++) { 1286 index = id - qmgr->start_queue; 1287 writel_relaxed(THRESH_GTE | 1, 1288 &qmgr->reg_peek[index].ptr_size_thresh); 1289 writel_relaxed(0, 1290 &qmgr->reg_push[index].ptr_size_thresh); 1291 } 1292 } 1293 1294 list_add_tail(&range->list, &kdev->queue_ranges); 1295 dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n", 1296 range->name, range->queue_base, 1297 range->queue_base + range->num_queues - 1, 1298 range->num_irqs, 1299 (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "", 1300 (range->flags & RANGE_RESERVED) ? ", reserved" : "", 1301 (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : ""); 1302 kdev->num_queues_in_use += range->num_queues; 1303 return 0; 1304 } 1305 1306 static int knav_setup_queue_pools(struct knav_device *kdev, 1307 struct device_node *node) 1308 { 1309 struct device_node *queue_pools __free(device_node) = 1310 of_get_child_by_name(node, "queue-pools"); 1311 struct device_node *type, *range; 1312 1313 if (!queue_pools) 1314 return dev_err_probe(kdev->dev, -ENODEV, 1315 "queue-pools not specified\n"); 1316 1317 for_each_child_of_node(queue_pools, type) { 1318 for_each_child_of_node(type, range) { 1319 /* return value ignored, we init the rest... */ 1320 knav_setup_queue_range(kdev, range); 1321 } 1322 } 1323 1324 /* ... and barf if they all failed! */ 1325 if (list_empty(&kdev->queue_ranges)) 1326 return dev_err_probe(kdev->dev, -ENODEV, 1327 "no valid queue range found\n"); 1328 return 0; 1329 } 1330 1331 static void knav_free_queue_range(struct knav_device *kdev, 1332 struct knav_range_info *range) 1333 { 1334 if (range->ops && range->ops->free_range) 1335 range->ops->free_range(range); 1336 list_del(&range->list); 1337 devm_kfree(kdev->dev, range); 1338 } 1339 1340 static void knav_free_queue_ranges(struct knav_device *kdev) 1341 { 1342 struct knav_range_info *range; 1343 1344 for (;;) { 1345 range = first_queue_range(kdev); 1346 if (!range) 1347 break; 1348 knav_free_queue_range(kdev, range); 1349 } 1350 } 1351 1352 static void knav_queue_free_regions(struct knav_device *kdev) 1353 { 1354 struct knav_region *region; 1355 struct knav_pool *pool, *tmp; 1356 unsigned size; 1357 1358 for (;;) { 1359 region = first_region(kdev); 1360 if (!region) 1361 break; 1362 list_for_each_entry_safe(pool, tmp, ®ion->pools, region_inst) 1363 knav_pool_destroy(pool); 1364 1365 size = region->virt_end - region->virt_start; 1366 if (size) 1367 free_pages_exact(region->virt_start, size); 1368 list_del(®ion->list); 1369 devm_kfree(kdev->dev, region); 1370 } 1371 } 1372 1373 static void __iomem *knav_queue_map_reg(struct knav_device *kdev, 1374 struct device_node *node, int index) 1375 { 1376 struct resource res; 1377 void __iomem *regs; 1378 int ret; 1379 1380 ret = of_address_to_resource(node, index, &res); 1381 if (ret) { 1382 dev_err(kdev->dev, "Can't translate of node(%pOFn) address for index(%d)\n", 1383 node, index); 1384 return ERR_PTR(ret); 1385 } 1386 1387 regs = devm_ioremap_resource(kdev->dev, &res); 1388 if (IS_ERR(regs)) 1389 dev_err(kdev->dev, "Failed to map register base for index(%d) node(%pOFn)\n", 1390 index, node); 1391 return regs; 1392 } 1393 1394 static int knav_queue_init_qmgrs(struct knav_device *kdev, 1395 struct device_node *node) 1396 { 1397 struct device *dev = kdev->dev; 1398 struct device_node *qmgrs __free(device_node) = 1399 of_get_child_by_name(node, "qmgrs"); 1400 struct knav_qmgr_info *qmgr; 1401 struct device_node *child; 1402 u32 temp[2]; 1403 int ret; 1404 1405 if (!qmgrs) 1406 return dev_err_probe(dev, -ENODEV, 1407 "queue manager info not specified\n"); 1408 1409 for_each_child_of_node(qmgrs, child) { 1410 qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL); 1411 if (!qmgr) { 1412 of_node_put(child); 1413 dev_err(dev, "out of memory allocating qmgr\n"); 1414 return -ENOMEM; 1415 } 1416 1417 ret = of_property_read_u32_array(child, "managed-queues", 1418 temp, 2); 1419 if (!ret) { 1420 qmgr->start_queue = temp[0]; 1421 qmgr->num_queues = temp[1]; 1422 } else { 1423 dev_err(dev, "invalid qmgr queue range\n"); 1424 devm_kfree(dev, qmgr); 1425 continue; 1426 } 1427 1428 dev_info(dev, "qmgr start queue %d, number of queues %d\n", 1429 qmgr->start_queue, qmgr->num_queues); 1430 1431 qmgr->reg_peek = 1432 knav_queue_map_reg(kdev, child, 1433 KNAV_QUEUE_PEEK_REG_INDEX); 1434 1435 if (kdev->version == QMSS) { 1436 qmgr->reg_status = 1437 knav_queue_map_reg(kdev, child, 1438 KNAV_QUEUE_STATUS_REG_INDEX); 1439 } 1440 1441 qmgr->reg_config = 1442 knav_queue_map_reg(kdev, child, 1443 (kdev->version == QMSS_66AK2G) ? 1444 KNAV_L_QUEUE_CONFIG_REG_INDEX : 1445 KNAV_QUEUE_CONFIG_REG_INDEX); 1446 qmgr->reg_region = 1447 knav_queue_map_reg(kdev, child, 1448 (kdev->version == QMSS_66AK2G) ? 1449 KNAV_L_QUEUE_REGION_REG_INDEX : 1450 KNAV_QUEUE_REGION_REG_INDEX); 1451 1452 qmgr->reg_push = 1453 knav_queue_map_reg(kdev, child, 1454 (kdev->version == QMSS_66AK2G) ? 1455 KNAV_L_QUEUE_PUSH_REG_INDEX : 1456 KNAV_QUEUE_PUSH_REG_INDEX); 1457 1458 if (kdev->version == QMSS) { 1459 qmgr->reg_pop = 1460 knav_queue_map_reg(kdev, child, 1461 KNAV_QUEUE_POP_REG_INDEX); 1462 } 1463 1464 if (IS_ERR(qmgr->reg_peek) || 1465 ((kdev->version == QMSS) && 1466 (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) || 1467 IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) || 1468 IS_ERR(qmgr->reg_push)) { 1469 dev_err(dev, "failed to map qmgr regs\n"); 1470 if (kdev->version == QMSS) { 1471 if (!IS_ERR(qmgr->reg_status)) 1472 devm_iounmap(dev, qmgr->reg_status); 1473 if (!IS_ERR(qmgr->reg_pop)) 1474 devm_iounmap(dev, qmgr->reg_pop); 1475 } 1476 if (!IS_ERR(qmgr->reg_peek)) 1477 devm_iounmap(dev, qmgr->reg_peek); 1478 if (!IS_ERR(qmgr->reg_config)) 1479 devm_iounmap(dev, qmgr->reg_config); 1480 if (!IS_ERR(qmgr->reg_region)) 1481 devm_iounmap(dev, qmgr->reg_region); 1482 if (!IS_ERR(qmgr->reg_push)) 1483 devm_iounmap(dev, qmgr->reg_push); 1484 devm_kfree(dev, qmgr); 1485 continue; 1486 } 1487 1488 /* Use same push register for pop as well */ 1489 if (kdev->version == QMSS_66AK2G) 1490 qmgr->reg_pop = qmgr->reg_push; 1491 1492 list_add_tail(&qmgr->list, &kdev->qmgrs); 1493 dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n", 1494 qmgr->start_queue, qmgr->num_queues, 1495 qmgr->reg_peek, qmgr->reg_status, 1496 qmgr->reg_config, qmgr->reg_region, 1497 qmgr->reg_push, qmgr->reg_pop); 1498 } 1499 return 0; 1500 } 1501 1502 static int knav_queue_init_pdsps(struct knav_device *kdev, 1503 struct device_node *pdsps) 1504 { 1505 struct device *dev = kdev->dev; 1506 struct knav_pdsp_info *pdsp; 1507 struct device_node *child; 1508 1509 for_each_child_of_node(pdsps, child) { 1510 pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL); 1511 if (!pdsp) { 1512 of_node_put(child); 1513 dev_err(dev, "out of memory allocating pdsp\n"); 1514 return -ENOMEM; 1515 } 1516 pdsp->name = knav_queue_find_name(child); 1517 pdsp->iram = 1518 knav_queue_map_reg(kdev, child, 1519 KNAV_QUEUE_PDSP_IRAM_REG_INDEX); 1520 pdsp->regs = 1521 knav_queue_map_reg(kdev, child, 1522 KNAV_QUEUE_PDSP_REGS_REG_INDEX); 1523 pdsp->intd = 1524 knav_queue_map_reg(kdev, child, 1525 KNAV_QUEUE_PDSP_INTD_REG_INDEX); 1526 pdsp->command = 1527 knav_queue_map_reg(kdev, child, 1528 KNAV_QUEUE_PDSP_CMD_REG_INDEX); 1529 1530 if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) || 1531 IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) { 1532 dev_err(dev, "failed to map pdsp %s regs\n", 1533 pdsp->name); 1534 if (!IS_ERR(pdsp->command)) 1535 devm_iounmap(dev, pdsp->command); 1536 if (!IS_ERR(pdsp->iram)) 1537 devm_iounmap(dev, pdsp->iram); 1538 if (!IS_ERR(pdsp->regs)) 1539 devm_iounmap(dev, pdsp->regs); 1540 if (!IS_ERR(pdsp->intd)) 1541 devm_iounmap(dev, pdsp->intd); 1542 devm_kfree(dev, pdsp); 1543 continue; 1544 } 1545 of_property_read_u32(child, "id", &pdsp->id); 1546 list_add_tail(&pdsp->list, &kdev->pdsps); 1547 dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n", 1548 pdsp->name, pdsp->command, pdsp->iram, pdsp->regs, 1549 pdsp->intd); 1550 } 1551 return 0; 1552 } 1553 1554 static int knav_queue_stop_pdsp(struct knav_device *kdev, 1555 struct knav_pdsp_info *pdsp) 1556 { 1557 u32 val, timeout = 1000; 1558 int ret; 1559 1560 val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE; 1561 writel_relaxed(val, &pdsp->regs->control); 1562 ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout, 1563 PDSP_CTRL_RUNNING); 1564 if (ret < 0) { 1565 dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name); 1566 return ret; 1567 } 1568 pdsp->loaded = false; 1569 pdsp->started = false; 1570 return 0; 1571 } 1572 1573 static int knav_queue_load_pdsp(struct knav_device *kdev, 1574 struct knav_pdsp_info *pdsp) 1575 { 1576 int i, ret, fwlen; 1577 const struct firmware *fw; 1578 bool found = false; 1579 u32 *fwdata; 1580 1581 for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) { 1582 if (knav_acc_firmwares[i]) { 1583 ret = request_firmware_direct(&fw, 1584 knav_acc_firmwares[i], 1585 kdev->dev); 1586 if (!ret) { 1587 found = true; 1588 break; 1589 } 1590 } 1591 } 1592 1593 if (!found) { 1594 dev_err(kdev->dev, "failed to get firmware for pdsp\n"); 1595 return -ENODEV; 1596 } 1597 1598 dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n", 1599 knav_acc_firmwares[i]); 1600 1601 writel_relaxed(pdsp->id + 1, pdsp->command + 0x18); 1602 /* download the firmware */ 1603 fwdata = (u32 *)fw->data; 1604 fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32); 1605 for (i = 0; i < fwlen; i++) 1606 writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i); 1607 1608 release_firmware(fw); 1609 return 0; 1610 } 1611 1612 static int knav_queue_start_pdsp(struct knav_device *kdev, 1613 struct knav_pdsp_info *pdsp) 1614 { 1615 u32 val, timeout = 1000; 1616 int ret; 1617 1618 /* write a command for sync */ 1619 writel_relaxed(0xffffffff, pdsp->command); 1620 while (readl_relaxed(pdsp->command) != 0xffffffff) 1621 cpu_relax(); 1622 1623 /* soft reset the PDSP */ 1624 val = readl_relaxed(&pdsp->regs->control); 1625 val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET); 1626 writel_relaxed(val, &pdsp->regs->control); 1627 1628 /* enable pdsp */ 1629 val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE; 1630 writel_relaxed(val, &pdsp->regs->control); 1631 1632 /* wait for command register to clear */ 1633 ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0); 1634 if (ret < 0) { 1635 dev_err(kdev->dev, 1636 "timed out on pdsp %s command register wait\n", 1637 pdsp->name); 1638 return ret; 1639 } 1640 return 0; 1641 } 1642 1643 static void knav_queue_stop_pdsps(struct knav_device *kdev) 1644 { 1645 struct knav_pdsp_info *pdsp; 1646 1647 /* disable all pdsps */ 1648 for_each_pdsp(kdev, pdsp) 1649 knav_queue_stop_pdsp(kdev, pdsp); 1650 } 1651 1652 static int knav_queue_start_pdsps(struct knav_device *kdev) 1653 { 1654 struct knav_pdsp_info *pdsp; 1655 int ret; 1656 1657 knav_queue_stop_pdsps(kdev); 1658 /* now load them all. We return success even if pdsp 1659 * is not loaded as acc channels are optional on having 1660 * firmware availability in the system. We set the loaded 1661 * and stated flag and when initialize the acc range, check 1662 * it and init the range only if pdsp is started. 1663 */ 1664 for_each_pdsp(kdev, pdsp) { 1665 ret = knav_queue_load_pdsp(kdev, pdsp); 1666 if (!ret) 1667 pdsp->loaded = true; 1668 } 1669 1670 for_each_pdsp(kdev, pdsp) { 1671 if (pdsp->loaded) { 1672 ret = knav_queue_start_pdsp(kdev, pdsp); 1673 if (!ret) 1674 pdsp->started = true; 1675 } 1676 } 1677 return 0; 1678 } 1679 1680 static int knav_queue_setup_pdsps(struct knav_device *kdev, 1681 struct device_node *node) 1682 { 1683 struct device_node *pdsps __free(device_node) = 1684 of_get_child_by_name(node, "pdsps"); 1685 1686 if (pdsps) { 1687 int ret; 1688 1689 ret = knav_queue_init_pdsps(kdev, pdsps); 1690 if (ret) 1691 return ret; 1692 1693 ret = knav_queue_start_pdsps(kdev); 1694 if (ret) 1695 return ret; 1696 } 1697 return 0; 1698 } 1699 1700 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id) 1701 { 1702 struct knav_qmgr_info *qmgr; 1703 1704 for_each_qmgr(kdev, qmgr) { 1705 if ((id >= qmgr->start_queue) && 1706 (id < qmgr->start_queue + qmgr->num_queues)) 1707 return qmgr; 1708 } 1709 return NULL; 1710 } 1711 1712 static int knav_queue_init_queue(struct knav_device *kdev, 1713 struct knav_range_info *range, 1714 struct knav_queue_inst *inst, 1715 unsigned id) 1716 { 1717 char irq_name[KNAV_NAME_SIZE]; 1718 inst->qmgr = knav_find_qmgr(id); 1719 if (!inst->qmgr) 1720 return -1; 1721 1722 INIT_LIST_HEAD(&inst->handles); 1723 inst->kdev = kdev; 1724 inst->range = range; 1725 inst->irq_num = -1; 1726 inst->id = id; 1727 scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id); 1728 inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL); 1729 1730 if (range->ops && range->ops->init_queue) 1731 return range->ops->init_queue(range, inst); 1732 else 1733 return 0; 1734 } 1735 1736 static int knav_queue_init_queues(struct knav_device *kdev) 1737 { 1738 struct knav_range_info *range; 1739 int size, id, base_idx; 1740 int idx = 0, ret = 0; 1741 1742 /* how much do we need for instance data? */ 1743 size = sizeof(struct knav_queue_inst); 1744 1745 /* round this up to a power of 2, keep the index to instance 1746 * arithmetic fast. 1747 * */ 1748 kdev->inst_shift = order_base_2(size); 1749 size = (1 << kdev->inst_shift) * kdev->num_queues_in_use; 1750 kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL); 1751 if (!kdev->instances) 1752 return -ENOMEM; 1753 1754 for_each_queue_range(kdev, range) { 1755 if (range->ops && range->ops->init_range) 1756 range->ops->init_range(range); 1757 base_idx = idx; 1758 for (id = range->queue_base; 1759 id < range->queue_base + range->num_queues; id++, idx++) { 1760 ret = knav_queue_init_queue(kdev, range, 1761 knav_queue_idx_to_inst(kdev, idx), id); 1762 if (ret < 0) 1763 return ret; 1764 } 1765 range->queue_base_inst = 1766 knav_queue_idx_to_inst(kdev, base_idx); 1767 } 1768 return 0; 1769 } 1770 1771 /* Match table for of_platform binding */ 1772 static const struct of_device_id keystone_qmss_of_match[] = { 1773 { 1774 .compatible = "ti,keystone-navigator-qmss", 1775 }, 1776 { 1777 .compatible = "ti,66ak2g-navss-qm", 1778 .data = (void *)QMSS_66AK2G, 1779 }, 1780 {}, 1781 }; 1782 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match); 1783 1784 static int knav_queue_probe(struct platform_device *pdev) 1785 { 1786 struct device_node *node = pdev->dev.of_node; 1787 struct device *dev = &pdev->dev; 1788 u32 temp[2]; 1789 int ret; 1790 1791 if (!node) { 1792 dev_err(dev, "device tree info unavailable\n"); 1793 return -ENODEV; 1794 } 1795 1796 kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL); 1797 if (!kdev) { 1798 dev_err(dev, "memory allocation failed\n"); 1799 return -ENOMEM; 1800 } 1801 1802 if (device_get_match_data(dev)) 1803 kdev->version = QMSS_66AK2G; 1804 1805 platform_set_drvdata(pdev, kdev); 1806 kdev->dev = dev; 1807 INIT_LIST_HEAD(&kdev->queue_ranges); 1808 INIT_LIST_HEAD(&kdev->qmgrs); 1809 INIT_LIST_HEAD(&kdev->pools); 1810 INIT_LIST_HEAD(&kdev->regions); 1811 INIT_LIST_HEAD(&kdev->pdsps); 1812 1813 pm_runtime_enable(&pdev->dev); 1814 ret = pm_runtime_resume_and_get(&pdev->dev); 1815 if (ret < 0) { 1816 pm_runtime_disable(&pdev->dev); 1817 dev_err(dev, "Failed to enable QMSS\n"); 1818 return ret; 1819 } 1820 1821 if (of_property_read_u32_array(node, "queue-range", temp, 2)) { 1822 dev_err(dev, "queue-range not specified\n"); 1823 ret = -ENODEV; 1824 goto err; 1825 } 1826 kdev->base_id = temp[0]; 1827 kdev->num_queues = temp[1]; 1828 1829 /* Initialize queue managers using device tree configuration */ 1830 ret = knav_queue_init_qmgrs(kdev, node); 1831 if (ret) 1832 goto err; 1833 1834 /* get pdsp configuration values from device tree */ 1835 ret = knav_queue_setup_pdsps(kdev, node); 1836 if (ret) 1837 goto err; 1838 1839 /* get usable queue range values from device tree */ 1840 ret = knav_setup_queue_pools(kdev, node); 1841 if (ret) 1842 goto err; 1843 1844 ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]); 1845 if (ret) { 1846 dev_err(kdev->dev, "could not setup linking ram\n"); 1847 goto err; 1848 } 1849 1850 ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]); 1851 if (ret) { 1852 /* 1853 * nothing really, we have one linking ram already, so we just 1854 * live within our means 1855 */ 1856 } 1857 1858 ret = knav_queue_setup_link_ram(kdev); 1859 if (ret) 1860 goto err; 1861 1862 ret = knav_queue_setup_regions(kdev, node); 1863 if (ret) 1864 goto err; 1865 1866 ret = knav_queue_init_queues(kdev); 1867 if (ret < 0) { 1868 dev_err(dev, "hwqueue initialization failed\n"); 1869 goto err; 1870 } 1871 1872 debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL, 1873 &knav_queue_debug_fops); 1874 device_ready = true; 1875 return 0; 1876 1877 err: 1878 knav_queue_stop_pdsps(kdev); 1879 knav_queue_free_regions(kdev); 1880 knav_free_queue_ranges(kdev); 1881 pm_runtime_put_sync(&pdev->dev); 1882 pm_runtime_disable(&pdev->dev); 1883 return ret; 1884 } 1885 1886 static void knav_queue_remove(struct platform_device *pdev) 1887 { 1888 /* TODO: Free resources */ 1889 pm_runtime_put_sync(&pdev->dev); 1890 pm_runtime_disable(&pdev->dev); 1891 } 1892 1893 static struct platform_driver keystone_qmss_driver = { 1894 .probe = knav_queue_probe, 1895 .remove = knav_queue_remove, 1896 .driver = { 1897 .name = "keystone-navigator-qmss", 1898 .of_match_table = keystone_qmss_of_match, 1899 }, 1900 }; 1901 module_platform_driver(keystone_qmss_driver); 1902 1903 MODULE_LICENSE("GPL v2"); 1904 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs"); 1905 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>"); 1906 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>"); 1907