1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Keystone Queue Manager subsystem driver 4 * 5 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com 6 * Authors: Sandeep Nair <sandeep_n@ti.com> 7 * Cyril Chemparathy <cyril@ti.com> 8 * Santosh Shilimkar <santosh.shilimkar@ti.com> 9 */ 10 11 #include <linux/debugfs.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/firmware.h> 14 #include <linux/interrupt.h> 15 #include <linux/io.h> 16 #include <linux/module.h> 17 #include <linux/of.h> 18 #include <linux/of_address.h> 19 #include <linux/of_irq.h> 20 #include <linux/platform_device.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/property.h> 23 #include <linux/slab.h> 24 #include <linux/soc/ti/knav_qmss.h> 25 26 #include "knav_qmss.h" 27 28 static struct knav_device *kdev; 29 static DEFINE_MUTEX(knav_dev_lock); 30 #define knav_dev_lock_held() \ 31 lockdep_is_held(&knav_dev_lock) 32 33 /* Queue manager register indices in DTS */ 34 #define KNAV_QUEUE_PEEK_REG_INDEX 0 35 #define KNAV_QUEUE_STATUS_REG_INDEX 1 36 #define KNAV_QUEUE_CONFIG_REG_INDEX 2 37 #define KNAV_QUEUE_REGION_REG_INDEX 3 38 #define KNAV_QUEUE_PUSH_REG_INDEX 4 39 #define KNAV_QUEUE_POP_REG_INDEX 5 40 41 /* Queue manager register indices in DTS for QMSS in K2G NAVSS. 42 * There are no status and vbusm push registers on this version 43 * of QMSS. Push registers are same as pop, So all indices above 1 44 * are to be re-defined 45 */ 46 #define KNAV_L_QUEUE_CONFIG_REG_INDEX 1 47 #define KNAV_L_QUEUE_REGION_REG_INDEX 2 48 #define KNAV_L_QUEUE_PUSH_REG_INDEX 3 49 50 /* PDSP register indices in DTS */ 51 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX 0 52 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX 1 53 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX 2 54 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX 3 55 56 #define knav_queue_idx_to_inst(kdev, idx) \ 57 (kdev->instances + (idx << kdev->inst_shift)) 58 59 #define for_each_handle_rcu(qh, inst) \ 60 list_for_each_entry_rcu(qh, &inst->handles, list, \ 61 knav_dev_lock_held()) 62 63 #define for_each_instance(idx, inst, kdev) \ 64 for (idx = 0, inst = kdev->instances; \ 65 idx < (kdev)->num_queues_in_use; \ 66 idx++, inst = knav_queue_idx_to_inst(kdev, idx)) 67 68 /* All firmware file names end up here. List the firmware file names below. 69 * Newest followed by older ones. Search is done from start of the array 70 * until a firmware file is found. 71 */ 72 static const char * const knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"}; 73 74 static bool device_ready; 75 bool knav_qmss_device_ready(void) 76 { 77 return device_ready; 78 } 79 EXPORT_SYMBOL_GPL(knav_qmss_device_ready); 80 81 /** 82 * knav_queue_notify: qmss queue notfier call 83 * 84 * @inst: - qmss queue instance like accumulator 85 */ 86 void knav_queue_notify(struct knav_queue_inst *inst) 87 { 88 struct knav_queue *qh; 89 90 if (!inst) 91 return; 92 93 rcu_read_lock(); 94 for_each_handle_rcu(qh, inst) { 95 if (atomic_read(&qh->notifier_enabled) <= 0) 96 continue; 97 if (WARN_ON(!qh->notifier_fn)) 98 continue; 99 this_cpu_inc(qh->stats->notifies); 100 qh->notifier_fn(qh->notifier_fn_arg); 101 } 102 rcu_read_unlock(); 103 } 104 EXPORT_SYMBOL_GPL(knav_queue_notify); 105 106 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata) 107 { 108 struct knav_queue_inst *inst = _instdata; 109 110 knav_queue_notify(inst); 111 return IRQ_HANDLED; 112 } 113 114 static int knav_queue_setup_irq(struct knav_range_info *range, 115 struct knav_queue_inst *inst) 116 { 117 unsigned queue = inst->id - range->queue_base; 118 int ret = 0, irq; 119 120 if (range->flags & RANGE_HAS_IRQ) { 121 irq = range->irqs[queue].irq; 122 ret = request_irq(irq, knav_queue_int_handler, IRQF_NO_AUTOEN, 123 inst->irq_name, inst); 124 if (ret) 125 return ret; 126 if (range->irqs[queue].cpu_mask) { 127 ret = irq_set_affinity_hint(irq, range->irqs[queue].cpu_mask); 128 if (ret) { 129 dev_warn(range->kdev->dev, 130 "Failed to set IRQ affinity\n"); 131 return ret; 132 } 133 } 134 } 135 return ret; 136 } 137 138 static void knav_queue_free_irq(struct knav_queue_inst *inst) 139 { 140 struct knav_range_info *range = inst->range; 141 unsigned queue = inst->id - inst->range->queue_base; 142 int irq; 143 144 if (range->flags & RANGE_HAS_IRQ) { 145 irq = range->irqs[queue].irq; 146 irq_set_affinity_hint(irq, NULL); 147 free_irq(irq, inst); 148 } 149 } 150 151 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst) 152 { 153 return !list_empty(&inst->handles); 154 } 155 156 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst) 157 { 158 return inst->range->flags & RANGE_RESERVED; 159 } 160 161 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst) 162 { 163 struct knav_queue *tmp; 164 165 rcu_read_lock(); 166 for_each_handle_rcu(tmp, inst) { 167 if (tmp->flags & KNAV_QUEUE_SHARED) { 168 rcu_read_unlock(); 169 return true; 170 } 171 } 172 rcu_read_unlock(); 173 return false; 174 } 175 176 static inline bool knav_queue_match_type(struct knav_queue_inst *inst, 177 unsigned type) 178 { 179 if ((type == KNAV_QUEUE_QPEND) && 180 (inst->range->flags & RANGE_HAS_IRQ)) { 181 return true; 182 } else if ((type == KNAV_QUEUE_ACC) && 183 (inst->range->flags & RANGE_HAS_ACCUMULATOR)) { 184 return true; 185 } else if ((type == KNAV_QUEUE_GP) && 186 !(inst->range->flags & 187 (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) { 188 return true; 189 } 190 return false; 191 } 192 193 static inline struct knav_queue_inst * 194 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id) 195 { 196 struct knav_queue_inst *inst; 197 int idx; 198 199 for_each_instance(idx, inst, kdev) { 200 if (inst->id == id) 201 return inst; 202 } 203 return NULL; 204 } 205 206 static inline struct knav_queue_inst *knav_queue_find_by_id(int id) 207 { 208 if (kdev->base_id <= id && 209 kdev->base_id + kdev->num_queues > id) { 210 id -= kdev->base_id; 211 return knav_queue_match_id_to_inst(kdev, id); 212 } 213 return NULL; 214 } 215 216 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst, 217 const char *name, unsigned flags) 218 { 219 struct knav_queue *qh; 220 unsigned id; 221 int ret = 0; 222 223 qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL); 224 if (!qh) 225 return ERR_PTR(-ENOMEM); 226 227 qh->stats = alloc_percpu(struct knav_queue_stats); 228 if (!qh->stats) { 229 ret = -ENOMEM; 230 goto err; 231 } 232 233 qh->flags = flags; 234 qh->inst = inst; 235 id = inst->id - inst->qmgr->start_queue; 236 qh->reg_push = &inst->qmgr->reg_push[id]; 237 qh->reg_pop = &inst->qmgr->reg_pop[id]; 238 qh->reg_peek = &inst->qmgr->reg_peek[id]; 239 240 /* first opener? */ 241 if (!knav_queue_is_busy(inst)) { 242 struct knav_range_info *range = inst->range; 243 244 inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL); 245 if (range->ops && range->ops->open_queue) 246 ret = range->ops->open_queue(range, inst, flags); 247 248 if (ret) 249 goto err; 250 } 251 list_add_tail_rcu(&qh->list, &inst->handles); 252 return qh; 253 254 err: 255 free_percpu(qh->stats); 256 devm_kfree(inst->kdev->dev, qh); 257 return ERR_PTR(ret); 258 } 259 260 static struct knav_queue * 261 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags) 262 { 263 struct knav_queue_inst *inst; 264 struct knav_queue *qh; 265 266 mutex_lock(&knav_dev_lock); 267 268 qh = ERR_PTR(-ENODEV); 269 inst = knav_queue_find_by_id(id); 270 if (!inst) 271 goto unlock_ret; 272 273 qh = ERR_PTR(-EEXIST); 274 if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst)) 275 goto unlock_ret; 276 277 qh = ERR_PTR(-EBUSY); 278 if ((flags & KNAV_QUEUE_SHARED) && 279 (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst))) 280 goto unlock_ret; 281 282 qh = __knav_queue_open(inst, name, flags); 283 284 unlock_ret: 285 mutex_unlock(&knav_dev_lock); 286 287 return qh; 288 } 289 290 static struct knav_queue *knav_queue_open_by_type(const char *name, 291 unsigned type, unsigned flags) 292 { 293 struct knav_queue_inst *inst; 294 struct knav_queue *qh = ERR_PTR(-EINVAL); 295 int idx; 296 297 mutex_lock(&knav_dev_lock); 298 299 for_each_instance(idx, inst, kdev) { 300 if (knav_queue_is_reserved(inst)) 301 continue; 302 if (!knav_queue_match_type(inst, type)) 303 continue; 304 if (knav_queue_is_busy(inst)) 305 continue; 306 qh = __knav_queue_open(inst, name, flags); 307 goto unlock_ret; 308 } 309 310 unlock_ret: 311 mutex_unlock(&knav_dev_lock); 312 return qh; 313 } 314 315 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled) 316 { 317 struct knav_range_info *range = inst->range; 318 319 if (range->ops && range->ops->set_notify) 320 range->ops->set_notify(range, inst, enabled); 321 } 322 323 static int knav_queue_enable_notifier(struct knav_queue *qh) 324 { 325 struct knav_queue_inst *inst = qh->inst; 326 bool first; 327 328 if (WARN_ON(!qh->notifier_fn)) 329 return -EINVAL; 330 331 /* Adjust the per handle notifier count */ 332 first = (atomic_inc_return(&qh->notifier_enabled) == 1); 333 if (!first) 334 return 0; /* nothing to do */ 335 336 /* Now adjust the per instance notifier count */ 337 first = (atomic_inc_return(&inst->num_notifiers) == 1); 338 if (first) 339 knav_queue_set_notify(inst, true); 340 341 return 0; 342 } 343 344 static int knav_queue_disable_notifier(struct knav_queue *qh) 345 { 346 struct knav_queue_inst *inst = qh->inst; 347 bool last; 348 349 last = (atomic_dec_return(&qh->notifier_enabled) == 0); 350 if (!last) 351 return 0; /* nothing to do */ 352 353 last = (atomic_dec_return(&inst->num_notifiers) == 0); 354 if (last) 355 knav_queue_set_notify(inst, false); 356 357 return 0; 358 } 359 360 static int knav_queue_set_notifier(struct knav_queue *qh, 361 struct knav_queue_notify_config *cfg) 362 { 363 knav_queue_notify_fn old_fn = qh->notifier_fn; 364 365 if (!cfg) 366 return -EINVAL; 367 368 if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) 369 return -ENOTSUPP; 370 371 if (!cfg->fn && old_fn) 372 knav_queue_disable_notifier(qh); 373 374 qh->notifier_fn = cfg->fn; 375 qh->notifier_fn_arg = cfg->fn_arg; 376 377 if (cfg->fn && !old_fn) 378 knav_queue_enable_notifier(qh); 379 380 return 0; 381 } 382 383 static int knav_gp_set_notify(struct knav_range_info *range, 384 struct knav_queue_inst *inst, 385 bool enabled) 386 { 387 unsigned queue; 388 389 if (range->flags & RANGE_HAS_IRQ) { 390 queue = inst->id - range->queue_base; 391 if (enabled) 392 enable_irq(range->irqs[queue].irq); 393 else 394 disable_irq_nosync(range->irqs[queue].irq); 395 } 396 return 0; 397 } 398 399 static int knav_gp_open_queue(struct knav_range_info *range, 400 struct knav_queue_inst *inst, unsigned flags) 401 { 402 return knav_queue_setup_irq(range, inst); 403 } 404 405 static int knav_gp_close_queue(struct knav_range_info *range, 406 struct knav_queue_inst *inst) 407 { 408 knav_queue_free_irq(inst); 409 return 0; 410 } 411 412 static const struct knav_range_ops knav_gp_range_ops = { 413 .set_notify = knav_gp_set_notify, 414 .open_queue = knav_gp_open_queue, 415 .close_queue = knav_gp_close_queue, 416 }; 417 418 419 static int knav_queue_get_count(void *qhandle) 420 { 421 struct knav_queue *qh = qhandle; 422 struct knav_queue_inst *inst = qh->inst; 423 424 return readl_relaxed(&qh->reg_peek[0].entry_count) + 425 atomic_read(&inst->desc_count); 426 } 427 428 static void knav_queue_debug_show_instance(struct seq_file *s, 429 struct knav_queue_inst *inst) 430 { 431 struct knav_device *kdev = inst->kdev; 432 struct knav_queue *qh; 433 int cpu = 0; 434 int pushes = 0; 435 int pops = 0; 436 int push_errors = 0; 437 int pop_errors = 0; 438 int notifies = 0; 439 440 if (!knav_queue_is_busy(inst)) 441 return; 442 443 seq_printf(s, "\tqueue id %d (%s)\n", 444 kdev->base_id + inst->id, inst->name); 445 for_each_handle_rcu(qh, inst) { 446 for_each_possible_cpu(cpu) { 447 pushes += per_cpu_ptr(qh->stats, cpu)->pushes; 448 pops += per_cpu_ptr(qh->stats, cpu)->pops; 449 push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors; 450 pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors; 451 notifies += per_cpu_ptr(qh->stats, cpu)->notifies; 452 } 453 454 seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n", 455 qh, 456 pushes, 457 pops, 458 knav_queue_get_count(qh), 459 notifies, 460 push_errors, 461 pop_errors); 462 } 463 } 464 465 static int knav_queue_debug_show(struct seq_file *s, void *v) 466 { 467 struct knav_queue_inst *inst; 468 int idx; 469 470 mutex_lock(&knav_dev_lock); 471 seq_printf(s, "%s: %u-%u\n", 472 dev_name(kdev->dev), kdev->base_id, 473 kdev->base_id + kdev->num_queues - 1); 474 for_each_instance(idx, inst, kdev) 475 knav_queue_debug_show_instance(s, inst); 476 mutex_unlock(&knav_dev_lock); 477 478 return 0; 479 } 480 481 DEFINE_SHOW_ATTRIBUTE(knav_queue_debug); 482 483 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout, 484 u32 flags) 485 { 486 unsigned long end; 487 u32 val = 0; 488 489 end = jiffies + msecs_to_jiffies(timeout); 490 while (time_after(end, jiffies)) { 491 val = readl_relaxed(addr); 492 if (flags) 493 val &= flags; 494 if (!val) 495 break; 496 cpu_relax(); 497 } 498 return val ? -ETIMEDOUT : 0; 499 } 500 501 502 static int knav_queue_flush(struct knav_queue *qh) 503 { 504 struct knav_queue_inst *inst = qh->inst; 505 unsigned id = inst->id - inst->qmgr->start_queue; 506 507 atomic_set(&inst->desc_count, 0); 508 writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh); 509 return 0; 510 } 511 512 /** 513 * knav_queue_open() - open a hardware queue 514 * @name: - name to give the queue handle 515 * @id: - desired queue number if any or specifes the type 516 * of queue 517 * @flags: - the following flags are applicable to queues: 518 * KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are 519 * exclusive by default. 520 * Subsequent attempts to open a shared queue should 521 * also have this flag. 522 * 523 * Returns a handle to the open hardware queue if successful. Use IS_ERR() 524 * to check the returned value for error codes. 525 */ 526 void *knav_queue_open(const char *name, unsigned id, 527 unsigned flags) 528 { 529 struct knav_queue *qh = ERR_PTR(-EINVAL); 530 531 switch (id) { 532 case KNAV_QUEUE_QPEND: 533 case KNAV_QUEUE_ACC: 534 case KNAV_QUEUE_GP: 535 qh = knav_queue_open_by_type(name, id, flags); 536 break; 537 538 default: 539 qh = knav_queue_open_by_id(name, id, flags); 540 break; 541 } 542 return qh; 543 } 544 EXPORT_SYMBOL_GPL(knav_queue_open); 545 546 /** 547 * knav_queue_close() - close a hardware queue handle 548 * @qhandle: - handle to close 549 */ 550 void knav_queue_close(void *qhandle) 551 { 552 struct knav_queue *qh = qhandle; 553 struct knav_queue_inst *inst = qh->inst; 554 555 while (atomic_read(&qh->notifier_enabled) > 0) 556 knav_queue_disable_notifier(qh); 557 558 mutex_lock(&knav_dev_lock); 559 list_del_rcu(&qh->list); 560 mutex_unlock(&knav_dev_lock); 561 synchronize_rcu(); 562 if (!knav_queue_is_busy(inst)) { 563 struct knav_range_info *range = inst->range; 564 565 if (range->ops && range->ops->close_queue) 566 range->ops->close_queue(range, inst); 567 } 568 free_percpu(qh->stats); 569 devm_kfree(inst->kdev->dev, qh); 570 } 571 EXPORT_SYMBOL_GPL(knav_queue_close); 572 573 /** 574 * knav_queue_device_control() - Perform control operations on a queue 575 * @qhandle: - queue handle 576 * @cmd: - control commands 577 * @arg: - command argument 578 * 579 * Returns 0 on success, errno otherwise. 580 */ 581 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd, 582 unsigned long arg) 583 { 584 struct knav_queue *qh = qhandle; 585 struct knav_queue_notify_config *cfg; 586 int ret; 587 588 switch ((int)cmd) { 589 case KNAV_QUEUE_GET_ID: 590 ret = qh->inst->kdev->base_id + qh->inst->id; 591 break; 592 593 case KNAV_QUEUE_FLUSH: 594 ret = knav_queue_flush(qh); 595 break; 596 597 case KNAV_QUEUE_SET_NOTIFIER: 598 cfg = (void *)arg; 599 ret = knav_queue_set_notifier(qh, cfg); 600 break; 601 602 case KNAV_QUEUE_ENABLE_NOTIFY: 603 ret = knav_queue_enable_notifier(qh); 604 break; 605 606 case KNAV_QUEUE_DISABLE_NOTIFY: 607 ret = knav_queue_disable_notifier(qh); 608 break; 609 610 case KNAV_QUEUE_GET_COUNT: 611 ret = knav_queue_get_count(qh); 612 break; 613 614 default: 615 ret = -ENOTSUPP; 616 break; 617 } 618 return ret; 619 } 620 EXPORT_SYMBOL_GPL(knav_queue_device_control); 621 622 623 624 /** 625 * knav_queue_push() - push data (or descriptor) to the tail of a queue 626 * @qhandle: - hardware queue handle 627 * @dma: - DMA data to push 628 * @size: - size of data to push 629 * @flags: - can be used to pass additional information 630 * 631 * Returns 0 on success, errno otherwise. 632 */ 633 int knav_queue_push(void *qhandle, dma_addr_t dma, 634 unsigned size, unsigned flags) 635 { 636 struct knav_queue *qh = qhandle; 637 u32 val; 638 639 val = (u32)dma | ((size / 16) - 1); 640 writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh); 641 642 this_cpu_inc(qh->stats->pushes); 643 return 0; 644 } 645 EXPORT_SYMBOL_GPL(knav_queue_push); 646 647 /** 648 * knav_queue_pop() - pop data (or descriptor) from the head of a queue 649 * @qhandle: - hardware queue handle 650 * @size: - (optional) size of the data pop'ed. 651 * 652 * Returns a DMA address on success, 0 on failure. 653 */ 654 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size) 655 { 656 struct knav_queue *qh = qhandle; 657 struct knav_queue_inst *inst = qh->inst; 658 dma_addr_t dma; 659 u32 val, idx; 660 661 /* are we accumulated? */ 662 if (inst->descs) { 663 if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) { 664 atomic_inc(&inst->desc_count); 665 return 0; 666 } 667 idx = atomic_inc_return(&inst->desc_head); 668 idx &= ACC_DESCS_MASK; 669 val = inst->descs[idx]; 670 } else { 671 val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh); 672 if (unlikely(!val)) 673 return 0; 674 } 675 676 dma = val & DESC_PTR_MASK; 677 if (size) 678 *size = ((val & DESC_SIZE_MASK) + 1) * 16; 679 680 this_cpu_inc(qh->stats->pops); 681 return dma; 682 } 683 EXPORT_SYMBOL_GPL(knav_queue_pop); 684 685 /* carve out descriptors and push into queue */ 686 static void kdesc_fill_pool(struct knav_pool *pool) 687 { 688 struct knav_region *region; 689 int i; 690 691 region = pool->region; 692 pool->desc_size = region->desc_size; 693 for (i = 0; i < pool->num_desc; i++) { 694 int index = pool->region_offset + i; 695 dma_addr_t dma_addr; 696 unsigned dma_size; 697 dma_addr = region->dma_start + (region->desc_size * index); 698 dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES); 699 dma_sync_single_for_device(pool->dev, dma_addr, dma_size, 700 DMA_TO_DEVICE); 701 knav_queue_push(pool->queue, dma_addr, dma_size, 0); 702 } 703 } 704 705 /* pop out descriptors and close the queue */ 706 static void kdesc_empty_pool(struct knav_pool *pool) 707 { 708 dma_addr_t dma; 709 unsigned size; 710 void *desc; 711 int i; 712 713 if (!pool->queue) 714 return; 715 716 for (i = 0;; i++) { 717 dma = knav_queue_pop(pool->queue, &size); 718 if (!dma) 719 break; 720 desc = knav_pool_desc_dma_to_virt(pool, dma); 721 if (!desc) { 722 dev_dbg(pool->kdev->dev, 723 "couldn't unmap desc, continuing\n"); 724 } 725 } 726 WARN_ON(i != pool->num_desc); 727 knav_queue_close(pool->queue); 728 } 729 730 731 /* Get the DMA address of a descriptor */ 732 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt) 733 { 734 struct knav_pool *pool = ph; 735 return pool->region->dma_start + (virt - pool->region->virt_start); 736 } 737 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma); 738 739 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma) 740 { 741 struct knav_pool *pool = ph; 742 return pool->region->virt_start + (dma - pool->region->dma_start); 743 } 744 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt); 745 746 /** 747 * knav_pool_create() - Create a pool of descriptors 748 * @name: - name to give the pool handle 749 * @num_desc: - numbers of descriptors in the pool 750 * @region_id: - QMSS region id from which the descriptors are to be 751 * allocated. 752 * 753 * Returns a pool handle on success. 754 * Use IS_ERR_OR_NULL() to identify error values on return. 755 */ 756 void *knav_pool_create(const char *name, 757 int num_desc, int region_id) 758 { 759 struct knav_region *reg_itr, *region = NULL; 760 struct knav_pool *pool, *pi = NULL, *iter; 761 struct list_head *node; 762 unsigned last_offset; 763 int ret; 764 765 if (!kdev) 766 return ERR_PTR(-EPROBE_DEFER); 767 768 if (!kdev->dev) 769 return ERR_PTR(-ENODEV); 770 771 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL); 772 if (!pool) { 773 dev_err(kdev->dev, "out of memory allocating pool\n"); 774 return ERR_PTR(-ENOMEM); 775 } 776 777 for_each_region(kdev, reg_itr) { 778 if (reg_itr->id != region_id) 779 continue; 780 region = reg_itr; 781 break; 782 } 783 784 if (!region) { 785 dev_err(kdev->dev, "region-id(%d) not found\n", region_id); 786 ret = -EINVAL; 787 goto err; 788 } 789 790 pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0); 791 if (IS_ERR(pool->queue)) { 792 dev_err(kdev->dev, 793 "failed to open queue for pool(%s), error %ld\n", 794 name, PTR_ERR(pool->queue)); 795 ret = PTR_ERR(pool->queue); 796 goto err; 797 } 798 799 pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL); 800 pool->kdev = kdev; 801 pool->dev = kdev->dev; 802 803 mutex_lock(&knav_dev_lock); 804 805 if (num_desc > (region->num_desc - region->used_desc)) { 806 dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n", 807 region_id, name); 808 ret = -ENOMEM; 809 goto err_unlock; 810 } 811 812 /* Region maintains a sorted (by region offset) list of pools 813 * use the first free slot which is large enough to accomodate 814 * the request 815 */ 816 last_offset = 0; 817 node = ®ion->pools; 818 list_for_each_entry(iter, ®ion->pools, region_inst) { 819 if ((iter->region_offset - last_offset) >= num_desc) { 820 pi = iter; 821 break; 822 } 823 last_offset = iter->region_offset + iter->num_desc; 824 } 825 826 if (pi) { 827 node = &pi->region_inst; 828 pool->region = region; 829 pool->num_desc = num_desc; 830 pool->region_offset = last_offset; 831 region->used_desc += num_desc; 832 list_add_tail(&pool->list, &kdev->pools); 833 list_add_tail(&pool->region_inst, node); 834 } else { 835 dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n", 836 name, region_id); 837 ret = -ENOMEM; 838 goto err_unlock; 839 } 840 841 mutex_unlock(&knav_dev_lock); 842 kdesc_fill_pool(pool); 843 return pool; 844 845 err_unlock: 846 mutex_unlock(&knav_dev_lock); 847 err: 848 kfree(pool->name); 849 devm_kfree(kdev->dev, pool); 850 return ERR_PTR(ret); 851 } 852 EXPORT_SYMBOL_GPL(knav_pool_create); 853 854 /** 855 * knav_pool_destroy() - Free a pool of descriptors 856 * @ph: - pool handle 857 */ 858 void knav_pool_destroy(void *ph) 859 { 860 struct knav_pool *pool = ph; 861 862 if (!pool) 863 return; 864 865 if (!pool->region) 866 return; 867 868 kdesc_empty_pool(pool); 869 mutex_lock(&knav_dev_lock); 870 871 pool->region->used_desc -= pool->num_desc; 872 list_del(&pool->region_inst); 873 list_del(&pool->list); 874 875 mutex_unlock(&knav_dev_lock); 876 kfree(pool->name); 877 devm_kfree(kdev->dev, pool); 878 } 879 EXPORT_SYMBOL_GPL(knav_pool_destroy); 880 881 882 /** 883 * knav_pool_desc_get() - Get a descriptor from the pool 884 * @ph: - pool handle 885 * 886 * Returns descriptor from the pool. 887 */ 888 void *knav_pool_desc_get(void *ph) 889 { 890 struct knav_pool *pool = ph; 891 dma_addr_t dma; 892 unsigned size; 893 void *data; 894 895 dma = knav_queue_pop(pool->queue, &size); 896 if (unlikely(!dma)) 897 return ERR_PTR(-ENOMEM); 898 data = knav_pool_desc_dma_to_virt(pool, dma); 899 return data; 900 } 901 EXPORT_SYMBOL_GPL(knav_pool_desc_get); 902 903 /** 904 * knav_pool_desc_put() - return a descriptor to the pool 905 * @ph: - pool handle 906 * @desc: - virtual address 907 */ 908 void knav_pool_desc_put(void *ph, void *desc) 909 { 910 struct knav_pool *pool = ph; 911 dma_addr_t dma; 912 dma = knav_pool_desc_virt_to_dma(pool, desc); 913 knav_queue_push(pool->queue, dma, pool->region->desc_size, 0); 914 } 915 EXPORT_SYMBOL_GPL(knav_pool_desc_put); 916 917 /** 918 * knav_pool_desc_map() - Map descriptor for DMA transfer 919 * @ph: - pool handle 920 * @desc: - address of descriptor to map 921 * @size: - size of descriptor to map 922 * @dma: - DMA address return pointer 923 * @dma_sz: - adjusted return pointer 924 * 925 * Returns 0 on success, errno otherwise. 926 */ 927 int knav_pool_desc_map(void *ph, void *desc, unsigned size, 928 dma_addr_t *dma, unsigned *dma_sz) 929 { 930 struct knav_pool *pool = ph; 931 *dma = knav_pool_desc_virt_to_dma(pool, desc); 932 size = min(size, pool->region->desc_size); 933 size = ALIGN(size, SMP_CACHE_BYTES); 934 *dma_sz = size; 935 dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE); 936 937 /* Ensure the descriptor reaches to the memory */ 938 __iowmb(); 939 940 return 0; 941 } 942 EXPORT_SYMBOL_GPL(knav_pool_desc_map); 943 944 /** 945 * knav_pool_desc_unmap() - Unmap descriptor after DMA transfer 946 * @ph: - pool handle 947 * @dma: - DMA address of descriptor to unmap 948 * @dma_sz: - size of descriptor to unmap 949 * 950 * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify 951 * error values on return. 952 */ 953 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz) 954 { 955 struct knav_pool *pool = ph; 956 unsigned desc_sz; 957 void *desc; 958 959 desc_sz = min(dma_sz, pool->region->desc_size); 960 desc = knav_pool_desc_dma_to_virt(pool, dma); 961 dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE); 962 prefetch(desc); 963 return desc; 964 } 965 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap); 966 967 /** 968 * knav_pool_count() - Get the number of descriptors in pool. 969 * @ph: - pool handle 970 * Returns number of elements in the pool. 971 */ 972 int knav_pool_count(void *ph) 973 { 974 struct knav_pool *pool = ph; 975 return knav_queue_get_count(pool->queue); 976 } 977 EXPORT_SYMBOL_GPL(knav_pool_count); 978 979 static void knav_queue_setup_region(struct knav_device *kdev, 980 struct knav_region *region) 981 { 982 unsigned hw_num_desc, hw_desc_size, size; 983 struct knav_reg_region __iomem *regs; 984 struct knav_qmgr_info *qmgr; 985 struct knav_pool *pool; 986 int id = region->id; 987 struct page *page; 988 989 /* unused region? */ 990 if (!region->num_desc) { 991 dev_warn(kdev->dev, "unused region %s\n", region->name); 992 return; 993 } 994 995 /* get hardware descriptor value */ 996 hw_num_desc = ilog2(region->num_desc - 1) + 1; 997 998 /* did we force fit ourselves into nothingness? */ 999 if (region->num_desc < 32) { 1000 region->num_desc = 0; 1001 dev_warn(kdev->dev, "too few descriptors in region %s\n", 1002 region->name); 1003 return; 1004 } 1005 1006 size = region->num_desc * region->desc_size; 1007 region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA | 1008 GFP_DMA32); 1009 if (!region->virt_start) { 1010 region->num_desc = 0; 1011 dev_err(kdev->dev, "memory alloc failed for region %s\n", 1012 region->name); 1013 return; 1014 } 1015 region->virt_end = region->virt_start + size; 1016 page = virt_to_page(region->virt_start); 1017 1018 region->dma_start = dma_map_page(kdev->dev, page, 0, size, 1019 DMA_BIDIRECTIONAL); 1020 if (dma_mapping_error(kdev->dev, region->dma_start)) { 1021 dev_err(kdev->dev, "dma map failed for region %s\n", 1022 region->name); 1023 goto fail; 1024 } 1025 region->dma_end = region->dma_start + size; 1026 1027 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL); 1028 if (!pool) { 1029 dev_err(kdev->dev, "out of memory allocating dummy pool\n"); 1030 goto fail; 1031 } 1032 pool->num_desc = 0; 1033 pool->region_offset = region->num_desc; 1034 list_add(&pool->region_inst, ®ion->pools); 1035 1036 dev_dbg(kdev->dev, 1037 "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n", 1038 region->name, id, region->desc_size, region->num_desc, 1039 region->link_index, ®ion->dma_start, ®ion->dma_end, 1040 region->virt_start, region->virt_end); 1041 1042 hw_desc_size = (region->desc_size / 16) - 1; 1043 hw_num_desc -= 5; 1044 1045 for_each_qmgr(kdev, qmgr) { 1046 regs = qmgr->reg_region + id; 1047 writel_relaxed((u32)region->dma_start, ®s->base); 1048 writel_relaxed(region->link_index, ®s->start_index); 1049 writel_relaxed(hw_desc_size << 16 | hw_num_desc, 1050 ®s->size_count); 1051 } 1052 return; 1053 1054 fail: 1055 if (region->dma_start) 1056 dma_unmap_page(kdev->dev, region->dma_start, size, 1057 DMA_BIDIRECTIONAL); 1058 if (region->virt_start) 1059 free_pages_exact(region->virt_start, size); 1060 region->num_desc = 0; 1061 return; 1062 } 1063 1064 static const char *knav_queue_find_name(struct device_node *node) 1065 { 1066 const char *name; 1067 1068 if (of_property_read_string(node, "label", &name) < 0) 1069 name = node->name; 1070 if (!name) 1071 name = "unknown"; 1072 return name; 1073 } 1074 1075 static int knav_queue_setup_regions(struct knav_device *kdev, 1076 struct device_node *node) 1077 { 1078 struct device *dev = kdev->dev; 1079 struct device_node *regions __free(device_node) = 1080 of_get_child_by_name(node, "descriptor-regions"); 1081 struct knav_region *region; 1082 struct device_node *child; 1083 u32 temp[2]; 1084 int ret; 1085 1086 if (!regions) 1087 return dev_err_probe(dev, -ENODEV, 1088 "descriptor-regions not specified\n"); 1089 1090 for_each_child_of_node(regions, child) { 1091 region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL); 1092 if (!region) { 1093 of_node_put(child); 1094 dev_err(dev, "out of memory allocating region\n"); 1095 return -ENOMEM; 1096 } 1097 1098 region->name = knav_queue_find_name(child); 1099 of_property_read_u32(child, "id", ®ion->id); 1100 ret = of_property_read_u32_array(child, "region-spec", temp, 2); 1101 if (!ret) { 1102 region->num_desc = temp[0]; 1103 region->desc_size = temp[1]; 1104 } else { 1105 dev_err(dev, "invalid region info %s\n", region->name); 1106 devm_kfree(dev, region); 1107 continue; 1108 } 1109 1110 ret = of_property_read_u32(child, "link-index", 1111 ®ion->link_index); 1112 if (ret) { 1113 dev_err(dev, "link index not found for %s\n", 1114 region->name); 1115 devm_kfree(dev, region); 1116 continue; 1117 } 1118 1119 INIT_LIST_HEAD(®ion->pools); 1120 list_add_tail(®ion->list, &kdev->regions); 1121 } 1122 if (list_empty(&kdev->regions)) 1123 return dev_err_probe(dev, -ENODEV, 1124 "no valid region information found\n"); 1125 1126 /* Next, we run through the regions and set things up */ 1127 for_each_region(kdev, region) 1128 knav_queue_setup_region(kdev, region); 1129 1130 return 0; 1131 } 1132 1133 static int knav_get_link_ram(struct knav_device *kdev, 1134 const char *name, 1135 struct knav_link_ram_block *block) 1136 { 1137 struct platform_device *pdev = to_platform_device(kdev->dev); 1138 struct device_node *node = pdev->dev.of_node; 1139 u32 temp[2]; 1140 1141 /* 1142 * Note: link ram resources are specified in "entry" sized units. In 1143 * reality, although entries are ~40bits in hardware, we treat them as 1144 * 64-bit entities here. 1145 * 1146 * For example, to specify the internal link ram for Keystone-I class 1147 * devices, we would set the linkram0 resource to 0x80000-0x83fff. 1148 * 1149 * This gets a bit weird when other link rams are used. For example, 1150 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries 1151 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000, 1152 * which accounts for 64-bits per entry, for 16K entries. 1153 */ 1154 if (!of_property_read_u32_array(node, name , temp, 2)) { 1155 if (temp[0]) { 1156 /* 1157 * queue_base specified => using internal or onchip 1158 * link ram WARNING - we do not "reserve" this block 1159 */ 1160 block->dma = (dma_addr_t)temp[0]; 1161 block->virt = NULL; 1162 block->size = temp[1]; 1163 } else { 1164 block->size = temp[1]; 1165 /* queue_base not specific => allocate requested size */ 1166 block->virt = dmam_alloc_coherent(kdev->dev, 1167 8 * block->size, &block->dma, 1168 GFP_KERNEL); 1169 if (!block->virt) { 1170 dev_err(kdev->dev, "failed to alloc linkram\n"); 1171 return -ENOMEM; 1172 } 1173 } 1174 } else { 1175 return -ENODEV; 1176 } 1177 return 0; 1178 } 1179 1180 static int knav_queue_setup_link_ram(struct knav_device *kdev) 1181 { 1182 struct knav_link_ram_block *block; 1183 struct knav_qmgr_info *qmgr; 1184 1185 for_each_qmgr(kdev, qmgr) { 1186 block = &kdev->link_rams[0]; 1187 dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n", 1188 &block->dma, block->virt, block->size); 1189 writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0); 1190 if (kdev->version == QMSS_66AK2G) 1191 writel_relaxed(block->size, 1192 &qmgr->reg_config->link_ram_size0); 1193 else 1194 writel_relaxed(block->size - 1, 1195 &qmgr->reg_config->link_ram_size0); 1196 block++; 1197 if (!block->size) 1198 continue; 1199 1200 dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n", 1201 &block->dma, block->virt, block->size); 1202 writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1); 1203 } 1204 1205 return 0; 1206 } 1207 1208 static int knav_setup_queue_range(struct knav_device *kdev, 1209 struct device_node *node) 1210 { 1211 struct device *dev = kdev->dev; 1212 struct knav_range_info *range; 1213 struct knav_qmgr_info *qmgr; 1214 u32 temp[2], start, end, id, index; 1215 int ret, i; 1216 1217 range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL); 1218 if (!range) { 1219 dev_err(dev, "out of memory allocating range\n"); 1220 return -ENOMEM; 1221 } 1222 1223 range->kdev = kdev; 1224 range->name = knav_queue_find_name(node); 1225 ret = of_property_read_u32_array(node, "qrange", temp, 2); 1226 if (!ret) { 1227 range->queue_base = temp[0] - kdev->base_id; 1228 range->num_queues = temp[1]; 1229 } else { 1230 dev_err(dev, "invalid queue range %s\n", range->name); 1231 devm_kfree(dev, range); 1232 return -EINVAL; 1233 } 1234 1235 for (i = 0; i < RANGE_MAX_IRQS; i++) { 1236 struct of_phandle_args oirq; 1237 1238 if (of_irq_parse_one(node, i, &oirq)) 1239 break; 1240 1241 range->irqs[i].irq = irq_create_of_mapping(&oirq); 1242 if (range->irqs[i].irq == IRQ_NONE) 1243 break; 1244 1245 range->num_irqs++; 1246 1247 if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) { 1248 unsigned long mask; 1249 int bit; 1250 1251 range->irqs[i].cpu_mask = devm_kzalloc(dev, 1252 cpumask_size(), GFP_KERNEL); 1253 if (!range->irqs[i].cpu_mask) 1254 return -ENOMEM; 1255 1256 mask = (oirq.args[2] & 0x0000ff00) >> 8; 1257 for_each_set_bit(bit, &mask, BITS_PER_LONG) 1258 cpumask_set_cpu(bit, range->irqs[i].cpu_mask); 1259 } 1260 } 1261 1262 range->num_irqs = min(range->num_irqs, range->num_queues); 1263 if (range->num_irqs) 1264 range->flags |= RANGE_HAS_IRQ; 1265 1266 if (of_property_read_bool(node, "qalloc-by-id")) 1267 range->flags |= RANGE_RESERVED; 1268 1269 if (of_property_present(node, "accumulator")) { 1270 ret = knav_init_acc_range(kdev, node, range); 1271 if (ret < 0) { 1272 devm_kfree(dev, range); 1273 return ret; 1274 } 1275 } else { 1276 range->ops = &knav_gp_range_ops; 1277 } 1278 1279 /* set threshold to 1, and flush out the queues */ 1280 for_each_qmgr(kdev, qmgr) { 1281 start = max(qmgr->start_queue, range->queue_base); 1282 end = min(qmgr->start_queue + qmgr->num_queues, 1283 range->queue_base + range->num_queues); 1284 for (id = start; id < end; id++) { 1285 index = id - qmgr->start_queue; 1286 writel_relaxed(THRESH_GTE | 1, 1287 &qmgr->reg_peek[index].ptr_size_thresh); 1288 writel_relaxed(0, 1289 &qmgr->reg_push[index].ptr_size_thresh); 1290 } 1291 } 1292 1293 list_add_tail(&range->list, &kdev->queue_ranges); 1294 dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n", 1295 range->name, range->queue_base, 1296 range->queue_base + range->num_queues - 1, 1297 range->num_irqs, 1298 (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "", 1299 (range->flags & RANGE_RESERVED) ? ", reserved" : "", 1300 (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : ""); 1301 kdev->num_queues_in_use += range->num_queues; 1302 return 0; 1303 } 1304 1305 static int knav_setup_queue_pools(struct knav_device *kdev, 1306 struct device_node *node) 1307 { 1308 struct device_node *queue_pools __free(device_node) = 1309 of_get_child_by_name(node, "queue-pools"); 1310 struct device_node *type, *range; 1311 1312 if (!queue_pools) 1313 return dev_err_probe(kdev->dev, -ENODEV, 1314 "queue-pools not specified\n"); 1315 1316 for_each_child_of_node(queue_pools, type) { 1317 for_each_child_of_node(type, range) { 1318 /* return value ignored, we init the rest... */ 1319 knav_setup_queue_range(kdev, range); 1320 } 1321 } 1322 1323 /* ... and barf if they all failed! */ 1324 if (list_empty(&kdev->queue_ranges)) 1325 return dev_err_probe(kdev->dev, -ENODEV, 1326 "no valid queue range found\n"); 1327 return 0; 1328 } 1329 1330 static void knav_free_queue_range(struct knav_device *kdev, 1331 struct knav_range_info *range) 1332 { 1333 if (range->ops && range->ops->free_range) 1334 range->ops->free_range(range); 1335 list_del(&range->list); 1336 devm_kfree(kdev->dev, range); 1337 } 1338 1339 static void knav_free_queue_ranges(struct knav_device *kdev) 1340 { 1341 struct knav_range_info *range; 1342 1343 for (;;) { 1344 range = first_queue_range(kdev); 1345 if (!range) 1346 break; 1347 knav_free_queue_range(kdev, range); 1348 } 1349 } 1350 1351 static void knav_queue_free_regions(struct knav_device *kdev) 1352 { 1353 struct knav_region *region; 1354 struct knav_pool *pool, *tmp; 1355 unsigned size; 1356 1357 for (;;) { 1358 region = first_region(kdev); 1359 if (!region) 1360 break; 1361 list_for_each_entry_safe(pool, tmp, ®ion->pools, region_inst) 1362 knav_pool_destroy(pool); 1363 1364 size = region->virt_end - region->virt_start; 1365 if (size) 1366 free_pages_exact(region->virt_start, size); 1367 list_del(®ion->list); 1368 devm_kfree(kdev->dev, region); 1369 } 1370 } 1371 1372 static void __iomem *knav_queue_map_reg(struct knav_device *kdev, 1373 struct device_node *node, int index) 1374 { 1375 struct resource res; 1376 void __iomem *regs; 1377 int ret; 1378 1379 ret = of_address_to_resource(node, index, &res); 1380 if (ret) { 1381 dev_err(kdev->dev, "Can't translate of node(%pOFn) address for index(%d)\n", 1382 node, index); 1383 return ERR_PTR(ret); 1384 } 1385 1386 regs = devm_ioremap_resource(kdev->dev, &res); 1387 if (IS_ERR(regs)) 1388 dev_err(kdev->dev, "Failed to map register base for index(%d) node(%pOFn)\n", 1389 index, node); 1390 return regs; 1391 } 1392 1393 static int knav_queue_init_qmgrs(struct knav_device *kdev, 1394 struct device_node *node) 1395 { 1396 struct device *dev = kdev->dev; 1397 struct device_node *qmgrs __free(device_node) = 1398 of_get_child_by_name(node, "qmgrs"); 1399 struct knav_qmgr_info *qmgr; 1400 struct device_node *child; 1401 u32 temp[2]; 1402 int ret; 1403 1404 if (!qmgrs) 1405 return dev_err_probe(dev, -ENODEV, 1406 "queue manager info not specified\n"); 1407 1408 for_each_child_of_node(qmgrs, child) { 1409 qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL); 1410 if (!qmgr) { 1411 of_node_put(child); 1412 dev_err(dev, "out of memory allocating qmgr\n"); 1413 return -ENOMEM; 1414 } 1415 1416 ret = of_property_read_u32_array(child, "managed-queues", 1417 temp, 2); 1418 if (!ret) { 1419 qmgr->start_queue = temp[0]; 1420 qmgr->num_queues = temp[1]; 1421 } else { 1422 dev_err(dev, "invalid qmgr queue range\n"); 1423 devm_kfree(dev, qmgr); 1424 continue; 1425 } 1426 1427 dev_info(dev, "qmgr start queue %d, number of queues %d\n", 1428 qmgr->start_queue, qmgr->num_queues); 1429 1430 qmgr->reg_peek = 1431 knav_queue_map_reg(kdev, child, 1432 KNAV_QUEUE_PEEK_REG_INDEX); 1433 1434 if (kdev->version == QMSS) { 1435 qmgr->reg_status = 1436 knav_queue_map_reg(kdev, child, 1437 KNAV_QUEUE_STATUS_REG_INDEX); 1438 } 1439 1440 qmgr->reg_config = 1441 knav_queue_map_reg(kdev, child, 1442 (kdev->version == QMSS_66AK2G) ? 1443 KNAV_L_QUEUE_CONFIG_REG_INDEX : 1444 KNAV_QUEUE_CONFIG_REG_INDEX); 1445 qmgr->reg_region = 1446 knav_queue_map_reg(kdev, child, 1447 (kdev->version == QMSS_66AK2G) ? 1448 KNAV_L_QUEUE_REGION_REG_INDEX : 1449 KNAV_QUEUE_REGION_REG_INDEX); 1450 1451 qmgr->reg_push = 1452 knav_queue_map_reg(kdev, child, 1453 (kdev->version == QMSS_66AK2G) ? 1454 KNAV_L_QUEUE_PUSH_REG_INDEX : 1455 KNAV_QUEUE_PUSH_REG_INDEX); 1456 1457 if (kdev->version == QMSS) { 1458 qmgr->reg_pop = 1459 knav_queue_map_reg(kdev, child, 1460 KNAV_QUEUE_POP_REG_INDEX); 1461 } 1462 1463 if (IS_ERR(qmgr->reg_peek) || 1464 ((kdev->version == QMSS) && 1465 (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) || 1466 IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) || 1467 IS_ERR(qmgr->reg_push)) { 1468 dev_err(dev, "failed to map qmgr regs\n"); 1469 if (kdev->version == QMSS) { 1470 if (!IS_ERR(qmgr->reg_status)) 1471 devm_iounmap(dev, qmgr->reg_status); 1472 if (!IS_ERR(qmgr->reg_pop)) 1473 devm_iounmap(dev, qmgr->reg_pop); 1474 } 1475 if (!IS_ERR(qmgr->reg_peek)) 1476 devm_iounmap(dev, qmgr->reg_peek); 1477 if (!IS_ERR(qmgr->reg_config)) 1478 devm_iounmap(dev, qmgr->reg_config); 1479 if (!IS_ERR(qmgr->reg_region)) 1480 devm_iounmap(dev, qmgr->reg_region); 1481 if (!IS_ERR(qmgr->reg_push)) 1482 devm_iounmap(dev, qmgr->reg_push); 1483 devm_kfree(dev, qmgr); 1484 continue; 1485 } 1486 1487 /* Use same push register for pop as well */ 1488 if (kdev->version == QMSS_66AK2G) 1489 qmgr->reg_pop = qmgr->reg_push; 1490 1491 list_add_tail(&qmgr->list, &kdev->qmgrs); 1492 dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n", 1493 qmgr->start_queue, qmgr->num_queues, 1494 qmgr->reg_peek, qmgr->reg_status, 1495 qmgr->reg_config, qmgr->reg_region, 1496 qmgr->reg_push, qmgr->reg_pop); 1497 } 1498 return 0; 1499 } 1500 1501 static int knav_queue_init_pdsps(struct knav_device *kdev, 1502 struct device_node *pdsps) 1503 { 1504 struct device *dev = kdev->dev; 1505 struct knav_pdsp_info *pdsp; 1506 struct device_node *child; 1507 1508 for_each_child_of_node(pdsps, child) { 1509 pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL); 1510 if (!pdsp) { 1511 of_node_put(child); 1512 dev_err(dev, "out of memory allocating pdsp\n"); 1513 return -ENOMEM; 1514 } 1515 pdsp->name = knav_queue_find_name(child); 1516 pdsp->iram = 1517 knav_queue_map_reg(kdev, child, 1518 KNAV_QUEUE_PDSP_IRAM_REG_INDEX); 1519 pdsp->regs = 1520 knav_queue_map_reg(kdev, child, 1521 KNAV_QUEUE_PDSP_REGS_REG_INDEX); 1522 pdsp->intd = 1523 knav_queue_map_reg(kdev, child, 1524 KNAV_QUEUE_PDSP_INTD_REG_INDEX); 1525 pdsp->command = 1526 knav_queue_map_reg(kdev, child, 1527 KNAV_QUEUE_PDSP_CMD_REG_INDEX); 1528 1529 if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) || 1530 IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) { 1531 dev_err(dev, "failed to map pdsp %s regs\n", 1532 pdsp->name); 1533 if (!IS_ERR(pdsp->command)) 1534 devm_iounmap(dev, pdsp->command); 1535 if (!IS_ERR(pdsp->iram)) 1536 devm_iounmap(dev, pdsp->iram); 1537 if (!IS_ERR(pdsp->regs)) 1538 devm_iounmap(dev, pdsp->regs); 1539 if (!IS_ERR(pdsp->intd)) 1540 devm_iounmap(dev, pdsp->intd); 1541 devm_kfree(dev, pdsp); 1542 continue; 1543 } 1544 of_property_read_u32(child, "id", &pdsp->id); 1545 list_add_tail(&pdsp->list, &kdev->pdsps); 1546 dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n", 1547 pdsp->name, pdsp->command, pdsp->iram, pdsp->regs, 1548 pdsp->intd); 1549 } 1550 return 0; 1551 } 1552 1553 static int knav_queue_stop_pdsp(struct knav_device *kdev, 1554 struct knav_pdsp_info *pdsp) 1555 { 1556 u32 val, timeout = 1000; 1557 int ret; 1558 1559 val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE; 1560 writel_relaxed(val, &pdsp->regs->control); 1561 ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout, 1562 PDSP_CTRL_RUNNING); 1563 if (ret < 0) { 1564 dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name); 1565 return ret; 1566 } 1567 pdsp->loaded = false; 1568 pdsp->started = false; 1569 return 0; 1570 } 1571 1572 static int knav_queue_load_pdsp(struct knav_device *kdev, 1573 struct knav_pdsp_info *pdsp) 1574 { 1575 int i, ret, fwlen; 1576 const struct firmware *fw; 1577 bool found = false; 1578 u32 *fwdata; 1579 1580 for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) { 1581 if (knav_acc_firmwares[i]) { 1582 ret = request_firmware_direct(&fw, 1583 knav_acc_firmwares[i], 1584 kdev->dev); 1585 if (!ret) { 1586 found = true; 1587 break; 1588 } 1589 } 1590 } 1591 1592 if (!found) { 1593 dev_err(kdev->dev, "failed to get firmware for pdsp\n"); 1594 return -ENODEV; 1595 } 1596 1597 dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n", 1598 knav_acc_firmwares[i]); 1599 1600 writel_relaxed(pdsp->id + 1, pdsp->command + 0x18); 1601 /* download the firmware */ 1602 fwdata = (u32 *)fw->data; 1603 fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32); 1604 for (i = 0; i < fwlen; i++) 1605 writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i); 1606 1607 release_firmware(fw); 1608 return 0; 1609 } 1610 1611 static int knav_queue_start_pdsp(struct knav_device *kdev, 1612 struct knav_pdsp_info *pdsp) 1613 { 1614 u32 val, timeout = 1000; 1615 int ret; 1616 1617 /* write a command for sync */ 1618 writel_relaxed(0xffffffff, pdsp->command); 1619 while (readl_relaxed(pdsp->command) != 0xffffffff) 1620 cpu_relax(); 1621 1622 /* soft reset the PDSP */ 1623 val = readl_relaxed(&pdsp->regs->control); 1624 val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET); 1625 writel_relaxed(val, &pdsp->regs->control); 1626 1627 /* enable pdsp */ 1628 val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE; 1629 writel_relaxed(val, &pdsp->regs->control); 1630 1631 /* wait for command register to clear */ 1632 ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0); 1633 if (ret < 0) { 1634 dev_err(kdev->dev, 1635 "timed out on pdsp %s command register wait\n", 1636 pdsp->name); 1637 return ret; 1638 } 1639 return 0; 1640 } 1641 1642 static void knav_queue_stop_pdsps(struct knav_device *kdev) 1643 { 1644 struct knav_pdsp_info *pdsp; 1645 1646 /* disable all pdsps */ 1647 for_each_pdsp(kdev, pdsp) 1648 knav_queue_stop_pdsp(kdev, pdsp); 1649 } 1650 1651 static int knav_queue_start_pdsps(struct knav_device *kdev) 1652 { 1653 struct knav_pdsp_info *pdsp; 1654 int ret; 1655 1656 knav_queue_stop_pdsps(kdev); 1657 /* now load them all. We return success even if pdsp 1658 * is not loaded as acc channels are optional on having 1659 * firmware availability in the system. We set the loaded 1660 * and stated flag and when initialize the acc range, check 1661 * it and init the range only if pdsp is started. 1662 */ 1663 for_each_pdsp(kdev, pdsp) { 1664 ret = knav_queue_load_pdsp(kdev, pdsp); 1665 if (!ret) 1666 pdsp->loaded = true; 1667 } 1668 1669 for_each_pdsp(kdev, pdsp) { 1670 if (pdsp->loaded) { 1671 ret = knav_queue_start_pdsp(kdev, pdsp); 1672 if (!ret) 1673 pdsp->started = true; 1674 } 1675 } 1676 return 0; 1677 } 1678 1679 static int knav_queue_setup_pdsps(struct knav_device *kdev, 1680 struct device_node *node) 1681 { 1682 struct device_node *pdsps __free(device_node) = 1683 of_get_child_by_name(node, "pdsps"); 1684 1685 if (pdsps) { 1686 int ret; 1687 1688 ret = knav_queue_init_pdsps(kdev, pdsps); 1689 if (ret) 1690 return ret; 1691 1692 ret = knav_queue_start_pdsps(kdev); 1693 if (ret) 1694 return ret; 1695 } 1696 return 0; 1697 } 1698 1699 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id) 1700 { 1701 struct knav_qmgr_info *qmgr; 1702 1703 for_each_qmgr(kdev, qmgr) { 1704 if ((id >= qmgr->start_queue) && 1705 (id < qmgr->start_queue + qmgr->num_queues)) 1706 return qmgr; 1707 } 1708 return NULL; 1709 } 1710 1711 static int knav_queue_init_queue(struct knav_device *kdev, 1712 struct knav_range_info *range, 1713 struct knav_queue_inst *inst, 1714 unsigned id) 1715 { 1716 char irq_name[KNAV_NAME_SIZE]; 1717 inst->qmgr = knav_find_qmgr(id); 1718 if (!inst->qmgr) 1719 return -1; 1720 1721 INIT_LIST_HEAD(&inst->handles); 1722 inst->kdev = kdev; 1723 inst->range = range; 1724 inst->irq_num = -1; 1725 inst->id = id; 1726 scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id); 1727 inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL); 1728 1729 if (range->ops && range->ops->init_queue) 1730 return range->ops->init_queue(range, inst); 1731 else 1732 return 0; 1733 } 1734 1735 static int knav_queue_init_queues(struct knav_device *kdev) 1736 { 1737 struct knav_range_info *range; 1738 int size, id, base_idx; 1739 int idx = 0, ret = 0; 1740 1741 /* how much do we need for instance data? */ 1742 size = sizeof(struct knav_queue_inst); 1743 1744 /* round this up to a power of 2, keep the index to instance 1745 * arithmetic fast. 1746 * */ 1747 kdev->inst_shift = order_base_2(size); 1748 size = (1 << kdev->inst_shift) * kdev->num_queues_in_use; 1749 kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL); 1750 if (!kdev->instances) 1751 return -ENOMEM; 1752 1753 for_each_queue_range(kdev, range) { 1754 if (range->ops && range->ops->init_range) 1755 range->ops->init_range(range); 1756 base_idx = idx; 1757 for (id = range->queue_base; 1758 id < range->queue_base + range->num_queues; id++, idx++) { 1759 ret = knav_queue_init_queue(kdev, range, 1760 knav_queue_idx_to_inst(kdev, idx), id); 1761 if (ret < 0) 1762 return ret; 1763 } 1764 range->queue_base_inst = 1765 knav_queue_idx_to_inst(kdev, base_idx); 1766 } 1767 return 0; 1768 } 1769 1770 /* Match table for of_platform binding */ 1771 static const struct of_device_id keystone_qmss_of_match[] = { 1772 { 1773 .compatible = "ti,keystone-navigator-qmss", 1774 }, 1775 { 1776 .compatible = "ti,66ak2g-navss-qm", 1777 .data = (void *)QMSS_66AK2G, 1778 }, 1779 {}, 1780 }; 1781 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match); 1782 1783 static int knav_queue_probe(struct platform_device *pdev) 1784 { 1785 struct device_node *node = pdev->dev.of_node; 1786 struct device *dev = &pdev->dev; 1787 u32 temp[2]; 1788 int ret; 1789 1790 if (!node) { 1791 dev_err(dev, "device tree info unavailable\n"); 1792 return -ENODEV; 1793 } 1794 1795 kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL); 1796 if (!kdev) { 1797 dev_err(dev, "memory allocation failed\n"); 1798 return -ENOMEM; 1799 } 1800 1801 if (device_get_match_data(dev)) 1802 kdev->version = QMSS_66AK2G; 1803 1804 platform_set_drvdata(pdev, kdev); 1805 kdev->dev = dev; 1806 INIT_LIST_HEAD(&kdev->queue_ranges); 1807 INIT_LIST_HEAD(&kdev->qmgrs); 1808 INIT_LIST_HEAD(&kdev->pools); 1809 INIT_LIST_HEAD(&kdev->regions); 1810 INIT_LIST_HEAD(&kdev->pdsps); 1811 1812 pm_runtime_enable(&pdev->dev); 1813 ret = pm_runtime_resume_and_get(&pdev->dev); 1814 if (ret < 0) { 1815 pm_runtime_disable(&pdev->dev); 1816 dev_err(dev, "Failed to enable QMSS\n"); 1817 return ret; 1818 } 1819 1820 if (of_property_read_u32_array(node, "queue-range", temp, 2)) { 1821 dev_err(dev, "queue-range not specified\n"); 1822 ret = -ENODEV; 1823 goto err; 1824 } 1825 kdev->base_id = temp[0]; 1826 kdev->num_queues = temp[1]; 1827 1828 /* Initialize queue managers using device tree configuration */ 1829 ret = knav_queue_init_qmgrs(kdev, node); 1830 if (ret) 1831 goto err; 1832 1833 /* get pdsp configuration values from device tree */ 1834 ret = knav_queue_setup_pdsps(kdev, node); 1835 if (ret) 1836 goto err; 1837 1838 /* get usable queue range values from device tree */ 1839 ret = knav_setup_queue_pools(kdev, node); 1840 if (ret) 1841 goto err; 1842 1843 ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]); 1844 if (ret) { 1845 dev_err(kdev->dev, "could not setup linking ram\n"); 1846 goto err; 1847 } 1848 1849 ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]); 1850 if (ret) { 1851 /* 1852 * nothing really, we have one linking ram already, so we just 1853 * live within our means 1854 */ 1855 } 1856 1857 ret = knav_queue_setup_link_ram(kdev); 1858 if (ret) 1859 goto err; 1860 1861 ret = knav_queue_setup_regions(kdev, node); 1862 if (ret) 1863 goto err; 1864 1865 ret = knav_queue_init_queues(kdev); 1866 if (ret < 0) { 1867 dev_err(dev, "hwqueue initialization failed\n"); 1868 goto err; 1869 } 1870 1871 debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL, 1872 &knav_queue_debug_fops); 1873 device_ready = true; 1874 return 0; 1875 1876 err: 1877 knav_queue_stop_pdsps(kdev); 1878 knav_queue_free_regions(kdev); 1879 knav_free_queue_ranges(kdev); 1880 pm_runtime_put_sync(&pdev->dev); 1881 pm_runtime_disable(&pdev->dev); 1882 return ret; 1883 } 1884 1885 static void knav_queue_remove(struct platform_device *pdev) 1886 { 1887 /* TODO: Free resources */ 1888 pm_runtime_put_sync(&pdev->dev); 1889 pm_runtime_disable(&pdev->dev); 1890 } 1891 1892 static struct platform_driver keystone_qmss_driver = { 1893 .probe = knav_queue_probe, 1894 .remove = knav_queue_remove, 1895 .driver = { 1896 .name = "keystone-navigator-qmss", 1897 .of_match_table = keystone_qmss_of_match, 1898 }, 1899 }; 1900 module_platform_driver(keystone_qmss_driver); 1901 1902 MODULE_LICENSE("GPL v2"); 1903 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs"); 1904 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>"); 1905 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>"); 1906