1 /* 2 * Keystone Queue Manager subsystem driver 3 * 4 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com 5 * Authors: Sandeep Nair <sandeep_n@ti.com> 6 * Cyril Chemparathy <cyril@ti.com> 7 * Santosh Shilimkar <santosh.shilimkar@ti.com> 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License 11 * version 2 as published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/device.h> 22 #include <linux/clk.h> 23 #include <linux/io.h> 24 #include <linux/interrupt.h> 25 #include <linux/bitops.h> 26 #include <linux/slab.h> 27 #include <linux/spinlock.h> 28 #include <linux/platform_device.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/of.h> 31 #include <linux/of_irq.h> 32 #include <linux/of_device.h> 33 #include <linux/of_address.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/firmware.h> 36 #include <linux/debugfs.h> 37 #include <linux/seq_file.h> 38 #include <linux/string.h> 39 #include <linux/soc/ti/knav_qmss.h> 40 41 #include "knav_qmss.h" 42 43 static struct knav_device *kdev; 44 static DEFINE_MUTEX(knav_dev_lock); 45 46 /* Queue manager register indices in DTS */ 47 #define KNAV_QUEUE_PEEK_REG_INDEX 0 48 #define KNAV_QUEUE_STATUS_REG_INDEX 1 49 #define KNAV_QUEUE_CONFIG_REG_INDEX 2 50 #define KNAV_QUEUE_REGION_REG_INDEX 3 51 #define KNAV_QUEUE_PUSH_REG_INDEX 4 52 #define KNAV_QUEUE_POP_REG_INDEX 5 53 54 /* PDSP register indices in DTS */ 55 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX 0 56 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX 1 57 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX 2 58 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX 3 59 60 #define knav_queue_idx_to_inst(kdev, idx) \ 61 (kdev->instances + (idx << kdev->inst_shift)) 62 63 #define for_each_handle_rcu(qh, inst) \ 64 list_for_each_entry_rcu(qh, &inst->handles, list) 65 66 #define for_each_instance(idx, inst, kdev) \ 67 for (idx = 0, inst = kdev->instances; \ 68 idx < (kdev)->num_queues_in_use; \ 69 idx++, inst = knav_queue_idx_to_inst(kdev, idx)) 70 71 /* All firmware file names end up here. List the firmware file names below. 72 * Newest followed by older ones. Search is done from start of the array 73 * until a firmware file is found. 74 */ 75 const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"}; 76 77 /** 78 * knav_queue_notify: qmss queue notfier call 79 * 80 * @inst: qmss queue instance like accumulator 81 */ 82 void knav_queue_notify(struct knav_queue_inst *inst) 83 { 84 struct knav_queue *qh; 85 86 if (!inst) 87 return; 88 89 rcu_read_lock(); 90 for_each_handle_rcu(qh, inst) { 91 if (atomic_read(&qh->notifier_enabled) <= 0) 92 continue; 93 if (WARN_ON(!qh->notifier_fn)) 94 continue; 95 atomic_inc(&qh->stats.notifies); 96 qh->notifier_fn(qh->notifier_fn_arg); 97 } 98 rcu_read_unlock(); 99 } 100 EXPORT_SYMBOL_GPL(knav_queue_notify); 101 102 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata) 103 { 104 struct knav_queue_inst *inst = _instdata; 105 106 knav_queue_notify(inst); 107 return IRQ_HANDLED; 108 } 109 110 static int knav_queue_setup_irq(struct knav_range_info *range, 111 struct knav_queue_inst *inst) 112 { 113 unsigned queue = inst->id - range->queue_base; 114 unsigned long cpu_map; 115 int ret = 0, irq; 116 117 if (range->flags & RANGE_HAS_IRQ) { 118 irq = range->irqs[queue].irq; 119 cpu_map = range->irqs[queue].cpu_map; 120 ret = request_irq(irq, knav_queue_int_handler, 0, 121 inst->irq_name, inst); 122 if (ret) 123 return ret; 124 disable_irq(irq); 125 if (cpu_map) { 126 ret = irq_set_affinity_hint(irq, to_cpumask(&cpu_map)); 127 if (ret) { 128 dev_warn(range->kdev->dev, 129 "Failed to set IRQ affinity\n"); 130 return ret; 131 } 132 } 133 } 134 return ret; 135 } 136 137 static void knav_queue_free_irq(struct knav_queue_inst *inst) 138 { 139 struct knav_range_info *range = inst->range; 140 unsigned queue = inst->id - inst->range->queue_base; 141 int irq; 142 143 if (range->flags & RANGE_HAS_IRQ) { 144 irq = range->irqs[queue].irq; 145 irq_set_affinity_hint(irq, NULL); 146 free_irq(irq, inst); 147 } 148 } 149 150 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst) 151 { 152 return !list_empty(&inst->handles); 153 } 154 155 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst) 156 { 157 return inst->range->flags & RANGE_RESERVED; 158 } 159 160 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst) 161 { 162 struct knav_queue *tmp; 163 164 rcu_read_lock(); 165 for_each_handle_rcu(tmp, inst) { 166 if (tmp->flags & KNAV_QUEUE_SHARED) { 167 rcu_read_unlock(); 168 return true; 169 } 170 } 171 rcu_read_unlock(); 172 return false; 173 } 174 175 static inline bool knav_queue_match_type(struct knav_queue_inst *inst, 176 unsigned type) 177 { 178 if ((type == KNAV_QUEUE_QPEND) && 179 (inst->range->flags & RANGE_HAS_IRQ)) { 180 return true; 181 } else if ((type == KNAV_QUEUE_ACC) && 182 (inst->range->flags & RANGE_HAS_ACCUMULATOR)) { 183 return true; 184 } else if ((type == KNAV_QUEUE_GP) && 185 !(inst->range->flags & 186 (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) { 187 return true; 188 } 189 return false; 190 } 191 192 static inline struct knav_queue_inst * 193 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id) 194 { 195 struct knav_queue_inst *inst; 196 int idx; 197 198 for_each_instance(idx, inst, kdev) { 199 if (inst->id == id) 200 return inst; 201 } 202 return NULL; 203 } 204 205 static inline struct knav_queue_inst *knav_queue_find_by_id(int id) 206 { 207 if (kdev->base_id <= id && 208 kdev->base_id + kdev->num_queues > id) { 209 id -= kdev->base_id; 210 return knav_queue_match_id_to_inst(kdev, id); 211 } 212 return NULL; 213 } 214 215 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst, 216 const char *name, unsigned flags) 217 { 218 struct knav_queue *qh; 219 unsigned id; 220 int ret = 0; 221 222 qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL); 223 if (!qh) 224 return ERR_PTR(-ENOMEM); 225 226 qh->flags = flags; 227 qh->inst = inst; 228 id = inst->id - inst->qmgr->start_queue; 229 qh->reg_push = &inst->qmgr->reg_push[id]; 230 qh->reg_pop = &inst->qmgr->reg_pop[id]; 231 qh->reg_peek = &inst->qmgr->reg_peek[id]; 232 233 /* first opener? */ 234 if (!knav_queue_is_busy(inst)) { 235 struct knav_range_info *range = inst->range; 236 237 inst->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL); 238 if (range->ops && range->ops->open_queue) 239 ret = range->ops->open_queue(range, inst, flags); 240 241 if (ret) { 242 devm_kfree(inst->kdev->dev, qh); 243 return ERR_PTR(ret); 244 } 245 } 246 list_add_tail_rcu(&qh->list, &inst->handles); 247 return qh; 248 } 249 250 static struct knav_queue * 251 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags) 252 { 253 struct knav_queue_inst *inst; 254 struct knav_queue *qh; 255 256 mutex_lock(&knav_dev_lock); 257 258 qh = ERR_PTR(-ENODEV); 259 inst = knav_queue_find_by_id(id); 260 if (!inst) 261 goto unlock_ret; 262 263 qh = ERR_PTR(-EEXIST); 264 if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst)) 265 goto unlock_ret; 266 267 qh = ERR_PTR(-EBUSY); 268 if ((flags & KNAV_QUEUE_SHARED) && 269 (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst))) 270 goto unlock_ret; 271 272 qh = __knav_queue_open(inst, name, flags); 273 274 unlock_ret: 275 mutex_unlock(&knav_dev_lock); 276 277 return qh; 278 } 279 280 static struct knav_queue *knav_queue_open_by_type(const char *name, 281 unsigned type, unsigned flags) 282 { 283 struct knav_queue_inst *inst; 284 struct knav_queue *qh = ERR_PTR(-EINVAL); 285 int idx; 286 287 mutex_lock(&knav_dev_lock); 288 289 for_each_instance(idx, inst, kdev) { 290 if (knav_queue_is_reserved(inst)) 291 continue; 292 if (!knav_queue_match_type(inst, type)) 293 continue; 294 if (knav_queue_is_busy(inst)) 295 continue; 296 qh = __knav_queue_open(inst, name, flags); 297 goto unlock_ret; 298 } 299 300 unlock_ret: 301 mutex_unlock(&knav_dev_lock); 302 return qh; 303 } 304 305 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled) 306 { 307 struct knav_range_info *range = inst->range; 308 309 if (range->ops && range->ops->set_notify) 310 range->ops->set_notify(range, inst, enabled); 311 } 312 313 static int knav_queue_enable_notifier(struct knav_queue *qh) 314 { 315 struct knav_queue_inst *inst = qh->inst; 316 bool first; 317 318 if (WARN_ON(!qh->notifier_fn)) 319 return -EINVAL; 320 321 /* Adjust the per handle notifier count */ 322 first = (atomic_inc_return(&qh->notifier_enabled) == 1); 323 if (!first) 324 return 0; /* nothing to do */ 325 326 /* Now adjust the per instance notifier count */ 327 first = (atomic_inc_return(&inst->num_notifiers) == 1); 328 if (first) 329 knav_queue_set_notify(inst, true); 330 331 return 0; 332 } 333 334 static int knav_queue_disable_notifier(struct knav_queue *qh) 335 { 336 struct knav_queue_inst *inst = qh->inst; 337 bool last; 338 339 last = (atomic_dec_return(&qh->notifier_enabled) == 0); 340 if (!last) 341 return 0; /* nothing to do */ 342 343 last = (atomic_dec_return(&inst->num_notifiers) == 0); 344 if (last) 345 knav_queue_set_notify(inst, false); 346 347 return 0; 348 } 349 350 static int knav_queue_set_notifier(struct knav_queue *qh, 351 struct knav_queue_notify_config *cfg) 352 { 353 knav_queue_notify_fn old_fn = qh->notifier_fn; 354 355 if (!cfg) 356 return -EINVAL; 357 358 if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) 359 return -ENOTSUPP; 360 361 if (!cfg->fn && old_fn) 362 knav_queue_disable_notifier(qh); 363 364 qh->notifier_fn = cfg->fn; 365 qh->notifier_fn_arg = cfg->fn_arg; 366 367 if (cfg->fn && !old_fn) 368 knav_queue_enable_notifier(qh); 369 370 return 0; 371 } 372 373 static int knav_gp_set_notify(struct knav_range_info *range, 374 struct knav_queue_inst *inst, 375 bool enabled) 376 { 377 unsigned queue; 378 379 if (range->flags & RANGE_HAS_IRQ) { 380 queue = inst->id - range->queue_base; 381 if (enabled) 382 enable_irq(range->irqs[queue].irq); 383 else 384 disable_irq_nosync(range->irqs[queue].irq); 385 } 386 return 0; 387 } 388 389 static int knav_gp_open_queue(struct knav_range_info *range, 390 struct knav_queue_inst *inst, unsigned flags) 391 { 392 return knav_queue_setup_irq(range, inst); 393 } 394 395 static int knav_gp_close_queue(struct knav_range_info *range, 396 struct knav_queue_inst *inst) 397 { 398 knav_queue_free_irq(inst); 399 return 0; 400 } 401 402 struct knav_range_ops knav_gp_range_ops = { 403 .set_notify = knav_gp_set_notify, 404 .open_queue = knav_gp_open_queue, 405 .close_queue = knav_gp_close_queue, 406 }; 407 408 409 static int knav_queue_get_count(void *qhandle) 410 { 411 struct knav_queue *qh = qhandle; 412 struct knav_queue_inst *inst = qh->inst; 413 414 return readl_relaxed(&qh->reg_peek[0].entry_count) + 415 atomic_read(&inst->desc_count); 416 } 417 418 static void knav_queue_debug_show_instance(struct seq_file *s, 419 struct knav_queue_inst *inst) 420 { 421 struct knav_device *kdev = inst->kdev; 422 struct knav_queue *qh; 423 424 if (!knav_queue_is_busy(inst)) 425 return; 426 427 seq_printf(s, "\tqueue id %d (%s)\n", 428 kdev->base_id + inst->id, inst->name); 429 for_each_handle_rcu(qh, inst) { 430 seq_printf(s, "\t\thandle %p: ", qh); 431 seq_printf(s, "pushes %8d, ", 432 atomic_read(&qh->stats.pushes)); 433 seq_printf(s, "pops %8d, ", 434 atomic_read(&qh->stats.pops)); 435 seq_printf(s, "count %8d, ", 436 knav_queue_get_count(qh)); 437 seq_printf(s, "notifies %8d, ", 438 atomic_read(&qh->stats.notifies)); 439 seq_printf(s, "push errors %8d, ", 440 atomic_read(&qh->stats.push_errors)); 441 seq_printf(s, "pop errors %8d\n", 442 atomic_read(&qh->stats.pop_errors)); 443 } 444 } 445 446 static int knav_queue_debug_show(struct seq_file *s, void *v) 447 { 448 struct knav_queue_inst *inst; 449 int idx; 450 451 mutex_lock(&knav_dev_lock); 452 seq_printf(s, "%s: %u-%u\n", 453 dev_name(kdev->dev), kdev->base_id, 454 kdev->base_id + kdev->num_queues - 1); 455 for_each_instance(idx, inst, kdev) 456 knav_queue_debug_show_instance(s, inst); 457 mutex_unlock(&knav_dev_lock); 458 459 return 0; 460 } 461 462 static int knav_queue_debug_open(struct inode *inode, struct file *file) 463 { 464 return single_open(file, knav_queue_debug_show, NULL); 465 } 466 467 static const struct file_operations knav_queue_debug_ops = { 468 .open = knav_queue_debug_open, 469 .read = seq_read, 470 .llseek = seq_lseek, 471 .release = single_release, 472 }; 473 474 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout, 475 u32 flags) 476 { 477 unsigned long end; 478 u32 val = 0; 479 480 end = jiffies + msecs_to_jiffies(timeout); 481 while (time_after(end, jiffies)) { 482 val = readl_relaxed(addr); 483 if (flags) 484 val &= flags; 485 if (!val) 486 break; 487 cpu_relax(); 488 } 489 return val ? -ETIMEDOUT : 0; 490 } 491 492 493 static int knav_queue_flush(struct knav_queue *qh) 494 { 495 struct knav_queue_inst *inst = qh->inst; 496 unsigned id = inst->id - inst->qmgr->start_queue; 497 498 atomic_set(&inst->desc_count, 0); 499 writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh); 500 return 0; 501 } 502 503 /** 504 * knav_queue_open() - open a hardware queue 505 * @name - name to give the queue handle 506 * @id - desired queue number if any or specifes the type 507 * of queue 508 * @flags - the following flags are applicable to queues: 509 * KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are 510 * exclusive by default. 511 * Subsequent attempts to open a shared queue should 512 * also have this flag. 513 * 514 * Returns a handle to the open hardware queue if successful. Use IS_ERR() 515 * to check the returned value for error codes. 516 */ 517 void *knav_queue_open(const char *name, unsigned id, 518 unsigned flags) 519 { 520 struct knav_queue *qh = ERR_PTR(-EINVAL); 521 522 switch (id) { 523 case KNAV_QUEUE_QPEND: 524 case KNAV_QUEUE_ACC: 525 case KNAV_QUEUE_GP: 526 qh = knav_queue_open_by_type(name, id, flags); 527 break; 528 529 default: 530 qh = knav_queue_open_by_id(name, id, flags); 531 break; 532 } 533 return qh; 534 } 535 EXPORT_SYMBOL_GPL(knav_queue_open); 536 537 /** 538 * knav_queue_close() - close a hardware queue handle 539 * @qh - handle to close 540 */ 541 void knav_queue_close(void *qhandle) 542 { 543 struct knav_queue *qh = qhandle; 544 struct knav_queue_inst *inst = qh->inst; 545 546 while (atomic_read(&qh->notifier_enabled) > 0) 547 knav_queue_disable_notifier(qh); 548 549 mutex_lock(&knav_dev_lock); 550 list_del_rcu(&qh->list); 551 mutex_unlock(&knav_dev_lock); 552 synchronize_rcu(); 553 if (!knav_queue_is_busy(inst)) { 554 struct knav_range_info *range = inst->range; 555 556 if (range->ops && range->ops->close_queue) 557 range->ops->close_queue(range, inst); 558 } 559 devm_kfree(inst->kdev->dev, qh); 560 } 561 EXPORT_SYMBOL_GPL(knav_queue_close); 562 563 /** 564 * knav_queue_device_control() - Perform control operations on a queue 565 * @qh - queue handle 566 * @cmd - control commands 567 * @arg - command argument 568 * 569 * Returns 0 on success, errno otherwise. 570 */ 571 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd, 572 unsigned long arg) 573 { 574 struct knav_queue *qh = qhandle; 575 struct knav_queue_notify_config *cfg; 576 int ret; 577 578 switch ((int)cmd) { 579 case KNAV_QUEUE_GET_ID: 580 ret = qh->inst->kdev->base_id + qh->inst->id; 581 break; 582 583 case KNAV_QUEUE_FLUSH: 584 ret = knav_queue_flush(qh); 585 break; 586 587 case KNAV_QUEUE_SET_NOTIFIER: 588 cfg = (void *)arg; 589 ret = knav_queue_set_notifier(qh, cfg); 590 break; 591 592 case KNAV_QUEUE_ENABLE_NOTIFY: 593 ret = knav_queue_enable_notifier(qh); 594 break; 595 596 case KNAV_QUEUE_DISABLE_NOTIFY: 597 ret = knav_queue_disable_notifier(qh); 598 break; 599 600 case KNAV_QUEUE_GET_COUNT: 601 ret = knav_queue_get_count(qh); 602 break; 603 604 default: 605 ret = -ENOTSUPP; 606 break; 607 } 608 return ret; 609 } 610 EXPORT_SYMBOL_GPL(knav_queue_device_control); 611 612 613 614 /** 615 * knav_queue_push() - push data (or descriptor) to the tail of a queue 616 * @qh - hardware queue handle 617 * @data - data to push 618 * @size - size of data to push 619 * @flags - can be used to pass additional information 620 * 621 * Returns 0 on success, errno otherwise. 622 */ 623 int knav_queue_push(void *qhandle, dma_addr_t dma, 624 unsigned size, unsigned flags) 625 { 626 struct knav_queue *qh = qhandle; 627 u32 val; 628 629 val = (u32)dma | ((size / 16) - 1); 630 writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh); 631 632 atomic_inc(&qh->stats.pushes); 633 return 0; 634 } 635 EXPORT_SYMBOL_GPL(knav_queue_push); 636 637 /** 638 * knav_queue_pop() - pop data (or descriptor) from the head of a queue 639 * @qh - hardware queue handle 640 * @size - (optional) size of the data pop'ed. 641 * 642 * Returns a DMA address on success, 0 on failure. 643 */ 644 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size) 645 { 646 struct knav_queue *qh = qhandle; 647 struct knav_queue_inst *inst = qh->inst; 648 dma_addr_t dma; 649 u32 val, idx; 650 651 /* are we accumulated? */ 652 if (inst->descs) { 653 if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) { 654 atomic_inc(&inst->desc_count); 655 return 0; 656 } 657 idx = atomic_inc_return(&inst->desc_head); 658 idx &= ACC_DESCS_MASK; 659 val = inst->descs[idx]; 660 } else { 661 val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh); 662 if (unlikely(!val)) 663 return 0; 664 } 665 666 dma = val & DESC_PTR_MASK; 667 if (size) 668 *size = ((val & DESC_SIZE_MASK) + 1) * 16; 669 670 atomic_inc(&qh->stats.pops); 671 return dma; 672 } 673 EXPORT_SYMBOL_GPL(knav_queue_pop); 674 675 /* carve out descriptors and push into queue */ 676 static void kdesc_fill_pool(struct knav_pool *pool) 677 { 678 struct knav_region *region; 679 int i; 680 681 region = pool->region; 682 pool->desc_size = region->desc_size; 683 for (i = 0; i < pool->num_desc; i++) { 684 int index = pool->region_offset + i; 685 dma_addr_t dma_addr; 686 unsigned dma_size; 687 dma_addr = region->dma_start + (region->desc_size * index); 688 dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES); 689 dma_sync_single_for_device(pool->dev, dma_addr, dma_size, 690 DMA_TO_DEVICE); 691 knav_queue_push(pool->queue, dma_addr, dma_size, 0); 692 } 693 } 694 695 /* pop out descriptors and close the queue */ 696 static void kdesc_empty_pool(struct knav_pool *pool) 697 { 698 dma_addr_t dma; 699 unsigned size; 700 void *desc; 701 int i; 702 703 if (!pool->queue) 704 return; 705 706 for (i = 0;; i++) { 707 dma = knav_queue_pop(pool->queue, &size); 708 if (!dma) 709 break; 710 desc = knav_pool_desc_dma_to_virt(pool, dma); 711 if (!desc) { 712 dev_dbg(pool->kdev->dev, 713 "couldn't unmap desc, continuing\n"); 714 continue; 715 } 716 } 717 WARN_ON(i != pool->num_desc); 718 knav_queue_close(pool->queue); 719 } 720 721 722 /* Get the DMA address of a descriptor */ 723 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt) 724 { 725 struct knav_pool *pool = ph; 726 return pool->region->dma_start + (virt - pool->region->virt_start); 727 } 728 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma); 729 730 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma) 731 { 732 struct knav_pool *pool = ph; 733 return pool->region->virt_start + (dma - pool->region->dma_start); 734 } 735 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt); 736 737 /** 738 * knav_pool_create() - Create a pool of descriptors 739 * @name - name to give the pool handle 740 * @num_desc - numbers of descriptors in the pool 741 * @region_id - QMSS region id from which the descriptors are to be 742 * allocated. 743 * 744 * Returns a pool handle on success. 745 * Use IS_ERR_OR_NULL() to identify error values on return. 746 */ 747 void *knav_pool_create(const char *name, 748 int num_desc, int region_id) 749 { 750 struct knav_region *reg_itr, *region = NULL; 751 struct knav_pool *pool, *pi; 752 struct list_head *node; 753 unsigned last_offset; 754 bool slot_found; 755 int ret; 756 757 if (!kdev->dev) 758 return ERR_PTR(-ENODEV); 759 760 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL); 761 if (!pool) { 762 dev_err(kdev->dev, "out of memory allocating pool\n"); 763 return ERR_PTR(-ENOMEM); 764 } 765 766 for_each_region(kdev, reg_itr) { 767 if (reg_itr->id != region_id) 768 continue; 769 region = reg_itr; 770 break; 771 } 772 773 if (!region) { 774 dev_err(kdev->dev, "region-id(%d) not found\n", region_id); 775 ret = -EINVAL; 776 goto err; 777 } 778 779 pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0); 780 if (IS_ERR_OR_NULL(pool->queue)) { 781 dev_err(kdev->dev, 782 "failed to open queue for pool(%s), error %ld\n", 783 name, PTR_ERR(pool->queue)); 784 ret = PTR_ERR(pool->queue); 785 goto err; 786 } 787 788 pool->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL); 789 pool->kdev = kdev; 790 pool->dev = kdev->dev; 791 792 mutex_lock(&knav_dev_lock); 793 794 if (num_desc > (region->num_desc - region->used_desc)) { 795 dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n", 796 region_id, name); 797 ret = -ENOMEM; 798 goto err_unlock; 799 } 800 801 /* Region maintains a sorted (by region offset) list of pools 802 * use the first free slot which is large enough to accomodate 803 * the request 804 */ 805 last_offset = 0; 806 slot_found = false; 807 node = ®ion->pools; 808 list_for_each_entry(pi, ®ion->pools, region_inst) { 809 if ((pi->region_offset - last_offset) >= num_desc) { 810 slot_found = true; 811 break; 812 } 813 last_offset = pi->region_offset + pi->num_desc; 814 } 815 node = &pi->region_inst; 816 817 if (slot_found) { 818 pool->region = region; 819 pool->num_desc = num_desc; 820 pool->region_offset = last_offset; 821 region->used_desc += num_desc; 822 list_add_tail(&pool->list, &kdev->pools); 823 list_add_tail(&pool->region_inst, node); 824 } else { 825 dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n", 826 name, region_id); 827 ret = -ENOMEM; 828 goto err_unlock; 829 } 830 831 mutex_unlock(&knav_dev_lock); 832 kdesc_fill_pool(pool); 833 return pool; 834 835 err_unlock: 836 mutex_unlock(&knav_dev_lock); 837 err: 838 kfree(pool->name); 839 devm_kfree(kdev->dev, pool); 840 return ERR_PTR(ret); 841 } 842 EXPORT_SYMBOL_GPL(knav_pool_create); 843 844 /** 845 * knav_pool_destroy() - Free a pool of descriptors 846 * @pool - pool handle 847 */ 848 void knav_pool_destroy(void *ph) 849 { 850 struct knav_pool *pool = ph; 851 852 if (!pool) 853 return; 854 855 if (!pool->region) 856 return; 857 858 kdesc_empty_pool(pool); 859 mutex_lock(&knav_dev_lock); 860 861 pool->region->used_desc -= pool->num_desc; 862 list_del(&pool->region_inst); 863 list_del(&pool->list); 864 865 mutex_unlock(&knav_dev_lock); 866 kfree(pool->name); 867 devm_kfree(kdev->dev, pool); 868 } 869 EXPORT_SYMBOL_GPL(knav_pool_destroy); 870 871 872 /** 873 * knav_pool_desc_get() - Get a descriptor from the pool 874 * @pool - pool handle 875 * 876 * Returns descriptor from the pool. 877 */ 878 void *knav_pool_desc_get(void *ph) 879 { 880 struct knav_pool *pool = ph; 881 dma_addr_t dma; 882 unsigned size; 883 void *data; 884 885 dma = knav_queue_pop(pool->queue, &size); 886 if (unlikely(!dma)) 887 return ERR_PTR(-ENOMEM); 888 data = knav_pool_desc_dma_to_virt(pool, dma); 889 return data; 890 } 891 EXPORT_SYMBOL_GPL(knav_pool_desc_get); 892 893 /** 894 * knav_pool_desc_put() - return a descriptor to the pool 895 * @pool - pool handle 896 */ 897 void knav_pool_desc_put(void *ph, void *desc) 898 { 899 struct knav_pool *pool = ph; 900 dma_addr_t dma; 901 dma = knav_pool_desc_virt_to_dma(pool, desc); 902 knav_queue_push(pool->queue, dma, pool->region->desc_size, 0); 903 } 904 EXPORT_SYMBOL_GPL(knav_pool_desc_put); 905 906 /** 907 * knav_pool_desc_map() - Map descriptor for DMA transfer 908 * @pool - pool handle 909 * @desc - address of descriptor to map 910 * @size - size of descriptor to map 911 * @dma - DMA address return pointer 912 * @dma_sz - adjusted return pointer 913 * 914 * Returns 0 on success, errno otherwise. 915 */ 916 int knav_pool_desc_map(void *ph, void *desc, unsigned size, 917 dma_addr_t *dma, unsigned *dma_sz) 918 { 919 struct knav_pool *pool = ph; 920 *dma = knav_pool_desc_virt_to_dma(pool, desc); 921 size = min(size, pool->region->desc_size); 922 size = ALIGN(size, SMP_CACHE_BYTES); 923 *dma_sz = size; 924 dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE); 925 926 /* Ensure the descriptor reaches to the memory */ 927 __iowmb(); 928 929 return 0; 930 } 931 EXPORT_SYMBOL_GPL(knav_pool_desc_map); 932 933 /** 934 * knav_pool_desc_unmap() - Unmap descriptor after DMA transfer 935 * @pool - pool handle 936 * @dma - DMA address of descriptor to unmap 937 * @dma_sz - size of descriptor to unmap 938 * 939 * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify 940 * error values on return. 941 */ 942 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz) 943 { 944 struct knav_pool *pool = ph; 945 unsigned desc_sz; 946 void *desc; 947 948 desc_sz = min(dma_sz, pool->region->desc_size); 949 desc = knav_pool_desc_dma_to_virt(pool, dma); 950 dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE); 951 prefetch(desc); 952 return desc; 953 } 954 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap); 955 956 /** 957 * knav_pool_count() - Get the number of descriptors in pool. 958 * @pool - pool handle 959 * Returns number of elements in the pool. 960 */ 961 int knav_pool_count(void *ph) 962 { 963 struct knav_pool *pool = ph; 964 return knav_queue_get_count(pool->queue); 965 } 966 EXPORT_SYMBOL_GPL(knav_pool_count); 967 968 static void knav_queue_setup_region(struct knav_device *kdev, 969 struct knav_region *region) 970 { 971 unsigned hw_num_desc, hw_desc_size, size; 972 struct knav_reg_region __iomem *regs; 973 struct knav_qmgr_info *qmgr; 974 struct knav_pool *pool; 975 int id = region->id; 976 struct page *page; 977 978 /* unused region? */ 979 if (!region->num_desc) { 980 dev_warn(kdev->dev, "unused region %s\n", region->name); 981 return; 982 } 983 984 /* get hardware descriptor value */ 985 hw_num_desc = ilog2(region->num_desc - 1) + 1; 986 987 /* did we force fit ourselves into nothingness? */ 988 if (region->num_desc < 32) { 989 region->num_desc = 0; 990 dev_warn(kdev->dev, "too few descriptors in region %s\n", 991 region->name); 992 return; 993 } 994 995 size = region->num_desc * region->desc_size; 996 region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA | 997 GFP_DMA32); 998 if (!region->virt_start) { 999 region->num_desc = 0; 1000 dev_err(kdev->dev, "memory alloc failed for region %s\n", 1001 region->name); 1002 return; 1003 } 1004 region->virt_end = region->virt_start + size; 1005 page = virt_to_page(region->virt_start); 1006 1007 region->dma_start = dma_map_page(kdev->dev, page, 0, size, 1008 DMA_BIDIRECTIONAL); 1009 if (dma_mapping_error(kdev->dev, region->dma_start)) { 1010 dev_err(kdev->dev, "dma map failed for region %s\n", 1011 region->name); 1012 goto fail; 1013 } 1014 region->dma_end = region->dma_start + size; 1015 1016 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL); 1017 if (!pool) { 1018 dev_err(kdev->dev, "out of memory allocating dummy pool\n"); 1019 goto fail; 1020 } 1021 pool->num_desc = 0; 1022 pool->region_offset = region->num_desc; 1023 list_add(&pool->region_inst, ®ion->pools); 1024 1025 dev_dbg(kdev->dev, 1026 "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n", 1027 region->name, id, region->desc_size, region->num_desc, 1028 region->link_index, ®ion->dma_start, ®ion->dma_end, 1029 region->virt_start, region->virt_end); 1030 1031 hw_desc_size = (region->desc_size / 16) - 1; 1032 hw_num_desc -= 5; 1033 1034 for_each_qmgr(kdev, qmgr) { 1035 regs = qmgr->reg_region + id; 1036 writel_relaxed((u32)region->dma_start, ®s->base); 1037 writel_relaxed(region->link_index, ®s->start_index); 1038 writel_relaxed(hw_desc_size << 16 | hw_num_desc, 1039 ®s->size_count); 1040 } 1041 return; 1042 1043 fail: 1044 if (region->dma_start) 1045 dma_unmap_page(kdev->dev, region->dma_start, size, 1046 DMA_BIDIRECTIONAL); 1047 if (region->virt_start) 1048 free_pages_exact(region->virt_start, size); 1049 region->num_desc = 0; 1050 return; 1051 } 1052 1053 static const char *knav_queue_find_name(struct device_node *node) 1054 { 1055 const char *name; 1056 1057 if (of_property_read_string(node, "label", &name) < 0) 1058 name = node->name; 1059 if (!name) 1060 name = "unknown"; 1061 return name; 1062 } 1063 1064 static int knav_queue_setup_regions(struct knav_device *kdev, 1065 struct device_node *regions) 1066 { 1067 struct device *dev = kdev->dev; 1068 struct knav_region *region; 1069 struct device_node *child; 1070 u32 temp[2]; 1071 int ret; 1072 1073 for_each_child_of_node(regions, child) { 1074 region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL); 1075 if (!region) { 1076 dev_err(dev, "out of memory allocating region\n"); 1077 return -ENOMEM; 1078 } 1079 1080 region->name = knav_queue_find_name(child); 1081 of_property_read_u32(child, "id", ®ion->id); 1082 ret = of_property_read_u32_array(child, "region-spec", temp, 2); 1083 if (!ret) { 1084 region->num_desc = temp[0]; 1085 region->desc_size = temp[1]; 1086 } else { 1087 dev_err(dev, "invalid region info %s\n", region->name); 1088 devm_kfree(dev, region); 1089 continue; 1090 } 1091 1092 if (!of_get_property(child, "link-index", NULL)) { 1093 dev_err(dev, "No link info for %s\n", region->name); 1094 devm_kfree(dev, region); 1095 continue; 1096 } 1097 ret = of_property_read_u32(child, "link-index", 1098 ®ion->link_index); 1099 if (ret) { 1100 dev_err(dev, "link index not found for %s\n", 1101 region->name); 1102 devm_kfree(dev, region); 1103 continue; 1104 } 1105 1106 INIT_LIST_HEAD(®ion->pools); 1107 list_add_tail(®ion->list, &kdev->regions); 1108 } 1109 if (list_empty(&kdev->regions)) { 1110 dev_err(dev, "no valid region information found\n"); 1111 return -ENODEV; 1112 } 1113 1114 /* Next, we run through the regions and set things up */ 1115 for_each_region(kdev, region) 1116 knav_queue_setup_region(kdev, region); 1117 1118 return 0; 1119 } 1120 1121 static int knav_get_link_ram(struct knav_device *kdev, 1122 const char *name, 1123 struct knav_link_ram_block *block) 1124 { 1125 struct platform_device *pdev = to_platform_device(kdev->dev); 1126 struct device_node *node = pdev->dev.of_node; 1127 u32 temp[2]; 1128 1129 /* 1130 * Note: link ram resources are specified in "entry" sized units. In 1131 * reality, although entries are ~40bits in hardware, we treat them as 1132 * 64-bit entities here. 1133 * 1134 * For example, to specify the internal link ram for Keystone-I class 1135 * devices, we would set the linkram0 resource to 0x80000-0x83fff. 1136 * 1137 * This gets a bit weird when other link rams are used. For example, 1138 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries 1139 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000, 1140 * which accounts for 64-bits per entry, for 16K entries. 1141 */ 1142 if (!of_property_read_u32_array(node, name , temp, 2)) { 1143 if (temp[0]) { 1144 /* 1145 * queue_base specified => using internal or onchip 1146 * link ram WARNING - we do not "reserve" this block 1147 */ 1148 block->dma = (dma_addr_t)temp[0]; 1149 block->virt = NULL; 1150 block->size = temp[1]; 1151 } else { 1152 block->size = temp[1]; 1153 /* queue_base not specific => allocate requested size */ 1154 block->virt = dmam_alloc_coherent(kdev->dev, 1155 8 * block->size, &block->dma, 1156 GFP_KERNEL); 1157 if (!block->virt) { 1158 dev_err(kdev->dev, "failed to alloc linkram\n"); 1159 return -ENOMEM; 1160 } 1161 } 1162 } else { 1163 return -ENODEV; 1164 } 1165 return 0; 1166 } 1167 1168 static int knav_queue_setup_link_ram(struct knav_device *kdev) 1169 { 1170 struct knav_link_ram_block *block; 1171 struct knav_qmgr_info *qmgr; 1172 1173 for_each_qmgr(kdev, qmgr) { 1174 block = &kdev->link_rams[0]; 1175 dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n", 1176 &block->dma, block->virt, block->size); 1177 writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0); 1178 writel_relaxed(block->size, &qmgr->reg_config->link_ram_size0); 1179 1180 block++; 1181 if (!block->size) 1182 continue; 1183 1184 dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n", 1185 &block->dma, block->virt, block->size); 1186 writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1); 1187 } 1188 1189 return 0; 1190 } 1191 1192 static int knav_setup_queue_range(struct knav_device *kdev, 1193 struct device_node *node) 1194 { 1195 struct device *dev = kdev->dev; 1196 struct knav_range_info *range; 1197 struct knav_qmgr_info *qmgr; 1198 u32 temp[2], start, end, id, index; 1199 int ret, i; 1200 1201 range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL); 1202 if (!range) { 1203 dev_err(dev, "out of memory allocating range\n"); 1204 return -ENOMEM; 1205 } 1206 1207 range->kdev = kdev; 1208 range->name = knav_queue_find_name(node); 1209 ret = of_property_read_u32_array(node, "qrange", temp, 2); 1210 if (!ret) { 1211 range->queue_base = temp[0] - kdev->base_id; 1212 range->num_queues = temp[1]; 1213 } else { 1214 dev_err(dev, "invalid queue range %s\n", range->name); 1215 devm_kfree(dev, range); 1216 return -EINVAL; 1217 } 1218 1219 for (i = 0; i < RANGE_MAX_IRQS; i++) { 1220 struct of_phandle_args oirq; 1221 1222 if (of_irq_parse_one(node, i, &oirq)) 1223 break; 1224 1225 range->irqs[i].irq = irq_create_of_mapping(&oirq); 1226 if (range->irqs[i].irq == IRQ_NONE) 1227 break; 1228 1229 range->num_irqs++; 1230 1231 if (oirq.args_count == 3) 1232 range->irqs[i].cpu_map = 1233 (oirq.args[2] & 0x0000ff00) >> 8; 1234 } 1235 1236 range->num_irqs = min(range->num_irqs, range->num_queues); 1237 if (range->num_irqs) 1238 range->flags |= RANGE_HAS_IRQ; 1239 1240 if (of_get_property(node, "qalloc-by-id", NULL)) 1241 range->flags |= RANGE_RESERVED; 1242 1243 if (of_get_property(node, "accumulator", NULL)) { 1244 ret = knav_init_acc_range(kdev, node, range); 1245 if (ret < 0) { 1246 devm_kfree(dev, range); 1247 return ret; 1248 } 1249 } else { 1250 range->ops = &knav_gp_range_ops; 1251 } 1252 1253 /* set threshold to 1, and flush out the queues */ 1254 for_each_qmgr(kdev, qmgr) { 1255 start = max(qmgr->start_queue, range->queue_base); 1256 end = min(qmgr->start_queue + qmgr->num_queues, 1257 range->queue_base + range->num_queues); 1258 for (id = start; id < end; id++) { 1259 index = id - qmgr->start_queue; 1260 writel_relaxed(THRESH_GTE | 1, 1261 &qmgr->reg_peek[index].ptr_size_thresh); 1262 writel_relaxed(0, 1263 &qmgr->reg_push[index].ptr_size_thresh); 1264 } 1265 } 1266 1267 list_add_tail(&range->list, &kdev->queue_ranges); 1268 dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n", 1269 range->name, range->queue_base, 1270 range->queue_base + range->num_queues - 1, 1271 range->num_irqs, 1272 (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "", 1273 (range->flags & RANGE_RESERVED) ? ", reserved" : "", 1274 (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : ""); 1275 kdev->num_queues_in_use += range->num_queues; 1276 return 0; 1277 } 1278 1279 static int knav_setup_queue_pools(struct knav_device *kdev, 1280 struct device_node *queue_pools) 1281 { 1282 struct device_node *type, *range; 1283 int ret; 1284 1285 for_each_child_of_node(queue_pools, type) { 1286 for_each_child_of_node(type, range) { 1287 ret = knav_setup_queue_range(kdev, range); 1288 /* return value ignored, we init the rest... */ 1289 } 1290 } 1291 1292 /* ... and barf if they all failed! */ 1293 if (list_empty(&kdev->queue_ranges)) { 1294 dev_err(kdev->dev, "no valid queue range found\n"); 1295 return -ENODEV; 1296 } 1297 return 0; 1298 } 1299 1300 static void knav_free_queue_range(struct knav_device *kdev, 1301 struct knav_range_info *range) 1302 { 1303 if (range->ops && range->ops->free_range) 1304 range->ops->free_range(range); 1305 list_del(&range->list); 1306 devm_kfree(kdev->dev, range); 1307 } 1308 1309 static void knav_free_queue_ranges(struct knav_device *kdev) 1310 { 1311 struct knav_range_info *range; 1312 1313 for (;;) { 1314 range = first_queue_range(kdev); 1315 if (!range) 1316 break; 1317 knav_free_queue_range(kdev, range); 1318 } 1319 } 1320 1321 static void knav_queue_free_regions(struct knav_device *kdev) 1322 { 1323 struct knav_region *region; 1324 struct knav_pool *pool, *tmp; 1325 unsigned size; 1326 1327 for (;;) { 1328 region = first_region(kdev); 1329 if (!region) 1330 break; 1331 list_for_each_entry_safe(pool, tmp, ®ion->pools, region_inst) 1332 knav_pool_destroy(pool); 1333 1334 size = region->virt_end - region->virt_start; 1335 if (size) 1336 free_pages_exact(region->virt_start, size); 1337 list_del(®ion->list); 1338 devm_kfree(kdev->dev, region); 1339 } 1340 } 1341 1342 static void __iomem *knav_queue_map_reg(struct knav_device *kdev, 1343 struct device_node *node, int index) 1344 { 1345 struct resource res; 1346 void __iomem *regs; 1347 int ret; 1348 1349 ret = of_address_to_resource(node, index, &res); 1350 if (ret) { 1351 dev_err(kdev->dev, "Can't translate of node(%s) address for index(%d)\n", 1352 node->name, index); 1353 return ERR_PTR(ret); 1354 } 1355 1356 regs = devm_ioremap_resource(kdev->dev, &res); 1357 if (IS_ERR(regs)) 1358 dev_err(kdev->dev, "Failed to map register base for index(%d) node(%s)\n", 1359 index, node->name); 1360 return regs; 1361 } 1362 1363 static int knav_queue_init_qmgrs(struct knav_device *kdev, 1364 struct device_node *qmgrs) 1365 { 1366 struct device *dev = kdev->dev; 1367 struct knav_qmgr_info *qmgr; 1368 struct device_node *child; 1369 u32 temp[2]; 1370 int ret; 1371 1372 for_each_child_of_node(qmgrs, child) { 1373 qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL); 1374 if (!qmgr) { 1375 dev_err(dev, "out of memory allocating qmgr\n"); 1376 return -ENOMEM; 1377 } 1378 1379 ret = of_property_read_u32_array(child, "managed-queues", 1380 temp, 2); 1381 if (!ret) { 1382 qmgr->start_queue = temp[0]; 1383 qmgr->num_queues = temp[1]; 1384 } else { 1385 dev_err(dev, "invalid qmgr queue range\n"); 1386 devm_kfree(dev, qmgr); 1387 continue; 1388 } 1389 1390 dev_info(dev, "qmgr start queue %d, number of queues %d\n", 1391 qmgr->start_queue, qmgr->num_queues); 1392 1393 qmgr->reg_peek = 1394 knav_queue_map_reg(kdev, child, 1395 KNAV_QUEUE_PEEK_REG_INDEX); 1396 qmgr->reg_status = 1397 knav_queue_map_reg(kdev, child, 1398 KNAV_QUEUE_STATUS_REG_INDEX); 1399 qmgr->reg_config = 1400 knav_queue_map_reg(kdev, child, 1401 KNAV_QUEUE_CONFIG_REG_INDEX); 1402 qmgr->reg_region = 1403 knav_queue_map_reg(kdev, child, 1404 KNAV_QUEUE_REGION_REG_INDEX); 1405 qmgr->reg_push = 1406 knav_queue_map_reg(kdev, child, 1407 KNAV_QUEUE_PUSH_REG_INDEX); 1408 qmgr->reg_pop = 1409 knav_queue_map_reg(kdev, child, 1410 KNAV_QUEUE_POP_REG_INDEX); 1411 1412 if (IS_ERR(qmgr->reg_peek) || IS_ERR(qmgr->reg_status) || 1413 IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) || 1414 IS_ERR(qmgr->reg_push) || IS_ERR(qmgr->reg_pop)) { 1415 dev_err(dev, "failed to map qmgr regs\n"); 1416 if (!IS_ERR(qmgr->reg_peek)) 1417 devm_iounmap(dev, qmgr->reg_peek); 1418 if (!IS_ERR(qmgr->reg_status)) 1419 devm_iounmap(dev, qmgr->reg_status); 1420 if (!IS_ERR(qmgr->reg_config)) 1421 devm_iounmap(dev, qmgr->reg_config); 1422 if (!IS_ERR(qmgr->reg_region)) 1423 devm_iounmap(dev, qmgr->reg_region); 1424 if (!IS_ERR(qmgr->reg_push)) 1425 devm_iounmap(dev, qmgr->reg_push); 1426 if (!IS_ERR(qmgr->reg_pop)) 1427 devm_iounmap(dev, qmgr->reg_pop); 1428 devm_kfree(dev, qmgr); 1429 continue; 1430 } 1431 1432 list_add_tail(&qmgr->list, &kdev->qmgrs); 1433 dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n", 1434 qmgr->start_queue, qmgr->num_queues, 1435 qmgr->reg_peek, qmgr->reg_status, 1436 qmgr->reg_config, qmgr->reg_region, 1437 qmgr->reg_push, qmgr->reg_pop); 1438 } 1439 return 0; 1440 } 1441 1442 static int knav_queue_init_pdsps(struct knav_device *kdev, 1443 struct device_node *pdsps) 1444 { 1445 struct device *dev = kdev->dev; 1446 struct knav_pdsp_info *pdsp; 1447 struct device_node *child; 1448 1449 for_each_child_of_node(pdsps, child) { 1450 pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL); 1451 if (!pdsp) { 1452 dev_err(dev, "out of memory allocating pdsp\n"); 1453 return -ENOMEM; 1454 } 1455 pdsp->name = knav_queue_find_name(child); 1456 pdsp->iram = 1457 knav_queue_map_reg(kdev, child, 1458 KNAV_QUEUE_PDSP_IRAM_REG_INDEX); 1459 pdsp->regs = 1460 knav_queue_map_reg(kdev, child, 1461 KNAV_QUEUE_PDSP_REGS_REG_INDEX); 1462 pdsp->intd = 1463 knav_queue_map_reg(kdev, child, 1464 KNAV_QUEUE_PDSP_INTD_REG_INDEX); 1465 pdsp->command = 1466 knav_queue_map_reg(kdev, child, 1467 KNAV_QUEUE_PDSP_CMD_REG_INDEX); 1468 1469 if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) || 1470 IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) { 1471 dev_err(dev, "failed to map pdsp %s regs\n", 1472 pdsp->name); 1473 if (!IS_ERR(pdsp->command)) 1474 devm_iounmap(dev, pdsp->command); 1475 if (!IS_ERR(pdsp->iram)) 1476 devm_iounmap(dev, pdsp->iram); 1477 if (!IS_ERR(pdsp->regs)) 1478 devm_iounmap(dev, pdsp->regs); 1479 if (!IS_ERR(pdsp->intd)) 1480 devm_iounmap(dev, pdsp->intd); 1481 devm_kfree(dev, pdsp); 1482 continue; 1483 } 1484 of_property_read_u32(child, "id", &pdsp->id); 1485 list_add_tail(&pdsp->list, &kdev->pdsps); 1486 dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n", 1487 pdsp->name, pdsp->command, pdsp->iram, pdsp->regs, 1488 pdsp->intd); 1489 } 1490 return 0; 1491 } 1492 1493 static int knav_queue_stop_pdsp(struct knav_device *kdev, 1494 struct knav_pdsp_info *pdsp) 1495 { 1496 u32 val, timeout = 1000; 1497 int ret; 1498 1499 val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE; 1500 writel_relaxed(val, &pdsp->regs->control); 1501 ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout, 1502 PDSP_CTRL_RUNNING); 1503 if (ret < 0) { 1504 dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name); 1505 return ret; 1506 } 1507 pdsp->loaded = false; 1508 pdsp->started = false; 1509 return 0; 1510 } 1511 1512 static int knav_queue_load_pdsp(struct knav_device *kdev, 1513 struct knav_pdsp_info *pdsp) 1514 { 1515 int i, ret, fwlen; 1516 const struct firmware *fw; 1517 bool found = false; 1518 u32 *fwdata; 1519 1520 for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) { 1521 if (knav_acc_firmwares[i]) { 1522 ret = request_firmware_direct(&fw, 1523 knav_acc_firmwares[i], 1524 kdev->dev); 1525 if (!ret) { 1526 found = true; 1527 break; 1528 } 1529 } 1530 } 1531 1532 if (!found) { 1533 dev_err(kdev->dev, "failed to get firmware for pdsp\n"); 1534 return -ENODEV; 1535 } 1536 1537 dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n", 1538 knav_acc_firmwares[i]); 1539 1540 writel_relaxed(pdsp->id + 1, pdsp->command + 0x18); 1541 /* download the firmware */ 1542 fwdata = (u32 *)fw->data; 1543 fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32); 1544 for (i = 0; i < fwlen; i++) 1545 writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i); 1546 1547 release_firmware(fw); 1548 return 0; 1549 } 1550 1551 static int knav_queue_start_pdsp(struct knav_device *kdev, 1552 struct knav_pdsp_info *pdsp) 1553 { 1554 u32 val, timeout = 1000; 1555 int ret; 1556 1557 /* write a command for sync */ 1558 writel_relaxed(0xffffffff, pdsp->command); 1559 while (readl_relaxed(pdsp->command) != 0xffffffff) 1560 cpu_relax(); 1561 1562 /* soft reset the PDSP */ 1563 val = readl_relaxed(&pdsp->regs->control); 1564 val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET); 1565 writel_relaxed(val, &pdsp->regs->control); 1566 1567 /* enable pdsp */ 1568 val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE; 1569 writel_relaxed(val, &pdsp->regs->control); 1570 1571 /* wait for command register to clear */ 1572 ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0); 1573 if (ret < 0) { 1574 dev_err(kdev->dev, 1575 "timed out on pdsp %s command register wait\n", 1576 pdsp->name); 1577 return ret; 1578 } 1579 return 0; 1580 } 1581 1582 static void knav_queue_stop_pdsps(struct knav_device *kdev) 1583 { 1584 struct knav_pdsp_info *pdsp; 1585 1586 /* disable all pdsps */ 1587 for_each_pdsp(kdev, pdsp) 1588 knav_queue_stop_pdsp(kdev, pdsp); 1589 } 1590 1591 static int knav_queue_start_pdsps(struct knav_device *kdev) 1592 { 1593 struct knav_pdsp_info *pdsp; 1594 int ret; 1595 1596 knav_queue_stop_pdsps(kdev); 1597 /* now load them all. We return success even if pdsp 1598 * is not loaded as acc channels are optional on having 1599 * firmware availability in the system. We set the loaded 1600 * and stated flag and when initialize the acc range, check 1601 * it and init the range only if pdsp is started. 1602 */ 1603 for_each_pdsp(kdev, pdsp) { 1604 ret = knav_queue_load_pdsp(kdev, pdsp); 1605 if (!ret) 1606 pdsp->loaded = true; 1607 } 1608 1609 for_each_pdsp(kdev, pdsp) { 1610 if (pdsp->loaded) { 1611 ret = knav_queue_start_pdsp(kdev, pdsp); 1612 if (!ret) 1613 pdsp->started = true; 1614 } 1615 } 1616 return 0; 1617 } 1618 1619 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id) 1620 { 1621 struct knav_qmgr_info *qmgr; 1622 1623 for_each_qmgr(kdev, qmgr) { 1624 if ((id >= qmgr->start_queue) && 1625 (id < qmgr->start_queue + qmgr->num_queues)) 1626 return qmgr; 1627 } 1628 return NULL; 1629 } 1630 1631 static int knav_queue_init_queue(struct knav_device *kdev, 1632 struct knav_range_info *range, 1633 struct knav_queue_inst *inst, 1634 unsigned id) 1635 { 1636 char irq_name[KNAV_NAME_SIZE]; 1637 inst->qmgr = knav_find_qmgr(id); 1638 if (!inst->qmgr) 1639 return -1; 1640 1641 INIT_LIST_HEAD(&inst->handles); 1642 inst->kdev = kdev; 1643 inst->range = range; 1644 inst->irq_num = -1; 1645 inst->id = id; 1646 scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id); 1647 inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL); 1648 1649 if (range->ops && range->ops->init_queue) 1650 return range->ops->init_queue(range, inst); 1651 else 1652 return 0; 1653 } 1654 1655 static int knav_queue_init_queues(struct knav_device *kdev) 1656 { 1657 struct knav_range_info *range; 1658 int size, id, base_idx; 1659 int idx = 0, ret = 0; 1660 1661 /* how much do we need for instance data? */ 1662 size = sizeof(struct knav_queue_inst); 1663 1664 /* round this up to a power of 2, keep the index to instance 1665 * arithmetic fast. 1666 * */ 1667 kdev->inst_shift = order_base_2(size); 1668 size = (1 << kdev->inst_shift) * kdev->num_queues_in_use; 1669 kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL); 1670 if (!kdev->instances) 1671 return -ENOMEM; 1672 1673 for_each_queue_range(kdev, range) { 1674 if (range->ops && range->ops->init_range) 1675 range->ops->init_range(range); 1676 base_idx = idx; 1677 for (id = range->queue_base; 1678 id < range->queue_base + range->num_queues; id++, idx++) { 1679 ret = knav_queue_init_queue(kdev, range, 1680 knav_queue_idx_to_inst(kdev, idx), id); 1681 if (ret < 0) 1682 return ret; 1683 } 1684 range->queue_base_inst = 1685 knav_queue_idx_to_inst(kdev, base_idx); 1686 } 1687 return 0; 1688 } 1689 1690 static int knav_queue_probe(struct platform_device *pdev) 1691 { 1692 struct device_node *node = pdev->dev.of_node; 1693 struct device_node *qmgrs, *queue_pools, *regions, *pdsps; 1694 struct device *dev = &pdev->dev; 1695 u32 temp[2]; 1696 int ret; 1697 1698 if (!node) { 1699 dev_err(dev, "device tree info unavailable\n"); 1700 return -ENODEV; 1701 } 1702 1703 kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL); 1704 if (!kdev) { 1705 dev_err(dev, "memory allocation failed\n"); 1706 return -ENOMEM; 1707 } 1708 1709 platform_set_drvdata(pdev, kdev); 1710 kdev->dev = dev; 1711 INIT_LIST_HEAD(&kdev->queue_ranges); 1712 INIT_LIST_HEAD(&kdev->qmgrs); 1713 INIT_LIST_HEAD(&kdev->pools); 1714 INIT_LIST_HEAD(&kdev->regions); 1715 INIT_LIST_HEAD(&kdev->pdsps); 1716 1717 pm_runtime_enable(&pdev->dev); 1718 ret = pm_runtime_get_sync(&pdev->dev); 1719 if (ret < 0) { 1720 dev_err(dev, "Failed to enable QMSS\n"); 1721 return ret; 1722 } 1723 1724 if (of_property_read_u32_array(node, "queue-range", temp, 2)) { 1725 dev_err(dev, "queue-range not specified\n"); 1726 ret = -ENODEV; 1727 goto err; 1728 } 1729 kdev->base_id = temp[0]; 1730 kdev->num_queues = temp[1]; 1731 1732 /* Initialize queue managers using device tree configuration */ 1733 qmgrs = of_get_child_by_name(node, "qmgrs"); 1734 if (!qmgrs) { 1735 dev_err(dev, "queue manager info not specified\n"); 1736 ret = -ENODEV; 1737 goto err; 1738 } 1739 ret = knav_queue_init_qmgrs(kdev, qmgrs); 1740 of_node_put(qmgrs); 1741 if (ret) 1742 goto err; 1743 1744 /* get pdsp configuration values from device tree */ 1745 pdsps = of_get_child_by_name(node, "pdsps"); 1746 if (pdsps) { 1747 ret = knav_queue_init_pdsps(kdev, pdsps); 1748 if (ret) 1749 goto err; 1750 1751 ret = knav_queue_start_pdsps(kdev); 1752 if (ret) 1753 goto err; 1754 } 1755 of_node_put(pdsps); 1756 1757 /* get usable queue range values from device tree */ 1758 queue_pools = of_get_child_by_name(node, "queue-pools"); 1759 if (!queue_pools) { 1760 dev_err(dev, "queue-pools not specified\n"); 1761 ret = -ENODEV; 1762 goto err; 1763 } 1764 ret = knav_setup_queue_pools(kdev, queue_pools); 1765 of_node_put(queue_pools); 1766 if (ret) 1767 goto err; 1768 1769 ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]); 1770 if (ret) { 1771 dev_err(kdev->dev, "could not setup linking ram\n"); 1772 goto err; 1773 } 1774 1775 ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]); 1776 if (ret) { 1777 /* 1778 * nothing really, we have one linking ram already, so we just 1779 * live within our means 1780 */ 1781 } 1782 1783 ret = knav_queue_setup_link_ram(kdev); 1784 if (ret) 1785 goto err; 1786 1787 regions = of_get_child_by_name(node, "descriptor-regions"); 1788 if (!regions) { 1789 dev_err(dev, "descriptor-regions not specified\n"); 1790 goto err; 1791 } 1792 ret = knav_queue_setup_regions(kdev, regions); 1793 of_node_put(regions); 1794 if (ret) 1795 goto err; 1796 1797 ret = knav_queue_init_queues(kdev); 1798 if (ret < 0) { 1799 dev_err(dev, "hwqueue initialization failed\n"); 1800 goto err; 1801 } 1802 1803 debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL, 1804 &knav_queue_debug_ops); 1805 return 0; 1806 1807 err: 1808 knav_queue_stop_pdsps(kdev); 1809 knav_queue_free_regions(kdev); 1810 knav_free_queue_ranges(kdev); 1811 pm_runtime_put_sync(&pdev->dev); 1812 pm_runtime_disable(&pdev->dev); 1813 return ret; 1814 } 1815 1816 static int knav_queue_remove(struct platform_device *pdev) 1817 { 1818 /* TODO: Free resources */ 1819 pm_runtime_put_sync(&pdev->dev); 1820 pm_runtime_disable(&pdev->dev); 1821 return 0; 1822 } 1823 1824 /* Match table for of_platform binding */ 1825 static struct of_device_id keystone_qmss_of_match[] = { 1826 { .compatible = "ti,keystone-navigator-qmss", }, 1827 {}, 1828 }; 1829 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match); 1830 1831 static struct platform_driver keystone_qmss_driver = { 1832 .probe = knav_queue_probe, 1833 .remove = knav_queue_remove, 1834 .driver = { 1835 .name = "keystone-navigator-qmss", 1836 .of_match_table = keystone_qmss_of_match, 1837 }, 1838 }; 1839 module_platform_driver(keystone_qmss_driver); 1840 1841 MODULE_LICENSE("GPL v2"); 1842 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs"); 1843 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>"); 1844 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>"); 1845