xref: /linux/drivers/soc/ti/knav_qmss_queue.c (revision da1d9caf95def6f0320819cf941c9fd1069ba9e1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Keystone Queue Manager subsystem driver
4  *
5  * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
6  * Authors:	Sandeep Nair <sandeep_n@ti.com>
7  *		Cyril Chemparathy <cyril@ti.com>
8  *		Santosh Shilimkar <santosh.shilimkar@ti.com>
9  */
10 
11 #include <linux/debugfs.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/firmware.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/of_address.h>
18 #include <linux/of_device.h>
19 #include <linux/of_irq.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/slab.h>
22 #include <linux/soc/ti/knav_qmss.h>
23 
24 #include "knav_qmss.h"
25 
26 static struct knav_device *kdev;
27 static DEFINE_MUTEX(knav_dev_lock);
28 #define knav_dev_lock_held() \
29 	lockdep_is_held(&knav_dev_lock)
30 
31 /* Queue manager register indices in DTS */
32 #define KNAV_QUEUE_PEEK_REG_INDEX	0
33 #define KNAV_QUEUE_STATUS_REG_INDEX	1
34 #define KNAV_QUEUE_CONFIG_REG_INDEX	2
35 #define KNAV_QUEUE_REGION_REG_INDEX	3
36 #define KNAV_QUEUE_PUSH_REG_INDEX	4
37 #define KNAV_QUEUE_POP_REG_INDEX	5
38 
39 /* Queue manager register indices in DTS for QMSS in K2G NAVSS.
40  * There are no status and vbusm push registers on this version
41  * of QMSS. Push registers are same as pop, So all indices above 1
42  * are to be re-defined
43  */
44 #define KNAV_L_QUEUE_CONFIG_REG_INDEX	1
45 #define KNAV_L_QUEUE_REGION_REG_INDEX	2
46 #define KNAV_L_QUEUE_PUSH_REG_INDEX	3
47 
48 /* PDSP register indices in DTS */
49 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX	0
50 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX	1
51 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX	2
52 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX	3
53 
54 #define knav_queue_idx_to_inst(kdev, idx)			\
55 	(kdev->instances + (idx << kdev->inst_shift))
56 
57 #define for_each_handle_rcu(qh, inst)				\
58 	list_for_each_entry_rcu(qh, &inst->handles, list,	\
59 				knav_dev_lock_held())
60 
61 #define for_each_instance(idx, inst, kdev)		\
62 	for (idx = 0, inst = kdev->instances;		\
63 	     idx < (kdev)->num_queues_in_use;			\
64 	     idx++, inst = knav_queue_idx_to_inst(kdev, idx))
65 
66 /* All firmware file names end up here. List the firmware file names below.
67  * Newest followed by older ones. Search is done from start of the array
68  * until a firmware file is found.
69  */
70 const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
71 
72 static bool device_ready;
73 bool knav_qmss_device_ready(void)
74 {
75 	return device_ready;
76 }
77 EXPORT_SYMBOL_GPL(knav_qmss_device_ready);
78 
79 /**
80  * knav_queue_notify: qmss queue notfier call
81  *
82  * @inst:		- qmss queue instance like accumulator
83  */
84 void knav_queue_notify(struct knav_queue_inst *inst)
85 {
86 	struct knav_queue *qh;
87 
88 	if (!inst)
89 		return;
90 
91 	rcu_read_lock();
92 	for_each_handle_rcu(qh, inst) {
93 		if (atomic_read(&qh->notifier_enabled) <= 0)
94 			continue;
95 		if (WARN_ON(!qh->notifier_fn))
96 			continue;
97 		this_cpu_inc(qh->stats->notifies);
98 		qh->notifier_fn(qh->notifier_fn_arg);
99 	}
100 	rcu_read_unlock();
101 }
102 EXPORT_SYMBOL_GPL(knav_queue_notify);
103 
104 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
105 {
106 	struct knav_queue_inst *inst = _instdata;
107 
108 	knav_queue_notify(inst);
109 	return IRQ_HANDLED;
110 }
111 
112 static int knav_queue_setup_irq(struct knav_range_info *range,
113 			  struct knav_queue_inst *inst)
114 {
115 	unsigned queue = inst->id - range->queue_base;
116 	int ret = 0, irq;
117 
118 	if (range->flags & RANGE_HAS_IRQ) {
119 		irq = range->irqs[queue].irq;
120 		ret = request_irq(irq, knav_queue_int_handler, 0,
121 					inst->irq_name, inst);
122 		if (ret)
123 			return ret;
124 		disable_irq(irq);
125 		if (range->irqs[queue].cpu_mask) {
126 			ret = irq_set_affinity_hint(irq, range->irqs[queue].cpu_mask);
127 			if (ret) {
128 				dev_warn(range->kdev->dev,
129 					 "Failed to set IRQ affinity\n");
130 				return ret;
131 			}
132 		}
133 	}
134 	return ret;
135 }
136 
137 static void knav_queue_free_irq(struct knav_queue_inst *inst)
138 {
139 	struct knav_range_info *range = inst->range;
140 	unsigned queue = inst->id - inst->range->queue_base;
141 	int irq;
142 
143 	if (range->flags & RANGE_HAS_IRQ) {
144 		irq = range->irqs[queue].irq;
145 		irq_set_affinity_hint(irq, NULL);
146 		free_irq(irq, inst);
147 	}
148 }
149 
150 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
151 {
152 	return !list_empty(&inst->handles);
153 }
154 
155 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
156 {
157 	return inst->range->flags & RANGE_RESERVED;
158 }
159 
160 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
161 {
162 	struct knav_queue *tmp;
163 
164 	rcu_read_lock();
165 	for_each_handle_rcu(tmp, inst) {
166 		if (tmp->flags & KNAV_QUEUE_SHARED) {
167 			rcu_read_unlock();
168 			return true;
169 		}
170 	}
171 	rcu_read_unlock();
172 	return false;
173 }
174 
175 static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
176 						unsigned type)
177 {
178 	if ((type == KNAV_QUEUE_QPEND) &&
179 	    (inst->range->flags & RANGE_HAS_IRQ)) {
180 		return true;
181 	} else if ((type == KNAV_QUEUE_ACC) &&
182 		(inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
183 		return true;
184 	} else if ((type == KNAV_QUEUE_GP) &&
185 		!(inst->range->flags &
186 			(RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
187 		return true;
188 	}
189 	return false;
190 }
191 
192 static inline struct knav_queue_inst *
193 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
194 {
195 	struct knav_queue_inst *inst;
196 	int idx;
197 
198 	for_each_instance(idx, inst, kdev) {
199 		if (inst->id == id)
200 			return inst;
201 	}
202 	return NULL;
203 }
204 
205 static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
206 {
207 	if (kdev->base_id <= id &&
208 	    kdev->base_id + kdev->num_queues > id) {
209 		id -= kdev->base_id;
210 		return knav_queue_match_id_to_inst(kdev, id);
211 	}
212 	return NULL;
213 }
214 
215 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
216 				      const char *name, unsigned flags)
217 {
218 	struct knav_queue *qh;
219 	unsigned id;
220 	int ret = 0;
221 
222 	qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
223 	if (!qh)
224 		return ERR_PTR(-ENOMEM);
225 
226 	qh->stats = alloc_percpu(struct knav_queue_stats);
227 	if (!qh->stats) {
228 		ret = -ENOMEM;
229 		goto err;
230 	}
231 
232 	qh->flags = flags;
233 	qh->inst = inst;
234 	id = inst->id - inst->qmgr->start_queue;
235 	qh->reg_push = &inst->qmgr->reg_push[id];
236 	qh->reg_pop = &inst->qmgr->reg_pop[id];
237 	qh->reg_peek = &inst->qmgr->reg_peek[id];
238 
239 	/* first opener? */
240 	if (!knav_queue_is_busy(inst)) {
241 		struct knav_range_info *range = inst->range;
242 
243 		inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
244 		if (range->ops && range->ops->open_queue)
245 			ret = range->ops->open_queue(range, inst, flags);
246 
247 		if (ret)
248 			goto err;
249 	}
250 	list_add_tail_rcu(&qh->list, &inst->handles);
251 	return qh;
252 
253 err:
254 	if (qh->stats)
255 		free_percpu(qh->stats);
256 	devm_kfree(inst->kdev->dev, qh);
257 	return ERR_PTR(ret);
258 }
259 
260 static struct knav_queue *
261 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
262 {
263 	struct knav_queue_inst *inst;
264 	struct knav_queue *qh;
265 
266 	mutex_lock(&knav_dev_lock);
267 
268 	qh = ERR_PTR(-ENODEV);
269 	inst = knav_queue_find_by_id(id);
270 	if (!inst)
271 		goto unlock_ret;
272 
273 	qh = ERR_PTR(-EEXIST);
274 	if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
275 		goto unlock_ret;
276 
277 	qh = ERR_PTR(-EBUSY);
278 	if ((flags & KNAV_QUEUE_SHARED) &&
279 	    (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
280 		goto unlock_ret;
281 
282 	qh = __knav_queue_open(inst, name, flags);
283 
284 unlock_ret:
285 	mutex_unlock(&knav_dev_lock);
286 
287 	return qh;
288 }
289 
290 static struct knav_queue *knav_queue_open_by_type(const char *name,
291 						unsigned type, unsigned flags)
292 {
293 	struct knav_queue_inst *inst;
294 	struct knav_queue *qh = ERR_PTR(-EINVAL);
295 	int idx;
296 
297 	mutex_lock(&knav_dev_lock);
298 
299 	for_each_instance(idx, inst, kdev) {
300 		if (knav_queue_is_reserved(inst))
301 			continue;
302 		if (!knav_queue_match_type(inst, type))
303 			continue;
304 		if (knav_queue_is_busy(inst))
305 			continue;
306 		qh = __knav_queue_open(inst, name, flags);
307 		goto unlock_ret;
308 	}
309 
310 unlock_ret:
311 	mutex_unlock(&knav_dev_lock);
312 	return qh;
313 }
314 
315 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
316 {
317 	struct knav_range_info *range = inst->range;
318 
319 	if (range->ops && range->ops->set_notify)
320 		range->ops->set_notify(range, inst, enabled);
321 }
322 
323 static int knav_queue_enable_notifier(struct knav_queue *qh)
324 {
325 	struct knav_queue_inst *inst = qh->inst;
326 	bool first;
327 
328 	if (WARN_ON(!qh->notifier_fn))
329 		return -EINVAL;
330 
331 	/* Adjust the per handle notifier count */
332 	first = (atomic_inc_return(&qh->notifier_enabled) == 1);
333 	if (!first)
334 		return 0; /* nothing to do */
335 
336 	/* Now adjust the per instance notifier count */
337 	first = (atomic_inc_return(&inst->num_notifiers) == 1);
338 	if (first)
339 		knav_queue_set_notify(inst, true);
340 
341 	return 0;
342 }
343 
344 static int knav_queue_disable_notifier(struct knav_queue *qh)
345 {
346 	struct knav_queue_inst *inst = qh->inst;
347 	bool last;
348 
349 	last = (atomic_dec_return(&qh->notifier_enabled) == 0);
350 	if (!last)
351 		return 0; /* nothing to do */
352 
353 	last = (atomic_dec_return(&inst->num_notifiers) == 0);
354 	if (last)
355 		knav_queue_set_notify(inst, false);
356 
357 	return 0;
358 }
359 
360 static int knav_queue_set_notifier(struct knav_queue *qh,
361 				struct knav_queue_notify_config *cfg)
362 {
363 	knav_queue_notify_fn old_fn = qh->notifier_fn;
364 
365 	if (!cfg)
366 		return -EINVAL;
367 
368 	if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
369 		return -ENOTSUPP;
370 
371 	if (!cfg->fn && old_fn)
372 		knav_queue_disable_notifier(qh);
373 
374 	qh->notifier_fn = cfg->fn;
375 	qh->notifier_fn_arg = cfg->fn_arg;
376 
377 	if (cfg->fn && !old_fn)
378 		knav_queue_enable_notifier(qh);
379 
380 	return 0;
381 }
382 
383 static int knav_gp_set_notify(struct knav_range_info *range,
384 			       struct knav_queue_inst *inst,
385 			       bool enabled)
386 {
387 	unsigned queue;
388 
389 	if (range->flags & RANGE_HAS_IRQ) {
390 		queue = inst->id - range->queue_base;
391 		if (enabled)
392 			enable_irq(range->irqs[queue].irq);
393 		else
394 			disable_irq_nosync(range->irqs[queue].irq);
395 	}
396 	return 0;
397 }
398 
399 static int knav_gp_open_queue(struct knav_range_info *range,
400 				struct knav_queue_inst *inst, unsigned flags)
401 {
402 	return knav_queue_setup_irq(range, inst);
403 }
404 
405 static int knav_gp_close_queue(struct knav_range_info *range,
406 				struct knav_queue_inst *inst)
407 {
408 	knav_queue_free_irq(inst);
409 	return 0;
410 }
411 
412 static struct knav_range_ops knav_gp_range_ops = {
413 	.set_notify	= knav_gp_set_notify,
414 	.open_queue	= knav_gp_open_queue,
415 	.close_queue	= knav_gp_close_queue,
416 };
417 
418 
419 static int knav_queue_get_count(void *qhandle)
420 {
421 	struct knav_queue *qh = qhandle;
422 	struct knav_queue_inst *inst = qh->inst;
423 
424 	return readl_relaxed(&qh->reg_peek[0].entry_count) +
425 		atomic_read(&inst->desc_count);
426 }
427 
428 static void knav_queue_debug_show_instance(struct seq_file *s,
429 					struct knav_queue_inst *inst)
430 {
431 	struct knav_device *kdev = inst->kdev;
432 	struct knav_queue *qh;
433 	int cpu = 0;
434 	int pushes = 0;
435 	int pops = 0;
436 	int push_errors = 0;
437 	int pop_errors = 0;
438 	int notifies = 0;
439 
440 	if (!knav_queue_is_busy(inst))
441 		return;
442 
443 	seq_printf(s, "\tqueue id %d (%s)\n",
444 		   kdev->base_id + inst->id, inst->name);
445 	for_each_handle_rcu(qh, inst) {
446 		for_each_possible_cpu(cpu) {
447 			pushes += per_cpu_ptr(qh->stats, cpu)->pushes;
448 			pops += per_cpu_ptr(qh->stats, cpu)->pops;
449 			push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors;
450 			pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors;
451 			notifies += per_cpu_ptr(qh->stats, cpu)->notifies;
452 		}
453 
454 		seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n",
455 				qh,
456 				pushes,
457 				pops,
458 				knav_queue_get_count(qh),
459 				notifies,
460 				push_errors,
461 				pop_errors);
462 	}
463 }
464 
465 static int knav_queue_debug_show(struct seq_file *s, void *v)
466 {
467 	struct knav_queue_inst *inst;
468 	int idx;
469 
470 	mutex_lock(&knav_dev_lock);
471 	seq_printf(s, "%s: %u-%u\n",
472 		   dev_name(kdev->dev), kdev->base_id,
473 		   kdev->base_id + kdev->num_queues - 1);
474 	for_each_instance(idx, inst, kdev)
475 		knav_queue_debug_show_instance(s, inst);
476 	mutex_unlock(&knav_dev_lock);
477 
478 	return 0;
479 }
480 
481 DEFINE_SHOW_ATTRIBUTE(knav_queue_debug);
482 
483 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
484 					u32 flags)
485 {
486 	unsigned long end;
487 	u32 val = 0;
488 
489 	end = jiffies + msecs_to_jiffies(timeout);
490 	while (time_after(end, jiffies)) {
491 		val = readl_relaxed(addr);
492 		if (flags)
493 			val &= flags;
494 		if (!val)
495 			break;
496 		cpu_relax();
497 	}
498 	return val ? -ETIMEDOUT : 0;
499 }
500 
501 
502 static int knav_queue_flush(struct knav_queue *qh)
503 {
504 	struct knav_queue_inst *inst = qh->inst;
505 	unsigned id = inst->id - inst->qmgr->start_queue;
506 
507 	atomic_set(&inst->desc_count, 0);
508 	writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
509 	return 0;
510 }
511 
512 /**
513  * knav_queue_open()	- open a hardware queue
514  * @name:		- name to give the queue handle
515  * @id:			- desired queue number if any or specifes the type
516  *			  of queue
517  * @flags:		- the following flags are applicable to queues:
518  *	KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
519  *			     exclusive by default.
520  *			     Subsequent attempts to open a shared queue should
521  *			     also have this flag.
522  *
523  * Returns a handle to the open hardware queue if successful. Use IS_ERR()
524  * to check the returned value for error codes.
525  */
526 void *knav_queue_open(const char *name, unsigned id,
527 					unsigned flags)
528 {
529 	struct knav_queue *qh = ERR_PTR(-EINVAL);
530 
531 	switch (id) {
532 	case KNAV_QUEUE_QPEND:
533 	case KNAV_QUEUE_ACC:
534 	case KNAV_QUEUE_GP:
535 		qh = knav_queue_open_by_type(name, id, flags);
536 		break;
537 
538 	default:
539 		qh = knav_queue_open_by_id(name, id, flags);
540 		break;
541 	}
542 	return qh;
543 }
544 EXPORT_SYMBOL_GPL(knav_queue_open);
545 
546 /**
547  * knav_queue_close()	- close a hardware queue handle
548  * @qhandle:		- handle to close
549  */
550 void knav_queue_close(void *qhandle)
551 {
552 	struct knav_queue *qh = qhandle;
553 	struct knav_queue_inst *inst = qh->inst;
554 
555 	while (atomic_read(&qh->notifier_enabled) > 0)
556 		knav_queue_disable_notifier(qh);
557 
558 	mutex_lock(&knav_dev_lock);
559 	list_del_rcu(&qh->list);
560 	mutex_unlock(&knav_dev_lock);
561 	synchronize_rcu();
562 	if (!knav_queue_is_busy(inst)) {
563 		struct knav_range_info *range = inst->range;
564 
565 		if (range->ops && range->ops->close_queue)
566 			range->ops->close_queue(range, inst);
567 	}
568 	free_percpu(qh->stats);
569 	devm_kfree(inst->kdev->dev, qh);
570 }
571 EXPORT_SYMBOL_GPL(knav_queue_close);
572 
573 /**
574  * knav_queue_device_control()	- Perform control operations on a queue
575  * @qhandle:			- queue handle
576  * @cmd:			- control commands
577  * @arg:			- command argument
578  *
579  * Returns 0 on success, errno otherwise.
580  */
581 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
582 				unsigned long arg)
583 {
584 	struct knav_queue *qh = qhandle;
585 	struct knav_queue_notify_config *cfg;
586 	int ret;
587 
588 	switch ((int)cmd) {
589 	case KNAV_QUEUE_GET_ID:
590 		ret = qh->inst->kdev->base_id + qh->inst->id;
591 		break;
592 
593 	case KNAV_QUEUE_FLUSH:
594 		ret = knav_queue_flush(qh);
595 		break;
596 
597 	case KNAV_QUEUE_SET_NOTIFIER:
598 		cfg = (void *)arg;
599 		ret = knav_queue_set_notifier(qh, cfg);
600 		break;
601 
602 	case KNAV_QUEUE_ENABLE_NOTIFY:
603 		ret = knav_queue_enable_notifier(qh);
604 		break;
605 
606 	case KNAV_QUEUE_DISABLE_NOTIFY:
607 		ret = knav_queue_disable_notifier(qh);
608 		break;
609 
610 	case KNAV_QUEUE_GET_COUNT:
611 		ret = knav_queue_get_count(qh);
612 		break;
613 
614 	default:
615 		ret = -ENOTSUPP;
616 		break;
617 	}
618 	return ret;
619 }
620 EXPORT_SYMBOL_GPL(knav_queue_device_control);
621 
622 
623 
624 /**
625  * knav_queue_push()	- push data (or descriptor) to the tail of a queue
626  * @qhandle:		- hardware queue handle
627  * @dma:		- DMA data to push
628  * @size:		- size of data to push
629  * @flags:		- can be used to pass additional information
630  *
631  * Returns 0 on success, errno otherwise.
632  */
633 int knav_queue_push(void *qhandle, dma_addr_t dma,
634 					unsigned size, unsigned flags)
635 {
636 	struct knav_queue *qh = qhandle;
637 	u32 val;
638 
639 	val = (u32)dma | ((size / 16) - 1);
640 	writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
641 
642 	this_cpu_inc(qh->stats->pushes);
643 	return 0;
644 }
645 EXPORT_SYMBOL_GPL(knav_queue_push);
646 
647 /**
648  * knav_queue_pop()	- pop data (or descriptor) from the head of a queue
649  * @qhandle:		- hardware queue handle
650  * @size:		- (optional) size of the data pop'ed.
651  *
652  * Returns a DMA address on success, 0 on failure.
653  */
654 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
655 {
656 	struct knav_queue *qh = qhandle;
657 	struct knav_queue_inst *inst = qh->inst;
658 	dma_addr_t dma;
659 	u32 val, idx;
660 
661 	/* are we accumulated? */
662 	if (inst->descs) {
663 		if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
664 			atomic_inc(&inst->desc_count);
665 			return 0;
666 		}
667 		idx  = atomic_inc_return(&inst->desc_head);
668 		idx &= ACC_DESCS_MASK;
669 		val = inst->descs[idx];
670 	} else {
671 		val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
672 		if (unlikely(!val))
673 			return 0;
674 	}
675 
676 	dma = val & DESC_PTR_MASK;
677 	if (size)
678 		*size = ((val & DESC_SIZE_MASK) + 1) * 16;
679 
680 	this_cpu_inc(qh->stats->pops);
681 	return dma;
682 }
683 EXPORT_SYMBOL_GPL(knav_queue_pop);
684 
685 /* carve out descriptors and push into queue */
686 static void kdesc_fill_pool(struct knav_pool *pool)
687 {
688 	struct knav_region *region;
689 	int i;
690 
691 	region = pool->region;
692 	pool->desc_size = region->desc_size;
693 	for (i = 0; i < pool->num_desc; i++) {
694 		int index = pool->region_offset + i;
695 		dma_addr_t dma_addr;
696 		unsigned dma_size;
697 		dma_addr = region->dma_start + (region->desc_size * index);
698 		dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
699 		dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
700 					   DMA_TO_DEVICE);
701 		knav_queue_push(pool->queue, dma_addr, dma_size, 0);
702 	}
703 }
704 
705 /* pop out descriptors and close the queue */
706 static void kdesc_empty_pool(struct knav_pool *pool)
707 {
708 	dma_addr_t dma;
709 	unsigned size;
710 	void *desc;
711 	int i;
712 
713 	if (!pool->queue)
714 		return;
715 
716 	for (i = 0;; i++) {
717 		dma = knav_queue_pop(pool->queue, &size);
718 		if (!dma)
719 			break;
720 		desc = knav_pool_desc_dma_to_virt(pool, dma);
721 		if (!desc) {
722 			dev_dbg(pool->kdev->dev,
723 				"couldn't unmap desc, continuing\n");
724 			continue;
725 		}
726 	}
727 	WARN_ON(i != pool->num_desc);
728 	knav_queue_close(pool->queue);
729 }
730 
731 
732 /* Get the DMA address of a descriptor */
733 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
734 {
735 	struct knav_pool *pool = ph;
736 	return pool->region->dma_start + (virt - pool->region->virt_start);
737 }
738 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
739 
740 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
741 {
742 	struct knav_pool *pool = ph;
743 	return pool->region->virt_start + (dma - pool->region->dma_start);
744 }
745 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
746 
747 /**
748  * knav_pool_create()	- Create a pool of descriptors
749  * @name:		- name to give the pool handle
750  * @num_desc:		- numbers of descriptors in the pool
751  * @region_id:		- QMSS region id from which the descriptors are to be
752  *			  allocated.
753  *
754  * Returns a pool handle on success.
755  * Use IS_ERR_OR_NULL() to identify error values on return.
756  */
757 void *knav_pool_create(const char *name,
758 					int num_desc, int region_id)
759 {
760 	struct knav_region *reg_itr, *region = NULL;
761 	struct knav_pool *pool, *pi = NULL, *iter;
762 	struct list_head *node;
763 	unsigned last_offset;
764 	int ret;
765 
766 	if (!kdev)
767 		return ERR_PTR(-EPROBE_DEFER);
768 
769 	if (!kdev->dev)
770 		return ERR_PTR(-ENODEV);
771 
772 	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
773 	if (!pool) {
774 		dev_err(kdev->dev, "out of memory allocating pool\n");
775 		return ERR_PTR(-ENOMEM);
776 	}
777 
778 	for_each_region(kdev, reg_itr) {
779 		if (reg_itr->id != region_id)
780 			continue;
781 		region = reg_itr;
782 		break;
783 	}
784 
785 	if (!region) {
786 		dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
787 		ret = -EINVAL;
788 		goto err;
789 	}
790 
791 	pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
792 	if (IS_ERR(pool->queue)) {
793 		dev_err(kdev->dev,
794 			"failed to open queue for pool(%s), error %ld\n",
795 			name, PTR_ERR(pool->queue));
796 		ret = PTR_ERR(pool->queue);
797 		goto err;
798 	}
799 
800 	pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
801 	pool->kdev = kdev;
802 	pool->dev = kdev->dev;
803 
804 	mutex_lock(&knav_dev_lock);
805 
806 	if (num_desc > (region->num_desc - region->used_desc)) {
807 		dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
808 			region_id, name);
809 		ret = -ENOMEM;
810 		goto err_unlock;
811 	}
812 
813 	/* Region maintains a sorted (by region offset) list of pools
814 	 * use the first free slot which is large enough to accomodate
815 	 * the request
816 	 */
817 	last_offset = 0;
818 	node = &region->pools;
819 	list_for_each_entry(iter, &region->pools, region_inst) {
820 		if ((iter->region_offset - last_offset) >= num_desc) {
821 			pi = iter;
822 			break;
823 		}
824 		last_offset = iter->region_offset + iter->num_desc;
825 	}
826 
827 	if (pi) {
828 		node = &pi->region_inst;
829 		pool->region = region;
830 		pool->num_desc = num_desc;
831 		pool->region_offset = last_offset;
832 		region->used_desc += num_desc;
833 		list_add_tail(&pool->list, &kdev->pools);
834 		list_add_tail(&pool->region_inst, node);
835 	} else {
836 		dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
837 			name, region_id);
838 		ret = -ENOMEM;
839 		goto err_unlock;
840 	}
841 
842 	mutex_unlock(&knav_dev_lock);
843 	kdesc_fill_pool(pool);
844 	return pool;
845 
846 err_unlock:
847 	mutex_unlock(&knav_dev_lock);
848 err:
849 	kfree(pool->name);
850 	devm_kfree(kdev->dev, pool);
851 	return ERR_PTR(ret);
852 }
853 EXPORT_SYMBOL_GPL(knav_pool_create);
854 
855 /**
856  * knav_pool_destroy()	- Free a pool of descriptors
857  * @ph:		- pool handle
858  */
859 void knav_pool_destroy(void *ph)
860 {
861 	struct knav_pool *pool = ph;
862 
863 	if (!pool)
864 		return;
865 
866 	if (!pool->region)
867 		return;
868 
869 	kdesc_empty_pool(pool);
870 	mutex_lock(&knav_dev_lock);
871 
872 	pool->region->used_desc -= pool->num_desc;
873 	list_del(&pool->region_inst);
874 	list_del(&pool->list);
875 
876 	mutex_unlock(&knav_dev_lock);
877 	kfree(pool->name);
878 	devm_kfree(kdev->dev, pool);
879 }
880 EXPORT_SYMBOL_GPL(knav_pool_destroy);
881 
882 
883 /**
884  * knav_pool_desc_get()	- Get a descriptor from the pool
885  * @ph:		- pool handle
886  *
887  * Returns descriptor from the pool.
888  */
889 void *knav_pool_desc_get(void *ph)
890 {
891 	struct knav_pool *pool = ph;
892 	dma_addr_t dma;
893 	unsigned size;
894 	void *data;
895 
896 	dma = knav_queue_pop(pool->queue, &size);
897 	if (unlikely(!dma))
898 		return ERR_PTR(-ENOMEM);
899 	data = knav_pool_desc_dma_to_virt(pool, dma);
900 	return data;
901 }
902 EXPORT_SYMBOL_GPL(knav_pool_desc_get);
903 
904 /**
905  * knav_pool_desc_put()	- return a descriptor to the pool
906  * @ph:		- pool handle
907  * @desc:	- virtual address
908  */
909 void knav_pool_desc_put(void *ph, void *desc)
910 {
911 	struct knav_pool *pool = ph;
912 	dma_addr_t dma;
913 	dma = knav_pool_desc_virt_to_dma(pool, desc);
914 	knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
915 }
916 EXPORT_SYMBOL_GPL(knav_pool_desc_put);
917 
918 /**
919  * knav_pool_desc_map()	- Map descriptor for DMA transfer
920  * @ph:				- pool handle
921  * @desc:			- address of descriptor to map
922  * @size:			- size of descriptor to map
923  * @dma:			- DMA address return pointer
924  * @dma_sz:			- adjusted return pointer
925  *
926  * Returns 0 on success, errno otherwise.
927  */
928 int knav_pool_desc_map(void *ph, void *desc, unsigned size,
929 					dma_addr_t *dma, unsigned *dma_sz)
930 {
931 	struct knav_pool *pool = ph;
932 	*dma = knav_pool_desc_virt_to_dma(pool, desc);
933 	size = min(size, pool->region->desc_size);
934 	size = ALIGN(size, SMP_CACHE_BYTES);
935 	*dma_sz = size;
936 	dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
937 
938 	/* Ensure the descriptor reaches to the memory */
939 	__iowmb();
940 
941 	return 0;
942 }
943 EXPORT_SYMBOL_GPL(knav_pool_desc_map);
944 
945 /**
946  * knav_pool_desc_unmap()	- Unmap descriptor after DMA transfer
947  * @ph:				- pool handle
948  * @dma:			- DMA address of descriptor to unmap
949  * @dma_sz:			- size of descriptor to unmap
950  *
951  * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
952  * error values on return.
953  */
954 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
955 {
956 	struct knav_pool *pool = ph;
957 	unsigned desc_sz;
958 	void *desc;
959 
960 	desc_sz = min(dma_sz, pool->region->desc_size);
961 	desc = knav_pool_desc_dma_to_virt(pool, dma);
962 	dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
963 	prefetch(desc);
964 	return desc;
965 }
966 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
967 
968 /**
969  * knav_pool_count()	- Get the number of descriptors in pool.
970  * @ph:			- pool handle
971  * Returns number of elements in the pool.
972  */
973 int knav_pool_count(void *ph)
974 {
975 	struct knav_pool *pool = ph;
976 	return knav_queue_get_count(pool->queue);
977 }
978 EXPORT_SYMBOL_GPL(knav_pool_count);
979 
980 static void knav_queue_setup_region(struct knav_device *kdev,
981 					struct knav_region *region)
982 {
983 	unsigned hw_num_desc, hw_desc_size, size;
984 	struct knav_reg_region __iomem  *regs;
985 	struct knav_qmgr_info *qmgr;
986 	struct knav_pool *pool;
987 	int id = region->id;
988 	struct page *page;
989 
990 	/* unused region? */
991 	if (!region->num_desc) {
992 		dev_warn(kdev->dev, "unused region %s\n", region->name);
993 		return;
994 	}
995 
996 	/* get hardware descriptor value */
997 	hw_num_desc = ilog2(region->num_desc - 1) + 1;
998 
999 	/* did we force fit ourselves into nothingness? */
1000 	if (region->num_desc < 32) {
1001 		region->num_desc = 0;
1002 		dev_warn(kdev->dev, "too few descriptors in region %s\n",
1003 			 region->name);
1004 		return;
1005 	}
1006 
1007 	size = region->num_desc * region->desc_size;
1008 	region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
1009 						GFP_DMA32);
1010 	if (!region->virt_start) {
1011 		region->num_desc = 0;
1012 		dev_err(kdev->dev, "memory alloc failed for region %s\n",
1013 			region->name);
1014 		return;
1015 	}
1016 	region->virt_end = region->virt_start + size;
1017 	page = virt_to_page(region->virt_start);
1018 
1019 	region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1020 					 DMA_BIDIRECTIONAL);
1021 	if (dma_mapping_error(kdev->dev, region->dma_start)) {
1022 		dev_err(kdev->dev, "dma map failed for region %s\n",
1023 			region->name);
1024 		goto fail;
1025 	}
1026 	region->dma_end = region->dma_start + size;
1027 
1028 	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1029 	if (!pool) {
1030 		dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1031 		goto fail;
1032 	}
1033 	pool->num_desc = 0;
1034 	pool->region_offset = region->num_desc;
1035 	list_add(&pool->region_inst, &region->pools);
1036 
1037 	dev_dbg(kdev->dev,
1038 		"region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1039 		region->name, id, region->desc_size, region->num_desc,
1040 		region->link_index, &region->dma_start, &region->dma_end,
1041 		region->virt_start, region->virt_end);
1042 
1043 	hw_desc_size = (region->desc_size / 16) - 1;
1044 	hw_num_desc -= 5;
1045 
1046 	for_each_qmgr(kdev, qmgr) {
1047 		regs = qmgr->reg_region + id;
1048 		writel_relaxed((u32)region->dma_start, &regs->base);
1049 		writel_relaxed(region->link_index, &regs->start_index);
1050 		writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1051 			       &regs->size_count);
1052 	}
1053 	return;
1054 
1055 fail:
1056 	if (region->dma_start)
1057 		dma_unmap_page(kdev->dev, region->dma_start, size,
1058 				DMA_BIDIRECTIONAL);
1059 	if (region->virt_start)
1060 		free_pages_exact(region->virt_start, size);
1061 	region->num_desc = 0;
1062 	return;
1063 }
1064 
1065 static const char *knav_queue_find_name(struct device_node *node)
1066 {
1067 	const char *name;
1068 
1069 	if (of_property_read_string(node, "label", &name) < 0)
1070 		name = node->name;
1071 	if (!name)
1072 		name = "unknown";
1073 	return name;
1074 }
1075 
1076 static int knav_queue_setup_regions(struct knav_device *kdev,
1077 					struct device_node *regions)
1078 {
1079 	struct device *dev = kdev->dev;
1080 	struct knav_region *region;
1081 	struct device_node *child;
1082 	u32 temp[2];
1083 	int ret;
1084 
1085 	for_each_child_of_node(regions, child) {
1086 		region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1087 		if (!region) {
1088 			of_node_put(child);
1089 			dev_err(dev, "out of memory allocating region\n");
1090 			return -ENOMEM;
1091 		}
1092 
1093 		region->name = knav_queue_find_name(child);
1094 		of_property_read_u32(child, "id", &region->id);
1095 		ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1096 		if (!ret) {
1097 			region->num_desc  = temp[0];
1098 			region->desc_size = temp[1];
1099 		} else {
1100 			dev_err(dev, "invalid region info %s\n", region->name);
1101 			devm_kfree(dev, region);
1102 			continue;
1103 		}
1104 
1105 		if (!of_get_property(child, "link-index", NULL)) {
1106 			dev_err(dev, "No link info for %s\n", region->name);
1107 			devm_kfree(dev, region);
1108 			continue;
1109 		}
1110 		ret = of_property_read_u32(child, "link-index",
1111 					   &region->link_index);
1112 		if (ret) {
1113 			dev_err(dev, "link index not found for %s\n",
1114 				region->name);
1115 			devm_kfree(dev, region);
1116 			continue;
1117 		}
1118 
1119 		INIT_LIST_HEAD(&region->pools);
1120 		list_add_tail(&region->list, &kdev->regions);
1121 	}
1122 	if (list_empty(&kdev->regions)) {
1123 		dev_err(dev, "no valid region information found\n");
1124 		return -ENODEV;
1125 	}
1126 
1127 	/* Next, we run through the regions and set things up */
1128 	for_each_region(kdev, region)
1129 		knav_queue_setup_region(kdev, region);
1130 
1131 	return 0;
1132 }
1133 
1134 static int knav_get_link_ram(struct knav_device *kdev,
1135 				       const char *name,
1136 				       struct knav_link_ram_block *block)
1137 {
1138 	struct platform_device *pdev = to_platform_device(kdev->dev);
1139 	struct device_node *node = pdev->dev.of_node;
1140 	u32 temp[2];
1141 
1142 	/*
1143 	 * Note: link ram resources are specified in "entry" sized units. In
1144 	 * reality, although entries are ~40bits in hardware, we treat them as
1145 	 * 64-bit entities here.
1146 	 *
1147 	 * For example, to specify the internal link ram for Keystone-I class
1148 	 * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1149 	 *
1150 	 * This gets a bit weird when other link rams are used.  For example,
1151 	 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1152 	 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1153 	 * which accounts for 64-bits per entry, for 16K entries.
1154 	 */
1155 	if (!of_property_read_u32_array(node, name , temp, 2)) {
1156 		if (temp[0]) {
1157 			/*
1158 			 * queue_base specified => using internal or onchip
1159 			 * link ram WARNING - we do not "reserve" this block
1160 			 */
1161 			block->dma = (dma_addr_t)temp[0];
1162 			block->virt = NULL;
1163 			block->size = temp[1];
1164 		} else {
1165 			block->size = temp[1];
1166 			/* queue_base not specific => allocate requested size */
1167 			block->virt = dmam_alloc_coherent(kdev->dev,
1168 						  8 * block->size, &block->dma,
1169 						  GFP_KERNEL);
1170 			if (!block->virt) {
1171 				dev_err(kdev->dev, "failed to alloc linkram\n");
1172 				return -ENOMEM;
1173 			}
1174 		}
1175 	} else {
1176 		return -ENODEV;
1177 	}
1178 	return 0;
1179 }
1180 
1181 static int knav_queue_setup_link_ram(struct knav_device *kdev)
1182 {
1183 	struct knav_link_ram_block *block;
1184 	struct knav_qmgr_info *qmgr;
1185 
1186 	for_each_qmgr(kdev, qmgr) {
1187 		block = &kdev->link_rams[0];
1188 		dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
1189 			&block->dma, block->virt, block->size);
1190 		writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
1191 		if (kdev->version == QMSS_66AK2G)
1192 			writel_relaxed(block->size,
1193 				       &qmgr->reg_config->link_ram_size0);
1194 		else
1195 			writel_relaxed(block->size - 1,
1196 				       &qmgr->reg_config->link_ram_size0);
1197 		block++;
1198 		if (!block->size)
1199 			continue;
1200 
1201 		dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
1202 			&block->dma, block->virt, block->size);
1203 		writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
1204 	}
1205 
1206 	return 0;
1207 }
1208 
1209 static int knav_setup_queue_range(struct knav_device *kdev,
1210 					struct device_node *node)
1211 {
1212 	struct device *dev = kdev->dev;
1213 	struct knav_range_info *range;
1214 	struct knav_qmgr_info *qmgr;
1215 	u32 temp[2], start, end, id, index;
1216 	int ret, i;
1217 
1218 	range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1219 	if (!range) {
1220 		dev_err(dev, "out of memory allocating range\n");
1221 		return -ENOMEM;
1222 	}
1223 
1224 	range->kdev = kdev;
1225 	range->name = knav_queue_find_name(node);
1226 	ret = of_property_read_u32_array(node, "qrange", temp, 2);
1227 	if (!ret) {
1228 		range->queue_base = temp[0] - kdev->base_id;
1229 		range->num_queues = temp[1];
1230 	} else {
1231 		dev_err(dev, "invalid queue range %s\n", range->name);
1232 		devm_kfree(dev, range);
1233 		return -EINVAL;
1234 	}
1235 
1236 	for (i = 0; i < RANGE_MAX_IRQS; i++) {
1237 		struct of_phandle_args oirq;
1238 
1239 		if (of_irq_parse_one(node, i, &oirq))
1240 			break;
1241 
1242 		range->irqs[i].irq = irq_create_of_mapping(&oirq);
1243 		if (range->irqs[i].irq == IRQ_NONE)
1244 			break;
1245 
1246 		range->num_irqs++;
1247 
1248 		if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) {
1249 			unsigned long mask;
1250 			int bit;
1251 
1252 			range->irqs[i].cpu_mask = devm_kzalloc(dev,
1253 							       cpumask_size(), GFP_KERNEL);
1254 			if (!range->irqs[i].cpu_mask)
1255 				return -ENOMEM;
1256 
1257 			mask = (oirq.args[2] & 0x0000ff00) >> 8;
1258 			for_each_set_bit(bit, &mask, BITS_PER_LONG)
1259 				cpumask_set_cpu(bit, range->irqs[i].cpu_mask);
1260 		}
1261 	}
1262 
1263 	range->num_irqs = min(range->num_irqs, range->num_queues);
1264 	if (range->num_irqs)
1265 		range->flags |= RANGE_HAS_IRQ;
1266 
1267 	if (of_get_property(node, "qalloc-by-id", NULL))
1268 		range->flags |= RANGE_RESERVED;
1269 
1270 	if (of_get_property(node, "accumulator", NULL)) {
1271 		ret = knav_init_acc_range(kdev, node, range);
1272 		if (ret < 0) {
1273 			devm_kfree(dev, range);
1274 			return ret;
1275 		}
1276 	} else {
1277 		range->ops = &knav_gp_range_ops;
1278 	}
1279 
1280 	/* set threshold to 1, and flush out the queues */
1281 	for_each_qmgr(kdev, qmgr) {
1282 		start = max(qmgr->start_queue, range->queue_base);
1283 		end   = min(qmgr->start_queue + qmgr->num_queues,
1284 			    range->queue_base + range->num_queues);
1285 		for (id = start; id < end; id++) {
1286 			index = id - qmgr->start_queue;
1287 			writel_relaxed(THRESH_GTE | 1,
1288 				       &qmgr->reg_peek[index].ptr_size_thresh);
1289 			writel_relaxed(0,
1290 				       &qmgr->reg_push[index].ptr_size_thresh);
1291 		}
1292 	}
1293 
1294 	list_add_tail(&range->list, &kdev->queue_ranges);
1295 	dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1296 		range->name, range->queue_base,
1297 		range->queue_base + range->num_queues - 1,
1298 		range->num_irqs,
1299 		(range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1300 		(range->flags & RANGE_RESERVED) ? ", reserved" : "",
1301 		(range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1302 	kdev->num_queues_in_use += range->num_queues;
1303 	return 0;
1304 }
1305 
1306 static int knav_setup_queue_pools(struct knav_device *kdev,
1307 				   struct device_node *queue_pools)
1308 {
1309 	struct device_node *type, *range;
1310 
1311 	for_each_child_of_node(queue_pools, type) {
1312 		for_each_child_of_node(type, range) {
1313 			/* return value ignored, we init the rest... */
1314 			knav_setup_queue_range(kdev, range);
1315 		}
1316 	}
1317 
1318 	/* ... and barf if they all failed! */
1319 	if (list_empty(&kdev->queue_ranges)) {
1320 		dev_err(kdev->dev, "no valid queue range found\n");
1321 		return -ENODEV;
1322 	}
1323 	return 0;
1324 }
1325 
1326 static void knav_free_queue_range(struct knav_device *kdev,
1327 				  struct knav_range_info *range)
1328 {
1329 	if (range->ops && range->ops->free_range)
1330 		range->ops->free_range(range);
1331 	list_del(&range->list);
1332 	devm_kfree(kdev->dev, range);
1333 }
1334 
1335 static void knav_free_queue_ranges(struct knav_device *kdev)
1336 {
1337 	struct knav_range_info *range;
1338 
1339 	for (;;) {
1340 		range = first_queue_range(kdev);
1341 		if (!range)
1342 			break;
1343 		knav_free_queue_range(kdev, range);
1344 	}
1345 }
1346 
1347 static void knav_queue_free_regions(struct knav_device *kdev)
1348 {
1349 	struct knav_region *region;
1350 	struct knav_pool *pool, *tmp;
1351 	unsigned size;
1352 
1353 	for (;;) {
1354 		region = first_region(kdev);
1355 		if (!region)
1356 			break;
1357 		list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1358 			knav_pool_destroy(pool);
1359 
1360 		size = region->virt_end - region->virt_start;
1361 		if (size)
1362 			free_pages_exact(region->virt_start, size);
1363 		list_del(&region->list);
1364 		devm_kfree(kdev->dev, region);
1365 	}
1366 }
1367 
1368 static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1369 					struct device_node *node, int index)
1370 {
1371 	struct resource res;
1372 	void __iomem *regs;
1373 	int ret;
1374 
1375 	ret = of_address_to_resource(node, index, &res);
1376 	if (ret) {
1377 		dev_err(kdev->dev, "Can't translate of node(%pOFn) address for index(%d)\n",
1378 			node, index);
1379 		return ERR_PTR(ret);
1380 	}
1381 
1382 	regs = devm_ioremap_resource(kdev->dev, &res);
1383 	if (IS_ERR(regs))
1384 		dev_err(kdev->dev, "Failed to map register base for index(%d) node(%pOFn)\n",
1385 			index, node);
1386 	return regs;
1387 }
1388 
1389 static int knav_queue_init_qmgrs(struct knav_device *kdev,
1390 					struct device_node *qmgrs)
1391 {
1392 	struct device *dev = kdev->dev;
1393 	struct knav_qmgr_info *qmgr;
1394 	struct device_node *child;
1395 	u32 temp[2];
1396 	int ret;
1397 
1398 	for_each_child_of_node(qmgrs, child) {
1399 		qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1400 		if (!qmgr) {
1401 			of_node_put(child);
1402 			dev_err(dev, "out of memory allocating qmgr\n");
1403 			return -ENOMEM;
1404 		}
1405 
1406 		ret = of_property_read_u32_array(child, "managed-queues",
1407 						 temp, 2);
1408 		if (!ret) {
1409 			qmgr->start_queue = temp[0];
1410 			qmgr->num_queues = temp[1];
1411 		} else {
1412 			dev_err(dev, "invalid qmgr queue range\n");
1413 			devm_kfree(dev, qmgr);
1414 			continue;
1415 		}
1416 
1417 		dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1418 			 qmgr->start_queue, qmgr->num_queues);
1419 
1420 		qmgr->reg_peek =
1421 			knav_queue_map_reg(kdev, child,
1422 					   KNAV_QUEUE_PEEK_REG_INDEX);
1423 
1424 		if (kdev->version == QMSS) {
1425 			qmgr->reg_status =
1426 				knav_queue_map_reg(kdev, child,
1427 						   KNAV_QUEUE_STATUS_REG_INDEX);
1428 		}
1429 
1430 		qmgr->reg_config =
1431 			knav_queue_map_reg(kdev, child,
1432 					   (kdev->version == QMSS_66AK2G) ?
1433 					   KNAV_L_QUEUE_CONFIG_REG_INDEX :
1434 					   KNAV_QUEUE_CONFIG_REG_INDEX);
1435 		qmgr->reg_region =
1436 			knav_queue_map_reg(kdev, child,
1437 					   (kdev->version == QMSS_66AK2G) ?
1438 					   KNAV_L_QUEUE_REGION_REG_INDEX :
1439 					   KNAV_QUEUE_REGION_REG_INDEX);
1440 
1441 		qmgr->reg_push =
1442 			knav_queue_map_reg(kdev, child,
1443 					   (kdev->version == QMSS_66AK2G) ?
1444 					    KNAV_L_QUEUE_PUSH_REG_INDEX :
1445 					    KNAV_QUEUE_PUSH_REG_INDEX);
1446 
1447 		if (kdev->version == QMSS) {
1448 			qmgr->reg_pop =
1449 				knav_queue_map_reg(kdev, child,
1450 						   KNAV_QUEUE_POP_REG_INDEX);
1451 		}
1452 
1453 		if (IS_ERR(qmgr->reg_peek) ||
1454 		    ((kdev->version == QMSS) &&
1455 		    (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) ||
1456 		    IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1457 		    IS_ERR(qmgr->reg_push)) {
1458 			dev_err(dev, "failed to map qmgr regs\n");
1459 			if (kdev->version == QMSS) {
1460 				if (!IS_ERR(qmgr->reg_status))
1461 					devm_iounmap(dev, qmgr->reg_status);
1462 				if (!IS_ERR(qmgr->reg_pop))
1463 					devm_iounmap(dev, qmgr->reg_pop);
1464 			}
1465 			if (!IS_ERR(qmgr->reg_peek))
1466 				devm_iounmap(dev, qmgr->reg_peek);
1467 			if (!IS_ERR(qmgr->reg_config))
1468 				devm_iounmap(dev, qmgr->reg_config);
1469 			if (!IS_ERR(qmgr->reg_region))
1470 				devm_iounmap(dev, qmgr->reg_region);
1471 			if (!IS_ERR(qmgr->reg_push))
1472 				devm_iounmap(dev, qmgr->reg_push);
1473 			devm_kfree(dev, qmgr);
1474 			continue;
1475 		}
1476 
1477 		/* Use same push register for pop as well */
1478 		if (kdev->version == QMSS_66AK2G)
1479 			qmgr->reg_pop = qmgr->reg_push;
1480 
1481 		list_add_tail(&qmgr->list, &kdev->qmgrs);
1482 		dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1483 			 qmgr->start_queue, qmgr->num_queues,
1484 			 qmgr->reg_peek, qmgr->reg_status,
1485 			 qmgr->reg_config, qmgr->reg_region,
1486 			 qmgr->reg_push, qmgr->reg_pop);
1487 	}
1488 	return 0;
1489 }
1490 
1491 static int knav_queue_init_pdsps(struct knav_device *kdev,
1492 					struct device_node *pdsps)
1493 {
1494 	struct device *dev = kdev->dev;
1495 	struct knav_pdsp_info *pdsp;
1496 	struct device_node *child;
1497 
1498 	for_each_child_of_node(pdsps, child) {
1499 		pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1500 		if (!pdsp) {
1501 			of_node_put(child);
1502 			dev_err(dev, "out of memory allocating pdsp\n");
1503 			return -ENOMEM;
1504 		}
1505 		pdsp->name = knav_queue_find_name(child);
1506 		pdsp->iram =
1507 			knav_queue_map_reg(kdev, child,
1508 					   KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1509 		pdsp->regs =
1510 			knav_queue_map_reg(kdev, child,
1511 					   KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1512 		pdsp->intd =
1513 			knav_queue_map_reg(kdev, child,
1514 					   KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1515 		pdsp->command =
1516 			knav_queue_map_reg(kdev, child,
1517 					   KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1518 
1519 		if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1520 		    IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1521 			dev_err(dev, "failed to map pdsp %s regs\n",
1522 				pdsp->name);
1523 			if (!IS_ERR(pdsp->command))
1524 				devm_iounmap(dev, pdsp->command);
1525 			if (!IS_ERR(pdsp->iram))
1526 				devm_iounmap(dev, pdsp->iram);
1527 			if (!IS_ERR(pdsp->regs))
1528 				devm_iounmap(dev, pdsp->regs);
1529 			if (!IS_ERR(pdsp->intd))
1530 				devm_iounmap(dev, pdsp->intd);
1531 			devm_kfree(dev, pdsp);
1532 			continue;
1533 		}
1534 		of_property_read_u32(child, "id", &pdsp->id);
1535 		list_add_tail(&pdsp->list, &kdev->pdsps);
1536 		dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1537 			pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1538 			pdsp->intd);
1539 	}
1540 	return 0;
1541 }
1542 
1543 static int knav_queue_stop_pdsp(struct knav_device *kdev,
1544 			  struct knav_pdsp_info *pdsp)
1545 {
1546 	u32 val, timeout = 1000;
1547 	int ret;
1548 
1549 	val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1550 	writel_relaxed(val, &pdsp->regs->control);
1551 	ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1552 					PDSP_CTRL_RUNNING);
1553 	if (ret < 0) {
1554 		dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1555 		return ret;
1556 	}
1557 	pdsp->loaded = false;
1558 	pdsp->started = false;
1559 	return 0;
1560 }
1561 
1562 static int knav_queue_load_pdsp(struct knav_device *kdev,
1563 			  struct knav_pdsp_info *pdsp)
1564 {
1565 	int i, ret, fwlen;
1566 	const struct firmware *fw;
1567 	bool found = false;
1568 	u32 *fwdata;
1569 
1570 	for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1571 		if (knav_acc_firmwares[i]) {
1572 			ret = request_firmware_direct(&fw,
1573 						      knav_acc_firmwares[i],
1574 						      kdev->dev);
1575 			if (!ret) {
1576 				found = true;
1577 				break;
1578 			}
1579 		}
1580 	}
1581 
1582 	if (!found) {
1583 		dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1584 		return -ENODEV;
1585 	}
1586 
1587 	dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1588 		 knav_acc_firmwares[i]);
1589 
1590 	writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1591 	/* download the firmware */
1592 	fwdata = (u32 *)fw->data;
1593 	fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1594 	for (i = 0; i < fwlen; i++)
1595 		writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1596 
1597 	release_firmware(fw);
1598 	return 0;
1599 }
1600 
1601 static int knav_queue_start_pdsp(struct knav_device *kdev,
1602 			   struct knav_pdsp_info *pdsp)
1603 {
1604 	u32 val, timeout = 1000;
1605 	int ret;
1606 
1607 	/* write a command for sync */
1608 	writel_relaxed(0xffffffff, pdsp->command);
1609 	while (readl_relaxed(pdsp->command) != 0xffffffff)
1610 		cpu_relax();
1611 
1612 	/* soft reset the PDSP */
1613 	val  = readl_relaxed(&pdsp->regs->control);
1614 	val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1615 	writel_relaxed(val, &pdsp->regs->control);
1616 
1617 	/* enable pdsp */
1618 	val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1619 	writel_relaxed(val, &pdsp->regs->control);
1620 
1621 	/* wait for command register to clear */
1622 	ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1623 	if (ret < 0) {
1624 		dev_err(kdev->dev,
1625 			"timed out on pdsp %s command register wait\n",
1626 			pdsp->name);
1627 		return ret;
1628 	}
1629 	return 0;
1630 }
1631 
1632 static void knav_queue_stop_pdsps(struct knav_device *kdev)
1633 {
1634 	struct knav_pdsp_info *pdsp;
1635 
1636 	/* disable all pdsps */
1637 	for_each_pdsp(kdev, pdsp)
1638 		knav_queue_stop_pdsp(kdev, pdsp);
1639 }
1640 
1641 static int knav_queue_start_pdsps(struct knav_device *kdev)
1642 {
1643 	struct knav_pdsp_info *pdsp;
1644 	int ret;
1645 
1646 	knav_queue_stop_pdsps(kdev);
1647 	/* now load them all. We return success even if pdsp
1648 	 * is not loaded as acc channels are optional on having
1649 	 * firmware availability in the system. We set the loaded
1650 	 * and stated flag and when initialize the acc range, check
1651 	 * it and init the range only if pdsp is started.
1652 	 */
1653 	for_each_pdsp(kdev, pdsp) {
1654 		ret = knav_queue_load_pdsp(kdev, pdsp);
1655 		if (!ret)
1656 			pdsp->loaded = true;
1657 	}
1658 
1659 	for_each_pdsp(kdev, pdsp) {
1660 		if (pdsp->loaded) {
1661 			ret = knav_queue_start_pdsp(kdev, pdsp);
1662 			if (!ret)
1663 				pdsp->started = true;
1664 		}
1665 	}
1666 	return 0;
1667 }
1668 
1669 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1670 {
1671 	struct knav_qmgr_info *qmgr;
1672 
1673 	for_each_qmgr(kdev, qmgr) {
1674 		if ((id >= qmgr->start_queue) &&
1675 		    (id < qmgr->start_queue + qmgr->num_queues))
1676 			return qmgr;
1677 	}
1678 	return NULL;
1679 }
1680 
1681 static int knav_queue_init_queue(struct knav_device *kdev,
1682 					struct knav_range_info *range,
1683 					struct knav_queue_inst *inst,
1684 					unsigned id)
1685 {
1686 	char irq_name[KNAV_NAME_SIZE];
1687 	inst->qmgr = knav_find_qmgr(id);
1688 	if (!inst->qmgr)
1689 		return -1;
1690 
1691 	INIT_LIST_HEAD(&inst->handles);
1692 	inst->kdev = kdev;
1693 	inst->range = range;
1694 	inst->irq_num = -1;
1695 	inst->id = id;
1696 	scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1697 	inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1698 
1699 	if (range->ops && range->ops->init_queue)
1700 		return range->ops->init_queue(range, inst);
1701 	else
1702 		return 0;
1703 }
1704 
1705 static int knav_queue_init_queues(struct knav_device *kdev)
1706 {
1707 	struct knav_range_info *range;
1708 	int size, id, base_idx;
1709 	int idx = 0, ret = 0;
1710 
1711 	/* how much do we need for instance data? */
1712 	size = sizeof(struct knav_queue_inst);
1713 
1714 	/* round this up to a power of 2, keep the index to instance
1715 	 * arithmetic fast.
1716 	 * */
1717 	kdev->inst_shift = order_base_2(size);
1718 	size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1719 	kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1720 	if (!kdev->instances)
1721 		return -ENOMEM;
1722 
1723 	for_each_queue_range(kdev, range) {
1724 		if (range->ops && range->ops->init_range)
1725 			range->ops->init_range(range);
1726 		base_idx = idx;
1727 		for (id = range->queue_base;
1728 		     id < range->queue_base + range->num_queues; id++, idx++) {
1729 			ret = knav_queue_init_queue(kdev, range,
1730 					knav_queue_idx_to_inst(kdev, idx), id);
1731 			if (ret < 0)
1732 				return ret;
1733 		}
1734 		range->queue_base_inst =
1735 			knav_queue_idx_to_inst(kdev, base_idx);
1736 	}
1737 	return 0;
1738 }
1739 
1740 /* Match table for of_platform binding */
1741 static const struct of_device_id keystone_qmss_of_match[] = {
1742 	{
1743 		.compatible = "ti,keystone-navigator-qmss",
1744 	},
1745 	{
1746 		.compatible = "ti,66ak2g-navss-qm",
1747 		.data	= (void *)QMSS_66AK2G,
1748 	},
1749 	{},
1750 };
1751 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1752 
1753 static int knav_queue_probe(struct platform_device *pdev)
1754 {
1755 	struct device_node *node = pdev->dev.of_node;
1756 	struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1757 	const struct of_device_id *match;
1758 	struct device *dev = &pdev->dev;
1759 	u32 temp[2];
1760 	int ret;
1761 
1762 	if (!node) {
1763 		dev_err(dev, "device tree info unavailable\n");
1764 		return -ENODEV;
1765 	}
1766 
1767 	kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1768 	if (!kdev) {
1769 		dev_err(dev, "memory allocation failed\n");
1770 		return -ENOMEM;
1771 	}
1772 
1773 	match = of_match_device(of_match_ptr(keystone_qmss_of_match), dev);
1774 	if (match && match->data)
1775 		kdev->version = QMSS_66AK2G;
1776 
1777 	platform_set_drvdata(pdev, kdev);
1778 	kdev->dev = dev;
1779 	INIT_LIST_HEAD(&kdev->queue_ranges);
1780 	INIT_LIST_HEAD(&kdev->qmgrs);
1781 	INIT_LIST_HEAD(&kdev->pools);
1782 	INIT_LIST_HEAD(&kdev->regions);
1783 	INIT_LIST_HEAD(&kdev->pdsps);
1784 
1785 	pm_runtime_enable(&pdev->dev);
1786 	ret = pm_runtime_resume_and_get(&pdev->dev);
1787 	if (ret < 0) {
1788 		dev_err(dev, "Failed to enable QMSS\n");
1789 		return ret;
1790 	}
1791 
1792 	if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1793 		dev_err(dev, "queue-range not specified\n");
1794 		ret = -ENODEV;
1795 		goto err;
1796 	}
1797 	kdev->base_id    = temp[0];
1798 	kdev->num_queues = temp[1];
1799 
1800 	/* Initialize queue managers using device tree configuration */
1801 	qmgrs =  of_get_child_by_name(node, "qmgrs");
1802 	if (!qmgrs) {
1803 		dev_err(dev, "queue manager info not specified\n");
1804 		ret = -ENODEV;
1805 		goto err;
1806 	}
1807 	ret = knav_queue_init_qmgrs(kdev, qmgrs);
1808 	of_node_put(qmgrs);
1809 	if (ret)
1810 		goto err;
1811 
1812 	/* get pdsp configuration values from device tree */
1813 	pdsps =  of_get_child_by_name(node, "pdsps");
1814 	if (pdsps) {
1815 		ret = knav_queue_init_pdsps(kdev, pdsps);
1816 		if (ret)
1817 			goto err;
1818 
1819 		ret = knav_queue_start_pdsps(kdev);
1820 		if (ret)
1821 			goto err;
1822 	}
1823 	of_node_put(pdsps);
1824 
1825 	/* get usable queue range values from device tree */
1826 	queue_pools = of_get_child_by_name(node, "queue-pools");
1827 	if (!queue_pools) {
1828 		dev_err(dev, "queue-pools not specified\n");
1829 		ret = -ENODEV;
1830 		goto err;
1831 	}
1832 	ret = knav_setup_queue_pools(kdev, queue_pools);
1833 	of_node_put(queue_pools);
1834 	if (ret)
1835 		goto err;
1836 
1837 	ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1838 	if (ret) {
1839 		dev_err(kdev->dev, "could not setup linking ram\n");
1840 		goto err;
1841 	}
1842 
1843 	ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1844 	if (ret) {
1845 		/*
1846 		 * nothing really, we have one linking ram already, so we just
1847 		 * live within our means
1848 		 */
1849 	}
1850 
1851 	ret = knav_queue_setup_link_ram(kdev);
1852 	if (ret)
1853 		goto err;
1854 
1855 	regions = of_get_child_by_name(node, "descriptor-regions");
1856 	if (!regions) {
1857 		dev_err(dev, "descriptor-regions not specified\n");
1858 		ret = -ENODEV;
1859 		goto err;
1860 	}
1861 	ret = knav_queue_setup_regions(kdev, regions);
1862 	of_node_put(regions);
1863 	if (ret)
1864 		goto err;
1865 
1866 	ret = knav_queue_init_queues(kdev);
1867 	if (ret < 0) {
1868 		dev_err(dev, "hwqueue initialization failed\n");
1869 		goto err;
1870 	}
1871 
1872 	debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1873 			    &knav_queue_debug_fops);
1874 	device_ready = true;
1875 	return 0;
1876 
1877 err:
1878 	knav_queue_stop_pdsps(kdev);
1879 	knav_queue_free_regions(kdev);
1880 	knav_free_queue_ranges(kdev);
1881 	pm_runtime_put_sync(&pdev->dev);
1882 	pm_runtime_disable(&pdev->dev);
1883 	return ret;
1884 }
1885 
1886 static int knav_queue_remove(struct platform_device *pdev)
1887 {
1888 	/* TODO: Free resources */
1889 	pm_runtime_put_sync(&pdev->dev);
1890 	pm_runtime_disable(&pdev->dev);
1891 	return 0;
1892 }
1893 
1894 static struct platform_driver keystone_qmss_driver = {
1895 	.probe		= knav_queue_probe,
1896 	.remove		= knav_queue_remove,
1897 	.driver		= {
1898 		.name	= "keystone-navigator-qmss",
1899 		.of_match_table = keystone_qmss_of_match,
1900 	},
1901 };
1902 module_platform_driver(keystone_qmss_driver);
1903 
1904 MODULE_LICENSE("GPL v2");
1905 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1906 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1907 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");
1908