xref: /linux/drivers/soc/ti/knav_qmss_queue.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Keystone Queue Manager subsystem driver
4  *
5  * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
6  * Authors:	Sandeep Nair <sandeep_n@ti.com>
7  *		Cyril Chemparathy <cyril@ti.com>
8  *		Santosh Shilimkar <santosh.shilimkar@ti.com>
9  */
10 
11 #include <linux/debugfs.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/firmware.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/of.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/property.h>
23 #include <linux/slab.h>
24 #include <linux/soc/ti/knav_qmss.h>
25 
26 #include "knav_qmss.h"
27 
28 static struct knav_device *kdev;
29 static DEFINE_MUTEX(knav_dev_lock);
30 #define knav_dev_lock_held() \
31 	lockdep_is_held(&knav_dev_lock)
32 
33 /* Queue manager register indices in DTS */
34 #define KNAV_QUEUE_PEEK_REG_INDEX	0
35 #define KNAV_QUEUE_STATUS_REG_INDEX	1
36 #define KNAV_QUEUE_CONFIG_REG_INDEX	2
37 #define KNAV_QUEUE_REGION_REG_INDEX	3
38 #define KNAV_QUEUE_PUSH_REG_INDEX	4
39 #define KNAV_QUEUE_POP_REG_INDEX	5
40 
41 /* Queue manager register indices in DTS for QMSS in K2G NAVSS.
42  * There are no status and vbusm push registers on this version
43  * of QMSS. Push registers are same as pop, So all indices above 1
44  * are to be re-defined
45  */
46 #define KNAV_L_QUEUE_CONFIG_REG_INDEX	1
47 #define KNAV_L_QUEUE_REGION_REG_INDEX	2
48 #define KNAV_L_QUEUE_PUSH_REG_INDEX	3
49 
50 /* PDSP register indices in DTS */
51 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX	0
52 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX	1
53 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX	2
54 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX	3
55 
56 #define knav_queue_idx_to_inst(kdev, idx)			\
57 	(kdev->instances + (idx << kdev->inst_shift))
58 
59 #define for_each_handle_rcu(qh, inst)				\
60 	list_for_each_entry_rcu(qh, &inst->handles, list,	\
61 				knav_dev_lock_held())
62 
63 #define for_each_instance(idx, inst, kdev)		\
64 	for (idx = 0, inst = kdev->instances;		\
65 	     idx < (kdev)->num_queues_in_use;			\
66 	     idx++, inst = knav_queue_idx_to_inst(kdev, idx))
67 
68 /* All firmware file names end up here. List the firmware file names below.
69  * Newest followed by older ones. Search is done from start of the array
70  * until a firmware file is found.
71  */
72 static const char * const knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
73 
74 static bool device_ready;
75 bool knav_qmss_device_ready(void)
76 {
77 	return device_ready;
78 }
79 EXPORT_SYMBOL_GPL(knav_qmss_device_ready);
80 
81 /**
82  * knav_queue_notify: qmss queue notfier call
83  *
84  * @inst:		- qmss queue instance like accumulator
85  */
86 void knav_queue_notify(struct knav_queue_inst *inst)
87 {
88 	struct knav_queue *qh;
89 
90 	if (!inst)
91 		return;
92 
93 	rcu_read_lock();
94 	for_each_handle_rcu(qh, inst) {
95 		if (atomic_read(&qh->notifier_enabled) <= 0)
96 			continue;
97 		if (WARN_ON(!qh->notifier_fn))
98 			continue;
99 		this_cpu_inc(qh->stats->notifies);
100 		qh->notifier_fn(qh->notifier_fn_arg);
101 	}
102 	rcu_read_unlock();
103 }
104 EXPORT_SYMBOL_GPL(knav_queue_notify);
105 
106 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
107 {
108 	struct knav_queue_inst *inst = _instdata;
109 
110 	knav_queue_notify(inst);
111 	return IRQ_HANDLED;
112 }
113 
114 static int knav_queue_setup_irq(struct knav_range_info *range,
115 			  struct knav_queue_inst *inst)
116 {
117 	unsigned queue = inst->id - range->queue_base;
118 	int ret = 0, irq;
119 
120 	if (range->flags & RANGE_HAS_IRQ) {
121 		irq = range->irqs[queue].irq;
122 		ret = request_irq(irq, knav_queue_int_handler, 0,
123 					inst->irq_name, inst);
124 		if (ret)
125 			return ret;
126 		disable_irq(irq);
127 		if (range->irqs[queue].cpu_mask) {
128 			ret = irq_set_affinity_hint(irq, range->irqs[queue].cpu_mask);
129 			if (ret) {
130 				dev_warn(range->kdev->dev,
131 					 "Failed to set IRQ affinity\n");
132 				return ret;
133 			}
134 		}
135 	}
136 	return ret;
137 }
138 
139 static void knav_queue_free_irq(struct knav_queue_inst *inst)
140 {
141 	struct knav_range_info *range = inst->range;
142 	unsigned queue = inst->id - inst->range->queue_base;
143 	int irq;
144 
145 	if (range->flags & RANGE_HAS_IRQ) {
146 		irq = range->irqs[queue].irq;
147 		irq_set_affinity_hint(irq, NULL);
148 		free_irq(irq, inst);
149 	}
150 }
151 
152 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
153 {
154 	return !list_empty(&inst->handles);
155 }
156 
157 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
158 {
159 	return inst->range->flags & RANGE_RESERVED;
160 }
161 
162 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
163 {
164 	struct knav_queue *tmp;
165 
166 	rcu_read_lock();
167 	for_each_handle_rcu(tmp, inst) {
168 		if (tmp->flags & KNAV_QUEUE_SHARED) {
169 			rcu_read_unlock();
170 			return true;
171 		}
172 	}
173 	rcu_read_unlock();
174 	return false;
175 }
176 
177 static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
178 						unsigned type)
179 {
180 	if ((type == KNAV_QUEUE_QPEND) &&
181 	    (inst->range->flags & RANGE_HAS_IRQ)) {
182 		return true;
183 	} else if ((type == KNAV_QUEUE_ACC) &&
184 		(inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
185 		return true;
186 	} else if ((type == KNAV_QUEUE_GP) &&
187 		!(inst->range->flags &
188 			(RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
189 		return true;
190 	}
191 	return false;
192 }
193 
194 static inline struct knav_queue_inst *
195 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
196 {
197 	struct knav_queue_inst *inst;
198 	int idx;
199 
200 	for_each_instance(idx, inst, kdev) {
201 		if (inst->id == id)
202 			return inst;
203 	}
204 	return NULL;
205 }
206 
207 static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
208 {
209 	if (kdev->base_id <= id &&
210 	    kdev->base_id + kdev->num_queues > id) {
211 		id -= kdev->base_id;
212 		return knav_queue_match_id_to_inst(kdev, id);
213 	}
214 	return NULL;
215 }
216 
217 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
218 				      const char *name, unsigned flags)
219 {
220 	struct knav_queue *qh;
221 	unsigned id;
222 	int ret = 0;
223 
224 	qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
225 	if (!qh)
226 		return ERR_PTR(-ENOMEM);
227 
228 	qh->stats = alloc_percpu(struct knav_queue_stats);
229 	if (!qh->stats) {
230 		ret = -ENOMEM;
231 		goto err;
232 	}
233 
234 	qh->flags = flags;
235 	qh->inst = inst;
236 	id = inst->id - inst->qmgr->start_queue;
237 	qh->reg_push = &inst->qmgr->reg_push[id];
238 	qh->reg_pop = &inst->qmgr->reg_pop[id];
239 	qh->reg_peek = &inst->qmgr->reg_peek[id];
240 
241 	/* first opener? */
242 	if (!knav_queue_is_busy(inst)) {
243 		struct knav_range_info *range = inst->range;
244 
245 		inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
246 		if (range->ops && range->ops->open_queue)
247 			ret = range->ops->open_queue(range, inst, flags);
248 
249 		if (ret)
250 			goto err;
251 	}
252 	list_add_tail_rcu(&qh->list, &inst->handles);
253 	return qh;
254 
255 err:
256 	if (qh->stats)
257 		free_percpu(qh->stats);
258 	devm_kfree(inst->kdev->dev, qh);
259 	return ERR_PTR(ret);
260 }
261 
262 static struct knav_queue *
263 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
264 {
265 	struct knav_queue_inst *inst;
266 	struct knav_queue *qh;
267 
268 	mutex_lock(&knav_dev_lock);
269 
270 	qh = ERR_PTR(-ENODEV);
271 	inst = knav_queue_find_by_id(id);
272 	if (!inst)
273 		goto unlock_ret;
274 
275 	qh = ERR_PTR(-EEXIST);
276 	if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
277 		goto unlock_ret;
278 
279 	qh = ERR_PTR(-EBUSY);
280 	if ((flags & KNAV_QUEUE_SHARED) &&
281 	    (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
282 		goto unlock_ret;
283 
284 	qh = __knav_queue_open(inst, name, flags);
285 
286 unlock_ret:
287 	mutex_unlock(&knav_dev_lock);
288 
289 	return qh;
290 }
291 
292 static struct knav_queue *knav_queue_open_by_type(const char *name,
293 						unsigned type, unsigned flags)
294 {
295 	struct knav_queue_inst *inst;
296 	struct knav_queue *qh = ERR_PTR(-EINVAL);
297 	int idx;
298 
299 	mutex_lock(&knav_dev_lock);
300 
301 	for_each_instance(idx, inst, kdev) {
302 		if (knav_queue_is_reserved(inst))
303 			continue;
304 		if (!knav_queue_match_type(inst, type))
305 			continue;
306 		if (knav_queue_is_busy(inst))
307 			continue;
308 		qh = __knav_queue_open(inst, name, flags);
309 		goto unlock_ret;
310 	}
311 
312 unlock_ret:
313 	mutex_unlock(&knav_dev_lock);
314 	return qh;
315 }
316 
317 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
318 {
319 	struct knav_range_info *range = inst->range;
320 
321 	if (range->ops && range->ops->set_notify)
322 		range->ops->set_notify(range, inst, enabled);
323 }
324 
325 static int knav_queue_enable_notifier(struct knav_queue *qh)
326 {
327 	struct knav_queue_inst *inst = qh->inst;
328 	bool first;
329 
330 	if (WARN_ON(!qh->notifier_fn))
331 		return -EINVAL;
332 
333 	/* Adjust the per handle notifier count */
334 	first = (atomic_inc_return(&qh->notifier_enabled) == 1);
335 	if (!first)
336 		return 0; /* nothing to do */
337 
338 	/* Now adjust the per instance notifier count */
339 	first = (atomic_inc_return(&inst->num_notifiers) == 1);
340 	if (first)
341 		knav_queue_set_notify(inst, true);
342 
343 	return 0;
344 }
345 
346 static int knav_queue_disable_notifier(struct knav_queue *qh)
347 {
348 	struct knav_queue_inst *inst = qh->inst;
349 	bool last;
350 
351 	last = (atomic_dec_return(&qh->notifier_enabled) == 0);
352 	if (!last)
353 		return 0; /* nothing to do */
354 
355 	last = (atomic_dec_return(&inst->num_notifiers) == 0);
356 	if (last)
357 		knav_queue_set_notify(inst, false);
358 
359 	return 0;
360 }
361 
362 static int knav_queue_set_notifier(struct knav_queue *qh,
363 				struct knav_queue_notify_config *cfg)
364 {
365 	knav_queue_notify_fn old_fn = qh->notifier_fn;
366 
367 	if (!cfg)
368 		return -EINVAL;
369 
370 	if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
371 		return -ENOTSUPP;
372 
373 	if (!cfg->fn && old_fn)
374 		knav_queue_disable_notifier(qh);
375 
376 	qh->notifier_fn = cfg->fn;
377 	qh->notifier_fn_arg = cfg->fn_arg;
378 
379 	if (cfg->fn && !old_fn)
380 		knav_queue_enable_notifier(qh);
381 
382 	return 0;
383 }
384 
385 static int knav_gp_set_notify(struct knav_range_info *range,
386 			       struct knav_queue_inst *inst,
387 			       bool enabled)
388 {
389 	unsigned queue;
390 
391 	if (range->flags & RANGE_HAS_IRQ) {
392 		queue = inst->id - range->queue_base;
393 		if (enabled)
394 			enable_irq(range->irqs[queue].irq);
395 		else
396 			disable_irq_nosync(range->irqs[queue].irq);
397 	}
398 	return 0;
399 }
400 
401 static int knav_gp_open_queue(struct knav_range_info *range,
402 				struct knav_queue_inst *inst, unsigned flags)
403 {
404 	return knav_queue_setup_irq(range, inst);
405 }
406 
407 static int knav_gp_close_queue(struct knav_range_info *range,
408 				struct knav_queue_inst *inst)
409 {
410 	knav_queue_free_irq(inst);
411 	return 0;
412 }
413 
414 static const struct knav_range_ops knav_gp_range_ops = {
415 	.set_notify	= knav_gp_set_notify,
416 	.open_queue	= knav_gp_open_queue,
417 	.close_queue	= knav_gp_close_queue,
418 };
419 
420 
421 static int knav_queue_get_count(void *qhandle)
422 {
423 	struct knav_queue *qh = qhandle;
424 	struct knav_queue_inst *inst = qh->inst;
425 
426 	return readl_relaxed(&qh->reg_peek[0].entry_count) +
427 		atomic_read(&inst->desc_count);
428 }
429 
430 static void knav_queue_debug_show_instance(struct seq_file *s,
431 					struct knav_queue_inst *inst)
432 {
433 	struct knav_device *kdev = inst->kdev;
434 	struct knav_queue *qh;
435 	int cpu = 0;
436 	int pushes = 0;
437 	int pops = 0;
438 	int push_errors = 0;
439 	int pop_errors = 0;
440 	int notifies = 0;
441 
442 	if (!knav_queue_is_busy(inst))
443 		return;
444 
445 	seq_printf(s, "\tqueue id %d (%s)\n",
446 		   kdev->base_id + inst->id, inst->name);
447 	for_each_handle_rcu(qh, inst) {
448 		for_each_possible_cpu(cpu) {
449 			pushes += per_cpu_ptr(qh->stats, cpu)->pushes;
450 			pops += per_cpu_ptr(qh->stats, cpu)->pops;
451 			push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors;
452 			pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors;
453 			notifies += per_cpu_ptr(qh->stats, cpu)->notifies;
454 		}
455 
456 		seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n",
457 				qh,
458 				pushes,
459 				pops,
460 				knav_queue_get_count(qh),
461 				notifies,
462 				push_errors,
463 				pop_errors);
464 	}
465 }
466 
467 static int knav_queue_debug_show(struct seq_file *s, void *v)
468 {
469 	struct knav_queue_inst *inst;
470 	int idx;
471 
472 	mutex_lock(&knav_dev_lock);
473 	seq_printf(s, "%s: %u-%u\n",
474 		   dev_name(kdev->dev), kdev->base_id,
475 		   kdev->base_id + kdev->num_queues - 1);
476 	for_each_instance(idx, inst, kdev)
477 		knav_queue_debug_show_instance(s, inst);
478 	mutex_unlock(&knav_dev_lock);
479 
480 	return 0;
481 }
482 
483 DEFINE_SHOW_ATTRIBUTE(knav_queue_debug);
484 
485 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
486 					u32 flags)
487 {
488 	unsigned long end;
489 	u32 val = 0;
490 
491 	end = jiffies + msecs_to_jiffies(timeout);
492 	while (time_after(end, jiffies)) {
493 		val = readl_relaxed(addr);
494 		if (flags)
495 			val &= flags;
496 		if (!val)
497 			break;
498 		cpu_relax();
499 	}
500 	return val ? -ETIMEDOUT : 0;
501 }
502 
503 
504 static int knav_queue_flush(struct knav_queue *qh)
505 {
506 	struct knav_queue_inst *inst = qh->inst;
507 	unsigned id = inst->id - inst->qmgr->start_queue;
508 
509 	atomic_set(&inst->desc_count, 0);
510 	writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
511 	return 0;
512 }
513 
514 /**
515  * knav_queue_open()	- open a hardware queue
516  * @name:		- name to give the queue handle
517  * @id:			- desired queue number if any or specifes the type
518  *			  of queue
519  * @flags:		- the following flags are applicable to queues:
520  *	KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
521  *			     exclusive by default.
522  *			     Subsequent attempts to open a shared queue should
523  *			     also have this flag.
524  *
525  * Returns a handle to the open hardware queue if successful. Use IS_ERR()
526  * to check the returned value for error codes.
527  */
528 void *knav_queue_open(const char *name, unsigned id,
529 					unsigned flags)
530 {
531 	struct knav_queue *qh = ERR_PTR(-EINVAL);
532 
533 	switch (id) {
534 	case KNAV_QUEUE_QPEND:
535 	case KNAV_QUEUE_ACC:
536 	case KNAV_QUEUE_GP:
537 		qh = knav_queue_open_by_type(name, id, flags);
538 		break;
539 
540 	default:
541 		qh = knav_queue_open_by_id(name, id, flags);
542 		break;
543 	}
544 	return qh;
545 }
546 EXPORT_SYMBOL_GPL(knav_queue_open);
547 
548 /**
549  * knav_queue_close()	- close a hardware queue handle
550  * @qhandle:		- handle to close
551  */
552 void knav_queue_close(void *qhandle)
553 {
554 	struct knav_queue *qh = qhandle;
555 	struct knav_queue_inst *inst = qh->inst;
556 
557 	while (atomic_read(&qh->notifier_enabled) > 0)
558 		knav_queue_disable_notifier(qh);
559 
560 	mutex_lock(&knav_dev_lock);
561 	list_del_rcu(&qh->list);
562 	mutex_unlock(&knav_dev_lock);
563 	synchronize_rcu();
564 	if (!knav_queue_is_busy(inst)) {
565 		struct knav_range_info *range = inst->range;
566 
567 		if (range->ops && range->ops->close_queue)
568 			range->ops->close_queue(range, inst);
569 	}
570 	free_percpu(qh->stats);
571 	devm_kfree(inst->kdev->dev, qh);
572 }
573 EXPORT_SYMBOL_GPL(knav_queue_close);
574 
575 /**
576  * knav_queue_device_control()	- Perform control operations on a queue
577  * @qhandle:			- queue handle
578  * @cmd:			- control commands
579  * @arg:			- command argument
580  *
581  * Returns 0 on success, errno otherwise.
582  */
583 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
584 				unsigned long arg)
585 {
586 	struct knav_queue *qh = qhandle;
587 	struct knav_queue_notify_config *cfg;
588 	int ret;
589 
590 	switch ((int)cmd) {
591 	case KNAV_QUEUE_GET_ID:
592 		ret = qh->inst->kdev->base_id + qh->inst->id;
593 		break;
594 
595 	case KNAV_QUEUE_FLUSH:
596 		ret = knav_queue_flush(qh);
597 		break;
598 
599 	case KNAV_QUEUE_SET_NOTIFIER:
600 		cfg = (void *)arg;
601 		ret = knav_queue_set_notifier(qh, cfg);
602 		break;
603 
604 	case KNAV_QUEUE_ENABLE_NOTIFY:
605 		ret = knav_queue_enable_notifier(qh);
606 		break;
607 
608 	case KNAV_QUEUE_DISABLE_NOTIFY:
609 		ret = knav_queue_disable_notifier(qh);
610 		break;
611 
612 	case KNAV_QUEUE_GET_COUNT:
613 		ret = knav_queue_get_count(qh);
614 		break;
615 
616 	default:
617 		ret = -ENOTSUPP;
618 		break;
619 	}
620 	return ret;
621 }
622 EXPORT_SYMBOL_GPL(knav_queue_device_control);
623 
624 
625 
626 /**
627  * knav_queue_push()	- push data (or descriptor) to the tail of a queue
628  * @qhandle:		- hardware queue handle
629  * @dma:		- DMA data to push
630  * @size:		- size of data to push
631  * @flags:		- can be used to pass additional information
632  *
633  * Returns 0 on success, errno otherwise.
634  */
635 int knav_queue_push(void *qhandle, dma_addr_t dma,
636 					unsigned size, unsigned flags)
637 {
638 	struct knav_queue *qh = qhandle;
639 	u32 val;
640 
641 	val = (u32)dma | ((size / 16) - 1);
642 	writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
643 
644 	this_cpu_inc(qh->stats->pushes);
645 	return 0;
646 }
647 EXPORT_SYMBOL_GPL(knav_queue_push);
648 
649 /**
650  * knav_queue_pop()	- pop data (or descriptor) from the head of a queue
651  * @qhandle:		- hardware queue handle
652  * @size:		- (optional) size of the data pop'ed.
653  *
654  * Returns a DMA address on success, 0 on failure.
655  */
656 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
657 {
658 	struct knav_queue *qh = qhandle;
659 	struct knav_queue_inst *inst = qh->inst;
660 	dma_addr_t dma;
661 	u32 val, idx;
662 
663 	/* are we accumulated? */
664 	if (inst->descs) {
665 		if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
666 			atomic_inc(&inst->desc_count);
667 			return 0;
668 		}
669 		idx  = atomic_inc_return(&inst->desc_head);
670 		idx &= ACC_DESCS_MASK;
671 		val = inst->descs[idx];
672 	} else {
673 		val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
674 		if (unlikely(!val))
675 			return 0;
676 	}
677 
678 	dma = val & DESC_PTR_MASK;
679 	if (size)
680 		*size = ((val & DESC_SIZE_MASK) + 1) * 16;
681 
682 	this_cpu_inc(qh->stats->pops);
683 	return dma;
684 }
685 EXPORT_SYMBOL_GPL(knav_queue_pop);
686 
687 /* carve out descriptors and push into queue */
688 static void kdesc_fill_pool(struct knav_pool *pool)
689 {
690 	struct knav_region *region;
691 	int i;
692 
693 	region = pool->region;
694 	pool->desc_size = region->desc_size;
695 	for (i = 0; i < pool->num_desc; i++) {
696 		int index = pool->region_offset + i;
697 		dma_addr_t dma_addr;
698 		unsigned dma_size;
699 		dma_addr = region->dma_start + (region->desc_size * index);
700 		dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
701 		dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
702 					   DMA_TO_DEVICE);
703 		knav_queue_push(pool->queue, dma_addr, dma_size, 0);
704 	}
705 }
706 
707 /* pop out descriptors and close the queue */
708 static void kdesc_empty_pool(struct knav_pool *pool)
709 {
710 	dma_addr_t dma;
711 	unsigned size;
712 	void *desc;
713 	int i;
714 
715 	if (!pool->queue)
716 		return;
717 
718 	for (i = 0;; i++) {
719 		dma = knav_queue_pop(pool->queue, &size);
720 		if (!dma)
721 			break;
722 		desc = knav_pool_desc_dma_to_virt(pool, dma);
723 		if (!desc) {
724 			dev_dbg(pool->kdev->dev,
725 				"couldn't unmap desc, continuing\n");
726 			continue;
727 		}
728 	}
729 	WARN_ON(i != pool->num_desc);
730 	knav_queue_close(pool->queue);
731 }
732 
733 
734 /* Get the DMA address of a descriptor */
735 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
736 {
737 	struct knav_pool *pool = ph;
738 	return pool->region->dma_start + (virt - pool->region->virt_start);
739 }
740 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
741 
742 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
743 {
744 	struct knav_pool *pool = ph;
745 	return pool->region->virt_start + (dma - pool->region->dma_start);
746 }
747 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
748 
749 /**
750  * knav_pool_create()	- Create a pool of descriptors
751  * @name:		- name to give the pool handle
752  * @num_desc:		- numbers of descriptors in the pool
753  * @region_id:		- QMSS region id from which the descriptors are to be
754  *			  allocated.
755  *
756  * Returns a pool handle on success.
757  * Use IS_ERR_OR_NULL() to identify error values on return.
758  */
759 void *knav_pool_create(const char *name,
760 					int num_desc, int region_id)
761 {
762 	struct knav_region *reg_itr, *region = NULL;
763 	struct knav_pool *pool, *pi = NULL, *iter;
764 	struct list_head *node;
765 	unsigned last_offset;
766 	int ret;
767 
768 	if (!kdev)
769 		return ERR_PTR(-EPROBE_DEFER);
770 
771 	if (!kdev->dev)
772 		return ERR_PTR(-ENODEV);
773 
774 	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
775 	if (!pool) {
776 		dev_err(kdev->dev, "out of memory allocating pool\n");
777 		return ERR_PTR(-ENOMEM);
778 	}
779 
780 	for_each_region(kdev, reg_itr) {
781 		if (reg_itr->id != region_id)
782 			continue;
783 		region = reg_itr;
784 		break;
785 	}
786 
787 	if (!region) {
788 		dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
789 		ret = -EINVAL;
790 		goto err;
791 	}
792 
793 	pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
794 	if (IS_ERR(pool->queue)) {
795 		dev_err(kdev->dev,
796 			"failed to open queue for pool(%s), error %ld\n",
797 			name, PTR_ERR(pool->queue));
798 		ret = PTR_ERR(pool->queue);
799 		goto err;
800 	}
801 
802 	pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
803 	pool->kdev = kdev;
804 	pool->dev = kdev->dev;
805 
806 	mutex_lock(&knav_dev_lock);
807 
808 	if (num_desc > (region->num_desc - region->used_desc)) {
809 		dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
810 			region_id, name);
811 		ret = -ENOMEM;
812 		goto err_unlock;
813 	}
814 
815 	/* Region maintains a sorted (by region offset) list of pools
816 	 * use the first free slot which is large enough to accomodate
817 	 * the request
818 	 */
819 	last_offset = 0;
820 	node = &region->pools;
821 	list_for_each_entry(iter, &region->pools, region_inst) {
822 		if ((iter->region_offset - last_offset) >= num_desc) {
823 			pi = iter;
824 			break;
825 		}
826 		last_offset = iter->region_offset + iter->num_desc;
827 	}
828 
829 	if (pi) {
830 		node = &pi->region_inst;
831 		pool->region = region;
832 		pool->num_desc = num_desc;
833 		pool->region_offset = last_offset;
834 		region->used_desc += num_desc;
835 		list_add_tail(&pool->list, &kdev->pools);
836 		list_add_tail(&pool->region_inst, node);
837 	} else {
838 		dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
839 			name, region_id);
840 		ret = -ENOMEM;
841 		goto err_unlock;
842 	}
843 
844 	mutex_unlock(&knav_dev_lock);
845 	kdesc_fill_pool(pool);
846 	return pool;
847 
848 err_unlock:
849 	mutex_unlock(&knav_dev_lock);
850 err:
851 	kfree(pool->name);
852 	devm_kfree(kdev->dev, pool);
853 	return ERR_PTR(ret);
854 }
855 EXPORT_SYMBOL_GPL(knav_pool_create);
856 
857 /**
858  * knav_pool_destroy()	- Free a pool of descriptors
859  * @ph:		- pool handle
860  */
861 void knav_pool_destroy(void *ph)
862 {
863 	struct knav_pool *pool = ph;
864 
865 	if (!pool)
866 		return;
867 
868 	if (!pool->region)
869 		return;
870 
871 	kdesc_empty_pool(pool);
872 	mutex_lock(&knav_dev_lock);
873 
874 	pool->region->used_desc -= pool->num_desc;
875 	list_del(&pool->region_inst);
876 	list_del(&pool->list);
877 
878 	mutex_unlock(&knav_dev_lock);
879 	kfree(pool->name);
880 	devm_kfree(kdev->dev, pool);
881 }
882 EXPORT_SYMBOL_GPL(knav_pool_destroy);
883 
884 
885 /**
886  * knav_pool_desc_get()	- Get a descriptor from the pool
887  * @ph:		- pool handle
888  *
889  * Returns descriptor from the pool.
890  */
891 void *knav_pool_desc_get(void *ph)
892 {
893 	struct knav_pool *pool = ph;
894 	dma_addr_t dma;
895 	unsigned size;
896 	void *data;
897 
898 	dma = knav_queue_pop(pool->queue, &size);
899 	if (unlikely(!dma))
900 		return ERR_PTR(-ENOMEM);
901 	data = knav_pool_desc_dma_to_virt(pool, dma);
902 	return data;
903 }
904 EXPORT_SYMBOL_GPL(knav_pool_desc_get);
905 
906 /**
907  * knav_pool_desc_put()	- return a descriptor to the pool
908  * @ph:		- pool handle
909  * @desc:	- virtual address
910  */
911 void knav_pool_desc_put(void *ph, void *desc)
912 {
913 	struct knav_pool *pool = ph;
914 	dma_addr_t dma;
915 	dma = knav_pool_desc_virt_to_dma(pool, desc);
916 	knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
917 }
918 EXPORT_SYMBOL_GPL(knav_pool_desc_put);
919 
920 /**
921  * knav_pool_desc_map()	- Map descriptor for DMA transfer
922  * @ph:				- pool handle
923  * @desc:			- address of descriptor to map
924  * @size:			- size of descriptor to map
925  * @dma:			- DMA address return pointer
926  * @dma_sz:			- adjusted return pointer
927  *
928  * Returns 0 on success, errno otherwise.
929  */
930 int knav_pool_desc_map(void *ph, void *desc, unsigned size,
931 					dma_addr_t *dma, unsigned *dma_sz)
932 {
933 	struct knav_pool *pool = ph;
934 	*dma = knav_pool_desc_virt_to_dma(pool, desc);
935 	size = min(size, pool->region->desc_size);
936 	size = ALIGN(size, SMP_CACHE_BYTES);
937 	*dma_sz = size;
938 	dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
939 
940 	/* Ensure the descriptor reaches to the memory */
941 	__iowmb();
942 
943 	return 0;
944 }
945 EXPORT_SYMBOL_GPL(knav_pool_desc_map);
946 
947 /**
948  * knav_pool_desc_unmap()	- Unmap descriptor after DMA transfer
949  * @ph:				- pool handle
950  * @dma:			- DMA address of descriptor to unmap
951  * @dma_sz:			- size of descriptor to unmap
952  *
953  * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
954  * error values on return.
955  */
956 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
957 {
958 	struct knav_pool *pool = ph;
959 	unsigned desc_sz;
960 	void *desc;
961 
962 	desc_sz = min(dma_sz, pool->region->desc_size);
963 	desc = knav_pool_desc_dma_to_virt(pool, dma);
964 	dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
965 	prefetch(desc);
966 	return desc;
967 }
968 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
969 
970 /**
971  * knav_pool_count()	- Get the number of descriptors in pool.
972  * @ph:			- pool handle
973  * Returns number of elements in the pool.
974  */
975 int knav_pool_count(void *ph)
976 {
977 	struct knav_pool *pool = ph;
978 	return knav_queue_get_count(pool->queue);
979 }
980 EXPORT_SYMBOL_GPL(knav_pool_count);
981 
982 static void knav_queue_setup_region(struct knav_device *kdev,
983 					struct knav_region *region)
984 {
985 	unsigned hw_num_desc, hw_desc_size, size;
986 	struct knav_reg_region __iomem  *regs;
987 	struct knav_qmgr_info *qmgr;
988 	struct knav_pool *pool;
989 	int id = region->id;
990 	struct page *page;
991 
992 	/* unused region? */
993 	if (!region->num_desc) {
994 		dev_warn(kdev->dev, "unused region %s\n", region->name);
995 		return;
996 	}
997 
998 	/* get hardware descriptor value */
999 	hw_num_desc = ilog2(region->num_desc - 1) + 1;
1000 
1001 	/* did we force fit ourselves into nothingness? */
1002 	if (region->num_desc < 32) {
1003 		region->num_desc = 0;
1004 		dev_warn(kdev->dev, "too few descriptors in region %s\n",
1005 			 region->name);
1006 		return;
1007 	}
1008 
1009 	size = region->num_desc * region->desc_size;
1010 	region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
1011 						GFP_DMA32);
1012 	if (!region->virt_start) {
1013 		region->num_desc = 0;
1014 		dev_err(kdev->dev, "memory alloc failed for region %s\n",
1015 			region->name);
1016 		return;
1017 	}
1018 	region->virt_end = region->virt_start + size;
1019 	page = virt_to_page(region->virt_start);
1020 
1021 	region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1022 					 DMA_BIDIRECTIONAL);
1023 	if (dma_mapping_error(kdev->dev, region->dma_start)) {
1024 		dev_err(kdev->dev, "dma map failed for region %s\n",
1025 			region->name);
1026 		goto fail;
1027 	}
1028 	region->dma_end = region->dma_start + size;
1029 
1030 	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1031 	if (!pool) {
1032 		dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1033 		goto fail;
1034 	}
1035 	pool->num_desc = 0;
1036 	pool->region_offset = region->num_desc;
1037 	list_add(&pool->region_inst, &region->pools);
1038 
1039 	dev_dbg(kdev->dev,
1040 		"region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1041 		region->name, id, region->desc_size, region->num_desc,
1042 		region->link_index, &region->dma_start, &region->dma_end,
1043 		region->virt_start, region->virt_end);
1044 
1045 	hw_desc_size = (region->desc_size / 16) - 1;
1046 	hw_num_desc -= 5;
1047 
1048 	for_each_qmgr(kdev, qmgr) {
1049 		regs = qmgr->reg_region + id;
1050 		writel_relaxed((u32)region->dma_start, &regs->base);
1051 		writel_relaxed(region->link_index, &regs->start_index);
1052 		writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1053 			       &regs->size_count);
1054 	}
1055 	return;
1056 
1057 fail:
1058 	if (region->dma_start)
1059 		dma_unmap_page(kdev->dev, region->dma_start, size,
1060 				DMA_BIDIRECTIONAL);
1061 	if (region->virt_start)
1062 		free_pages_exact(region->virt_start, size);
1063 	region->num_desc = 0;
1064 	return;
1065 }
1066 
1067 static const char *knav_queue_find_name(struct device_node *node)
1068 {
1069 	const char *name;
1070 
1071 	if (of_property_read_string(node, "label", &name) < 0)
1072 		name = node->name;
1073 	if (!name)
1074 		name = "unknown";
1075 	return name;
1076 }
1077 
1078 static int knav_queue_setup_regions(struct knav_device *kdev,
1079 				    struct device_node *node)
1080 {
1081 	struct device *dev = kdev->dev;
1082 	struct device_node *regions __free(device_node) =
1083 			of_get_child_by_name(node, "descriptor-regions");
1084 	struct knav_region *region;
1085 	struct device_node *child;
1086 	u32 temp[2];
1087 	int ret;
1088 
1089 	if (!regions)
1090 		return dev_err_probe(dev, -ENODEV,
1091 				     "descriptor-regions not specified\n");
1092 
1093 	for_each_child_of_node(regions, child) {
1094 		region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1095 		if (!region) {
1096 			of_node_put(child);
1097 			dev_err(dev, "out of memory allocating region\n");
1098 			return -ENOMEM;
1099 		}
1100 
1101 		region->name = knav_queue_find_name(child);
1102 		of_property_read_u32(child, "id", &region->id);
1103 		ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1104 		if (!ret) {
1105 			region->num_desc  = temp[0];
1106 			region->desc_size = temp[1];
1107 		} else {
1108 			dev_err(dev, "invalid region info %s\n", region->name);
1109 			devm_kfree(dev, region);
1110 			continue;
1111 		}
1112 
1113 		ret = of_property_read_u32(child, "link-index",
1114 					   &region->link_index);
1115 		if (ret) {
1116 			dev_err(dev, "link index not found for %s\n",
1117 				region->name);
1118 			devm_kfree(dev, region);
1119 			continue;
1120 		}
1121 
1122 		INIT_LIST_HEAD(&region->pools);
1123 		list_add_tail(&region->list, &kdev->regions);
1124 	}
1125 	if (list_empty(&kdev->regions))
1126 		return dev_err_probe(dev, -ENODEV,
1127 				     "no valid region information found\n");
1128 
1129 	/* Next, we run through the regions and set things up */
1130 	for_each_region(kdev, region)
1131 		knav_queue_setup_region(kdev, region);
1132 
1133 	return 0;
1134 }
1135 
1136 static int knav_get_link_ram(struct knav_device *kdev,
1137 				       const char *name,
1138 				       struct knav_link_ram_block *block)
1139 {
1140 	struct platform_device *pdev = to_platform_device(kdev->dev);
1141 	struct device_node *node = pdev->dev.of_node;
1142 	u32 temp[2];
1143 
1144 	/*
1145 	 * Note: link ram resources are specified in "entry" sized units. In
1146 	 * reality, although entries are ~40bits in hardware, we treat them as
1147 	 * 64-bit entities here.
1148 	 *
1149 	 * For example, to specify the internal link ram for Keystone-I class
1150 	 * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1151 	 *
1152 	 * This gets a bit weird when other link rams are used.  For example,
1153 	 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1154 	 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1155 	 * which accounts for 64-bits per entry, for 16K entries.
1156 	 */
1157 	if (!of_property_read_u32_array(node, name , temp, 2)) {
1158 		if (temp[0]) {
1159 			/*
1160 			 * queue_base specified => using internal or onchip
1161 			 * link ram WARNING - we do not "reserve" this block
1162 			 */
1163 			block->dma = (dma_addr_t)temp[0];
1164 			block->virt = NULL;
1165 			block->size = temp[1];
1166 		} else {
1167 			block->size = temp[1];
1168 			/* queue_base not specific => allocate requested size */
1169 			block->virt = dmam_alloc_coherent(kdev->dev,
1170 						  8 * block->size, &block->dma,
1171 						  GFP_KERNEL);
1172 			if (!block->virt) {
1173 				dev_err(kdev->dev, "failed to alloc linkram\n");
1174 				return -ENOMEM;
1175 			}
1176 		}
1177 	} else {
1178 		return -ENODEV;
1179 	}
1180 	return 0;
1181 }
1182 
1183 static int knav_queue_setup_link_ram(struct knav_device *kdev)
1184 {
1185 	struct knav_link_ram_block *block;
1186 	struct knav_qmgr_info *qmgr;
1187 
1188 	for_each_qmgr(kdev, qmgr) {
1189 		block = &kdev->link_rams[0];
1190 		dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
1191 			&block->dma, block->virt, block->size);
1192 		writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
1193 		if (kdev->version == QMSS_66AK2G)
1194 			writel_relaxed(block->size,
1195 				       &qmgr->reg_config->link_ram_size0);
1196 		else
1197 			writel_relaxed(block->size - 1,
1198 				       &qmgr->reg_config->link_ram_size0);
1199 		block++;
1200 		if (!block->size)
1201 			continue;
1202 
1203 		dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
1204 			&block->dma, block->virt, block->size);
1205 		writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
1206 	}
1207 
1208 	return 0;
1209 }
1210 
1211 static int knav_setup_queue_range(struct knav_device *kdev,
1212 					struct device_node *node)
1213 {
1214 	struct device *dev = kdev->dev;
1215 	struct knav_range_info *range;
1216 	struct knav_qmgr_info *qmgr;
1217 	u32 temp[2], start, end, id, index;
1218 	int ret, i;
1219 
1220 	range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1221 	if (!range) {
1222 		dev_err(dev, "out of memory allocating range\n");
1223 		return -ENOMEM;
1224 	}
1225 
1226 	range->kdev = kdev;
1227 	range->name = knav_queue_find_name(node);
1228 	ret = of_property_read_u32_array(node, "qrange", temp, 2);
1229 	if (!ret) {
1230 		range->queue_base = temp[0] - kdev->base_id;
1231 		range->num_queues = temp[1];
1232 	} else {
1233 		dev_err(dev, "invalid queue range %s\n", range->name);
1234 		devm_kfree(dev, range);
1235 		return -EINVAL;
1236 	}
1237 
1238 	for (i = 0; i < RANGE_MAX_IRQS; i++) {
1239 		struct of_phandle_args oirq;
1240 
1241 		if (of_irq_parse_one(node, i, &oirq))
1242 			break;
1243 
1244 		range->irqs[i].irq = irq_create_of_mapping(&oirq);
1245 		if (range->irqs[i].irq == IRQ_NONE)
1246 			break;
1247 
1248 		range->num_irqs++;
1249 
1250 		if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) {
1251 			unsigned long mask;
1252 			int bit;
1253 
1254 			range->irqs[i].cpu_mask = devm_kzalloc(dev,
1255 							       cpumask_size(), GFP_KERNEL);
1256 			if (!range->irqs[i].cpu_mask)
1257 				return -ENOMEM;
1258 
1259 			mask = (oirq.args[2] & 0x0000ff00) >> 8;
1260 			for_each_set_bit(bit, &mask, BITS_PER_LONG)
1261 				cpumask_set_cpu(bit, range->irqs[i].cpu_mask);
1262 		}
1263 	}
1264 
1265 	range->num_irqs = min(range->num_irqs, range->num_queues);
1266 	if (range->num_irqs)
1267 		range->flags |= RANGE_HAS_IRQ;
1268 
1269 	if (of_property_read_bool(node, "qalloc-by-id"))
1270 		range->flags |= RANGE_RESERVED;
1271 
1272 	if (of_property_present(node, "accumulator")) {
1273 		ret = knav_init_acc_range(kdev, node, range);
1274 		if (ret < 0) {
1275 			devm_kfree(dev, range);
1276 			return ret;
1277 		}
1278 	} else {
1279 		range->ops = &knav_gp_range_ops;
1280 	}
1281 
1282 	/* set threshold to 1, and flush out the queues */
1283 	for_each_qmgr(kdev, qmgr) {
1284 		start = max(qmgr->start_queue, range->queue_base);
1285 		end   = min(qmgr->start_queue + qmgr->num_queues,
1286 			    range->queue_base + range->num_queues);
1287 		for (id = start; id < end; id++) {
1288 			index = id - qmgr->start_queue;
1289 			writel_relaxed(THRESH_GTE | 1,
1290 				       &qmgr->reg_peek[index].ptr_size_thresh);
1291 			writel_relaxed(0,
1292 				       &qmgr->reg_push[index].ptr_size_thresh);
1293 		}
1294 	}
1295 
1296 	list_add_tail(&range->list, &kdev->queue_ranges);
1297 	dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1298 		range->name, range->queue_base,
1299 		range->queue_base + range->num_queues - 1,
1300 		range->num_irqs,
1301 		(range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1302 		(range->flags & RANGE_RESERVED) ? ", reserved" : "",
1303 		(range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1304 	kdev->num_queues_in_use += range->num_queues;
1305 	return 0;
1306 }
1307 
1308 static int knav_setup_queue_pools(struct knav_device *kdev,
1309 				  struct device_node *node)
1310 {
1311 	struct device_node *queue_pools __free(device_node) =
1312 			of_get_child_by_name(node, "queue-pools");
1313 	struct device_node *type, *range;
1314 
1315 	if (!queue_pools)
1316 		return dev_err_probe(kdev->dev, -ENODEV,
1317 				     "queue-pools not specified\n");
1318 
1319 	for_each_child_of_node(queue_pools, type) {
1320 		for_each_child_of_node(type, range) {
1321 			/* return value ignored, we init the rest... */
1322 			knav_setup_queue_range(kdev, range);
1323 		}
1324 	}
1325 
1326 	/* ... and barf if they all failed! */
1327 	if (list_empty(&kdev->queue_ranges))
1328 		return dev_err_probe(kdev->dev, -ENODEV,
1329 				     "no valid queue range found\n");
1330 	return 0;
1331 }
1332 
1333 static void knav_free_queue_range(struct knav_device *kdev,
1334 				  struct knav_range_info *range)
1335 {
1336 	if (range->ops && range->ops->free_range)
1337 		range->ops->free_range(range);
1338 	list_del(&range->list);
1339 	devm_kfree(kdev->dev, range);
1340 }
1341 
1342 static void knav_free_queue_ranges(struct knav_device *kdev)
1343 {
1344 	struct knav_range_info *range;
1345 
1346 	for (;;) {
1347 		range = first_queue_range(kdev);
1348 		if (!range)
1349 			break;
1350 		knav_free_queue_range(kdev, range);
1351 	}
1352 }
1353 
1354 static void knav_queue_free_regions(struct knav_device *kdev)
1355 {
1356 	struct knav_region *region;
1357 	struct knav_pool *pool, *tmp;
1358 	unsigned size;
1359 
1360 	for (;;) {
1361 		region = first_region(kdev);
1362 		if (!region)
1363 			break;
1364 		list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1365 			knav_pool_destroy(pool);
1366 
1367 		size = region->virt_end - region->virt_start;
1368 		if (size)
1369 			free_pages_exact(region->virt_start, size);
1370 		list_del(&region->list);
1371 		devm_kfree(kdev->dev, region);
1372 	}
1373 }
1374 
1375 static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1376 					struct device_node *node, int index)
1377 {
1378 	struct resource res;
1379 	void __iomem *regs;
1380 	int ret;
1381 
1382 	ret = of_address_to_resource(node, index, &res);
1383 	if (ret) {
1384 		dev_err(kdev->dev, "Can't translate of node(%pOFn) address for index(%d)\n",
1385 			node, index);
1386 		return ERR_PTR(ret);
1387 	}
1388 
1389 	regs = devm_ioremap_resource(kdev->dev, &res);
1390 	if (IS_ERR(regs))
1391 		dev_err(kdev->dev, "Failed to map register base for index(%d) node(%pOFn)\n",
1392 			index, node);
1393 	return regs;
1394 }
1395 
1396 static int knav_queue_init_qmgrs(struct knav_device *kdev,
1397 				 struct device_node *node)
1398 {
1399 	struct device *dev = kdev->dev;
1400 	struct device_node *qmgrs __free(device_node) =
1401 			of_get_child_by_name(node, "qmgrs");
1402 	struct knav_qmgr_info *qmgr;
1403 	struct device_node *child;
1404 	u32 temp[2];
1405 	int ret;
1406 
1407 	if (!qmgrs)
1408 		return dev_err_probe(dev, -ENODEV,
1409 				     "queue manager info not specified\n");
1410 
1411 	for_each_child_of_node(qmgrs, child) {
1412 		qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1413 		if (!qmgr) {
1414 			of_node_put(child);
1415 			dev_err(dev, "out of memory allocating qmgr\n");
1416 			return -ENOMEM;
1417 		}
1418 
1419 		ret = of_property_read_u32_array(child, "managed-queues",
1420 						 temp, 2);
1421 		if (!ret) {
1422 			qmgr->start_queue = temp[0];
1423 			qmgr->num_queues = temp[1];
1424 		} else {
1425 			dev_err(dev, "invalid qmgr queue range\n");
1426 			devm_kfree(dev, qmgr);
1427 			continue;
1428 		}
1429 
1430 		dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1431 			 qmgr->start_queue, qmgr->num_queues);
1432 
1433 		qmgr->reg_peek =
1434 			knav_queue_map_reg(kdev, child,
1435 					   KNAV_QUEUE_PEEK_REG_INDEX);
1436 
1437 		if (kdev->version == QMSS) {
1438 			qmgr->reg_status =
1439 				knav_queue_map_reg(kdev, child,
1440 						   KNAV_QUEUE_STATUS_REG_INDEX);
1441 		}
1442 
1443 		qmgr->reg_config =
1444 			knav_queue_map_reg(kdev, child,
1445 					   (kdev->version == QMSS_66AK2G) ?
1446 					   KNAV_L_QUEUE_CONFIG_REG_INDEX :
1447 					   KNAV_QUEUE_CONFIG_REG_INDEX);
1448 		qmgr->reg_region =
1449 			knav_queue_map_reg(kdev, child,
1450 					   (kdev->version == QMSS_66AK2G) ?
1451 					   KNAV_L_QUEUE_REGION_REG_INDEX :
1452 					   KNAV_QUEUE_REGION_REG_INDEX);
1453 
1454 		qmgr->reg_push =
1455 			knav_queue_map_reg(kdev, child,
1456 					   (kdev->version == QMSS_66AK2G) ?
1457 					    KNAV_L_QUEUE_PUSH_REG_INDEX :
1458 					    KNAV_QUEUE_PUSH_REG_INDEX);
1459 
1460 		if (kdev->version == QMSS) {
1461 			qmgr->reg_pop =
1462 				knav_queue_map_reg(kdev, child,
1463 						   KNAV_QUEUE_POP_REG_INDEX);
1464 		}
1465 
1466 		if (IS_ERR(qmgr->reg_peek) ||
1467 		    ((kdev->version == QMSS) &&
1468 		    (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) ||
1469 		    IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1470 		    IS_ERR(qmgr->reg_push)) {
1471 			dev_err(dev, "failed to map qmgr regs\n");
1472 			if (kdev->version == QMSS) {
1473 				if (!IS_ERR(qmgr->reg_status))
1474 					devm_iounmap(dev, qmgr->reg_status);
1475 				if (!IS_ERR(qmgr->reg_pop))
1476 					devm_iounmap(dev, qmgr->reg_pop);
1477 			}
1478 			if (!IS_ERR(qmgr->reg_peek))
1479 				devm_iounmap(dev, qmgr->reg_peek);
1480 			if (!IS_ERR(qmgr->reg_config))
1481 				devm_iounmap(dev, qmgr->reg_config);
1482 			if (!IS_ERR(qmgr->reg_region))
1483 				devm_iounmap(dev, qmgr->reg_region);
1484 			if (!IS_ERR(qmgr->reg_push))
1485 				devm_iounmap(dev, qmgr->reg_push);
1486 			devm_kfree(dev, qmgr);
1487 			continue;
1488 		}
1489 
1490 		/* Use same push register for pop as well */
1491 		if (kdev->version == QMSS_66AK2G)
1492 			qmgr->reg_pop = qmgr->reg_push;
1493 
1494 		list_add_tail(&qmgr->list, &kdev->qmgrs);
1495 		dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1496 			 qmgr->start_queue, qmgr->num_queues,
1497 			 qmgr->reg_peek, qmgr->reg_status,
1498 			 qmgr->reg_config, qmgr->reg_region,
1499 			 qmgr->reg_push, qmgr->reg_pop);
1500 	}
1501 	return 0;
1502 }
1503 
1504 static int knav_queue_init_pdsps(struct knav_device *kdev,
1505 					struct device_node *pdsps)
1506 {
1507 	struct device *dev = kdev->dev;
1508 	struct knav_pdsp_info *pdsp;
1509 	struct device_node *child;
1510 
1511 	for_each_child_of_node(pdsps, child) {
1512 		pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1513 		if (!pdsp) {
1514 			of_node_put(child);
1515 			dev_err(dev, "out of memory allocating pdsp\n");
1516 			return -ENOMEM;
1517 		}
1518 		pdsp->name = knav_queue_find_name(child);
1519 		pdsp->iram =
1520 			knav_queue_map_reg(kdev, child,
1521 					   KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1522 		pdsp->regs =
1523 			knav_queue_map_reg(kdev, child,
1524 					   KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1525 		pdsp->intd =
1526 			knav_queue_map_reg(kdev, child,
1527 					   KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1528 		pdsp->command =
1529 			knav_queue_map_reg(kdev, child,
1530 					   KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1531 
1532 		if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1533 		    IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1534 			dev_err(dev, "failed to map pdsp %s regs\n",
1535 				pdsp->name);
1536 			if (!IS_ERR(pdsp->command))
1537 				devm_iounmap(dev, pdsp->command);
1538 			if (!IS_ERR(pdsp->iram))
1539 				devm_iounmap(dev, pdsp->iram);
1540 			if (!IS_ERR(pdsp->regs))
1541 				devm_iounmap(dev, pdsp->regs);
1542 			if (!IS_ERR(pdsp->intd))
1543 				devm_iounmap(dev, pdsp->intd);
1544 			devm_kfree(dev, pdsp);
1545 			continue;
1546 		}
1547 		of_property_read_u32(child, "id", &pdsp->id);
1548 		list_add_tail(&pdsp->list, &kdev->pdsps);
1549 		dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1550 			pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1551 			pdsp->intd);
1552 	}
1553 	return 0;
1554 }
1555 
1556 static int knav_queue_stop_pdsp(struct knav_device *kdev,
1557 			  struct knav_pdsp_info *pdsp)
1558 {
1559 	u32 val, timeout = 1000;
1560 	int ret;
1561 
1562 	val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1563 	writel_relaxed(val, &pdsp->regs->control);
1564 	ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1565 					PDSP_CTRL_RUNNING);
1566 	if (ret < 0) {
1567 		dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1568 		return ret;
1569 	}
1570 	pdsp->loaded = false;
1571 	pdsp->started = false;
1572 	return 0;
1573 }
1574 
1575 static int knav_queue_load_pdsp(struct knav_device *kdev,
1576 			  struct knav_pdsp_info *pdsp)
1577 {
1578 	int i, ret, fwlen;
1579 	const struct firmware *fw;
1580 	bool found = false;
1581 	u32 *fwdata;
1582 
1583 	for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1584 		if (knav_acc_firmwares[i]) {
1585 			ret = request_firmware_direct(&fw,
1586 						      knav_acc_firmwares[i],
1587 						      kdev->dev);
1588 			if (!ret) {
1589 				found = true;
1590 				break;
1591 			}
1592 		}
1593 	}
1594 
1595 	if (!found) {
1596 		dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1597 		return -ENODEV;
1598 	}
1599 
1600 	dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1601 		 knav_acc_firmwares[i]);
1602 
1603 	writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1604 	/* download the firmware */
1605 	fwdata = (u32 *)fw->data;
1606 	fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1607 	for (i = 0; i < fwlen; i++)
1608 		writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1609 
1610 	release_firmware(fw);
1611 	return 0;
1612 }
1613 
1614 static int knav_queue_start_pdsp(struct knav_device *kdev,
1615 			   struct knav_pdsp_info *pdsp)
1616 {
1617 	u32 val, timeout = 1000;
1618 	int ret;
1619 
1620 	/* write a command for sync */
1621 	writel_relaxed(0xffffffff, pdsp->command);
1622 	while (readl_relaxed(pdsp->command) != 0xffffffff)
1623 		cpu_relax();
1624 
1625 	/* soft reset the PDSP */
1626 	val  = readl_relaxed(&pdsp->regs->control);
1627 	val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1628 	writel_relaxed(val, &pdsp->regs->control);
1629 
1630 	/* enable pdsp */
1631 	val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1632 	writel_relaxed(val, &pdsp->regs->control);
1633 
1634 	/* wait for command register to clear */
1635 	ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1636 	if (ret < 0) {
1637 		dev_err(kdev->dev,
1638 			"timed out on pdsp %s command register wait\n",
1639 			pdsp->name);
1640 		return ret;
1641 	}
1642 	return 0;
1643 }
1644 
1645 static void knav_queue_stop_pdsps(struct knav_device *kdev)
1646 {
1647 	struct knav_pdsp_info *pdsp;
1648 
1649 	/* disable all pdsps */
1650 	for_each_pdsp(kdev, pdsp)
1651 		knav_queue_stop_pdsp(kdev, pdsp);
1652 }
1653 
1654 static int knav_queue_start_pdsps(struct knav_device *kdev)
1655 {
1656 	struct knav_pdsp_info *pdsp;
1657 	int ret;
1658 
1659 	knav_queue_stop_pdsps(kdev);
1660 	/* now load them all. We return success even if pdsp
1661 	 * is not loaded as acc channels are optional on having
1662 	 * firmware availability in the system. We set the loaded
1663 	 * and stated flag and when initialize the acc range, check
1664 	 * it and init the range only if pdsp is started.
1665 	 */
1666 	for_each_pdsp(kdev, pdsp) {
1667 		ret = knav_queue_load_pdsp(kdev, pdsp);
1668 		if (!ret)
1669 			pdsp->loaded = true;
1670 	}
1671 
1672 	for_each_pdsp(kdev, pdsp) {
1673 		if (pdsp->loaded) {
1674 			ret = knav_queue_start_pdsp(kdev, pdsp);
1675 			if (!ret)
1676 				pdsp->started = true;
1677 		}
1678 	}
1679 	return 0;
1680 }
1681 
1682 static int knav_queue_setup_pdsps(struct knav_device *kdev,
1683 				  struct device_node *node)
1684 {
1685 	struct device_node *pdsps __free(device_node) =
1686 			of_get_child_by_name(node, "pdsps");
1687 
1688 	if (pdsps) {
1689 		int ret;
1690 
1691 		ret = knav_queue_init_pdsps(kdev, pdsps);
1692 		if (ret)
1693 			return ret;
1694 
1695 		ret = knav_queue_start_pdsps(kdev);
1696 		if (ret)
1697 			return ret;
1698 	}
1699 	return 0;
1700 }
1701 
1702 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1703 {
1704 	struct knav_qmgr_info *qmgr;
1705 
1706 	for_each_qmgr(kdev, qmgr) {
1707 		if ((id >= qmgr->start_queue) &&
1708 		    (id < qmgr->start_queue + qmgr->num_queues))
1709 			return qmgr;
1710 	}
1711 	return NULL;
1712 }
1713 
1714 static int knav_queue_init_queue(struct knav_device *kdev,
1715 					struct knav_range_info *range,
1716 					struct knav_queue_inst *inst,
1717 					unsigned id)
1718 {
1719 	char irq_name[KNAV_NAME_SIZE];
1720 	inst->qmgr = knav_find_qmgr(id);
1721 	if (!inst->qmgr)
1722 		return -1;
1723 
1724 	INIT_LIST_HEAD(&inst->handles);
1725 	inst->kdev = kdev;
1726 	inst->range = range;
1727 	inst->irq_num = -1;
1728 	inst->id = id;
1729 	scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1730 	inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1731 
1732 	if (range->ops && range->ops->init_queue)
1733 		return range->ops->init_queue(range, inst);
1734 	else
1735 		return 0;
1736 }
1737 
1738 static int knav_queue_init_queues(struct knav_device *kdev)
1739 {
1740 	struct knav_range_info *range;
1741 	int size, id, base_idx;
1742 	int idx = 0, ret = 0;
1743 
1744 	/* how much do we need for instance data? */
1745 	size = sizeof(struct knav_queue_inst);
1746 
1747 	/* round this up to a power of 2, keep the index to instance
1748 	 * arithmetic fast.
1749 	 * */
1750 	kdev->inst_shift = order_base_2(size);
1751 	size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1752 	kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1753 	if (!kdev->instances)
1754 		return -ENOMEM;
1755 
1756 	for_each_queue_range(kdev, range) {
1757 		if (range->ops && range->ops->init_range)
1758 			range->ops->init_range(range);
1759 		base_idx = idx;
1760 		for (id = range->queue_base;
1761 		     id < range->queue_base + range->num_queues; id++, idx++) {
1762 			ret = knav_queue_init_queue(kdev, range,
1763 					knav_queue_idx_to_inst(kdev, idx), id);
1764 			if (ret < 0)
1765 				return ret;
1766 		}
1767 		range->queue_base_inst =
1768 			knav_queue_idx_to_inst(kdev, base_idx);
1769 	}
1770 	return 0;
1771 }
1772 
1773 /* Match table for of_platform binding */
1774 static const struct of_device_id keystone_qmss_of_match[] = {
1775 	{
1776 		.compatible = "ti,keystone-navigator-qmss",
1777 	},
1778 	{
1779 		.compatible = "ti,66ak2g-navss-qm",
1780 		.data	= (void *)QMSS_66AK2G,
1781 	},
1782 	{},
1783 };
1784 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1785 
1786 static int knav_queue_probe(struct platform_device *pdev)
1787 {
1788 	struct device_node *node = pdev->dev.of_node;
1789 	struct device *dev = &pdev->dev;
1790 	u32 temp[2];
1791 	int ret;
1792 
1793 	if (!node) {
1794 		dev_err(dev, "device tree info unavailable\n");
1795 		return -ENODEV;
1796 	}
1797 
1798 	kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1799 	if (!kdev) {
1800 		dev_err(dev, "memory allocation failed\n");
1801 		return -ENOMEM;
1802 	}
1803 
1804 	if (device_get_match_data(dev))
1805 		kdev->version = QMSS_66AK2G;
1806 
1807 	platform_set_drvdata(pdev, kdev);
1808 	kdev->dev = dev;
1809 	INIT_LIST_HEAD(&kdev->queue_ranges);
1810 	INIT_LIST_HEAD(&kdev->qmgrs);
1811 	INIT_LIST_HEAD(&kdev->pools);
1812 	INIT_LIST_HEAD(&kdev->regions);
1813 	INIT_LIST_HEAD(&kdev->pdsps);
1814 
1815 	pm_runtime_enable(&pdev->dev);
1816 	ret = pm_runtime_resume_and_get(&pdev->dev);
1817 	if (ret < 0) {
1818 		pm_runtime_disable(&pdev->dev);
1819 		dev_err(dev, "Failed to enable QMSS\n");
1820 		return ret;
1821 	}
1822 
1823 	if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1824 		dev_err(dev, "queue-range not specified\n");
1825 		ret = -ENODEV;
1826 		goto err;
1827 	}
1828 	kdev->base_id    = temp[0];
1829 	kdev->num_queues = temp[1];
1830 
1831 	/* Initialize queue managers using device tree configuration */
1832 	ret = knav_queue_init_qmgrs(kdev, node);
1833 	if (ret)
1834 		goto err;
1835 
1836 	/* get pdsp configuration values from device tree */
1837 	ret = knav_queue_setup_pdsps(kdev, node);
1838 	if (ret)
1839 		goto err;
1840 
1841 	/* get usable queue range values from device tree */
1842 	ret = knav_setup_queue_pools(kdev, node);
1843 	if (ret)
1844 		goto err;
1845 
1846 	ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1847 	if (ret) {
1848 		dev_err(kdev->dev, "could not setup linking ram\n");
1849 		goto err;
1850 	}
1851 
1852 	ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1853 	if (ret) {
1854 		/*
1855 		 * nothing really, we have one linking ram already, so we just
1856 		 * live within our means
1857 		 */
1858 	}
1859 
1860 	ret = knav_queue_setup_link_ram(kdev);
1861 	if (ret)
1862 		goto err;
1863 
1864 	ret = knav_queue_setup_regions(kdev, node);
1865 	if (ret)
1866 		goto err;
1867 
1868 	ret = knav_queue_init_queues(kdev);
1869 	if (ret < 0) {
1870 		dev_err(dev, "hwqueue initialization failed\n");
1871 		goto err;
1872 	}
1873 
1874 	debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1875 			    &knav_queue_debug_fops);
1876 	device_ready = true;
1877 	return 0;
1878 
1879 err:
1880 	knav_queue_stop_pdsps(kdev);
1881 	knav_queue_free_regions(kdev);
1882 	knav_free_queue_ranges(kdev);
1883 	pm_runtime_put_sync(&pdev->dev);
1884 	pm_runtime_disable(&pdev->dev);
1885 	return ret;
1886 }
1887 
1888 static void knav_queue_remove(struct platform_device *pdev)
1889 {
1890 	/* TODO: Free resources */
1891 	pm_runtime_put_sync(&pdev->dev);
1892 	pm_runtime_disable(&pdev->dev);
1893 }
1894 
1895 static struct platform_driver keystone_qmss_driver = {
1896 	.probe		= knav_queue_probe,
1897 	.remove_new	= knav_queue_remove,
1898 	.driver		= {
1899 		.name	= "keystone-navigator-qmss",
1900 		.of_match_table = keystone_qmss_of_match,
1901 	},
1902 };
1903 module_platform_driver(keystone_qmss_driver);
1904 
1905 MODULE_LICENSE("GPL v2");
1906 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1907 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1908 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");
1909