xref: /linux/drivers/soc/ti/knav_qmss_queue.c (revision 6fdcba32711044c35c0e1b094cbd8f3f0b4472c9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Keystone Queue Manager subsystem driver
4  *
5  * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
6  * Authors:	Sandeep Nair <sandeep_n@ti.com>
7  *		Cyril Chemparathy <cyril@ti.com>
8  *		Santosh Shilimkar <santosh.shilimkar@ti.com>
9  */
10 
11 #include <linux/debugfs.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/firmware.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/of_address.h>
18 #include <linux/of_device.h>
19 #include <linux/of_irq.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/slab.h>
22 #include <linux/soc/ti/knav_qmss.h>
23 
24 #include "knav_qmss.h"
25 
26 static struct knav_device *kdev;
27 static DEFINE_MUTEX(knav_dev_lock);
28 
29 /* Queue manager register indices in DTS */
30 #define KNAV_QUEUE_PEEK_REG_INDEX	0
31 #define KNAV_QUEUE_STATUS_REG_INDEX	1
32 #define KNAV_QUEUE_CONFIG_REG_INDEX	2
33 #define KNAV_QUEUE_REGION_REG_INDEX	3
34 #define KNAV_QUEUE_PUSH_REG_INDEX	4
35 #define KNAV_QUEUE_POP_REG_INDEX	5
36 
37 /* Queue manager register indices in DTS for QMSS in K2G NAVSS.
38  * There are no status and vbusm push registers on this version
39  * of QMSS. Push registers are same as pop, So all indices above 1
40  * are to be re-defined
41  */
42 #define KNAV_L_QUEUE_CONFIG_REG_INDEX	1
43 #define KNAV_L_QUEUE_REGION_REG_INDEX	2
44 #define KNAV_L_QUEUE_PUSH_REG_INDEX	3
45 
46 /* PDSP register indices in DTS */
47 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX	0
48 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX	1
49 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX	2
50 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX	3
51 
52 #define knav_queue_idx_to_inst(kdev, idx)			\
53 	(kdev->instances + (idx << kdev->inst_shift))
54 
55 #define for_each_handle_rcu(qh, inst)			\
56 	list_for_each_entry_rcu(qh, &inst->handles, list)
57 
58 #define for_each_instance(idx, inst, kdev)		\
59 	for (idx = 0, inst = kdev->instances;		\
60 	     idx < (kdev)->num_queues_in_use;			\
61 	     idx++, inst = knav_queue_idx_to_inst(kdev, idx))
62 
63 /* All firmware file names end up here. List the firmware file names below.
64  * Newest followed by older ones. Search is done from start of the array
65  * until a firmware file is found.
66  */
67 const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
68 
69 static bool device_ready;
70 bool knav_qmss_device_ready(void)
71 {
72 	return device_ready;
73 }
74 EXPORT_SYMBOL_GPL(knav_qmss_device_ready);
75 
76 /**
77  * knav_queue_notify: qmss queue notfier call
78  *
79  * @inst:		qmss queue instance like accumulator
80  */
81 void knav_queue_notify(struct knav_queue_inst *inst)
82 {
83 	struct knav_queue *qh;
84 
85 	if (!inst)
86 		return;
87 
88 	rcu_read_lock();
89 	for_each_handle_rcu(qh, inst) {
90 		if (atomic_read(&qh->notifier_enabled) <= 0)
91 			continue;
92 		if (WARN_ON(!qh->notifier_fn))
93 			continue;
94 		this_cpu_inc(qh->stats->notifies);
95 		qh->notifier_fn(qh->notifier_fn_arg);
96 	}
97 	rcu_read_unlock();
98 }
99 EXPORT_SYMBOL_GPL(knav_queue_notify);
100 
101 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
102 {
103 	struct knav_queue_inst *inst = _instdata;
104 
105 	knav_queue_notify(inst);
106 	return IRQ_HANDLED;
107 }
108 
109 static int knav_queue_setup_irq(struct knav_range_info *range,
110 			  struct knav_queue_inst *inst)
111 {
112 	unsigned queue = inst->id - range->queue_base;
113 	int ret = 0, irq;
114 
115 	if (range->flags & RANGE_HAS_IRQ) {
116 		irq = range->irqs[queue].irq;
117 		ret = request_irq(irq, knav_queue_int_handler, 0,
118 					inst->irq_name, inst);
119 		if (ret)
120 			return ret;
121 		disable_irq(irq);
122 		if (range->irqs[queue].cpu_mask) {
123 			ret = irq_set_affinity_hint(irq, range->irqs[queue].cpu_mask);
124 			if (ret) {
125 				dev_warn(range->kdev->dev,
126 					 "Failed to set IRQ affinity\n");
127 				return ret;
128 			}
129 		}
130 	}
131 	return ret;
132 }
133 
134 static void knav_queue_free_irq(struct knav_queue_inst *inst)
135 {
136 	struct knav_range_info *range = inst->range;
137 	unsigned queue = inst->id - inst->range->queue_base;
138 	int irq;
139 
140 	if (range->flags & RANGE_HAS_IRQ) {
141 		irq = range->irqs[queue].irq;
142 		irq_set_affinity_hint(irq, NULL);
143 		free_irq(irq, inst);
144 	}
145 }
146 
147 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
148 {
149 	return !list_empty(&inst->handles);
150 }
151 
152 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
153 {
154 	return inst->range->flags & RANGE_RESERVED;
155 }
156 
157 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
158 {
159 	struct knav_queue *tmp;
160 
161 	rcu_read_lock();
162 	for_each_handle_rcu(tmp, inst) {
163 		if (tmp->flags & KNAV_QUEUE_SHARED) {
164 			rcu_read_unlock();
165 			return true;
166 		}
167 	}
168 	rcu_read_unlock();
169 	return false;
170 }
171 
172 static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
173 						unsigned type)
174 {
175 	if ((type == KNAV_QUEUE_QPEND) &&
176 	    (inst->range->flags & RANGE_HAS_IRQ)) {
177 		return true;
178 	} else if ((type == KNAV_QUEUE_ACC) &&
179 		(inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
180 		return true;
181 	} else if ((type == KNAV_QUEUE_GP) &&
182 		!(inst->range->flags &
183 			(RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
184 		return true;
185 	}
186 	return false;
187 }
188 
189 static inline struct knav_queue_inst *
190 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
191 {
192 	struct knav_queue_inst *inst;
193 	int idx;
194 
195 	for_each_instance(idx, inst, kdev) {
196 		if (inst->id == id)
197 			return inst;
198 	}
199 	return NULL;
200 }
201 
202 static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
203 {
204 	if (kdev->base_id <= id &&
205 	    kdev->base_id + kdev->num_queues > id) {
206 		id -= kdev->base_id;
207 		return knav_queue_match_id_to_inst(kdev, id);
208 	}
209 	return NULL;
210 }
211 
212 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
213 				      const char *name, unsigned flags)
214 {
215 	struct knav_queue *qh;
216 	unsigned id;
217 	int ret = 0;
218 
219 	qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
220 	if (!qh)
221 		return ERR_PTR(-ENOMEM);
222 
223 	qh->stats = alloc_percpu(struct knav_queue_stats);
224 	if (!qh->stats) {
225 		ret = -ENOMEM;
226 		goto err;
227 	}
228 
229 	qh->flags = flags;
230 	qh->inst = inst;
231 	id = inst->id - inst->qmgr->start_queue;
232 	qh->reg_push = &inst->qmgr->reg_push[id];
233 	qh->reg_pop = &inst->qmgr->reg_pop[id];
234 	qh->reg_peek = &inst->qmgr->reg_peek[id];
235 
236 	/* first opener? */
237 	if (!knav_queue_is_busy(inst)) {
238 		struct knav_range_info *range = inst->range;
239 
240 		inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
241 		if (range->ops && range->ops->open_queue)
242 			ret = range->ops->open_queue(range, inst, flags);
243 
244 		if (ret)
245 			goto err;
246 	}
247 	list_add_tail_rcu(&qh->list, &inst->handles);
248 	return qh;
249 
250 err:
251 	if (qh->stats)
252 		free_percpu(qh->stats);
253 	devm_kfree(inst->kdev->dev, qh);
254 	return ERR_PTR(ret);
255 }
256 
257 static struct knav_queue *
258 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
259 {
260 	struct knav_queue_inst *inst;
261 	struct knav_queue *qh;
262 
263 	mutex_lock(&knav_dev_lock);
264 
265 	qh = ERR_PTR(-ENODEV);
266 	inst = knav_queue_find_by_id(id);
267 	if (!inst)
268 		goto unlock_ret;
269 
270 	qh = ERR_PTR(-EEXIST);
271 	if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
272 		goto unlock_ret;
273 
274 	qh = ERR_PTR(-EBUSY);
275 	if ((flags & KNAV_QUEUE_SHARED) &&
276 	    (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
277 		goto unlock_ret;
278 
279 	qh = __knav_queue_open(inst, name, flags);
280 
281 unlock_ret:
282 	mutex_unlock(&knav_dev_lock);
283 
284 	return qh;
285 }
286 
287 static struct knav_queue *knav_queue_open_by_type(const char *name,
288 						unsigned type, unsigned flags)
289 {
290 	struct knav_queue_inst *inst;
291 	struct knav_queue *qh = ERR_PTR(-EINVAL);
292 	int idx;
293 
294 	mutex_lock(&knav_dev_lock);
295 
296 	for_each_instance(idx, inst, kdev) {
297 		if (knav_queue_is_reserved(inst))
298 			continue;
299 		if (!knav_queue_match_type(inst, type))
300 			continue;
301 		if (knav_queue_is_busy(inst))
302 			continue;
303 		qh = __knav_queue_open(inst, name, flags);
304 		goto unlock_ret;
305 	}
306 
307 unlock_ret:
308 	mutex_unlock(&knav_dev_lock);
309 	return qh;
310 }
311 
312 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
313 {
314 	struct knav_range_info *range = inst->range;
315 
316 	if (range->ops && range->ops->set_notify)
317 		range->ops->set_notify(range, inst, enabled);
318 }
319 
320 static int knav_queue_enable_notifier(struct knav_queue *qh)
321 {
322 	struct knav_queue_inst *inst = qh->inst;
323 	bool first;
324 
325 	if (WARN_ON(!qh->notifier_fn))
326 		return -EINVAL;
327 
328 	/* Adjust the per handle notifier count */
329 	first = (atomic_inc_return(&qh->notifier_enabled) == 1);
330 	if (!first)
331 		return 0; /* nothing to do */
332 
333 	/* Now adjust the per instance notifier count */
334 	first = (atomic_inc_return(&inst->num_notifiers) == 1);
335 	if (first)
336 		knav_queue_set_notify(inst, true);
337 
338 	return 0;
339 }
340 
341 static int knav_queue_disable_notifier(struct knav_queue *qh)
342 {
343 	struct knav_queue_inst *inst = qh->inst;
344 	bool last;
345 
346 	last = (atomic_dec_return(&qh->notifier_enabled) == 0);
347 	if (!last)
348 		return 0; /* nothing to do */
349 
350 	last = (atomic_dec_return(&inst->num_notifiers) == 0);
351 	if (last)
352 		knav_queue_set_notify(inst, false);
353 
354 	return 0;
355 }
356 
357 static int knav_queue_set_notifier(struct knav_queue *qh,
358 				struct knav_queue_notify_config *cfg)
359 {
360 	knav_queue_notify_fn old_fn = qh->notifier_fn;
361 
362 	if (!cfg)
363 		return -EINVAL;
364 
365 	if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
366 		return -ENOTSUPP;
367 
368 	if (!cfg->fn && old_fn)
369 		knav_queue_disable_notifier(qh);
370 
371 	qh->notifier_fn = cfg->fn;
372 	qh->notifier_fn_arg = cfg->fn_arg;
373 
374 	if (cfg->fn && !old_fn)
375 		knav_queue_enable_notifier(qh);
376 
377 	return 0;
378 }
379 
380 static int knav_gp_set_notify(struct knav_range_info *range,
381 			       struct knav_queue_inst *inst,
382 			       bool enabled)
383 {
384 	unsigned queue;
385 
386 	if (range->flags & RANGE_HAS_IRQ) {
387 		queue = inst->id - range->queue_base;
388 		if (enabled)
389 			enable_irq(range->irqs[queue].irq);
390 		else
391 			disable_irq_nosync(range->irqs[queue].irq);
392 	}
393 	return 0;
394 }
395 
396 static int knav_gp_open_queue(struct knav_range_info *range,
397 				struct knav_queue_inst *inst, unsigned flags)
398 {
399 	return knav_queue_setup_irq(range, inst);
400 }
401 
402 static int knav_gp_close_queue(struct knav_range_info *range,
403 				struct knav_queue_inst *inst)
404 {
405 	knav_queue_free_irq(inst);
406 	return 0;
407 }
408 
409 struct knav_range_ops knav_gp_range_ops = {
410 	.set_notify	= knav_gp_set_notify,
411 	.open_queue	= knav_gp_open_queue,
412 	.close_queue	= knav_gp_close_queue,
413 };
414 
415 
416 static int knav_queue_get_count(void *qhandle)
417 {
418 	struct knav_queue *qh = qhandle;
419 	struct knav_queue_inst *inst = qh->inst;
420 
421 	return readl_relaxed(&qh->reg_peek[0].entry_count) +
422 		atomic_read(&inst->desc_count);
423 }
424 
425 static void knav_queue_debug_show_instance(struct seq_file *s,
426 					struct knav_queue_inst *inst)
427 {
428 	struct knav_device *kdev = inst->kdev;
429 	struct knav_queue *qh;
430 	int cpu = 0;
431 	int pushes = 0;
432 	int pops = 0;
433 	int push_errors = 0;
434 	int pop_errors = 0;
435 	int notifies = 0;
436 
437 	if (!knav_queue_is_busy(inst))
438 		return;
439 
440 	seq_printf(s, "\tqueue id %d (%s)\n",
441 		   kdev->base_id + inst->id, inst->name);
442 	for_each_handle_rcu(qh, inst) {
443 		for_each_possible_cpu(cpu) {
444 			pushes += per_cpu_ptr(qh->stats, cpu)->pushes;
445 			pops += per_cpu_ptr(qh->stats, cpu)->pops;
446 			push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors;
447 			pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors;
448 			notifies += per_cpu_ptr(qh->stats, cpu)->notifies;
449 		}
450 
451 		seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n",
452 				qh,
453 				pushes,
454 				pops,
455 				knav_queue_get_count(qh),
456 				notifies,
457 				push_errors,
458 				pop_errors);
459 	}
460 }
461 
462 static int knav_queue_debug_show(struct seq_file *s, void *v)
463 {
464 	struct knav_queue_inst *inst;
465 	int idx;
466 
467 	mutex_lock(&knav_dev_lock);
468 	seq_printf(s, "%s: %u-%u\n",
469 		   dev_name(kdev->dev), kdev->base_id,
470 		   kdev->base_id + kdev->num_queues - 1);
471 	for_each_instance(idx, inst, kdev)
472 		knav_queue_debug_show_instance(s, inst);
473 	mutex_unlock(&knav_dev_lock);
474 
475 	return 0;
476 }
477 
478 static int knav_queue_debug_open(struct inode *inode, struct file *file)
479 {
480 	return single_open(file, knav_queue_debug_show, NULL);
481 }
482 
483 static const struct file_operations knav_queue_debug_ops = {
484 	.open		= knav_queue_debug_open,
485 	.read		= seq_read,
486 	.llseek		= seq_lseek,
487 	.release	= single_release,
488 };
489 
490 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
491 					u32 flags)
492 {
493 	unsigned long end;
494 	u32 val = 0;
495 
496 	end = jiffies + msecs_to_jiffies(timeout);
497 	while (time_after(end, jiffies)) {
498 		val = readl_relaxed(addr);
499 		if (flags)
500 			val &= flags;
501 		if (!val)
502 			break;
503 		cpu_relax();
504 	}
505 	return val ? -ETIMEDOUT : 0;
506 }
507 
508 
509 static int knav_queue_flush(struct knav_queue *qh)
510 {
511 	struct knav_queue_inst *inst = qh->inst;
512 	unsigned id = inst->id - inst->qmgr->start_queue;
513 
514 	atomic_set(&inst->desc_count, 0);
515 	writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
516 	return 0;
517 }
518 
519 /**
520  * knav_queue_open()	- open a hardware queue
521  * @name		- name to give the queue handle
522  * @id			- desired queue number if any or specifes the type
523  *			  of queue
524  * @flags		- the following flags are applicable to queues:
525  *	KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
526  *			     exclusive by default.
527  *			     Subsequent attempts to open a shared queue should
528  *			     also have this flag.
529  *
530  * Returns a handle to the open hardware queue if successful. Use IS_ERR()
531  * to check the returned value for error codes.
532  */
533 void *knav_queue_open(const char *name, unsigned id,
534 					unsigned flags)
535 {
536 	struct knav_queue *qh = ERR_PTR(-EINVAL);
537 
538 	switch (id) {
539 	case KNAV_QUEUE_QPEND:
540 	case KNAV_QUEUE_ACC:
541 	case KNAV_QUEUE_GP:
542 		qh = knav_queue_open_by_type(name, id, flags);
543 		break;
544 
545 	default:
546 		qh = knav_queue_open_by_id(name, id, flags);
547 		break;
548 	}
549 	return qh;
550 }
551 EXPORT_SYMBOL_GPL(knav_queue_open);
552 
553 /**
554  * knav_queue_close()	- close a hardware queue handle
555  * @qh			- handle to close
556  */
557 void knav_queue_close(void *qhandle)
558 {
559 	struct knav_queue *qh = qhandle;
560 	struct knav_queue_inst *inst = qh->inst;
561 
562 	while (atomic_read(&qh->notifier_enabled) > 0)
563 		knav_queue_disable_notifier(qh);
564 
565 	mutex_lock(&knav_dev_lock);
566 	list_del_rcu(&qh->list);
567 	mutex_unlock(&knav_dev_lock);
568 	synchronize_rcu();
569 	if (!knav_queue_is_busy(inst)) {
570 		struct knav_range_info *range = inst->range;
571 
572 		if (range->ops && range->ops->close_queue)
573 			range->ops->close_queue(range, inst);
574 	}
575 	free_percpu(qh->stats);
576 	devm_kfree(inst->kdev->dev, qh);
577 }
578 EXPORT_SYMBOL_GPL(knav_queue_close);
579 
580 /**
581  * knav_queue_device_control()	- Perform control operations on a queue
582  * @qh				- queue handle
583  * @cmd				- control commands
584  * @arg				- command argument
585  *
586  * Returns 0 on success, errno otherwise.
587  */
588 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
589 				unsigned long arg)
590 {
591 	struct knav_queue *qh = qhandle;
592 	struct knav_queue_notify_config *cfg;
593 	int ret;
594 
595 	switch ((int)cmd) {
596 	case KNAV_QUEUE_GET_ID:
597 		ret = qh->inst->kdev->base_id + qh->inst->id;
598 		break;
599 
600 	case KNAV_QUEUE_FLUSH:
601 		ret = knav_queue_flush(qh);
602 		break;
603 
604 	case KNAV_QUEUE_SET_NOTIFIER:
605 		cfg = (void *)arg;
606 		ret = knav_queue_set_notifier(qh, cfg);
607 		break;
608 
609 	case KNAV_QUEUE_ENABLE_NOTIFY:
610 		ret = knav_queue_enable_notifier(qh);
611 		break;
612 
613 	case KNAV_QUEUE_DISABLE_NOTIFY:
614 		ret = knav_queue_disable_notifier(qh);
615 		break;
616 
617 	case KNAV_QUEUE_GET_COUNT:
618 		ret = knav_queue_get_count(qh);
619 		break;
620 
621 	default:
622 		ret = -ENOTSUPP;
623 		break;
624 	}
625 	return ret;
626 }
627 EXPORT_SYMBOL_GPL(knav_queue_device_control);
628 
629 
630 
631 /**
632  * knav_queue_push()	- push data (or descriptor) to the tail of a queue
633  * @qh			- hardware queue handle
634  * @data		- data to push
635  * @size		- size of data to push
636  * @flags		- can be used to pass additional information
637  *
638  * Returns 0 on success, errno otherwise.
639  */
640 int knav_queue_push(void *qhandle, dma_addr_t dma,
641 					unsigned size, unsigned flags)
642 {
643 	struct knav_queue *qh = qhandle;
644 	u32 val;
645 
646 	val = (u32)dma | ((size / 16) - 1);
647 	writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
648 
649 	this_cpu_inc(qh->stats->pushes);
650 	return 0;
651 }
652 EXPORT_SYMBOL_GPL(knav_queue_push);
653 
654 /**
655  * knav_queue_pop()	- pop data (or descriptor) from the head of a queue
656  * @qh			- hardware queue handle
657  * @size		- (optional) size of the data pop'ed.
658  *
659  * Returns a DMA address on success, 0 on failure.
660  */
661 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
662 {
663 	struct knav_queue *qh = qhandle;
664 	struct knav_queue_inst *inst = qh->inst;
665 	dma_addr_t dma;
666 	u32 val, idx;
667 
668 	/* are we accumulated? */
669 	if (inst->descs) {
670 		if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
671 			atomic_inc(&inst->desc_count);
672 			return 0;
673 		}
674 		idx  = atomic_inc_return(&inst->desc_head);
675 		idx &= ACC_DESCS_MASK;
676 		val = inst->descs[idx];
677 	} else {
678 		val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
679 		if (unlikely(!val))
680 			return 0;
681 	}
682 
683 	dma = val & DESC_PTR_MASK;
684 	if (size)
685 		*size = ((val & DESC_SIZE_MASK) + 1) * 16;
686 
687 	this_cpu_inc(qh->stats->pops);
688 	return dma;
689 }
690 EXPORT_SYMBOL_GPL(knav_queue_pop);
691 
692 /* carve out descriptors and push into queue */
693 static void kdesc_fill_pool(struct knav_pool *pool)
694 {
695 	struct knav_region *region;
696 	int i;
697 
698 	region = pool->region;
699 	pool->desc_size = region->desc_size;
700 	for (i = 0; i < pool->num_desc; i++) {
701 		int index = pool->region_offset + i;
702 		dma_addr_t dma_addr;
703 		unsigned dma_size;
704 		dma_addr = region->dma_start + (region->desc_size * index);
705 		dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
706 		dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
707 					   DMA_TO_DEVICE);
708 		knav_queue_push(pool->queue, dma_addr, dma_size, 0);
709 	}
710 }
711 
712 /* pop out descriptors and close the queue */
713 static void kdesc_empty_pool(struct knav_pool *pool)
714 {
715 	dma_addr_t dma;
716 	unsigned size;
717 	void *desc;
718 	int i;
719 
720 	if (!pool->queue)
721 		return;
722 
723 	for (i = 0;; i++) {
724 		dma = knav_queue_pop(pool->queue, &size);
725 		if (!dma)
726 			break;
727 		desc = knav_pool_desc_dma_to_virt(pool, dma);
728 		if (!desc) {
729 			dev_dbg(pool->kdev->dev,
730 				"couldn't unmap desc, continuing\n");
731 			continue;
732 		}
733 	}
734 	WARN_ON(i != pool->num_desc);
735 	knav_queue_close(pool->queue);
736 }
737 
738 
739 /* Get the DMA address of a descriptor */
740 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
741 {
742 	struct knav_pool *pool = ph;
743 	return pool->region->dma_start + (virt - pool->region->virt_start);
744 }
745 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
746 
747 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
748 {
749 	struct knav_pool *pool = ph;
750 	return pool->region->virt_start + (dma - pool->region->dma_start);
751 }
752 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
753 
754 /**
755  * knav_pool_create()	- Create a pool of descriptors
756  * @name		- name to give the pool handle
757  * @num_desc		- numbers of descriptors in the pool
758  * @region_id		- QMSS region id from which the descriptors are to be
759  *			  allocated.
760  *
761  * Returns a pool handle on success.
762  * Use IS_ERR_OR_NULL() to identify error values on return.
763  */
764 void *knav_pool_create(const char *name,
765 					int num_desc, int region_id)
766 {
767 	struct knav_region *reg_itr, *region = NULL;
768 	struct knav_pool *pool, *pi;
769 	struct list_head *node;
770 	unsigned last_offset;
771 	bool slot_found;
772 	int ret;
773 
774 	if (!kdev)
775 		return ERR_PTR(-EPROBE_DEFER);
776 
777 	if (!kdev->dev)
778 		return ERR_PTR(-ENODEV);
779 
780 	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
781 	if (!pool) {
782 		dev_err(kdev->dev, "out of memory allocating pool\n");
783 		return ERR_PTR(-ENOMEM);
784 	}
785 
786 	for_each_region(kdev, reg_itr) {
787 		if (reg_itr->id != region_id)
788 			continue;
789 		region = reg_itr;
790 		break;
791 	}
792 
793 	if (!region) {
794 		dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
795 		ret = -EINVAL;
796 		goto err;
797 	}
798 
799 	pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
800 	if (IS_ERR_OR_NULL(pool->queue)) {
801 		dev_err(kdev->dev,
802 			"failed to open queue for pool(%s), error %ld\n",
803 			name, PTR_ERR(pool->queue));
804 		ret = PTR_ERR(pool->queue);
805 		goto err;
806 	}
807 
808 	pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
809 	pool->kdev = kdev;
810 	pool->dev = kdev->dev;
811 
812 	mutex_lock(&knav_dev_lock);
813 
814 	if (num_desc > (region->num_desc - region->used_desc)) {
815 		dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
816 			region_id, name);
817 		ret = -ENOMEM;
818 		goto err_unlock;
819 	}
820 
821 	/* Region maintains a sorted (by region offset) list of pools
822 	 * use the first free slot which is large enough to accomodate
823 	 * the request
824 	 */
825 	last_offset = 0;
826 	slot_found = false;
827 	node = &region->pools;
828 	list_for_each_entry(pi, &region->pools, region_inst) {
829 		if ((pi->region_offset - last_offset) >= num_desc) {
830 			slot_found = true;
831 			break;
832 		}
833 		last_offset = pi->region_offset + pi->num_desc;
834 	}
835 	node = &pi->region_inst;
836 
837 	if (slot_found) {
838 		pool->region = region;
839 		pool->num_desc = num_desc;
840 		pool->region_offset = last_offset;
841 		region->used_desc += num_desc;
842 		list_add_tail(&pool->list, &kdev->pools);
843 		list_add_tail(&pool->region_inst, node);
844 	} else {
845 		dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
846 			name, region_id);
847 		ret = -ENOMEM;
848 		goto err_unlock;
849 	}
850 
851 	mutex_unlock(&knav_dev_lock);
852 	kdesc_fill_pool(pool);
853 	return pool;
854 
855 err_unlock:
856 	mutex_unlock(&knav_dev_lock);
857 err:
858 	kfree(pool->name);
859 	devm_kfree(kdev->dev, pool);
860 	return ERR_PTR(ret);
861 }
862 EXPORT_SYMBOL_GPL(knav_pool_create);
863 
864 /**
865  * knav_pool_destroy()	- Free a pool of descriptors
866  * @pool		- pool handle
867  */
868 void knav_pool_destroy(void *ph)
869 {
870 	struct knav_pool *pool = ph;
871 
872 	if (!pool)
873 		return;
874 
875 	if (!pool->region)
876 		return;
877 
878 	kdesc_empty_pool(pool);
879 	mutex_lock(&knav_dev_lock);
880 
881 	pool->region->used_desc -= pool->num_desc;
882 	list_del(&pool->region_inst);
883 	list_del(&pool->list);
884 
885 	mutex_unlock(&knav_dev_lock);
886 	kfree(pool->name);
887 	devm_kfree(kdev->dev, pool);
888 }
889 EXPORT_SYMBOL_GPL(knav_pool_destroy);
890 
891 
892 /**
893  * knav_pool_desc_get()	- Get a descriptor from the pool
894  * @pool			- pool handle
895  *
896  * Returns descriptor from the pool.
897  */
898 void *knav_pool_desc_get(void *ph)
899 {
900 	struct knav_pool *pool = ph;
901 	dma_addr_t dma;
902 	unsigned size;
903 	void *data;
904 
905 	dma = knav_queue_pop(pool->queue, &size);
906 	if (unlikely(!dma))
907 		return ERR_PTR(-ENOMEM);
908 	data = knav_pool_desc_dma_to_virt(pool, dma);
909 	return data;
910 }
911 EXPORT_SYMBOL_GPL(knav_pool_desc_get);
912 
913 /**
914  * knav_pool_desc_put()	- return a descriptor to the pool
915  * @pool			- pool handle
916  */
917 void knav_pool_desc_put(void *ph, void *desc)
918 {
919 	struct knav_pool *pool = ph;
920 	dma_addr_t dma;
921 	dma = knav_pool_desc_virt_to_dma(pool, desc);
922 	knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
923 }
924 EXPORT_SYMBOL_GPL(knav_pool_desc_put);
925 
926 /**
927  * knav_pool_desc_map()	- Map descriptor for DMA transfer
928  * @pool			- pool handle
929  * @desc			- address of descriptor to map
930  * @size			- size of descriptor to map
931  * @dma				- DMA address return pointer
932  * @dma_sz			- adjusted return pointer
933  *
934  * Returns 0 on success, errno otherwise.
935  */
936 int knav_pool_desc_map(void *ph, void *desc, unsigned size,
937 					dma_addr_t *dma, unsigned *dma_sz)
938 {
939 	struct knav_pool *pool = ph;
940 	*dma = knav_pool_desc_virt_to_dma(pool, desc);
941 	size = min(size, pool->region->desc_size);
942 	size = ALIGN(size, SMP_CACHE_BYTES);
943 	*dma_sz = size;
944 	dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
945 
946 	/* Ensure the descriptor reaches to the memory */
947 	__iowmb();
948 
949 	return 0;
950 }
951 EXPORT_SYMBOL_GPL(knav_pool_desc_map);
952 
953 /**
954  * knav_pool_desc_unmap()	- Unmap descriptor after DMA transfer
955  * @pool			- pool handle
956  * @dma				- DMA address of descriptor to unmap
957  * @dma_sz			- size of descriptor to unmap
958  *
959  * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
960  * error values on return.
961  */
962 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
963 {
964 	struct knav_pool *pool = ph;
965 	unsigned desc_sz;
966 	void *desc;
967 
968 	desc_sz = min(dma_sz, pool->region->desc_size);
969 	desc = knav_pool_desc_dma_to_virt(pool, dma);
970 	dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
971 	prefetch(desc);
972 	return desc;
973 }
974 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
975 
976 /**
977  * knav_pool_count()	- Get the number of descriptors in pool.
978  * @pool		- pool handle
979  * Returns number of elements in the pool.
980  */
981 int knav_pool_count(void *ph)
982 {
983 	struct knav_pool *pool = ph;
984 	return knav_queue_get_count(pool->queue);
985 }
986 EXPORT_SYMBOL_GPL(knav_pool_count);
987 
988 static void knav_queue_setup_region(struct knav_device *kdev,
989 					struct knav_region *region)
990 {
991 	unsigned hw_num_desc, hw_desc_size, size;
992 	struct knav_reg_region __iomem  *regs;
993 	struct knav_qmgr_info *qmgr;
994 	struct knav_pool *pool;
995 	int id = region->id;
996 	struct page *page;
997 
998 	/* unused region? */
999 	if (!region->num_desc) {
1000 		dev_warn(kdev->dev, "unused region %s\n", region->name);
1001 		return;
1002 	}
1003 
1004 	/* get hardware descriptor value */
1005 	hw_num_desc = ilog2(region->num_desc - 1) + 1;
1006 
1007 	/* did we force fit ourselves into nothingness? */
1008 	if (region->num_desc < 32) {
1009 		region->num_desc = 0;
1010 		dev_warn(kdev->dev, "too few descriptors in region %s\n",
1011 			 region->name);
1012 		return;
1013 	}
1014 
1015 	size = region->num_desc * region->desc_size;
1016 	region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
1017 						GFP_DMA32);
1018 	if (!region->virt_start) {
1019 		region->num_desc = 0;
1020 		dev_err(kdev->dev, "memory alloc failed for region %s\n",
1021 			region->name);
1022 		return;
1023 	}
1024 	region->virt_end = region->virt_start + size;
1025 	page = virt_to_page(region->virt_start);
1026 
1027 	region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1028 					 DMA_BIDIRECTIONAL);
1029 	if (dma_mapping_error(kdev->dev, region->dma_start)) {
1030 		dev_err(kdev->dev, "dma map failed for region %s\n",
1031 			region->name);
1032 		goto fail;
1033 	}
1034 	region->dma_end = region->dma_start + size;
1035 
1036 	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1037 	if (!pool) {
1038 		dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1039 		goto fail;
1040 	}
1041 	pool->num_desc = 0;
1042 	pool->region_offset = region->num_desc;
1043 	list_add(&pool->region_inst, &region->pools);
1044 
1045 	dev_dbg(kdev->dev,
1046 		"region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1047 		region->name, id, region->desc_size, region->num_desc,
1048 		region->link_index, &region->dma_start, &region->dma_end,
1049 		region->virt_start, region->virt_end);
1050 
1051 	hw_desc_size = (region->desc_size / 16) - 1;
1052 	hw_num_desc -= 5;
1053 
1054 	for_each_qmgr(kdev, qmgr) {
1055 		regs = qmgr->reg_region + id;
1056 		writel_relaxed((u32)region->dma_start, &regs->base);
1057 		writel_relaxed(region->link_index, &regs->start_index);
1058 		writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1059 			       &regs->size_count);
1060 	}
1061 	return;
1062 
1063 fail:
1064 	if (region->dma_start)
1065 		dma_unmap_page(kdev->dev, region->dma_start, size,
1066 				DMA_BIDIRECTIONAL);
1067 	if (region->virt_start)
1068 		free_pages_exact(region->virt_start, size);
1069 	region->num_desc = 0;
1070 	return;
1071 }
1072 
1073 static const char *knav_queue_find_name(struct device_node *node)
1074 {
1075 	const char *name;
1076 
1077 	if (of_property_read_string(node, "label", &name) < 0)
1078 		name = node->name;
1079 	if (!name)
1080 		name = "unknown";
1081 	return name;
1082 }
1083 
1084 static int knav_queue_setup_regions(struct knav_device *kdev,
1085 					struct device_node *regions)
1086 {
1087 	struct device *dev = kdev->dev;
1088 	struct knav_region *region;
1089 	struct device_node *child;
1090 	u32 temp[2];
1091 	int ret;
1092 
1093 	for_each_child_of_node(regions, child) {
1094 		region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1095 		if (!region) {
1096 			dev_err(dev, "out of memory allocating region\n");
1097 			return -ENOMEM;
1098 		}
1099 
1100 		region->name = knav_queue_find_name(child);
1101 		of_property_read_u32(child, "id", &region->id);
1102 		ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1103 		if (!ret) {
1104 			region->num_desc  = temp[0];
1105 			region->desc_size = temp[1];
1106 		} else {
1107 			dev_err(dev, "invalid region info %s\n", region->name);
1108 			devm_kfree(dev, region);
1109 			continue;
1110 		}
1111 
1112 		if (!of_get_property(child, "link-index", NULL)) {
1113 			dev_err(dev, "No link info for %s\n", region->name);
1114 			devm_kfree(dev, region);
1115 			continue;
1116 		}
1117 		ret = of_property_read_u32(child, "link-index",
1118 					   &region->link_index);
1119 		if (ret) {
1120 			dev_err(dev, "link index not found for %s\n",
1121 				region->name);
1122 			devm_kfree(dev, region);
1123 			continue;
1124 		}
1125 
1126 		INIT_LIST_HEAD(&region->pools);
1127 		list_add_tail(&region->list, &kdev->regions);
1128 	}
1129 	if (list_empty(&kdev->regions)) {
1130 		dev_err(dev, "no valid region information found\n");
1131 		return -ENODEV;
1132 	}
1133 
1134 	/* Next, we run through the regions and set things up */
1135 	for_each_region(kdev, region)
1136 		knav_queue_setup_region(kdev, region);
1137 
1138 	return 0;
1139 }
1140 
1141 static int knav_get_link_ram(struct knav_device *kdev,
1142 				       const char *name,
1143 				       struct knav_link_ram_block *block)
1144 {
1145 	struct platform_device *pdev = to_platform_device(kdev->dev);
1146 	struct device_node *node = pdev->dev.of_node;
1147 	u32 temp[2];
1148 
1149 	/*
1150 	 * Note: link ram resources are specified in "entry" sized units. In
1151 	 * reality, although entries are ~40bits in hardware, we treat them as
1152 	 * 64-bit entities here.
1153 	 *
1154 	 * For example, to specify the internal link ram for Keystone-I class
1155 	 * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1156 	 *
1157 	 * This gets a bit weird when other link rams are used.  For example,
1158 	 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1159 	 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1160 	 * which accounts for 64-bits per entry, for 16K entries.
1161 	 */
1162 	if (!of_property_read_u32_array(node, name , temp, 2)) {
1163 		if (temp[0]) {
1164 			/*
1165 			 * queue_base specified => using internal or onchip
1166 			 * link ram WARNING - we do not "reserve" this block
1167 			 */
1168 			block->dma = (dma_addr_t)temp[0];
1169 			block->virt = NULL;
1170 			block->size = temp[1];
1171 		} else {
1172 			block->size = temp[1];
1173 			/* queue_base not specific => allocate requested size */
1174 			block->virt = dmam_alloc_coherent(kdev->dev,
1175 						  8 * block->size, &block->dma,
1176 						  GFP_KERNEL);
1177 			if (!block->virt) {
1178 				dev_err(kdev->dev, "failed to alloc linkram\n");
1179 				return -ENOMEM;
1180 			}
1181 		}
1182 	} else {
1183 		return -ENODEV;
1184 	}
1185 	return 0;
1186 }
1187 
1188 static int knav_queue_setup_link_ram(struct knav_device *kdev)
1189 {
1190 	struct knav_link_ram_block *block;
1191 	struct knav_qmgr_info *qmgr;
1192 
1193 	for_each_qmgr(kdev, qmgr) {
1194 		block = &kdev->link_rams[0];
1195 		dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
1196 			&block->dma, block->virt, block->size);
1197 		writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
1198 		if (kdev->version == QMSS_66AK2G)
1199 			writel_relaxed(block->size,
1200 				       &qmgr->reg_config->link_ram_size0);
1201 		else
1202 			writel_relaxed(block->size - 1,
1203 				       &qmgr->reg_config->link_ram_size0);
1204 		block++;
1205 		if (!block->size)
1206 			continue;
1207 
1208 		dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
1209 			&block->dma, block->virt, block->size);
1210 		writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
1211 	}
1212 
1213 	return 0;
1214 }
1215 
1216 static int knav_setup_queue_range(struct knav_device *kdev,
1217 					struct device_node *node)
1218 {
1219 	struct device *dev = kdev->dev;
1220 	struct knav_range_info *range;
1221 	struct knav_qmgr_info *qmgr;
1222 	u32 temp[2], start, end, id, index;
1223 	int ret, i;
1224 
1225 	range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1226 	if (!range) {
1227 		dev_err(dev, "out of memory allocating range\n");
1228 		return -ENOMEM;
1229 	}
1230 
1231 	range->kdev = kdev;
1232 	range->name = knav_queue_find_name(node);
1233 	ret = of_property_read_u32_array(node, "qrange", temp, 2);
1234 	if (!ret) {
1235 		range->queue_base = temp[0] - kdev->base_id;
1236 		range->num_queues = temp[1];
1237 	} else {
1238 		dev_err(dev, "invalid queue range %s\n", range->name);
1239 		devm_kfree(dev, range);
1240 		return -EINVAL;
1241 	}
1242 
1243 	for (i = 0; i < RANGE_MAX_IRQS; i++) {
1244 		struct of_phandle_args oirq;
1245 
1246 		if (of_irq_parse_one(node, i, &oirq))
1247 			break;
1248 
1249 		range->irqs[i].irq = irq_create_of_mapping(&oirq);
1250 		if (range->irqs[i].irq == IRQ_NONE)
1251 			break;
1252 
1253 		range->num_irqs++;
1254 
1255 		if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) {
1256 			unsigned long mask;
1257 			int bit;
1258 
1259 			range->irqs[i].cpu_mask = devm_kzalloc(dev,
1260 							       cpumask_size(), GFP_KERNEL);
1261 			if (!range->irqs[i].cpu_mask)
1262 				return -ENOMEM;
1263 
1264 			mask = (oirq.args[2] & 0x0000ff00) >> 8;
1265 			for_each_set_bit(bit, &mask, BITS_PER_LONG)
1266 				cpumask_set_cpu(bit, range->irqs[i].cpu_mask);
1267 		}
1268 	}
1269 
1270 	range->num_irqs = min(range->num_irqs, range->num_queues);
1271 	if (range->num_irqs)
1272 		range->flags |= RANGE_HAS_IRQ;
1273 
1274 	if (of_get_property(node, "qalloc-by-id", NULL))
1275 		range->flags |= RANGE_RESERVED;
1276 
1277 	if (of_get_property(node, "accumulator", NULL)) {
1278 		ret = knav_init_acc_range(kdev, node, range);
1279 		if (ret < 0) {
1280 			devm_kfree(dev, range);
1281 			return ret;
1282 		}
1283 	} else {
1284 		range->ops = &knav_gp_range_ops;
1285 	}
1286 
1287 	/* set threshold to 1, and flush out the queues */
1288 	for_each_qmgr(kdev, qmgr) {
1289 		start = max(qmgr->start_queue, range->queue_base);
1290 		end   = min(qmgr->start_queue + qmgr->num_queues,
1291 			    range->queue_base + range->num_queues);
1292 		for (id = start; id < end; id++) {
1293 			index = id - qmgr->start_queue;
1294 			writel_relaxed(THRESH_GTE | 1,
1295 				       &qmgr->reg_peek[index].ptr_size_thresh);
1296 			writel_relaxed(0,
1297 				       &qmgr->reg_push[index].ptr_size_thresh);
1298 		}
1299 	}
1300 
1301 	list_add_tail(&range->list, &kdev->queue_ranges);
1302 	dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1303 		range->name, range->queue_base,
1304 		range->queue_base + range->num_queues - 1,
1305 		range->num_irqs,
1306 		(range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1307 		(range->flags & RANGE_RESERVED) ? ", reserved" : "",
1308 		(range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1309 	kdev->num_queues_in_use += range->num_queues;
1310 	return 0;
1311 }
1312 
1313 static int knav_setup_queue_pools(struct knav_device *kdev,
1314 				   struct device_node *queue_pools)
1315 {
1316 	struct device_node *type, *range;
1317 	int ret;
1318 
1319 	for_each_child_of_node(queue_pools, type) {
1320 		for_each_child_of_node(type, range) {
1321 			ret = knav_setup_queue_range(kdev, range);
1322 			/* return value ignored, we init the rest... */
1323 		}
1324 	}
1325 
1326 	/* ... and barf if they all failed! */
1327 	if (list_empty(&kdev->queue_ranges)) {
1328 		dev_err(kdev->dev, "no valid queue range found\n");
1329 		return -ENODEV;
1330 	}
1331 	return 0;
1332 }
1333 
1334 static void knav_free_queue_range(struct knav_device *kdev,
1335 				  struct knav_range_info *range)
1336 {
1337 	if (range->ops && range->ops->free_range)
1338 		range->ops->free_range(range);
1339 	list_del(&range->list);
1340 	devm_kfree(kdev->dev, range);
1341 }
1342 
1343 static void knav_free_queue_ranges(struct knav_device *kdev)
1344 {
1345 	struct knav_range_info *range;
1346 
1347 	for (;;) {
1348 		range = first_queue_range(kdev);
1349 		if (!range)
1350 			break;
1351 		knav_free_queue_range(kdev, range);
1352 	}
1353 }
1354 
1355 static void knav_queue_free_regions(struct knav_device *kdev)
1356 {
1357 	struct knav_region *region;
1358 	struct knav_pool *pool, *tmp;
1359 	unsigned size;
1360 
1361 	for (;;) {
1362 		region = first_region(kdev);
1363 		if (!region)
1364 			break;
1365 		list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1366 			knav_pool_destroy(pool);
1367 
1368 		size = region->virt_end - region->virt_start;
1369 		if (size)
1370 			free_pages_exact(region->virt_start, size);
1371 		list_del(&region->list);
1372 		devm_kfree(kdev->dev, region);
1373 	}
1374 }
1375 
1376 static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1377 					struct device_node *node, int index)
1378 {
1379 	struct resource res;
1380 	void __iomem *regs;
1381 	int ret;
1382 
1383 	ret = of_address_to_resource(node, index, &res);
1384 	if (ret) {
1385 		dev_err(kdev->dev, "Can't translate of node(%pOFn) address for index(%d)\n",
1386 			node, index);
1387 		return ERR_PTR(ret);
1388 	}
1389 
1390 	regs = devm_ioremap_resource(kdev->dev, &res);
1391 	if (IS_ERR(regs))
1392 		dev_err(kdev->dev, "Failed to map register base for index(%d) node(%pOFn)\n",
1393 			index, node);
1394 	return regs;
1395 }
1396 
1397 static int knav_queue_init_qmgrs(struct knav_device *kdev,
1398 					struct device_node *qmgrs)
1399 {
1400 	struct device *dev = kdev->dev;
1401 	struct knav_qmgr_info *qmgr;
1402 	struct device_node *child;
1403 	u32 temp[2];
1404 	int ret;
1405 
1406 	for_each_child_of_node(qmgrs, child) {
1407 		qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1408 		if (!qmgr) {
1409 			dev_err(dev, "out of memory allocating qmgr\n");
1410 			return -ENOMEM;
1411 		}
1412 
1413 		ret = of_property_read_u32_array(child, "managed-queues",
1414 						 temp, 2);
1415 		if (!ret) {
1416 			qmgr->start_queue = temp[0];
1417 			qmgr->num_queues = temp[1];
1418 		} else {
1419 			dev_err(dev, "invalid qmgr queue range\n");
1420 			devm_kfree(dev, qmgr);
1421 			continue;
1422 		}
1423 
1424 		dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1425 			 qmgr->start_queue, qmgr->num_queues);
1426 
1427 		qmgr->reg_peek =
1428 			knav_queue_map_reg(kdev, child,
1429 					   KNAV_QUEUE_PEEK_REG_INDEX);
1430 
1431 		if (kdev->version == QMSS) {
1432 			qmgr->reg_status =
1433 				knav_queue_map_reg(kdev, child,
1434 						   KNAV_QUEUE_STATUS_REG_INDEX);
1435 		}
1436 
1437 		qmgr->reg_config =
1438 			knav_queue_map_reg(kdev, child,
1439 					   (kdev->version == QMSS_66AK2G) ?
1440 					   KNAV_L_QUEUE_CONFIG_REG_INDEX :
1441 					   KNAV_QUEUE_CONFIG_REG_INDEX);
1442 		qmgr->reg_region =
1443 			knav_queue_map_reg(kdev, child,
1444 					   (kdev->version == QMSS_66AK2G) ?
1445 					   KNAV_L_QUEUE_REGION_REG_INDEX :
1446 					   KNAV_QUEUE_REGION_REG_INDEX);
1447 
1448 		qmgr->reg_push =
1449 			knav_queue_map_reg(kdev, child,
1450 					   (kdev->version == QMSS_66AK2G) ?
1451 					    KNAV_L_QUEUE_PUSH_REG_INDEX :
1452 					    KNAV_QUEUE_PUSH_REG_INDEX);
1453 
1454 		if (kdev->version == QMSS) {
1455 			qmgr->reg_pop =
1456 				knav_queue_map_reg(kdev, child,
1457 						   KNAV_QUEUE_POP_REG_INDEX);
1458 		}
1459 
1460 		if (IS_ERR(qmgr->reg_peek) ||
1461 		    ((kdev->version == QMSS) &&
1462 		    (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) ||
1463 		    IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1464 		    IS_ERR(qmgr->reg_push)) {
1465 			dev_err(dev, "failed to map qmgr regs\n");
1466 			if (kdev->version == QMSS) {
1467 				if (!IS_ERR(qmgr->reg_status))
1468 					devm_iounmap(dev, qmgr->reg_status);
1469 				if (!IS_ERR(qmgr->reg_pop))
1470 					devm_iounmap(dev, qmgr->reg_pop);
1471 			}
1472 			if (!IS_ERR(qmgr->reg_peek))
1473 				devm_iounmap(dev, qmgr->reg_peek);
1474 			if (!IS_ERR(qmgr->reg_config))
1475 				devm_iounmap(dev, qmgr->reg_config);
1476 			if (!IS_ERR(qmgr->reg_region))
1477 				devm_iounmap(dev, qmgr->reg_region);
1478 			if (!IS_ERR(qmgr->reg_push))
1479 				devm_iounmap(dev, qmgr->reg_push);
1480 			devm_kfree(dev, qmgr);
1481 			continue;
1482 		}
1483 
1484 		/* Use same push register for pop as well */
1485 		if (kdev->version == QMSS_66AK2G)
1486 			qmgr->reg_pop = qmgr->reg_push;
1487 
1488 		list_add_tail(&qmgr->list, &kdev->qmgrs);
1489 		dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1490 			 qmgr->start_queue, qmgr->num_queues,
1491 			 qmgr->reg_peek, qmgr->reg_status,
1492 			 qmgr->reg_config, qmgr->reg_region,
1493 			 qmgr->reg_push, qmgr->reg_pop);
1494 	}
1495 	return 0;
1496 }
1497 
1498 static int knav_queue_init_pdsps(struct knav_device *kdev,
1499 					struct device_node *pdsps)
1500 {
1501 	struct device *dev = kdev->dev;
1502 	struct knav_pdsp_info *pdsp;
1503 	struct device_node *child;
1504 
1505 	for_each_child_of_node(pdsps, child) {
1506 		pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1507 		if (!pdsp) {
1508 			dev_err(dev, "out of memory allocating pdsp\n");
1509 			return -ENOMEM;
1510 		}
1511 		pdsp->name = knav_queue_find_name(child);
1512 		pdsp->iram =
1513 			knav_queue_map_reg(kdev, child,
1514 					   KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1515 		pdsp->regs =
1516 			knav_queue_map_reg(kdev, child,
1517 					   KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1518 		pdsp->intd =
1519 			knav_queue_map_reg(kdev, child,
1520 					   KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1521 		pdsp->command =
1522 			knav_queue_map_reg(kdev, child,
1523 					   KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1524 
1525 		if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1526 		    IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1527 			dev_err(dev, "failed to map pdsp %s regs\n",
1528 				pdsp->name);
1529 			if (!IS_ERR(pdsp->command))
1530 				devm_iounmap(dev, pdsp->command);
1531 			if (!IS_ERR(pdsp->iram))
1532 				devm_iounmap(dev, pdsp->iram);
1533 			if (!IS_ERR(pdsp->regs))
1534 				devm_iounmap(dev, pdsp->regs);
1535 			if (!IS_ERR(pdsp->intd))
1536 				devm_iounmap(dev, pdsp->intd);
1537 			devm_kfree(dev, pdsp);
1538 			continue;
1539 		}
1540 		of_property_read_u32(child, "id", &pdsp->id);
1541 		list_add_tail(&pdsp->list, &kdev->pdsps);
1542 		dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1543 			pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1544 			pdsp->intd);
1545 	}
1546 	return 0;
1547 }
1548 
1549 static int knav_queue_stop_pdsp(struct knav_device *kdev,
1550 			  struct knav_pdsp_info *pdsp)
1551 {
1552 	u32 val, timeout = 1000;
1553 	int ret;
1554 
1555 	val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1556 	writel_relaxed(val, &pdsp->regs->control);
1557 	ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1558 					PDSP_CTRL_RUNNING);
1559 	if (ret < 0) {
1560 		dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1561 		return ret;
1562 	}
1563 	pdsp->loaded = false;
1564 	pdsp->started = false;
1565 	return 0;
1566 }
1567 
1568 static int knav_queue_load_pdsp(struct knav_device *kdev,
1569 			  struct knav_pdsp_info *pdsp)
1570 {
1571 	int i, ret, fwlen;
1572 	const struct firmware *fw;
1573 	bool found = false;
1574 	u32 *fwdata;
1575 
1576 	for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1577 		if (knav_acc_firmwares[i]) {
1578 			ret = request_firmware_direct(&fw,
1579 						      knav_acc_firmwares[i],
1580 						      kdev->dev);
1581 			if (!ret) {
1582 				found = true;
1583 				break;
1584 			}
1585 		}
1586 	}
1587 
1588 	if (!found) {
1589 		dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1590 		return -ENODEV;
1591 	}
1592 
1593 	dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1594 		 knav_acc_firmwares[i]);
1595 
1596 	writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1597 	/* download the firmware */
1598 	fwdata = (u32 *)fw->data;
1599 	fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1600 	for (i = 0; i < fwlen; i++)
1601 		writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1602 
1603 	release_firmware(fw);
1604 	return 0;
1605 }
1606 
1607 static int knav_queue_start_pdsp(struct knav_device *kdev,
1608 			   struct knav_pdsp_info *pdsp)
1609 {
1610 	u32 val, timeout = 1000;
1611 	int ret;
1612 
1613 	/* write a command for sync */
1614 	writel_relaxed(0xffffffff, pdsp->command);
1615 	while (readl_relaxed(pdsp->command) != 0xffffffff)
1616 		cpu_relax();
1617 
1618 	/* soft reset the PDSP */
1619 	val  = readl_relaxed(&pdsp->regs->control);
1620 	val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1621 	writel_relaxed(val, &pdsp->regs->control);
1622 
1623 	/* enable pdsp */
1624 	val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1625 	writel_relaxed(val, &pdsp->regs->control);
1626 
1627 	/* wait for command register to clear */
1628 	ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1629 	if (ret < 0) {
1630 		dev_err(kdev->dev,
1631 			"timed out on pdsp %s command register wait\n",
1632 			pdsp->name);
1633 		return ret;
1634 	}
1635 	return 0;
1636 }
1637 
1638 static void knav_queue_stop_pdsps(struct knav_device *kdev)
1639 {
1640 	struct knav_pdsp_info *pdsp;
1641 
1642 	/* disable all pdsps */
1643 	for_each_pdsp(kdev, pdsp)
1644 		knav_queue_stop_pdsp(kdev, pdsp);
1645 }
1646 
1647 static int knav_queue_start_pdsps(struct knav_device *kdev)
1648 {
1649 	struct knav_pdsp_info *pdsp;
1650 	int ret;
1651 
1652 	knav_queue_stop_pdsps(kdev);
1653 	/* now load them all. We return success even if pdsp
1654 	 * is not loaded as acc channels are optional on having
1655 	 * firmware availability in the system. We set the loaded
1656 	 * and stated flag and when initialize the acc range, check
1657 	 * it and init the range only if pdsp is started.
1658 	 */
1659 	for_each_pdsp(kdev, pdsp) {
1660 		ret = knav_queue_load_pdsp(kdev, pdsp);
1661 		if (!ret)
1662 			pdsp->loaded = true;
1663 	}
1664 
1665 	for_each_pdsp(kdev, pdsp) {
1666 		if (pdsp->loaded) {
1667 			ret = knav_queue_start_pdsp(kdev, pdsp);
1668 			if (!ret)
1669 				pdsp->started = true;
1670 		}
1671 	}
1672 	return 0;
1673 }
1674 
1675 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1676 {
1677 	struct knav_qmgr_info *qmgr;
1678 
1679 	for_each_qmgr(kdev, qmgr) {
1680 		if ((id >= qmgr->start_queue) &&
1681 		    (id < qmgr->start_queue + qmgr->num_queues))
1682 			return qmgr;
1683 	}
1684 	return NULL;
1685 }
1686 
1687 static int knav_queue_init_queue(struct knav_device *kdev,
1688 					struct knav_range_info *range,
1689 					struct knav_queue_inst *inst,
1690 					unsigned id)
1691 {
1692 	char irq_name[KNAV_NAME_SIZE];
1693 	inst->qmgr = knav_find_qmgr(id);
1694 	if (!inst->qmgr)
1695 		return -1;
1696 
1697 	INIT_LIST_HEAD(&inst->handles);
1698 	inst->kdev = kdev;
1699 	inst->range = range;
1700 	inst->irq_num = -1;
1701 	inst->id = id;
1702 	scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1703 	inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1704 
1705 	if (range->ops && range->ops->init_queue)
1706 		return range->ops->init_queue(range, inst);
1707 	else
1708 		return 0;
1709 }
1710 
1711 static int knav_queue_init_queues(struct knav_device *kdev)
1712 {
1713 	struct knav_range_info *range;
1714 	int size, id, base_idx;
1715 	int idx = 0, ret = 0;
1716 
1717 	/* how much do we need for instance data? */
1718 	size = sizeof(struct knav_queue_inst);
1719 
1720 	/* round this up to a power of 2, keep the index to instance
1721 	 * arithmetic fast.
1722 	 * */
1723 	kdev->inst_shift = order_base_2(size);
1724 	size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1725 	kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1726 	if (!kdev->instances)
1727 		return -ENOMEM;
1728 
1729 	for_each_queue_range(kdev, range) {
1730 		if (range->ops && range->ops->init_range)
1731 			range->ops->init_range(range);
1732 		base_idx = idx;
1733 		for (id = range->queue_base;
1734 		     id < range->queue_base + range->num_queues; id++, idx++) {
1735 			ret = knav_queue_init_queue(kdev, range,
1736 					knav_queue_idx_to_inst(kdev, idx), id);
1737 			if (ret < 0)
1738 				return ret;
1739 		}
1740 		range->queue_base_inst =
1741 			knav_queue_idx_to_inst(kdev, base_idx);
1742 	}
1743 	return 0;
1744 }
1745 
1746 /* Match table for of_platform binding */
1747 static const struct of_device_id keystone_qmss_of_match[] = {
1748 	{
1749 		.compatible = "ti,keystone-navigator-qmss",
1750 	},
1751 	{
1752 		.compatible = "ti,66ak2g-navss-qm",
1753 		.data	= (void *)QMSS_66AK2G,
1754 	},
1755 	{},
1756 };
1757 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1758 
1759 static int knav_queue_probe(struct platform_device *pdev)
1760 {
1761 	struct device_node *node = pdev->dev.of_node;
1762 	struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1763 	const struct of_device_id *match;
1764 	struct device *dev = &pdev->dev;
1765 	u32 temp[2];
1766 	int ret;
1767 
1768 	if (!node) {
1769 		dev_err(dev, "device tree info unavailable\n");
1770 		return -ENODEV;
1771 	}
1772 
1773 	kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1774 	if (!kdev) {
1775 		dev_err(dev, "memory allocation failed\n");
1776 		return -ENOMEM;
1777 	}
1778 
1779 	match = of_match_device(of_match_ptr(keystone_qmss_of_match), dev);
1780 	if (match && match->data)
1781 		kdev->version = QMSS_66AK2G;
1782 
1783 	platform_set_drvdata(pdev, kdev);
1784 	kdev->dev = dev;
1785 	INIT_LIST_HEAD(&kdev->queue_ranges);
1786 	INIT_LIST_HEAD(&kdev->qmgrs);
1787 	INIT_LIST_HEAD(&kdev->pools);
1788 	INIT_LIST_HEAD(&kdev->regions);
1789 	INIT_LIST_HEAD(&kdev->pdsps);
1790 
1791 	pm_runtime_enable(&pdev->dev);
1792 	ret = pm_runtime_get_sync(&pdev->dev);
1793 	if (ret < 0) {
1794 		dev_err(dev, "Failed to enable QMSS\n");
1795 		return ret;
1796 	}
1797 
1798 	if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1799 		dev_err(dev, "queue-range not specified\n");
1800 		ret = -ENODEV;
1801 		goto err;
1802 	}
1803 	kdev->base_id    = temp[0];
1804 	kdev->num_queues = temp[1];
1805 
1806 	/* Initialize queue managers using device tree configuration */
1807 	qmgrs =  of_get_child_by_name(node, "qmgrs");
1808 	if (!qmgrs) {
1809 		dev_err(dev, "queue manager info not specified\n");
1810 		ret = -ENODEV;
1811 		goto err;
1812 	}
1813 	ret = knav_queue_init_qmgrs(kdev, qmgrs);
1814 	of_node_put(qmgrs);
1815 	if (ret)
1816 		goto err;
1817 
1818 	/* get pdsp configuration values from device tree */
1819 	pdsps =  of_get_child_by_name(node, "pdsps");
1820 	if (pdsps) {
1821 		ret = knav_queue_init_pdsps(kdev, pdsps);
1822 		if (ret)
1823 			goto err;
1824 
1825 		ret = knav_queue_start_pdsps(kdev);
1826 		if (ret)
1827 			goto err;
1828 	}
1829 	of_node_put(pdsps);
1830 
1831 	/* get usable queue range values from device tree */
1832 	queue_pools = of_get_child_by_name(node, "queue-pools");
1833 	if (!queue_pools) {
1834 		dev_err(dev, "queue-pools not specified\n");
1835 		ret = -ENODEV;
1836 		goto err;
1837 	}
1838 	ret = knav_setup_queue_pools(kdev, queue_pools);
1839 	of_node_put(queue_pools);
1840 	if (ret)
1841 		goto err;
1842 
1843 	ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1844 	if (ret) {
1845 		dev_err(kdev->dev, "could not setup linking ram\n");
1846 		goto err;
1847 	}
1848 
1849 	ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1850 	if (ret) {
1851 		/*
1852 		 * nothing really, we have one linking ram already, so we just
1853 		 * live within our means
1854 		 */
1855 	}
1856 
1857 	ret = knav_queue_setup_link_ram(kdev);
1858 	if (ret)
1859 		goto err;
1860 
1861 	regions =  of_get_child_by_name(node, "descriptor-regions");
1862 	if (!regions) {
1863 		dev_err(dev, "descriptor-regions not specified\n");
1864 		goto err;
1865 	}
1866 	ret = knav_queue_setup_regions(kdev, regions);
1867 	of_node_put(regions);
1868 	if (ret)
1869 		goto err;
1870 
1871 	ret = knav_queue_init_queues(kdev);
1872 	if (ret < 0) {
1873 		dev_err(dev, "hwqueue initialization failed\n");
1874 		goto err;
1875 	}
1876 
1877 	debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1878 			    &knav_queue_debug_ops);
1879 	device_ready = true;
1880 	return 0;
1881 
1882 err:
1883 	knav_queue_stop_pdsps(kdev);
1884 	knav_queue_free_regions(kdev);
1885 	knav_free_queue_ranges(kdev);
1886 	pm_runtime_put_sync(&pdev->dev);
1887 	pm_runtime_disable(&pdev->dev);
1888 	return ret;
1889 }
1890 
1891 static int knav_queue_remove(struct platform_device *pdev)
1892 {
1893 	/* TODO: Free resources */
1894 	pm_runtime_put_sync(&pdev->dev);
1895 	pm_runtime_disable(&pdev->dev);
1896 	return 0;
1897 }
1898 
1899 static struct platform_driver keystone_qmss_driver = {
1900 	.probe		= knav_queue_probe,
1901 	.remove		= knav_queue_remove,
1902 	.driver		= {
1903 		.name	= "keystone-navigator-qmss",
1904 		.of_match_table = keystone_qmss_of_match,
1905 	},
1906 };
1907 module_platform_driver(keystone_qmss_driver);
1908 
1909 MODULE_LICENSE("GPL v2");
1910 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1911 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1912 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");
1913