1 /* 2 * Keystone Queue Manager subsystem driver 3 * 4 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com 5 * Authors: Sandeep Nair <sandeep_n@ti.com> 6 * Cyril Chemparathy <cyril@ti.com> 7 * Santosh Shilimkar <santosh.shilimkar@ti.com> 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License 11 * version 2 as published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/device.h> 22 #include <linux/clk.h> 23 #include <linux/io.h> 24 #include <linux/interrupt.h> 25 #include <linux/bitops.h> 26 #include <linux/slab.h> 27 #include <linux/spinlock.h> 28 #include <linux/platform_device.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/of.h> 31 #include <linux/of_irq.h> 32 #include <linux/of_device.h> 33 #include <linux/of_address.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/firmware.h> 36 #include <linux/debugfs.h> 37 #include <linux/seq_file.h> 38 #include <linux/string.h> 39 #include <linux/soc/ti/knav_qmss.h> 40 41 #include "knav_qmss.h" 42 43 static struct knav_device *kdev; 44 static DEFINE_MUTEX(knav_dev_lock); 45 46 /* Queue manager register indices in DTS */ 47 #define KNAV_QUEUE_PEEK_REG_INDEX 0 48 #define KNAV_QUEUE_STATUS_REG_INDEX 1 49 #define KNAV_QUEUE_CONFIG_REG_INDEX 2 50 #define KNAV_QUEUE_REGION_REG_INDEX 3 51 #define KNAV_QUEUE_PUSH_REG_INDEX 4 52 #define KNAV_QUEUE_POP_REG_INDEX 5 53 54 /* PDSP register indices in DTS */ 55 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX 0 56 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX 1 57 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX 2 58 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX 3 59 60 #define knav_queue_idx_to_inst(kdev, idx) \ 61 (kdev->instances + (idx << kdev->inst_shift)) 62 63 #define for_each_handle_rcu(qh, inst) \ 64 list_for_each_entry_rcu(qh, &inst->handles, list) 65 66 #define for_each_instance(idx, inst, kdev) \ 67 for (idx = 0, inst = kdev->instances; \ 68 idx < (kdev)->num_queues_in_use; \ 69 idx++, inst = knav_queue_idx_to_inst(kdev, idx)) 70 71 /** 72 * knav_queue_notify: qmss queue notfier call 73 * 74 * @inst: qmss queue instance like accumulator 75 */ 76 void knav_queue_notify(struct knav_queue_inst *inst) 77 { 78 struct knav_queue *qh; 79 80 if (!inst) 81 return; 82 83 rcu_read_lock(); 84 for_each_handle_rcu(qh, inst) { 85 if (atomic_read(&qh->notifier_enabled) <= 0) 86 continue; 87 if (WARN_ON(!qh->notifier_fn)) 88 continue; 89 atomic_inc(&qh->stats.notifies); 90 qh->notifier_fn(qh->notifier_fn_arg); 91 } 92 rcu_read_unlock(); 93 } 94 EXPORT_SYMBOL_GPL(knav_queue_notify); 95 96 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata) 97 { 98 struct knav_queue_inst *inst = _instdata; 99 100 knav_queue_notify(inst); 101 return IRQ_HANDLED; 102 } 103 104 static int knav_queue_setup_irq(struct knav_range_info *range, 105 struct knav_queue_inst *inst) 106 { 107 unsigned queue = inst->id - range->queue_base; 108 unsigned long cpu_map; 109 int ret = 0, irq; 110 111 if (range->flags & RANGE_HAS_IRQ) { 112 irq = range->irqs[queue].irq; 113 cpu_map = range->irqs[queue].cpu_map; 114 ret = request_irq(irq, knav_queue_int_handler, 0, 115 inst->irq_name, inst); 116 if (ret) 117 return ret; 118 disable_irq(irq); 119 if (cpu_map) { 120 ret = irq_set_affinity_hint(irq, to_cpumask(&cpu_map)); 121 if (ret) { 122 dev_warn(range->kdev->dev, 123 "Failed to set IRQ affinity\n"); 124 return ret; 125 } 126 } 127 } 128 return ret; 129 } 130 131 static void knav_queue_free_irq(struct knav_queue_inst *inst) 132 { 133 struct knav_range_info *range = inst->range; 134 unsigned queue = inst->id - inst->range->queue_base; 135 int irq; 136 137 if (range->flags & RANGE_HAS_IRQ) { 138 irq = range->irqs[queue].irq; 139 irq_set_affinity_hint(irq, NULL); 140 free_irq(irq, inst); 141 } 142 } 143 144 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst) 145 { 146 return !list_empty(&inst->handles); 147 } 148 149 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst) 150 { 151 return inst->range->flags & RANGE_RESERVED; 152 } 153 154 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst) 155 { 156 struct knav_queue *tmp; 157 158 rcu_read_lock(); 159 for_each_handle_rcu(tmp, inst) { 160 if (tmp->flags & KNAV_QUEUE_SHARED) { 161 rcu_read_unlock(); 162 return true; 163 } 164 } 165 rcu_read_unlock(); 166 return false; 167 } 168 169 static inline bool knav_queue_match_type(struct knav_queue_inst *inst, 170 unsigned type) 171 { 172 if ((type == KNAV_QUEUE_QPEND) && 173 (inst->range->flags & RANGE_HAS_IRQ)) { 174 return true; 175 } else if ((type == KNAV_QUEUE_ACC) && 176 (inst->range->flags & RANGE_HAS_ACCUMULATOR)) { 177 return true; 178 } else if ((type == KNAV_QUEUE_GP) && 179 !(inst->range->flags & 180 (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) { 181 return true; 182 } 183 return false; 184 } 185 186 static inline struct knav_queue_inst * 187 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id) 188 { 189 struct knav_queue_inst *inst; 190 int idx; 191 192 for_each_instance(idx, inst, kdev) { 193 if (inst->id == id) 194 return inst; 195 } 196 return NULL; 197 } 198 199 static inline struct knav_queue_inst *knav_queue_find_by_id(int id) 200 { 201 if (kdev->base_id <= id && 202 kdev->base_id + kdev->num_queues > id) { 203 id -= kdev->base_id; 204 return knav_queue_match_id_to_inst(kdev, id); 205 } 206 return NULL; 207 } 208 209 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst, 210 const char *name, unsigned flags) 211 { 212 struct knav_queue *qh; 213 unsigned id; 214 int ret = 0; 215 216 qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL); 217 if (!qh) 218 return ERR_PTR(-ENOMEM); 219 220 qh->flags = flags; 221 qh->inst = inst; 222 id = inst->id - inst->qmgr->start_queue; 223 qh->reg_push = &inst->qmgr->reg_push[id]; 224 qh->reg_pop = &inst->qmgr->reg_pop[id]; 225 qh->reg_peek = &inst->qmgr->reg_peek[id]; 226 227 /* first opener? */ 228 if (!knav_queue_is_busy(inst)) { 229 struct knav_range_info *range = inst->range; 230 231 inst->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL); 232 if (range->ops && range->ops->open_queue) 233 ret = range->ops->open_queue(range, inst, flags); 234 235 if (ret) { 236 devm_kfree(inst->kdev->dev, qh); 237 return ERR_PTR(ret); 238 } 239 } 240 list_add_tail_rcu(&qh->list, &inst->handles); 241 return qh; 242 } 243 244 static struct knav_queue * 245 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags) 246 { 247 struct knav_queue_inst *inst; 248 struct knav_queue *qh; 249 250 mutex_lock(&knav_dev_lock); 251 252 qh = ERR_PTR(-ENODEV); 253 inst = knav_queue_find_by_id(id); 254 if (!inst) 255 goto unlock_ret; 256 257 qh = ERR_PTR(-EEXIST); 258 if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst)) 259 goto unlock_ret; 260 261 qh = ERR_PTR(-EBUSY); 262 if ((flags & KNAV_QUEUE_SHARED) && 263 (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst))) 264 goto unlock_ret; 265 266 qh = __knav_queue_open(inst, name, flags); 267 268 unlock_ret: 269 mutex_unlock(&knav_dev_lock); 270 271 return qh; 272 } 273 274 static struct knav_queue *knav_queue_open_by_type(const char *name, 275 unsigned type, unsigned flags) 276 { 277 struct knav_queue_inst *inst; 278 struct knav_queue *qh = ERR_PTR(-EINVAL); 279 int idx; 280 281 mutex_lock(&knav_dev_lock); 282 283 for_each_instance(idx, inst, kdev) { 284 if (knav_queue_is_reserved(inst)) 285 continue; 286 if (!knav_queue_match_type(inst, type)) 287 continue; 288 if (knav_queue_is_busy(inst)) 289 continue; 290 qh = __knav_queue_open(inst, name, flags); 291 goto unlock_ret; 292 } 293 294 unlock_ret: 295 mutex_unlock(&knav_dev_lock); 296 return qh; 297 } 298 299 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled) 300 { 301 struct knav_range_info *range = inst->range; 302 303 if (range->ops && range->ops->set_notify) 304 range->ops->set_notify(range, inst, enabled); 305 } 306 307 static int knav_queue_enable_notifier(struct knav_queue *qh) 308 { 309 struct knav_queue_inst *inst = qh->inst; 310 bool first; 311 312 if (WARN_ON(!qh->notifier_fn)) 313 return -EINVAL; 314 315 /* Adjust the per handle notifier count */ 316 first = (atomic_inc_return(&qh->notifier_enabled) == 1); 317 if (!first) 318 return 0; /* nothing to do */ 319 320 /* Now adjust the per instance notifier count */ 321 first = (atomic_inc_return(&inst->num_notifiers) == 1); 322 if (first) 323 knav_queue_set_notify(inst, true); 324 325 return 0; 326 } 327 328 static int knav_queue_disable_notifier(struct knav_queue *qh) 329 { 330 struct knav_queue_inst *inst = qh->inst; 331 bool last; 332 333 last = (atomic_dec_return(&qh->notifier_enabled) == 0); 334 if (!last) 335 return 0; /* nothing to do */ 336 337 last = (atomic_dec_return(&inst->num_notifiers) == 0); 338 if (last) 339 knav_queue_set_notify(inst, false); 340 341 return 0; 342 } 343 344 static int knav_queue_set_notifier(struct knav_queue *qh, 345 struct knav_queue_notify_config *cfg) 346 { 347 knav_queue_notify_fn old_fn = qh->notifier_fn; 348 349 if (!cfg) 350 return -EINVAL; 351 352 if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) 353 return -ENOTSUPP; 354 355 if (!cfg->fn && old_fn) 356 knav_queue_disable_notifier(qh); 357 358 qh->notifier_fn = cfg->fn; 359 qh->notifier_fn_arg = cfg->fn_arg; 360 361 if (cfg->fn && !old_fn) 362 knav_queue_enable_notifier(qh); 363 364 return 0; 365 } 366 367 static int knav_gp_set_notify(struct knav_range_info *range, 368 struct knav_queue_inst *inst, 369 bool enabled) 370 { 371 unsigned queue; 372 373 if (range->flags & RANGE_HAS_IRQ) { 374 queue = inst->id - range->queue_base; 375 if (enabled) 376 enable_irq(range->irqs[queue].irq); 377 else 378 disable_irq_nosync(range->irqs[queue].irq); 379 } 380 return 0; 381 } 382 383 static int knav_gp_open_queue(struct knav_range_info *range, 384 struct knav_queue_inst *inst, unsigned flags) 385 { 386 return knav_queue_setup_irq(range, inst); 387 } 388 389 static int knav_gp_close_queue(struct knav_range_info *range, 390 struct knav_queue_inst *inst) 391 { 392 knav_queue_free_irq(inst); 393 return 0; 394 } 395 396 struct knav_range_ops knav_gp_range_ops = { 397 .set_notify = knav_gp_set_notify, 398 .open_queue = knav_gp_open_queue, 399 .close_queue = knav_gp_close_queue, 400 }; 401 402 403 static int knav_queue_get_count(void *qhandle) 404 { 405 struct knav_queue *qh = qhandle; 406 struct knav_queue_inst *inst = qh->inst; 407 408 return readl_relaxed(&qh->reg_peek[0].entry_count) + 409 atomic_read(&inst->desc_count); 410 } 411 412 static void knav_queue_debug_show_instance(struct seq_file *s, 413 struct knav_queue_inst *inst) 414 { 415 struct knav_device *kdev = inst->kdev; 416 struct knav_queue *qh; 417 418 if (!knav_queue_is_busy(inst)) 419 return; 420 421 seq_printf(s, "\tqueue id %d (%s)\n", 422 kdev->base_id + inst->id, inst->name); 423 for_each_handle_rcu(qh, inst) { 424 seq_printf(s, "\t\thandle %p: ", qh); 425 seq_printf(s, "pushes %8d, ", 426 atomic_read(&qh->stats.pushes)); 427 seq_printf(s, "pops %8d, ", 428 atomic_read(&qh->stats.pops)); 429 seq_printf(s, "count %8d, ", 430 knav_queue_get_count(qh)); 431 seq_printf(s, "notifies %8d, ", 432 atomic_read(&qh->stats.notifies)); 433 seq_printf(s, "push errors %8d, ", 434 atomic_read(&qh->stats.push_errors)); 435 seq_printf(s, "pop errors %8d\n", 436 atomic_read(&qh->stats.pop_errors)); 437 } 438 } 439 440 static int knav_queue_debug_show(struct seq_file *s, void *v) 441 { 442 struct knav_queue_inst *inst; 443 int idx; 444 445 mutex_lock(&knav_dev_lock); 446 seq_printf(s, "%s: %u-%u\n", 447 dev_name(kdev->dev), kdev->base_id, 448 kdev->base_id + kdev->num_queues - 1); 449 for_each_instance(idx, inst, kdev) 450 knav_queue_debug_show_instance(s, inst); 451 mutex_unlock(&knav_dev_lock); 452 453 return 0; 454 } 455 456 static int knav_queue_debug_open(struct inode *inode, struct file *file) 457 { 458 return single_open(file, knav_queue_debug_show, NULL); 459 } 460 461 static const struct file_operations knav_queue_debug_ops = { 462 .open = knav_queue_debug_open, 463 .read = seq_read, 464 .llseek = seq_lseek, 465 .release = single_release, 466 }; 467 468 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout, 469 u32 flags) 470 { 471 unsigned long end; 472 u32 val = 0; 473 474 end = jiffies + msecs_to_jiffies(timeout); 475 while (time_after(end, jiffies)) { 476 val = readl_relaxed(addr); 477 if (flags) 478 val &= flags; 479 if (!val) 480 break; 481 cpu_relax(); 482 } 483 return val ? -ETIMEDOUT : 0; 484 } 485 486 487 static int knav_queue_flush(struct knav_queue *qh) 488 { 489 struct knav_queue_inst *inst = qh->inst; 490 unsigned id = inst->id - inst->qmgr->start_queue; 491 492 atomic_set(&inst->desc_count, 0); 493 writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh); 494 return 0; 495 } 496 497 /** 498 * knav_queue_open() - open a hardware queue 499 * @name - name to give the queue handle 500 * @id - desired queue number if any or specifes the type 501 * of queue 502 * @flags - the following flags are applicable to queues: 503 * KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are 504 * exclusive by default. 505 * Subsequent attempts to open a shared queue should 506 * also have this flag. 507 * 508 * Returns a handle to the open hardware queue if successful. Use IS_ERR() 509 * to check the returned value for error codes. 510 */ 511 void *knav_queue_open(const char *name, unsigned id, 512 unsigned flags) 513 { 514 struct knav_queue *qh = ERR_PTR(-EINVAL); 515 516 switch (id) { 517 case KNAV_QUEUE_QPEND: 518 case KNAV_QUEUE_ACC: 519 case KNAV_QUEUE_GP: 520 qh = knav_queue_open_by_type(name, id, flags); 521 break; 522 523 default: 524 qh = knav_queue_open_by_id(name, id, flags); 525 break; 526 } 527 return qh; 528 } 529 EXPORT_SYMBOL_GPL(knav_queue_open); 530 531 /** 532 * knav_queue_close() - close a hardware queue handle 533 * @qh - handle to close 534 */ 535 void knav_queue_close(void *qhandle) 536 { 537 struct knav_queue *qh = qhandle; 538 struct knav_queue_inst *inst = qh->inst; 539 540 while (atomic_read(&qh->notifier_enabled) > 0) 541 knav_queue_disable_notifier(qh); 542 543 mutex_lock(&knav_dev_lock); 544 list_del_rcu(&qh->list); 545 mutex_unlock(&knav_dev_lock); 546 synchronize_rcu(); 547 if (!knav_queue_is_busy(inst)) { 548 struct knav_range_info *range = inst->range; 549 550 if (range->ops && range->ops->close_queue) 551 range->ops->close_queue(range, inst); 552 } 553 devm_kfree(inst->kdev->dev, qh); 554 } 555 EXPORT_SYMBOL_GPL(knav_queue_close); 556 557 /** 558 * knav_queue_device_control() - Perform control operations on a queue 559 * @qh - queue handle 560 * @cmd - control commands 561 * @arg - command argument 562 * 563 * Returns 0 on success, errno otherwise. 564 */ 565 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd, 566 unsigned long arg) 567 { 568 struct knav_queue *qh = qhandle; 569 struct knav_queue_notify_config *cfg; 570 int ret; 571 572 switch ((int)cmd) { 573 case KNAV_QUEUE_GET_ID: 574 ret = qh->inst->kdev->base_id + qh->inst->id; 575 break; 576 577 case KNAV_QUEUE_FLUSH: 578 ret = knav_queue_flush(qh); 579 break; 580 581 case KNAV_QUEUE_SET_NOTIFIER: 582 cfg = (void *)arg; 583 ret = knav_queue_set_notifier(qh, cfg); 584 break; 585 586 case KNAV_QUEUE_ENABLE_NOTIFY: 587 ret = knav_queue_enable_notifier(qh); 588 break; 589 590 case KNAV_QUEUE_DISABLE_NOTIFY: 591 ret = knav_queue_disable_notifier(qh); 592 break; 593 594 case KNAV_QUEUE_GET_COUNT: 595 ret = knav_queue_get_count(qh); 596 break; 597 598 default: 599 ret = -ENOTSUPP; 600 break; 601 } 602 return ret; 603 } 604 EXPORT_SYMBOL_GPL(knav_queue_device_control); 605 606 607 608 /** 609 * knav_queue_push() - push data (or descriptor) to the tail of a queue 610 * @qh - hardware queue handle 611 * @data - data to push 612 * @size - size of data to push 613 * @flags - can be used to pass additional information 614 * 615 * Returns 0 on success, errno otherwise. 616 */ 617 int knav_queue_push(void *qhandle, dma_addr_t dma, 618 unsigned size, unsigned flags) 619 { 620 struct knav_queue *qh = qhandle; 621 u32 val; 622 623 val = (u32)dma | ((size / 16) - 1); 624 writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh); 625 626 atomic_inc(&qh->stats.pushes); 627 return 0; 628 } 629 630 /** 631 * knav_queue_pop() - pop data (or descriptor) from the head of a queue 632 * @qh - hardware queue handle 633 * @size - (optional) size of the data pop'ed. 634 * 635 * Returns a DMA address on success, 0 on failure. 636 */ 637 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size) 638 { 639 struct knav_queue *qh = qhandle; 640 struct knav_queue_inst *inst = qh->inst; 641 dma_addr_t dma; 642 u32 val, idx; 643 644 /* are we accumulated? */ 645 if (inst->descs) { 646 if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) { 647 atomic_inc(&inst->desc_count); 648 return 0; 649 } 650 idx = atomic_inc_return(&inst->desc_head); 651 idx &= ACC_DESCS_MASK; 652 val = inst->descs[idx]; 653 } else { 654 val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh); 655 if (unlikely(!val)) 656 return 0; 657 } 658 659 dma = val & DESC_PTR_MASK; 660 if (size) 661 *size = ((val & DESC_SIZE_MASK) + 1) * 16; 662 663 atomic_inc(&qh->stats.pops); 664 return dma; 665 } 666 667 /* carve out descriptors and push into queue */ 668 static void kdesc_fill_pool(struct knav_pool *pool) 669 { 670 struct knav_region *region; 671 int i; 672 673 region = pool->region; 674 pool->desc_size = region->desc_size; 675 for (i = 0; i < pool->num_desc; i++) { 676 int index = pool->region_offset + i; 677 dma_addr_t dma_addr; 678 unsigned dma_size; 679 dma_addr = region->dma_start + (region->desc_size * index); 680 dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES); 681 dma_sync_single_for_device(pool->dev, dma_addr, dma_size, 682 DMA_TO_DEVICE); 683 knav_queue_push(pool->queue, dma_addr, dma_size, 0); 684 } 685 } 686 687 /* pop out descriptors and close the queue */ 688 static void kdesc_empty_pool(struct knav_pool *pool) 689 { 690 dma_addr_t dma; 691 unsigned size; 692 void *desc; 693 int i; 694 695 if (!pool->queue) 696 return; 697 698 for (i = 0;; i++) { 699 dma = knav_queue_pop(pool->queue, &size); 700 if (!dma) 701 break; 702 desc = knav_pool_desc_dma_to_virt(pool, dma); 703 if (!desc) { 704 dev_dbg(pool->kdev->dev, 705 "couldn't unmap desc, continuing\n"); 706 continue; 707 } 708 } 709 WARN_ON(i != pool->num_desc); 710 knav_queue_close(pool->queue); 711 } 712 713 714 /* Get the DMA address of a descriptor */ 715 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt) 716 { 717 struct knav_pool *pool = ph; 718 return pool->region->dma_start + (virt - pool->region->virt_start); 719 } 720 721 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma) 722 { 723 struct knav_pool *pool = ph; 724 return pool->region->virt_start + (dma - pool->region->dma_start); 725 } 726 727 /** 728 * knav_pool_create() - Create a pool of descriptors 729 * @name - name to give the pool handle 730 * @num_desc - numbers of descriptors in the pool 731 * @region_id - QMSS region id from which the descriptors are to be 732 * allocated. 733 * 734 * Returns a pool handle on success. 735 * Use IS_ERR_OR_NULL() to identify error values on return. 736 */ 737 void *knav_pool_create(const char *name, 738 int num_desc, int region_id) 739 { 740 struct knav_region *reg_itr, *region = NULL; 741 struct knav_pool *pool, *pi; 742 struct list_head *node; 743 unsigned last_offset; 744 bool slot_found; 745 int ret; 746 747 if (!kdev->dev) 748 return ERR_PTR(-ENODEV); 749 750 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL); 751 if (!pool) { 752 dev_err(kdev->dev, "out of memory allocating pool\n"); 753 return ERR_PTR(-ENOMEM); 754 } 755 756 for_each_region(kdev, reg_itr) { 757 if (reg_itr->id != region_id) 758 continue; 759 region = reg_itr; 760 break; 761 } 762 763 if (!region) { 764 dev_err(kdev->dev, "region-id(%d) not found\n", region_id); 765 ret = -EINVAL; 766 goto err; 767 } 768 769 pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0); 770 if (IS_ERR_OR_NULL(pool->queue)) { 771 dev_err(kdev->dev, 772 "failed to open queue for pool(%s), error %ld\n", 773 name, PTR_ERR(pool->queue)); 774 ret = PTR_ERR(pool->queue); 775 goto err; 776 } 777 778 pool->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL); 779 pool->kdev = kdev; 780 pool->dev = kdev->dev; 781 782 mutex_lock(&knav_dev_lock); 783 784 if (num_desc > (region->num_desc - region->used_desc)) { 785 dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n", 786 region_id, name); 787 ret = -ENOMEM; 788 goto err_unlock; 789 } 790 791 /* Region maintains a sorted (by region offset) list of pools 792 * use the first free slot which is large enough to accomodate 793 * the request 794 */ 795 last_offset = 0; 796 slot_found = false; 797 node = ®ion->pools; 798 list_for_each_entry(pi, ®ion->pools, region_inst) { 799 if ((pi->region_offset - last_offset) >= num_desc) { 800 slot_found = true; 801 break; 802 } 803 last_offset = pi->region_offset + pi->num_desc; 804 } 805 node = &pi->region_inst; 806 807 if (slot_found) { 808 pool->region = region; 809 pool->num_desc = num_desc; 810 pool->region_offset = last_offset; 811 region->used_desc += num_desc; 812 list_add_tail(&pool->list, &kdev->pools); 813 list_add_tail(&pool->region_inst, node); 814 } else { 815 dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n", 816 name, region_id); 817 ret = -ENOMEM; 818 goto err_unlock; 819 } 820 821 mutex_unlock(&knav_dev_lock); 822 kdesc_fill_pool(pool); 823 return pool; 824 825 err_unlock: 826 mutex_unlock(&knav_dev_lock); 827 err: 828 kfree(pool->name); 829 devm_kfree(kdev->dev, pool); 830 return ERR_PTR(ret); 831 } 832 EXPORT_SYMBOL_GPL(knav_pool_create); 833 834 /** 835 * knav_pool_destroy() - Free a pool of descriptors 836 * @pool - pool handle 837 */ 838 void knav_pool_destroy(void *ph) 839 { 840 struct knav_pool *pool = ph; 841 842 if (!pool) 843 return; 844 845 if (!pool->region) 846 return; 847 848 kdesc_empty_pool(pool); 849 mutex_lock(&knav_dev_lock); 850 851 pool->region->used_desc -= pool->num_desc; 852 list_del(&pool->region_inst); 853 list_del(&pool->list); 854 855 mutex_unlock(&knav_dev_lock); 856 kfree(pool->name); 857 devm_kfree(kdev->dev, pool); 858 } 859 EXPORT_SYMBOL_GPL(knav_pool_destroy); 860 861 862 /** 863 * knav_pool_desc_get() - Get a descriptor from the pool 864 * @pool - pool handle 865 * 866 * Returns descriptor from the pool. 867 */ 868 void *knav_pool_desc_get(void *ph) 869 { 870 struct knav_pool *pool = ph; 871 dma_addr_t dma; 872 unsigned size; 873 void *data; 874 875 dma = knav_queue_pop(pool->queue, &size); 876 if (unlikely(!dma)) 877 return ERR_PTR(-ENOMEM); 878 data = knav_pool_desc_dma_to_virt(pool, dma); 879 return data; 880 } 881 882 /** 883 * knav_pool_desc_put() - return a descriptor to the pool 884 * @pool - pool handle 885 */ 886 void knav_pool_desc_put(void *ph, void *desc) 887 { 888 struct knav_pool *pool = ph; 889 dma_addr_t dma; 890 dma = knav_pool_desc_virt_to_dma(pool, desc); 891 knav_queue_push(pool->queue, dma, pool->region->desc_size, 0); 892 } 893 894 /** 895 * knav_pool_desc_map() - Map descriptor for DMA transfer 896 * @pool - pool handle 897 * @desc - address of descriptor to map 898 * @size - size of descriptor to map 899 * @dma - DMA address return pointer 900 * @dma_sz - adjusted return pointer 901 * 902 * Returns 0 on success, errno otherwise. 903 */ 904 int knav_pool_desc_map(void *ph, void *desc, unsigned size, 905 dma_addr_t *dma, unsigned *dma_sz) 906 { 907 struct knav_pool *pool = ph; 908 *dma = knav_pool_desc_virt_to_dma(pool, desc); 909 size = min(size, pool->region->desc_size); 910 size = ALIGN(size, SMP_CACHE_BYTES); 911 *dma_sz = size; 912 dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE); 913 914 /* Ensure the descriptor reaches to the memory */ 915 __iowmb(); 916 917 return 0; 918 } 919 920 /** 921 * knav_pool_desc_unmap() - Unmap descriptor after DMA transfer 922 * @pool - pool handle 923 * @dma - DMA address of descriptor to unmap 924 * @dma_sz - size of descriptor to unmap 925 * 926 * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify 927 * error values on return. 928 */ 929 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz) 930 { 931 struct knav_pool *pool = ph; 932 unsigned desc_sz; 933 void *desc; 934 935 desc_sz = min(dma_sz, pool->region->desc_size); 936 desc = knav_pool_desc_dma_to_virt(pool, dma); 937 dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE); 938 prefetch(desc); 939 return desc; 940 } 941 942 /** 943 * knav_pool_count() - Get the number of descriptors in pool. 944 * @pool - pool handle 945 * Returns number of elements in the pool. 946 */ 947 int knav_pool_count(void *ph) 948 { 949 struct knav_pool *pool = ph; 950 return knav_queue_get_count(pool->queue); 951 } 952 953 static void knav_queue_setup_region(struct knav_device *kdev, 954 struct knav_region *region) 955 { 956 unsigned hw_num_desc, hw_desc_size, size; 957 struct knav_reg_region __iomem *regs; 958 struct knav_qmgr_info *qmgr; 959 struct knav_pool *pool; 960 int id = region->id; 961 struct page *page; 962 963 /* unused region? */ 964 if (!region->num_desc) { 965 dev_warn(kdev->dev, "unused region %s\n", region->name); 966 return; 967 } 968 969 /* get hardware descriptor value */ 970 hw_num_desc = ilog2(region->num_desc - 1) + 1; 971 972 /* did we force fit ourselves into nothingness? */ 973 if (region->num_desc < 32) { 974 region->num_desc = 0; 975 dev_warn(kdev->dev, "too few descriptors in region %s\n", 976 region->name); 977 return; 978 } 979 980 size = region->num_desc * region->desc_size; 981 region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA | 982 GFP_DMA32); 983 if (!region->virt_start) { 984 region->num_desc = 0; 985 dev_err(kdev->dev, "memory alloc failed for region %s\n", 986 region->name); 987 return; 988 } 989 region->virt_end = region->virt_start + size; 990 page = virt_to_page(region->virt_start); 991 992 region->dma_start = dma_map_page(kdev->dev, page, 0, size, 993 DMA_BIDIRECTIONAL); 994 if (dma_mapping_error(kdev->dev, region->dma_start)) { 995 dev_err(kdev->dev, "dma map failed for region %s\n", 996 region->name); 997 goto fail; 998 } 999 region->dma_end = region->dma_start + size; 1000 1001 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL); 1002 if (!pool) { 1003 dev_err(kdev->dev, "out of memory allocating dummy pool\n"); 1004 goto fail; 1005 } 1006 pool->num_desc = 0; 1007 pool->region_offset = region->num_desc; 1008 list_add(&pool->region_inst, ®ion->pools); 1009 1010 dev_dbg(kdev->dev, 1011 "region %s (%d): size:%d, link:%d@%d, phys:%08x-%08x, virt:%p-%p\n", 1012 region->name, id, region->desc_size, region->num_desc, 1013 region->link_index, region->dma_start, region->dma_end, 1014 region->virt_start, region->virt_end); 1015 1016 hw_desc_size = (region->desc_size / 16) - 1; 1017 hw_num_desc -= 5; 1018 1019 for_each_qmgr(kdev, qmgr) { 1020 regs = qmgr->reg_region + id; 1021 writel_relaxed(region->dma_start, ®s->base); 1022 writel_relaxed(region->link_index, ®s->start_index); 1023 writel_relaxed(hw_desc_size << 16 | hw_num_desc, 1024 ®s->size_count); 1025 } 1026 return; 1027 1028 fail: 1029 if (region->dma_start) 1030 dma_unmap_page(kdev->dev, region->dma_start, size, 1031 DMA_BIDIRECTIONAL); 1032 if (region->virt_start) 1033 free_pages_exact(region->virt_start, size); 1034 region->num_desc = 0; 1035 return; 1036 } 1037 1038 static const char *knav_queue_find_name(struct device_node *node) 1039 { 1040 const char *name; 1041 1042 if (of_property_read_string(node, "label", &name) < 0) 1043 name = node->name; 1044 if (!name) 1045 name = "unknown"; 1046 return name; 1047 } 1048 1049 static int knav_queue_setup_regions(struct knav_device *kdev, 1050 struct device_node *regions) 1051 { 1052 struct device *dev = kdev->dev; 1053 struct knav_region *region; 1054 struct device_node *child; 1055 u32 temp[2]; 1056 int ret; 1057 1058 for_each_child_of_node(regions, child) { 1059 region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL); 1060 if (!region) { 1061 dev_err(dev, "out of memory allocating region\n"); 1062 return -ENOMEM; 1063 } 1064 1065 region->name = knav_queue_find_name(child); 1066 of_property_read_u32(child, "id", ®ion->id); 1067 ret = of_property_read_u32_array(child, "region-spec", temp, 2); 1068 if (!ret) { 1069 region->num_desc = temp[0]; 1070 region->desc_size = temp[1]; 1071 } else { 1072 dev_err(dev, "invalid region info %s\n", region->name); 1073 devm_kfree(dev, region); 1074 continue; 1075 } 1076 1077 if (!of_get_property(child, "link-index", NULL)) { 1078 dev_err(dev, "No link info for %s\n", region->name); 1079 devm_kfree(dev, region); 1080 continue; 1081 } 1082 ret = of_property_read_u32(child, "link-index", 1083 ®ion->link_index); 1084 if (ret) { 1085 dev_err(dev, "link index not found for %s\n", 1086 region->name); 1087 devm_kfree(dev, region); 1088 continue; 1089 } 1090 1091 INIT_LIST_HEAD(®ion->pools); 1092 list_add_tail(®ion->list, &kdev->regions); 1093 } 1094 if (list_empty(&kdev->regions)) { 1095 dev_err(dev, "no valid region information found\n"); 1096 return -ENODEV; 1097 } 1098 1099 /* Next, we run through the regions and set things up */ 1100 for_each_region(kdev, region) 1101 knav_queue_setup_region(kdev, region); 1102 1103 return 0; 1104 } 1105 1106 static int knav_get_link_ram(struct knav_device *kdev, 1107 const char *name, 1108 struct knav_link_ram_block *block) 1109 { 1110 struct platform_device *pdev = to_platform_device(kdev->dev); 1111 struct device_node *node = pdev->dev.of_node; 1112 u32 temp[2]; 1113 1114 /* 1115 * Note: link ram resources are specified in "entry" sized units. In 1116 * reality, although entries are ~40bits in hardware, we treat them as 1117 * 64-bit entities here. 1118 * 1119 * For example, to specify the internal link ram for Keystone-I class 1120 * devices, we would set the linkram0 resource to 0x80000-0x83fff. 1121 * 1122 * This gets a bit weird when other link rams are used. For example, 1123 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries 1124 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000, 1125 * which accounts for 64-bits per entry, for 16K entries. 1126 */ 1127 if (!of_property_read_u32_array(node, name , temp, 2)) { 1128 if (temp[0]) { 1129 /* 1130 * queue_base specified => using internal or onchip 1131 * link ram WARNING - we do not "reserve" this block 1132 */ 1133 block->phys = (dma_addr_t)temp[0]; 1134 block->virt = NULL; 1135 block->size = temp[1]; 1136 } else { 1137 block->size = temp[1]; 1138 /* queue_base not specific => allocate requested size */ 1139 block->virt = dmam_alloc_coherent(kdev->dev, 1140 8 * block->size, &block->phys, 1141 GFP_KERNEL); 1142 if (!block->virt) { 1143 dev_err(kdev->dev, "failed to alloc linkram\n"); 1144 return -ENOMEM; 1145 } 1146 } 1147 } else { 1148 return -ENODEV; 1149 } 1150 return 0; 1151 } 1152 1153 static int knav_queue_setup_link_ram(struct knav_device *kdev) 1154 { 1155 struct knav_link_ram_block *block; 1156 struct knav_qmgr_info *qmgr; 1157 1158 for_each_qmgr(kdev, qmgr) { 1159 block = &kdev->link_rams[0]; 1160 dev_dbg(kdev->dev, "linkram0: phys:%x, virt:%p, size:%x\n", 1161 block->phys, block->virt, block->size); 1162 writel_relaxed(block->phys, &qmgr->reg_config->link_ram_base0); 1163 writel_relaxed(block->size, &qmgr->reg_config->link_ram_size0); 1164 1165 block++; 1166 if (!block->size) 1167 return 0; 1168 1169 dev_dbg(kdev->dev, "linkram1: phys:%x, virt:%p, size:%x\n", 1170 block->phys, block->virt, block->size); 1171 writel_relaxed(block->phys, &qmgr->reg_config->link_ram_base1); 1172 } 1173 1174 return 0; 1175 } 1176 1177 static int knav_setup_queue_range(struct knav_device *kdev, 1178 struct device_node *node) 1179 { 1180 struct device *dev = kdev->dev; 1181 struct knav_range_info *range; 1182 struct knav_qmgr_info *qmgr; 1183 u32 temp[2], start, end, id, index; 1184 int ret, i; 1185 1186 range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL); 1187 if (!range) { 1188 dev_err(dev, "out of memory allocating range\n"); 1189 return -ENOMEM; 1190 } 1191 1192 range->kdev = kdev; 1193 range->name = knav_queue_find_name(node); 1194 ret = of_property_read_u32_array(node, "qrange", temp, 2); 1195 if (!ret) { 1196 range->queue_base = temp[0] - kdev->base_id; 1197 range->num_queues = temp[1]; 1198 } else { 1199 dev_err(dev, "invalid queue range %s\n", range->name); 1200 devm_kfree(dev, range); 1201 return -EINVAL; 1202 } 1203 1204 for (i = 0; i < RANGE_MAX_IRQS; i++) { 1205 struct of_phandle_args oirq; 1206 1207 if (of_irq_parse_one(node, i, &oirq)) 1208 break; 1209 1210 range->irqs[i].irq = irq_create_of_mapping(&oirq); 1211 if (range->irqs[i].irq == IRQ_NONE) 1212 break; 1213 1214 range->num_irqs++; 1215 1216 if (oirq.args_count == 3) 1217 range->irqs[i].cpu_map = 1218 (oirq.args[2] & 0x0000ff00) >> 8; 1219 } 1220 1221 range->num_irqs = min(range->num_irqs, range->num_queues); 1222 if (range->num_irqs) 1223 range->flags |= RANGE_HAS_IRQ; 1224 1225 if (of_get_property(node, "qalloc-by-id", NULL)) 1226 range->flags |= RANGE_RESERVED; 1227 1228 if (of_get_property(node, "accumulator", NULL)) { 1229 ret = knav_init_acc_range(kdev, node, range); 1230 if (ret < 0) { 1231 devm_kfree(dev, range); 1232 return ret; 1233 } 1234 } else { 1235 range->ops = &knav_gp_range_ops; 1236 } 1237 1238 /* set threshold to 1, and flush out the queues */ 1239 for_each_qmgr(kdev, qmgr) { 1240 start = max(qmgr->start_queue, range->queue_base); 1241 end = min(qmgr->start_queue + qmgr->num_queues, 1242 range->queue_base + range->num_queues); 1243 for (id = start; id < end; id++) { 1244 index = id - qmgr->start_queue; 1245 writel_relaxed(THRESH_GTE | 1, 1246 &qmgr->reg_peek[index].ptr_size_thresh); 1247 writel_relaxed(0, 1248 &qmgr->reg_push[index].ptr_size_thresh); 1249 } 1250 } 1251 1252 list_add_tail(&range->list, &kdev->queue_ranges); 1253 dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n", 1254 range->name, range->queue_base, 1255 range->queue_base + range->num_queues - 1, 1256 range->num_irqs, 1257 (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "", 1258 (range->flags & RANGE_RESERVED) ? ", reserved" : "", 1259 (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : ""); 1260 kdev->num_queues_in_use += range->num_queues; 1261 return 0; 1262 } 1263 1264 static int knav_setup_queue_pools(struct knav_device *kdev, 1265 struct device_node *queue_pools) 1266 { 1267 struct device_node *type, *range; 1268 int ret; 1269 1270 for_each_child_of_node(queue_pools, type) { 1271 for_each_child_of_node(type, range) { 1272 ret = knav_setup_queue_range(kdev, range); 1273 /* return value ignored, we init the rest... */ 1274 } 1275 } 1276 1277 /* ... and barf if they all failed! */ 1278 if (list_empty(&kdev->queue_ranges)) { 1279 dev_err(kdev->dev, "no valid queue range found\n"); 1280 return -ENODEV; 1281 } 1282 return 0; 1283 } 1284 1285 static void knav_free_queue_range(struct knav_device *kdev, 1286 struct knav_range_info *range) 1287 { 1288 if (range->ops && range->ops->free_range) 1289 range->ops->free_range(range); 1290 list_del(&range->list); 1291 devm_kfree(kdev->dev, range); 1292 } 1293 1294 static void knav_free_queue_ranges(struct knav_device *kdev) 1295 { 1296 struct knav_range_info *range; 1297 1298 for (;;) { 1299 range = first_queue_range(kdev); 1300 if (!range) 1301 break; 1302 knav_free_queue_range(kdev, range); 1303 } 1304 } 1305 1306 static void knav_queue_free_regions(struct knav_device *kdev) 1307 { 1308 struct knav_region *region; 1309 struct knav_pool *pool, *tmp; 1310 unsigned size; 1311 1312 for (;;) { 1313 region = first_region(kdev); 1314 if (!region) 1315 break; 1316 list_for_each_entry_safe(pool, tmp, ®ion->pools, region_inst) 1317 knav_pool_destroy(pool); 1318 1319 size = region->virt_end - region->virt_start; 1320 if (size) 1321 free_pages_exact(region->virt_start, size); 1322 list_del(®ion->list); 1323 devm_kfree(kdev->dev, region); 1324 } 1325 } 1326 1327 static void __iomem *knav_queue_map_reg(struct knav_device *kdev, 1328 struct device_node *node, int index) 1329 { 1330 struct resource res; 1331 void __iomem *regs; 1332 int ret; 1333 1334 ret = of_address_to_resource(node, index, &res); 1335 if (ret) { 1336 dev_err(kdev->dev, "Can't translate of node(%s) address for index(%d)\n", 1337 node->name, index); 1338 return ERR_PTR(ret); 1339 } 1340 1341 regs = devm_ioremap_resource(kdev->dev, &res); 1342 if (IS_ERR(regs)) 1343 dev_err(kdev->dev, "Failed to map register base for index(%d) node(%s)\n", 1344 index, node->name); 1345 return regs; 1346 } 1347 1348 static int knav_queue_init_qmgrs(struct knav_device *kdev, 1349 struct device_node *qmgrs) 1350 { 1351 struct device *dev = kdev->dev; 1352 struct knav_qmgr_info *qmgr; 1353 struct device_node *child; 1354 u32 temp[2]; 1355 int ret; 1356 1357 for_each_child_of_node(qmgrs, child) { 1358 qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL); 1359 if (!qmgr) { 1360 dev_err(dev, "out of memory allocating qmgr\n"); 1361 return -ENOMEM; 1362 } 1363 1364 ret = of_property_read_u32_array(child, "managed-queues", 1365 temp, 2); 1366 if (!ret) { 1367 qmgr->start_queue = temp[0]; 1368 qmgr->num_queues = temp[1]; 1369 } else { 1370 dev_err(dev, "invalid qmgr queue range\n"); 1371 devm_kfree(dev, qmgr); 1372 continue; 1373 } 1374 1375 dev_info(dev, "qmgr start queue %d, number of queues %d\n", 1376 qmgr->start_queue, qmgr->num_queues); 1377 1378 qmgr->reg_peek = 1379 knav_queue_map_reg(kdev, child, 1380 KNAV_QUEUE_PEEK_REG_INDEX); 1381 qmgr->reg_status = 1382 knav_queue_map_reg(kdev, child, 1383 KNAV_QUEUE_STATUS_REG_INDEX); 1384 qmgr->reg_config = 1385 knav_queue_map_reg(kdev, child, 1386 KNAV_QUEUE_CONFIG_REG_INDEX); 1387 qmgr->reg_region = 1388 knav_queue_map_reg(kdev, child, 1389 KNAV_QUEUE_REGION_REG_INDEX); 1390 qmgr->reg_push = 1391 knav_queue_map_reg(kdev, child, 1392 KNAV_QUEUE_PUSH_REG_INDEX); 1393 qmgr->reg_pop = 1394 knav_queue_map_reg(kdev, child, 1395 KNAV_QUEUE_POP_REG_INDEX); 1396 1397 if (IS_ERR(qmgr->reg_peek) || IS_ERR(qmgr->reg_status) || 1398 IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) || 1399 IS_ERR(qmgr->reg_push) || IS_ERR(qmgr->reg_pop)) { 1400 dev_err(dev, "failed to map qmgr regs\n"); 1401 if (!IS_ERR(qmgr->reg_peek)) 1402 devm_iounmap(dev, qmgr->reg_peek); 1403 if (!IS_ERR(qmgr->reg_status)) 1404 devm_iounmap(dev, qmgr->reg_status); 1405 if (!IS_ERR(qmgr->reg_config)) 1406 devm_iounmap(dev, qmgr->reg_config); 1407 if (!IS_ERR(qmgr->reg_region)) 1408 devm_iounmap(dev, qmgr->reg_region); 1409 if (!IS_ERR(qmgr->reg_push)) 1410 devm_iounmap(dev, qmgr->reg_push); 1411 if (!IS_ERR(qmgr->reg_pop)) 1412 devm_iounmap(dev, qmgr->reg_pop); 1413 devm_kfree(dev, qmgr); 1414 continue; 1415 } 1416 1417 list_add_tail(&qmgr->list, &kdev->qmgrs); 1418 dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n", 1419 qmgr->start_queue, qmgr->num_queues, 1420 qmgr->reg_peek, qmgr->reg_status, 1421 qmgr->reg_config, qmgr->reg_region, 1422 qmgr->reg_push, qmgr->reg_pop); 1423 } 1424 return 0; 1425 } 1426 1427 static int knav_queue_init_pdsps(struct knav_device *kdev, 1428 struct device_node *pdsps) 1429 { 1430 struct device *dev = kdev->dev; 1431 struct knav_pdsp_info *pdsp; 1432 struct device_node *child; 1433 int ret; 1434 1435 for_each_child_of_node(pdsps, child) { 1436 pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL); 1437 if (!pdsp) { 1438 dev_err(dev, "out of memory allocating pdsp\n"); 1439 return -ENOMEM; 1440 } 1441 pdsp->name = knav_queue_find_name(child); 1442 ret = of_property_read_string(child, "firmware", 1443 &pdsp->firmware); 1444 if (ret < 0 || !pdsp->firmware) { 1445 dev_err(dev, "unknown firmware for pdsp %s\n", 1446 pdsp->name); 1447 devm_kfree(dev, pdsp); 1448 continue; 1449 } 1450 dev_dbg(dev, "pdsp name %s fw name :%s\n", pdsp->name, 1451 pdsp->firmware); 1452 1453 pdsp->iram = 1454 knav_queue_map_reg(kdev, child, 1455 KNAV_QUEUE_PDSP_IRAM_REG_INDEX); 1456 pdsp->regs = 1457 knav_queue_map_reg(kdev, child, 1458 KNAV_QUEUE_PDSP_REGS_REG_INDEX); 1459 pdsp->intd = 1460 knav_queue_map_reg(kdev, child, 1461 KNAV_QUEUE_PDSP_INTD_REG_INDEX); 1462 pdsp->command = 1463 knav_queue_map_reg(kdev, child, 1464 KNAV_QUEUE_PDSP_CMD_REG_INDEX); 1465 1466 if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) || 1467 IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) { 1468 dev_err(dev, "failed to map pdsp %s regs\n", 1469 pdsp->name); 1470 if (!IS_ERR(pdsp->command)) 1471 devm_iounmap(dev, pdsp->command); 1472 if (!IS_ERR(pdsp->iram)) 1473 devm_iounmap(dev, pdsp->iram); 1474 if (!IS_ERR(pdsp->regs)) 1475 devm_iounmap(dev, pdsp->regs); 1476 if (!IS_ERR(pdsp->intd)) 1477 devm_iounmap(dev, pdsp->intd); 1478 devm_kfree(dev, pdsp); 1479 continue; 1480 } 1481 of_property_read_u32(child, "id", &pdsp->id); 1482 list_add_tail(&pdsp->list, &kdev->pdsps); 1483 dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p, firmware %s\n", 1484 pdsp->name, pdsp->command, pdsp->iram, pdsp->regs, 1485 pdsp->intd, pdsp->firmware); 1486 } 1487 return 0; 1488 } 1489 1490 static int knav_queue_stop_pdsp(struct knav_device *kdev, 1491 struct knav_pdsp_info *pdsp) 1492 { 1493 u32 val, timeout = 1000; 1494 int ret; 1495 1496 val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE; 1497 writel_relaxed(val, &pdsp->regs->control); 1498 ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout, 1499 PDSP_CTRL_RUNNING); 1500 if (ret < 0) { 1501 dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name); 1502 return ret; 1503 } 1504 return 0; 1505 } 1506 1507 static int knav_queue_load_pdsp(struct knav_device *kdev, 1508 struct knav_pdsp_info *pdsp) 1509 { 1510 int i, ret, fwlen; 1511 const struct firmware *fw; 1512 u32 *fwdata; 1513 1514 ret = request_firmware(&fw, pdsp->firmware, kdev->dev); 1515 if (ret) { 1516 dev_err(kdev->dev, "failed to get firmware %s for pdsp %s\n", 1517 pdsp->firmware, pdsp->name); 1518 return ret; 1519 } 1520 writel_relaxed(pdsp->id + 1, pdsp->command + 0x18); 1521 /* download the firmware */ 1522 fwdata = (u32 *)fw->data; 1523 fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32); 1524 for (i = 0; i < fwlen; i++) 1525 writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i); 1526 1527 release_firmware(fw); 1528 return 0; 1529 } 1530 1531 static int knav_queue_start_pdsp(struct knav_device *kdev, 1532 struct knav_pdsp_info *pdsp) 1533 { 1534 u32 val, timeout = 1000; 1535 int ret; 1536 1537 /* write a command for sync */ 1538 writel_relaxed(0xffffffff, pdsp->command); 1539 while (readl_relaxed(pdsp->command) != 0xffffffff) 1540 cpu_relax(); 1541 1542 /* soft reset the PDSP */ 1543 val = readl_relaxed(&pdsp->regs->control); 1544 val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET); 1545 writel_relaxed(val, &pdsp->regs->control); 1546 1547 /* enable pdsp */ 1548 val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE; 1549 writel_relaxed(val, &pdsp->regs->control); 1550 1551 /* wait for command register to clear */ 1552 ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0); 1553 if (ret < 0) { 1554 dev_err(kdev->dev, 1555 "timed out on pdsp %s command register wait\n", 1556 pdsp->name); 1557 return ret; 1558 } 1559 return 0; 1560 } 1561 1562 static void knav_queue_stop_pdsps(struct knav_device *kdev) 1563 { 1564 struct knav_pdsp_info *pdsp; 1565 1566 /* disable all pdsps */ 1567 for_each_pdsp(kdev, pdsp) 1568 knav_queue_stop_pdsp(kdev, pdsp); 1569 } 1570 1571 static int knav_queue_start_pdsps(struct knav_device *kdev) 1572 { 1573 struct knav_pdsp_info *pdsp; 1574 int ret; 1575 1576 knav_queue_stop_pdsps(kdev); 1577 /* now load them all */ 1578 for_each_pdsp(kdev, pdsp) { 1579 ret = knav_queue_load_pdsp(kdev, pdsp); 1580 if (ret < 0) 1581 return ret; 1582 } 1583 1584 for_each_pdsp(kdev, pdsp) { 1585 ret = knav_queue_start_pdsp(kdev, pdsp); 1586 WARN_ON(ret); 1587 } 1588 return 0; 1589 } 1590 1591 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id) 1592 { 1593 struct knav_qmgr_info *qmgr; 1594 1595 for_each_qmgr(kdev, qmgr) { 1596 if ((id >= qmgr->start_queue) && 1597 (id < qmgr->start_queue + qmgr->num_queues)) 1598 return qmgr; 1599 } 1600 return NULL; 1601 } 1602 1603 static int knav_queue_init_queue(struct knav_device *kdev, 1604 struct knav_range_info *range, 1605 struct knav_queue_inst *inst, 1606 unsigned id) 1607 { 1608 char irq_name[KNAV_NAME_SIZE]; 1609 inst->qmgr = knav_find_qmgr(id); 1610 if (!inst->qmgr) 1611 return -1; 1612 1613 INIT_LIST_HEAD(&inst->handles); 1614 inst->kdev = kdev; 1615 inst->range = range; 1616 inst->irq_num = -1; 1617 inst->id = id; 1618 scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id); 1619 inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL); 1620 1621 if (range->ops && range->ops->init_queue) 1622 return range->ops->init_queue(range, inst); 1623 else 1624 return 0; 1625 } 1626 1627 static int knav_queue_init_queues(struct knav_device *kdev) 1628 { 1629 struct knav_range_info *range; 1630 int size, id, base_idx; 1631 int idx = 0, ret = 0; 1632 1633 /* how much do we need for instance data? */ 1634 size = sizeof(struct knav_queue_inst); 1635 1636 /* round this up to a power of 2, keep the index to instance 1637 * arithmetic fast. 1638 * */ 1639 kdev->inst_shift = order_base_2(size); 1640 size = (1 << kdev->inst_shift) * kdev->num_queues_in_use; 1641 kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL); 1642 if (!kdev->instances) 1643 return -ENOMEM; 1644 1645 for_each_queue_range(kdev, range) { 1646 if (range->ops && range->ops->init_range) 1647 range->ops->init_range(range); 1648 base_idx = idx; 1649 for (id = range->queue_base; 1650 id < range->queue_base + range->num_queues; id++, idx++) { 1651 ret = knav_queue_init_queue(kdev, range, 1652 knav_queue_idx_to_inst(kdev, idx), id); 1653 if (ret < 0) 1654 return ret; 1655 } 1656 range->queue_base_inst = 1657 knav_queue_idx_to_inst(kdev, base_idx); 1658 } 1659 return 0; 1660 } 1661 1662 static int knav_queue_probe(struct platform_device *pdev) 1663 { 1664 struct device_node *node = pdev->dev.of_node; 1665 struct device_node *qmgrs, *queue_pools, *regions, *pdsps; 1666 struct device *dev = &pdev->dev; 1667 u32 temp[2]; 1668 int ret; 1669 1670 if (!node) { 1671 dev_err(dev, "device tree info unavailable\n"); 1672 return -ENODEV; 1673 } 1674 1675 kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL); 1676 if (!kdev) { 1677 dev_err(dev, "memory allocation failed\n"); 1678 return -ENOMEM; 1679 } 1680 1681 platform_set_drvdata(pdev, kdev); 1682 kdev->dev = dev; 1683 INIT_LIST_HEAD(&kdev->queue_ranges); 1684 INIT_LIST_HEAD(&kdev->qmgrs); 1685 INIT_LIST_HEAD(&kdev->pools); 1686 INIT_LIST_HEAD(&kdev->regions); 1687 INIT_LIST_HEAD(&kdev->pdsps); 1688 1689 pm_runtime_enable(&pdev->dev); 1690 ret = pm_runtime_get_sync(&pdev->dev); 1691 if (ret < 0) { 1692 dev_err(dev, "Failed to enable QMSS\n"); 1693 return ret; 1694 } 1695 1696 if (of_property_read_u32_array(node, "queue-range", temp, 2)) { 1697 dev_err(dev, "queue-range not specified\n"); 1698 ret = -ENODEV; 1699 goto err; 1700 } 1701 kdev->base_id = temp[0]; 1702 kdev->num_queues = temp[1]; 1703 1704 /* Initialize queue managers using device tree configuration */ 1705 qmgrs = of_get_child_by_name(node, "qmgrs"); 1706 if (!qmgrs) { 1707 dev_err(dev, "queue manager info not specified\n"); 1708 ret = -ENODEV; 1709 goto err; 1710 } 1711 ret = knav_queue_init_qmgrs(kdev, qmgrs); 1712 of_node_put(qmgrs); 1713 if (ret) 1714 goto err; 1715 1716 /* get pdsp configuration values from device tree */ 1717 pdsps = of_get_child_by_name(node, "pdsps"); 1718 if (pdsps) { 1719 ret = knav_queue_init_pdsps(kdev, pdsps); 1720 if (ret) 1721 goto err; 1722 1723 ret = knav_queue_start_pdsps(kdev); 1724 if (ret) 1725 goto err; 1726 } 1727 of_node_put(pdsps); 1728 1729 /* get usable queue range values from device tree */ 1730 queue_pools = of_get_child_by_name(node, "queue-pools"); 1731 if (!queue_pools) { 1732 dev_err(dev, "queue-pools not specified\n"); 1733 ret = -ENODEV; 1734 goto err; 1735 } 1736 ret = knav_setup_queue_pools(kdev, queue_pools); 1737 of_node_put(queue_pools); 1738 if (ret) 1739 goto err; 1740 1741 ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]); 1742 if (ret) { 1743 dev_err(kdev->dev, "could not setup linking ram\n"); 1744 goto err; 1745 } 1746 1747 ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]); 1748 if (ret) { 1749 /* 1750 * nothing really, we have one linking ram already, so we just 1751 * live within our means 1752 */ 1753 } 1754 1755 ret = knav_queue_setup_link_ram(kdev); 1756 if (ret) 1757 goto err; 1758 1759 regions = of_get_child_by_name(node, "descriptor-regions"); 1760 if (!regions) { 1761 dev_err(dev, "descriptor-regions not specified\n"); 1762 goto err; 1763 } 1764 ret = knav_queue_setup_regions(kdev, regions); 1765 of_node_put(regions); 1766 if (ret) 1767 goto err; 1768 1769 ret = knav_queue_init_queues(kdev); 1770 if (ret < 0) { 1771 dev_err(dev, "hwqueue initialization failed\n"); 1772 goto err; 1773 } 1774 1775 debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL, 1776 &knav_queue_debug_ops); 1777 return 0; 1778 1779 err: 1780 knav_queue_stop_pdsps(kdev); 1781 knav_queue_free_regions(kdev); 1782 knav_free_queue_ranges(kdev); 1783 pm_runtime_put_sync(&pdev->dev); 1784 pm_runtime_disable(&pdev->dev); 1785 return ret; 1786 } 1787 1788 static int knav_queue_remove(struct platform_device *pdev) 1789 { 1790 /* TODO: Free resources */ 1791 pm_runtime_put_sync(&pdev->dev); 1792 pm_runtime_disable(&pdev->dev); 1793 return 0; 1794 } 1795 1796 /* Match table for of_platform binding */ 1797 static struct of_device_id keystone_qmss_of_match[] = { 1798 { .compatible = "ti,keystone-navigator-qmss", }, 1799 {}, 1800 }; 1801 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match); 1802 1803 static struct platform_driver keystone_qmss_driver = { 1804 .probe = knav_queue_probe, 1805 .remove = knav_queue_remove, 1806 .driver = { 1807 .name = "keystone-navigator-qmss", 1808 .of_match_table = keystone_qmss_of_match, 1809 }, 1810 }; 1811 module_platform_driver(keystone_qmss_driver); 1812 1813 MODULE_LICENSE("GPL v2"); 1814 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs"); 1815 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>"); 1816 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>"); 1817