1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Keystone Queue Manager subsystem driver 4 * 5 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com 6 * Authors: Sandeep Nair <sandeep_n@ti.com> 7 * Cyril Chemparathy <cyril@ti.com> 8 * Santosh Shilimkar <santosh.shilimkar@ti.com> 9 */ 10 11 #include <linux/debugfs.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/firmware.h> 14 #include <linux/interrupt.h> 15 #include <linux/io.h> 16 #include <linux/module.h> 17 #include <linux/of.h> 18 #include <linux/of_address.h> 19 #include <linux/of_irq.h> 20 #include <linux/platform_device.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/property.h> 23 #include <linux/slab.h> 24 #include <linux/soc/ti/knav_qmss.h> 25 26 #include "knav_qmss.h" 27 28 static struct knav_device *kdev; 29 static DEFINE_MUTEX(knav_dev_lock); 30 #define knav_dev_lock_held() \ 31 lockdep_is_held(&knav_dev_lock) 32 33 /* Queue manager register indices in DTS */ 34 #define KNAV_QUEUE_PEEK_REG_INDEX 0 35 #define KNAV_QUEUE_STATUS_REG_INDEX 1 36 #define KNAV_QUEUE_CONFIG_REG_INDEX 2 37 #define KNAV_QUEUE_REGION_REG_INDEX 3 38 #define KNAV_QUEUE_PUSH_REG_INDEX 4 39 #define KNAV_QUEUE_POP_REG_INDEX 5 40 41 /* Queue manager register indices in DTS for QMSS in K2G NAVSS. 42 * There are no status and vbusm push registers on this version 43 * of QMSS. Push registers are same as pop, So all indices above 1 44 * are to be re-defined 45 */ 46 #define KNAV_L_QUEUE_CONFIG_REG_INDEX 1 47 #define KNAV_L_QUEUE_REGION_REG_INDEX 2 48 #define KNAV_L_QUEUE_PUSH_REG_INDEX 3 49 50 /* PDSP register indices in DTS */ 51 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX 0 52 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX 1 53 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX 2 54 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX 3 55 56 #define knav_queue_idx_to_inst(kdev, idx) \ 57 (kdev->instances + (idx << kdev->inst_shift)) 58 59 #define for_each_handle_rcu(qh, inst) \ 60 list_for_each_entry_rcu(qh, &inst->handles, list, \ 61 knav_dev_lock_held()) 62 63 #define for_each_instance(idx, inst, kdev) \ 64 for (idx = 0, inst = kdev->instances; \ 65 idx < (kdev)->num_queues_in_use; \ 66 idx++, inst = knav_queue_idx_to_inst(kdev, idx)) 67 68 /* All firmware file names end up here. List the firmware file names below. 69 * Newest followed by older ones. Search is done from start of the array 70 * until a firmware file is found. 71 */ 72 static const char * const knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"}; 73 74 static bool device_ready; 75 bool knav_qmss_device_ready(void) 76 { 77 return device_ready; 78 } 79 EXPORT_SYMBOL_GPL(knav_qmss_device_ready); 80 81 /** 82 * knav_queue_notify: qmss queue notfier call 83 * 84 * @inst: - qmss queue instance like accumulator 85 */ 86 void knav_queue_notify(struct knav_queue_inst *inst) 87 { 88 struct knav_queue *qh; 89 90 if (!inst) 91 return; 92 93 rcu_read_lock(); 94 for_each_handle_rcu(qh, inst) { 95 if (atomic_read(&qh->notifier_enabled) <= 0) 96 continue; 97 if (WARN_ON(!qh->notifier_fn)) 98 continue; 99 this_cpu_inc(qh->stats->notifies); 100 qh->notifier_fn(qh->notifier_fn_arg); 101 } 102 rcu_read_unlock(); 103 } 104 EXPORT_SYMBOL_GPL(knav_queue_notify); 105 106 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata) 107 { 108 struct knav_queue_inst *inst = _instdata; 109 110 knav_queue_notify(inst); 111 return IRQ_HANDLED; 112 } 113 114 static int knav_queue_setup_irq(struct knav_range_info *range, 115 struct knav_queue_inst *inst) 116 { 117 unsigned queue = inst->id - range->queue_base; 118 int ret = 0, irq; 119 120 if (range->flags & RANGE_HAS_IRQ) { 121 irq = range->irqs[queue].irq; 122 ret = request_irq(irq, knav_queue_int_handler, 0, 123 inst->irq_name, inst); 124 if (ret) 125 return ret; 126 disable_irq(irq); 127 if (range->irqs[queue].cpu_mask) { 128 ret = irq_set_affinity_hint(irq, range->irqs[queue].cpu_mask); 129 if (ret) { 130 dev_warn(range->kdev->dev, 131 "Failed to set IRQ affinity\n"); 132 return ret; 133 } 134 } 135 } 136 return ret; 137 } 138 139 static void knav_queue_free_irq(struct knav_queue_inst *inst) 140 { 141 struct knav_range_info *range = inst->range; 142 unsigned queue = inst->id - inst->range->queue_base; 143 int irq; 144 145 if (range->flags & RANGE_HAS_IRQ) { 146 irq = range->irqs[queue].irq; 147 irq_set_affinity_hint(irq, NULL); 148 free_irq(irq, inst); 149 } 150 } 151 152 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst) 153 { 154 return !list_empty(&inst->handles); 155 } 156 157 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst) 158 { 159 return inst->range->flags & RANGE_RESERVED; 160 } 161 162 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst) 163 { 164 struct knav_queue *tmp; 165 166 rcu_read_lock(); 167 for_each_handle_rcu(tmp, inst) { 168 if (tmp->flags & KNAV_QUEUE_SHARED) { 169 rcu_read_unlock(); 170 return true; 171 } 172 } 173 rcu_read_unlock(); 174 return false; 175 } 176 177 static inline bool knav_queue_match_type(struct knav_queue_inst *inst, 178 unsigned type) 179 { 180 if ((type == KNAV_QUEUE_QPEND) && 181 (inst->range->flags & RANGE_HAS_IRQ)) { 182 return true; 183 } else if ((type == KNAV_QUEUE_ACC) && 184 (inst->range->flags & RANGE_HAS_ACCUMULATOR)) { 185 return true; 186 } else if ((type == KNAV_QUEUE_GP) && 187 !(inst->range->flags & 188 (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) { 189 return true; 190 } 191 return false; 192 } 193 194 static inline struct knav_queue_inst * 195 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id) 196 { 197 struct knav_queue_inst *inst; 198 int idx; 199 200 for_each_instance(idx, inst, kdev) { 201 if (inst->id == id) 202 return inst; 203 } 204 return NULL; 205 } 206 207 static inline struct knav_queue_inst *knav_queue_find_by_id(int id) 208 { 209 if (kdev->base_id <= id && 210 kdev->base_id + kdev->num_queues > id) { 211 id -= kdev->base_id; 212 return knav_queue_match_id_to_inst(kdev, id); 213 } 214 return NULL; 215 } 216 217 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst, 218 const char *name, unsigned flags) 219 { 220 struct knav_queue *qh; 221 unsigned id; 222 int ret = 0; 223 224 qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL); 225 if (!qh) 226 return ERR_PTR(-ENOMEM); 227 228 qh->stats = alloc_percpu(struct knav_queue_stats); 229 if (!qh->stats) { 230 ret = -ENOMEM; 231 goto err; 232 } 233 234 qh->flags = flags; 235 qh->inst = inst; 236 id = inst->id - inst->qmgr->start_queue; 237 qh->reg_push = &inst->qmgr->reg_push[id]; 238 qh->reg_pop = &inst->qmgr->reg_pop[id]; 239 qh->reg_peek = &inst->qmgr->reg_peek[id]; 240 241 /* first opener? */ 242 if (!knav_queue_is_busy(inst)) { 243 struct knav_range_info *range = inst->range; 244 245 inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL); 246 if (range->ops && range->ops->open_queue) 247 ret = range->ops->open_queue(range, inst, flags); 248 249 if (ret) 250 goto err; 251 } 252 list_add_tail_rcu(&qh->list, &inst->handles); 253 return qh; 254 255 err: 256 if (qh->stats) 257 free_percpu(qh->stats); 258 devm_kfree(inst->kdev->dev, qh); 259 return ERR_PTR(ret); 260 } 261 262 static struct knav_queue * 263 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags) 264 { 265 struct knav_queue_inst *inst; 266 struct knav_queue *qh; 267 268 mutex_lock(&knav_dev_lock); 269 270 qh = ERR_PTR(-ENODEV); 271 inst = knav_queue_find_by_id(id); 272 if (!inst) 273 goto unlock_ret; 274 275 qh = ERR_PTR(-EEXIST); 276 if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst)) 277 goto unlock_ret; 278 279 qh = ERR_PTR(-EBUSY); 280 if ((flags & KNAV_QUEUE_SHARED) && 281 (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst))) 282 goto unlock_ret; 283 284 qh = __knav_queue_open(inst, name, flags); 285 286 unlock_ret: 287 mutex_unlock(&knav_dev_lock); 288 289 return qh; 290 } 291 292 static struct knav_queue *knav_queue_open_by_type(const char *name, 293 unsigned type, unsigned flags) 294 { 295 struct knav_queue_inst *inst; 296 struct knav_queue *qh = ERR_PTR(-EINVAL); 297 int idx; 298 299 mutex_lock(&knav_dev_lock); 300 301 for_each_instance(idx, inst, kdev) { 302 if (knav_queue_is_reserved(inst)) 303 continue; 304 if (!knav_queue_match_type(inst, type)) 305 continue; 306 if (knav_queue_is_busy(inst)) 307 continue; 308 qh = __knav_queue_open(inst, name, flags); 309 goto unlock_ret; 310 } 311 312 unlock_ret: 313 mutex_unlock(&knav_dev_lock); 314 return qh; 315 } 316 317 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled) 318 { 319 struct knav_range_info *range = inst->range; 320 321 if (range->ops && range->ops->set_notify) 322 range->ops->set_notify(range, inst, enabled); 323 } 324 325 static int knav_queue_enable_notifier(struct knav_queue *qh) 326 { 327 struct knav_queue_inst *inst = qh->inst; 328 bool first; 329 330 if (WARN_ON(!qh->notifier_fn)) 331 return -EINVAL; 332 333 /* Adjust the per handle notifier count */ 334 first = (atomic_inc_return(&qh->notifier_enabled) == 1); 335 if (!first) 336 return 0; /* nothing to do */ 337 338 /* Now adjust the per instance notifier count */ 339 first = (atomic_inc_return(&inst->num_notifiers) == 1); 340 if (first) 341 knav_queue_set_notify(inst, true); 342 343 return 0; 344 } 345 346 static int knav_queue_disable_notifier(struct knav_queue *qh) 347 { 348 struct knav_queue_inst *inst = qh->inst; 349 bool last; 350 351 last = (atomic_dec_return(&qh->notifier_enabled) == 0); 352 if (!last) 353 return 0; /* nothing to do */ 354 355 last = (atomic_dec_return(&inst->num_notifiers) == 0); 356 if (last) 357 knav_queue_set_notify(inst, false); 358 359 return 0; 360 } 361 362 static int knav_queue_set_notifier(struct knav_queue *qh, 363 struct knav_queue_notify_config *cfg) 364 { 365 knav_queue_notify_fn old_fn = qh->notifier_fn; 366 367 if (!cfg) 368 return -EINVAL; 369 370 if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) 371 return -ENOTSUPP; 372 373 if (!cfg->fn && old_fn) 374 knav_queue_disable_notifier(qh); 375 376 qh->notifier_fn = cfg->fn; 377 qh->notifier_fn_arg = cfg->fn_arg; 378 379 if (cfg->fn && !old_fn) 380 knav_queue_enable_notifier(qh); 381 382 return 0; 383 } 384 385 static int knav_gp_set_notify(struct knav_range_info *range, 386 struct knav_queue_inst *inst, 387 bool enabled) 388 { 389 unsigned queue; 390 391 if (range->flags & RANGE_HAS_IRQ) { 392 queue = inst->id - range->queue_base; 393 if (enabled) 394 enable_irq(range->irqs[queue].irq); 395 else 396 disable_irq_nosync(range->irqs[queue].irq); 397 } 398 return 0; 399 } 400 401 static int knav_gp_open_queue(struct knav_range_info *range, 402 struct knav_queue_inst *inst, unsigned flags) 403 { 404 return knav_queue_setup_irq(range, inst); 405 } 406 407 static int knav_gp_close_queue(struct knav_range_info *range, 408 struct knav_queue_inst *inst) 409 { 410 knav_queue_free_irq(inst); 411 return 0; 412 } 413 414 static const struct knav_range_ops knav_gp_range_ops = { 415 .set_notify = knav_gp_set_notify, 416 .open_queue = knav_gp_open_queue, 417 .close_queue = knav_gp_close_queue, 418 }; 419 420 421 static int knav_queue_get_count(void *qhandle) 422 { 423 struct knav_queue *qh = qhandle; 424 struct knav_queue_inst *inst = qh->inst; 425 426 return readl_relaxed(&qh->reg_peek[0].entry_count) + 427 atomic_read(&inst->desc_count); 428 } 429 430 static void knav_queue_debug_show_instance(struct seq_file *s, 431 struct knav_queue_inst *inst) 432 { 433 struct knav_device *kdev = inst->kdev; 434 struct knav_queue *qh; 435 int cpu = 0; 436 int pushes = 0; 437 int pops = 0; 438 int push_errors = 0; 439 int pop_errors = 0; 440 int notifies = 0; 441 442 if (!knav_queue_is_busy(inst)) 443 return; 444 445 seq_printf(s, "\tqueue id %d (%s)\n", 446 kdev->base_id + inst->id, inst->name); 447 for_each_handle_rcu(qh, inst) { 448 for_each_possible_cpu(cpu) { 449 pushes += per_cpu_ptr(qh->stats, cpu)->pushes; 450 pops += per_cpu_ptr(qh->stats, cpu)->pops; 451 push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors; 452 pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors; 453 notifies += per_cpu_ptr(qh->stats, cpu)->notifies; 454 } 455 456 seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n", 457 qh, 458 pushes, 459 pops, 460 knav_queue_get_count(qh), 461 notifies, 462 push_errors, 463 pop_errors); 464 } 465 } 466 467 static int knav_queue_debug_show(struct seq_file *s, void *v) 468 { 469 struct knav_queue_inst *inst; 470 int idx; 471 472 mutex_lock(&knav_dev_lock); 473 seq_printf(s, "%s: %u-%u\n", 474 dev_name(kdev->dev), kdev->base_id, 475 kdev->base_id + kdev->num_queues - 1); 476 for_each_instance(idx, inst, kdev) 477 knav_queue_debug_show_instance(s, inst); 478 mutex_unlock(&knav_dev_lock); 479 480 return 0; 481 } 482 483 DEFINE_SHOW_ATTRIBUTE(knav_queue_debug); 484 485 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout, 486 u32 flags) 487 { 488 unsigned long end; 489 u32 val = 0; 490 491 end = jiffies + msecs_to_jiffies(timeout); 492 while (time_after(end, jiffies)) { 493 val = readl_relaxed(addr); 494 if (flags) 495 val &= flags; 496 if (!val) 497 break; 498 cpu_relax(); 499 } 500 return val ? -ETIMEDOUT : 0; 501 } 502 503 504 static int knav_queue_flush(struct knav_queue *qh) 505 { 506 struct knav_queue_inst *inst = qh->inst; 507 unsigned id = inst->id - inst->qmgr->start_queue; 508 509 atomic_set(&inst->desc_count, 0); 510 writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh); 511 return 0; 512 } 513 514 /** 515 * knav_queue_open() - open a hardware queue 516 * @name: - name to give the queue handle 517 * @id: - desired queue number if any or specifes the type 518 * of queue 519 * @flags: - the following flags are applicable to queues: 520 * KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are 521 * exclusive by default. 522 * Subsequent attempts to open a shared queue should 523 * also have this flag. 524 * 525 * Returns a handle to the open hardware queue if successful. Use IS_ERR() 526 * to check the returned value for error codes. 527 */ 528 void *knav_queue_open(const char *name, unsigned id, 529 unsigned flags) 530 { 531 struct knav_queue *qh = ERR_PTR(-EINVAL); 532 533 switch (id) { 534 case KNAV_QUEUE_QPEND: 535 case KNAV_QUEUE_ACC: 536 case KNAV_QUEUE_GP: 537 qh = knav_queue_open_by_type(name, id, flags); 538 break; 539 540 default: 541 qh = knav_queue_open_by_id(name, id, flags); 542 break; 543 } 544 return qh; 545 } 546 EXPORT_SYMBOL_GPL(knav_queue_open); 547 548 /** 549 * knav_queue_close() - close a hardware queue handle 550 * @qhandle: - handle to close 551 */ 552 void knav_queue_close(void *qhandle) 553 { 554 struct knav_queue *qh = qhandle; 555 struct knav_queue_inst *inst = qh->inst; 556 557 while (atomic_read(&qh->notifier_enabled) > 0) 558 knav_queue_disable_notifier(qh); 559 560 mutex_lock(&knav_dev_lock); 561 list_del_rcu(&qh->list); 562 mutex_unlock(&knav_dev_lock); 563 synchronize_rcu(); 564 if (!knav_queue_is_busy(inst)) { 565 struct knav_range_info *range = inst->range; 566 567 if (range->ops && range->ops->close_queue) 568 range->ops->close_queue(range, inst); 569 } 570 free_percpu(qh->stats); 571 devm_kfree(inst->kdev->dev, qh); 572 } 573 EXPORT_SYMBOL_GPL(knav_queue_close); 574 575 /** 576 * knav_queue_device_control() - Perform control operations on a queue 577 * @qhandle: - queue handle 578 * @cmd: - control commands 579 * @arg: - command argument 580 * 581 * Returns 0 on success, errno otherwise. 582 */ 583 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd, 584 unsigned long arg) 585 { 586 struct knav_queue *qh = qhandle; 587 struct knav_queue_notify_config *cfg; 588 int ret; 589 590 switch ((int)cmd) { 591 case KNAV_QUEUE_GET_ID: 592 ret = qh->inst->kdev->base_id + qh->inst->id; 593 break; 594 595 case KNAV_QUEUE_FLUSH: 596 ret = knav_queue_flush(qh); 597 break; 598 599 case KNAV_QUEUE_SET_NOTIFIER: 600 cfg = (void *)arg; 601 ret = knav_queue_set_notifier(qh, cfg); 602 break; 603 604 case KNAV_QUEUE_ENABLE_NOTIFY: 605 ret = knav_queue_enable_notifier(qh); 606 break; 607 608 case KNAV_QUEUE_DISABLE_NOTIFY: 609 ret = knav_queue_disable_notifier(qh); 610 break; 611 612 case KNAV_QUEUE_GET_COUNT: 613 ret = knav_queue_get_count(qh); 614 break; 615 616 default: 617 ret = -ENOTSUPP; 618 break; 619 } 620 return ret; 621 } 622 EXPORT_SYMBOL_GPL(knav_queue_device_control); 623 624 625 626 /** 627 * knav_queue_push() - push data (or descriptor) to the tail of a queue 628 * @qhandle: - hardware queue handle 629 * @dma: - DMA data to push 630 * @size: - size of data to push 631 * @flags: - can be used to pass additional information 632 * 633 * Returns 0 on success, errno otherwise. 634 */ 635 int knav_queue_push(void *qhandle, dma_addr_t dma, 636 unsigned size, unsigned flags) 637 { 638 struct knav_queue *qh = qhandle; 639 u32 val; 640 641 val = (u32)dma | ((size / 16) - 1); 642 writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh); 643 644 this_cpu_inc(qh->stats->pushes); 645 return 0; 646 } 647 EXPORT_SYMBOL_GPL(knav_queue_push); 648 649 /** 650 * knav_queue_pop() - pop data (or descriptor) from the head of a queue 651 * @qhandle: - hardware queue handle 652 * @size: - (optional) size of the data pop'ed. 653 * 654 * Returns a DMA address on success, 0 on failure. 655 */ 656 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size) 657 { 658 struct knav_queue *qh = qhandle; 659 struct knav_queue_inst *inst = qh->inst; 660 dma_addr_t dma; 661 u32 val, idx; 662 663 /* are we accumulated? */ 664 if (inst->descs) { 665 if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) { 666 atomic_inc(&inst->desc_count); 667 return 0; 668 } 669 idx = atomic_inc_return(&inst->desc_head); 670 idx &= ACC_DESCS_MASK; 671 val = inst->descs[idx]; 672 } else { 673 val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh); 674 if (unlikely(!val)) 675 return 0; 676 } 677 678 dma = val & DESC_PTR_MASK; 679 if (size) 680 *size = ((val & DESC_SIZE_MASK) + 1) * 16; 681 682 this_cpu_inc(qh->stats->pops); 683 return dma; 684 } 685 EXPORT_SYMBOL_GPL(knav_queue_pop); 686 687 /* carve out descriptors and push into queue */ 688 static void kdesc_fill_pool(struct knav_pool *pool) 689 { 690 struct knav_region *region; 691 int i; 692 693 region = pool->region; 694 pool->desc_size = region->desc_size; 695 for (i = 0; i < pool->num_desc; i++) { 696 int index = pool->region_offset + i; 697 dma_addr_t dma_addr; 698 unsigned dma_size; 699 dma_addr = region->dma_start + (region->desc_size * index); 700 dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES); 701 dma_sync_single_for_device(pool->dev, dma_addr, dma_size, 702 DMA_TO_DEVICE); 703 knav_queue_push(pool->queue, dma_addr, dma_size, 0); 704 } 705 } 706 707 /* pop out descriptors and close the queue */ 708 static void kdesc_empty_pool(struct knav_pool *pool) 709 { 710 dma_addr_t dma; 711 unsigned size; 712 void *desc; 713 int i; 714 715 if (!pool->queue) 716 return; 717 718 for (i = 0;; i++) { 719 dma = knav_queue_pop(pool->queue, &size); 720 if (!dma) 721 break; 722 desc = knav_pool_desc_dma_to_virt(pool, dma); 723 if (!desc) { 724 dev_dbg(pool->kdev->dev, 725 "couldn't unmap desc, continuing\n"); 726 continue; 727 } 728 } 729 WARN_ON(i != pool->num_desc); 730 knav_queue_close(pool->queue); 731 } 732 733 734 /* Get the DMA address of a descriptor */ 735 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt) 736 { 737 struct knav_pool *pool = ph; 738 return pool->region->dma_start + (virt - pool->region->virt_start); 739 } 740 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma); 741 742 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma) 743 { 744 struct knav_pool *pool = ph; 745 return pool->region->virt_start + (dma - pool->region->dma_start); 746 } 747 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt); 748 749 /** 750 * knav_pool_create() - Create a pool of descriptors 751 * @name: - name to give the pool handle 752 * @num_desc: - numbers of descriptors in the pool 753 * @region_id: - QMSS region id from which the descriptors are to be 754 * allocated. 755 * 756 * Returns a pool handle on success. 757 * Use IS_ERR_OR_NULL() to identify error values on return. 758 */ 759 void *knav_pool_create(const char *name, 760 int num_desc, int region_id) 761 { 762 struct knav_region *reg_itr, *region = NULL; 763 struct knav_pool *pool, *pi = NULL, *iter; 764 struct list_head *node; 765 unsigned last_offset; 766 int ret; 767 768 if (!kdev) 769 return ERR_PTR(-EPROBE_DEFER); 770 771 if (!kdev->dev) 772 return ERR_PTR(-ENODEV); 773 774 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL); 775 if (!pool) { 776 dev_err(kdev->dev, "out of memory allocating pool\n"); 777 return ERR_PTR(-ENOMEM); 778 } 779 780 for_each_region(kdev, reg_itr) { 781 if (reg_itr->id != region_id) 782 continue; 783 region = reg_itr; 784 break; 785 } 786 787 if (!region) { 788 dev_err(kdev->dev, "region-id(%d) not found\n", region_id); 789 ret = -EINVAL; 790 goto err; 791 } 792 793 pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0); 794 if (IS_ERR(pool->queue)) { 795 dev_err(kdev->dev, 796 "failed to open queue for pool(%s), error %ld\n", 797 name, PTR_ERR(pool->queue)); 798 ret = PTR_ERR(pool->queue); 799 goto err; 800 } 801 802 pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL); 803 pool->kdev = kdev; 804 pool->dev = kdev->dev; 805 806 mutex_lock(&knav_dev_lock); 807 808 if (num_desc > (region->num_desc - region->used_desc)) { 809 dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n", 810 region_id, name); 811 ret = -ENOMEM; 812 goto err_unlock; 813 } 814 815 /* Region maintains a sorted (by region offset) list of pools 816 * use the first free slot which is large enough to accomodate 817 * the request 818 */ 819 last_offset = 0; 820 node = ®ion->pools; 821 list_for_each_entry(iter, ®ion->pools, region_inst) { 822 if ((iter->region_offset - last_offset) >= num_desc) { 823 pi = iter; 824 break; 825 } 826 last_offset = iter->region_offset + iter->num_desc; 827 } 828 829 if (pi) { 830 node = &pi->region_inst; 831 pool->region = region; 832 pool->num_desc = num_desc; 833 pool->region_offset = last_offset; 834 region->used_desc += num_desc; 835 list_add_tail(&pool->list, &kdev->pools); 836 list_add_tail(&pool->region_inst, node); 837 } else { 838 dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n", 839 name, region_id); 840 ret = -ENOMEM; 841 goto err_unlock; 842 } 843 844 mutex_unlock(&knav_dev_lock); 845 kdesc_fill_pool(pool); 846 return pool; 847 848 err_unlock: 849 mutex_unlock(&knav_dev_lock); 850 err: 851 kfree(pool->name); 852 devm_kfree(kdev->dev, pool); 853 return ERR_PTR(ret); 854 } 855 EXPORT_SYMBOL_GPL(knav_pool_create); 856 857 /** 858 * knav_pool_destroy() - Free a pool of descriptors 859 * @ph: - pool handle 860 */ 861 void knav_pool_destroy(void *ph) 862 { 863 struct knav_pool *pool = ph; 864 865 if (!pool) 866 return; 867 868 if (!pool->region) 869 return; 870 871 kdesc_empty_pool(pool); 872 mutex_lock(&knav_dev_lock); 873 874 pool->region->used_desc -= pool->num_desc; 875 list_del(&pool->region_inst); 876 list_del(&pool->list); 877 878 mutex_unlock(&knav_dev_lock); 879 kfree(pool->name); 880 devm_kfree(kdev->dev, pool); 881 } 882 EXPORT_SYMBOL_GPL(knav_pool_destroy); 883 884 885 /** 886 * knav_pool_desc_get() - Get a descriptor from the pool 887 * @ph: - pool handle 888 * 889 * Returns descriptor from the pool. 890 */ 891 void *knav_pool_desc_get(void *ph) 892 { 893 struct knav_pool *pool = ph; 894 dma_addr_t dma; 895 unsigned size; 896 void *data; 897 898 dma = knav_queue_pop(pool->queue, &size); 899 if (unlikely(!dma)) 900 return ERR_PTR(-ENOMEM); 901 data = knav_pool_desc_dma_to_virt(pool, dma); 902 return data; 903 } 904 EXPORT_SYMBOL_GPL(knav_pool_desc_get); 905 906 /** 907 * knav_pool_desc_put() - return a descriptor to the pool 908 * @ph: - pool handle 909 * @desc: - virtual address 910 */ 911 void knav_pool_desc_put(void *ph, void *desc) 912 { 913 struct knav_pool *pool = ph; 914 dma_addr_t dma; 915 dma = knav_pool_desc_virt_to_dma(pool, desc); 916 knav_queue_push(pool->queue, dma, pool->region->desc_size, 0); 917 } 918 EXPORT_SYMBOL_GPL(knav_pool_desc_put); 919 920 /** 921 * knav_pool_desc_map() - Map descriptor for DMA transfer 922 * @ph: - pool handle 923 * @desc: - address of descriptor to map 924 * @size: - size of descriptor to map 925 * @dma: - DMA address return pointer 926 * @dma_sz: - adjusted return pointer 927 * 928 * Returns 0 on success, errno otherwise. 929 */ 930 int knav_pool_desc_map(void *ph, void *desc, unsigned size, 931 dma_addr_t *dma, unsigned *dma_sz) 932 { 933 struct knav_pool *pool = ph; 934 *dma = knav_pool_desc_virt_to_dma(pool, desc); 935 size = min(size, pool->region->desc_size); 936 size = ALIGN(size, SMP_CACHE_BYTES); 937 *dma_sz = size; 938 dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE); 939 940 /* Ensure the descriptor reaches to the memory */ 941 __iowmb(); 942 943 return 0; 944 } 945 EXPORT_SYMBOL_GPL(knav_pool_desc_map); 946 947 /** 948 * knav_pool_desc_unmap() - Unmap descriptor after DMA transfer 949 * @ph: - pool handle 950 * @dma: - DMA address of descriptor to unmap 951 * @dma_sz: - size of descriptor to unmap 952 * 953 * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify 954 * error values on return. 955 */ 956 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz) 957 { 958 struct knav_pool *pool = ph; 959 unsigned desc_sz; 960 void *desc; 961 962 desc_sz = min(dma_sz, pool->region->desc_size); 963 desc = knav_pool_desc_dma_to_virt(pool, dma); 964 dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE); 965 prefetch(desc); 966 return desc; 967 } 968 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap); 969 970 /** 971 * knav_pool_count() - Get the number of descriptors in pool. 972 * @ph: - pool handle 973 * Returns number of elements in the pool. 974 */ 975 int knav_pool_count(void *ph) 976 { 977 struct knav_pool *pool = ph; 978 return knav_queue_get_count(pool->queue); 979 } 980 EXPORT_SYMBOL_GPL(knav_pool_count); 981 982 static void knav_queue_setup_region(struct knav_device *kdev, 983 struct knav_region *region) 984 { 985 unsigned hw_num_desc, hw_desc_size, size; 986 struct knav_reg_region __iomem *regs; 987 struct knav_qmgr_info *qmgr; 988 struct knav_pool *pool; 989 int id = region->id; 990 struct page *page; 991 992 /* unused region? */ 993 if (!region->num_desc) { 994 dev_warn(kdev->dev, "unused region %s\n", region->name); 995 return; 996 } 997 998 /* get hardware descriptor value */ 999 hw_num_desc = ilog2(region->num_desc - 1) + 1; 1000 1001 /* did we force fit ourselves into nothingness? */ 1002 if (region->num_desc < 32) { 1003 region->num_desc = 0; 1004 dev_warn(kdev->dev, "too few descriptors in region %s\n", 1005 region->name); 1006 return; 1007 } 1008 1009 size = region->num_desc * region->desc_size; 1010 region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA | 1011 GFP_DMA32); 1012 if (!region->virt_start) { 1013 region->num_desc = 0; 1014 dev_err(kdev->dev, "memory alloc failed for region %s\n", 1015 region->name); 1016 return; 1017 } 1018 region->virt_end = region->virt_start + size; 1019 page = virt_to_page(region->virt_start); 1020 1021 region->dma_start = dma_map_page(kdev->dev, page, 0, size, 1022 DMA_BIDIRECTIONAL); 1023 if (dma_mapping_error(kdev->dev, region->dma_start)) { 1024 dev_err(kdev->dev, "dma map failed for region %s\n", 1025 region->name); 1026 goto fail; 1027 } 1028 region->dma_end = region->dma_start + size; 1029 1030 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL); 1031 if (!pool) { 1032 dev_err(kdev->dev, "out of memory allocating dummy pool\n"); 1033 goto fail; 1034 } 1035 pool->num_desc = 0; 1036 pool->region_offset = region->num_desc; 1037 list_add(&pool->region_inst, ®ion->pools); 1038 1039 dev_dbg(kdev->dev, 1040 "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n", 1041 region->name, id, region->desc_size, region->num_desc, 1042 region->link_index, ®ion->dma_start, ®ion->dma_end, 1043 region->virt_start, region->virt_end); 1044 1045 hw_desc_size = (region->desc_size / 16) - 1; 1046 hw_num_desc -= 5; 1047 1048 for_each_qmgr(kdev, qmgr) { 1049 regs = qmgr->reg_region + id; 1050 writel_relaxed((u32)region->dma_start, ®s->base); 1051 writel_relaxed(region->link_index, ®s->start_index); 1052 writel_relaxed(hw_desc_size << 16 | hw_num_desc, 1053 ®s->size_count); 1054 } 1055 return; 1056 1057 fail: 1058 if (region->dma_start) 1059 dma_unmap_page(kdev->dev, region->dma_start, size, 1060 DMA_BIDIRECTIONAL); 1061 if (region->virt_start) 1062 free_pages_exact(region->virt_start, size); 1063 region->num_desc = 0; 1064 return; 1065 } 1066 1067 static const char *knav_queue_find_name(struct device_node *node) 1068 { 1069 const char *name; 1070 1071 if (of_property_read_string(node, "label", &name) < 0) 1072 name = node->name; 1073 if (!name) 1074 name = "unknown"; 1075 return name; 1076 } 1077 1078 static int knav_queue_setup_regions(struct knav_device *kdev, 1079 struct device_node *regions) 1080 { 1081 struct device *dev = kdev->dev; 1082 struct knav_region *region; 1083 struct device_node *child; 1084 u32 temp[2]; 1085 int ret; 1086 1087 for_each_child_of_node(regions, child) { 1088 region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL); 1089 if (!region) { 1090 of_node_put(child); 1091 dev_err(dev, "out of memory allocating region\n"); 1092 return -ENOMEM; 1093 } 1094 1095 region->name = knav_queue_find_name(child); 1096 of_property_read_u32(child, "id", ®ion->id); 1097 ret = of_property_read_u32_array(child, "region-spec", temp, 2); 1098 if (!ret) { 1099 region->num_desc = temp[0]; 1100 region->desc_size = temp[1]; 1101 } else { 1102 dev_err(dev, "invalid region info %s\n", region->name); 1103 devm_kfree(dev, region); 1104 continue; 1105 } 1106 1107 if (!of_get_property(child, "link-index", NULL)) { 1108 dev_err(dev, "No link info for %s\n", region->name); 1109 devm_kfree(dev, region); 1110 continue; 1111 } 1112 ret = of_property_read_u32(child, "link-index", 1113 ®ion->link_index); 1114 if (ret) { 1115 dev_err(dev, "link index not found for %s\n", 1116 region->name); 1117 devm_kfree(dev, region); 1118 continue; 1119 } 1120 1121 INIT_LIST_HEAD(®ion->pools); 1122 list_add_tail(®ion->list, &kdev->regions); 1123 } 1124 if (list_empty(&kdev->regions)) { 1125 dev_err(dev, "no valid region information found\n"); 1126 return -ENODEV; 1127 } 1128 1129 /* Next, we run through the regions and set things up */ 1130 for_each_region(kdev, region) 1131 knav_queue_setup_region(kdev, region); 1132 1133 return 0; 1134 } 1135 1136 static int knav_get_link_ram(struct knav_device *kdev, 1137 const char *name, 1138 struct knav_link_ram_block *block) 1139 { 1140 struct platform_device *pdev = to_platform_device(kdev->dev); 1141 struct device_node *node = pdev->dev.of_node; 1142 u32 temp[2]; 1143 1144 /* 1145 * Note: link ram resources are specified in "entry" sized units. In 1146 * reality, although entries are ~40bits in hardware, we treat them as 1147 * 64-bit entities here. 1148 * 1149 * For example, to specify the internal link ram for Keystone-I class 1150 * devices, we would set the linkram0 resource to 0x80000-0x83fff. 1151 * 1152 * This gets a bit weird when other link rams are used. For example, 1153 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries 1154 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000, 1155 * which accounts for 64-bits per entry, for 16K entries. 1156 */ 1157 if (!of_property_read_u32_array(node, name , temp, 2)) { 1158 if (temp[0]) { 1159 /* 1160 * queue_base specified => using internal or onchip 1161 * link ram WARNING - we do not "reserve" this block 1162 */ 1163 block->dma = (dma_addr_t)temp[0]; 1164 block->virt = NULL; 1165 block->size = temp[1]; 1166 } else { 1167 block->size = temp[1]; 1168 /* queue_base not specific => allocate requested size */ 1169 block->virt = dmam_alloc_coherent(kdev->dev, 1170 8 * block->size, &block->dma, 1171 GFP_KERNEL); 1172 if (!block->virt) { 1173 dev_err(kdev->dev, "failed to alloc linkram\n"); 1174 return -ENOMEM; 1175 } 1176 } 1177 } else { 1178 return -ENODEV; 1179 } 1180 return 0; 1181 } 1182 1183 static int knav_queue_setup_link_ram(struct knav_device *kdev) 1184 { 1185 struct knav_link_ram_block *block; 1186 struct knav_qmgr_info *qmgr; 1187 1188 for_each_qmgr(kdev, qmgr) { 1189 block = &kdev->link_rams[0]; 1190 dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n", 1191 &block->dma, block->virt, block->size); 1192 writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0); 1193 if (kdev->version == QMSS_66AK2G) 1194 writel_relaxed(block->size, 1195 &qmgr->reg_config->link_ram_size0); 1196 else 1197 writel_relaxed(block->size - 1, 1198 &qmgr->reg_config->link_ram_size0); 1199 block++; 1200 if (!block->size) 1201 continue; 1202 1203 dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n", 1204 &block->dma, block->virt, block->size); 1205 writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1); 1206 } 1207 1208 return 0; 1209 } 1210 1211 static int knav_setup_queue_range(struct knav_device *kdev, 1212 struct device_node *node) 1213 { 1214 struct device *dev = kdev->dev; 1215 struct knav_range_info *range; 1216 struct knav_qmgr_info *qmgr; 1217 u32 temp[2], start, end, id, index; 1218 int ret, i; 1219 1220 range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL); 1221 if (!range) { 1222 dev_err(dev, "out of memory allocating range\n"); 1223 return -ENOMEM; 1224 } 1225 1226 range->kdev = kdev; 1227 range->name = knav_queue_find_name(node); 1228 ret = of_property_read_u32_array(node, "qrange", temp, 2); 1229 if (!ret) { 1230 range->queue_base = temp[0] - kdev->base_id; 1231 range->num_queues = temp[1]; 1232 } else { 1233 dev_err(dev, "invalid queue range %s\n", range->name); 1234 devm_kfree(dev, range); 1235 return -EINVAL; 1236 } 1237 1238 for (i = 0; i < RANGE_MAX_IRQS; i++) { 1239 struct of_phandle_args oirq; 1240 1241 if (of_irq_parse_one(node, i, &oirq)) 1242 break; 1243 1244 range->irqs[i].irq = irq_create_of_mapping(&oirq); 1245 if (range->irqs[i].irq == IRQ_NONE) 1246 break; 1247 1248 range->num_irqs++; 1249 1250 if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) { 1251 unsigned long mask; 1252 int bit; 1253 1254 range->irqs[i].cpu_mask = devm_kzalloc(dev, 1255 cpumask_size(), GFP_KERNEL); 1256 if (!range->irqs[i].cpu_mask) 1257 return -ENOMEM; 1258 1259 mask = (oirq.args[2] & 0x0000ff00) >> 8; 1260 for_each_set_bit(bit, &mask, BITS_PER_LONG) 1261 cpumask_set_cpu(bit, range->irqs[i].cpu_mask); 1262 } 1263 } 1264 1265 range->num_irqs = min(range->num_irqs, range->num_queues); 1266 if (range->num_irqs) 1267 range->flags |= RANGE_HAS_IRQ; 1268 1269 if (of_property_read_bool(node, "qalloc-by-id")) 1270 range->flags |= RANGE_RESERVED; 1271 1272 if (of_property_present(node, "accumulator")) { 1273 ret = knav_init_acc_range(kdev, node, range); 1274 if (ret < 0) { 1275 devm_kfree(dev, range); 1276 return ret; 1277 } 1278 } else { 1279 range->ops = &knav_gp_range_ops; 1280 } 1281 1282 /* set threshold to 1, and flush out the queues */ 1283 for_each_qmgr(kdev, qmgr) { 1284 start = max(qmgr->start_queue, range->queue_base); 1285 end = min(qmgr->start_queue + qmgr->num_queues, 1286 range->queue_base + range->num_queues); 1287 for (id = start; id < end; id++) { 1288 index = id - qmgr->start_queue; 1289 writel_relaxed(THRESH_GTE | 1, 1290 &qmgr->reg_peek[index].ptr_size_thresh); 1291 writel_relaxed(0, 1292 &qmgr->reg_push[index].ptr_size_thresh); 1293 } 1294 } 1295 1296 list_add_tail(&range->list, &kdev->queue_ranges); 1297 dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n", 1298 range->name, range->queue_base, 1299 range->queue_base + range->num_queues - 1, 1300 range->num_irqs, 1301 (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "", 1302 (range->flags & RANGE_RESERVED) ? ", reserved" : "", 1303 (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : ""); 1304 kdev->num_queues_in_use += range->num_queues; 1305 return 0; 1306 } 1307 1308 static int knav_setup_queue_pools(struct knav_device *kdev, 1309 struct device_node *queue_pools) 1310 { 1311 struct device_node *type, *range; 1312 1313 for_each_child_of_node(queue_pools, type) { 1314 for_each_child_of_node(type, range) { 1315 /* return value ignored, we init the rest... */ 1316 knav_setup_queue_range(kdev, range); 1317 } 1318 } 1319 1320 /* ... and barf if they all failed! */ 1321 if (list_empty(&kdev->queue_ranges)) { 1322 dev_err(kdev->dev, "no valid queue range found\n"); 1323 return -ENODEV; 1324 } 1325 return 0; 1326 } 1327 1328 static void knav_free_queue_range(struct knav_device *kdev, 1329 struct knav_range_info *range) 1330 { 1331 if (range->ops && range->ops->free_range) 1332 range->ops->free_range(range); 1333 list_del(&range->list); 1334 devm_kfree(kdev->dev, range); 1335 } 1336 1337 static void knav_free_queue_ranges(struct knav_device *kdev) 1338 { 1339 struct knav_range_info *range; 1340 1341 for (;;) { 1342 range = first_queue_range(kdev); 1343 if (!range) 1344 break; 1345 knav_free_queue_range(kdev, range); 1346 } 1347 } 1348 1349 static void knav_queue_free_regions(struct knav_device *kdev) 1350 { 1351 struct knav_region *region; 1352 struct knav_pool *pool, *tmp; 1353 unsigned size; 1354 1355 for (;;) { 1356 region = first_region(kdev); 1357 if (!region) 1358 break; 1359 list_for_each_entry_safe(pool, tmp, ®ion->pools, region_inst) 1360 knav_pool_destroy(pool); 1361 1362 size = region->virt_end - region->virt_start; 1363 if (size) 1364 free_pages_exact(region->virt_start, size); 1365 list_del(®ion->list); 1366 devm_kfree(kdev->dev, region); 1367 } 1368 } 1369 1370 static void __iomem *knav_queue_map_reg(struct knav_device *kdev, 1371 struct device_node *node, int index) 1372 { 1373 struct resource res; 1374 void __iomem *regs; 1375 int ret; 1376 1377 ret = of_address_to_resource(node, index, &res); 1378 if (ret) { 1379 dev_err(kdev->dev, "Can't translate of node(%pOFn) address for index(%d)\n", 1380 node, index); 1381 return ERR_PTR(ret); 1382 } 1383 1384 regs = devm_ioremap_resource(kdev->dev, &res); 1385 if (IS_ERR(regs)) 1386 dev_err(kdev->dev, "Failed to map register base for index(%d) node(%pOFn)\n", 1387 index, node); 1388 return regs; 1389 } 1390 1391 static int knav_queue_init_qmgrs(struct knav_device *kdev, 1392 struct device_node *qmgrs) 1393 { 1394 struct device *dev = kdev->dev; 1395 struct knav_qmgr_info *qmgr; 1396 struct device_node *child; 1397 u32 temp[2]; 1398 int ret; 1399 1400 for_each_child_of_node(qmgrs, child) { 1401 qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL); 1402 if (!qmgr) { 1403 of_node_put(child); 1404 dev_err(dev, "out of memory allocating qmgr\n"); 1405 return -ENOMEM; 1406 } 1407 1408 ret = of_property_read_u32_array(child, "managed-queues", 1409 temp, 2); 1410 if (!ret) { 1411 qmgr->start_queue = temp[0]; 1412 qmgr->num_queues = temp[1]; 1413 } else { 1414 dev_err(dev, "invalid qmgr queue range\n"); 1415 devm_kfree(dev, qmgr); 1416 continue; 1417 } 1418 1419 dev_info(dev, "qmgr start queue %d, number of queues %d\n", 1420 qmgr->start_queue, qmgr->num_queues); 1421 1422 qmgr->reg_peek = 1423 knav_queue_map_reg(kdev, child, 1424 KNAV_QUEUE_PEEK_REG_INDEX); 1425 1426 if (kdev->version == QMSS) { 1427 qmgr->reg_status = 1428 knav_queue_map_reg(kdev, child, 1429 KNAV_QUEUE_STATUS_REG_INDEX); 1430 } 1431 1432 qmgr->reg_config = 1433 knav_queue_map_reg(kdev, child, 1434 (kdev->version == QMSS_66AK2G) ? 1435 KNAV_L_QUEUE_CONFIG_REG_INDEX : 1436 KNAV_QUEUE_CONFIG_REG_INDEX); 1437 qmgr->reg_region = 1438 knav_queue_map_reg(kdev, child, 1439 (kdev->version == QMSS_66AK2G) ? 1440 KNAV_L_QUEUE_REGION_REG_INDEX : 1441 KNAV_QUEUE_REGION_REG_INDEX); 1442 1443 qmgr->reg_push = 1444 knav_queue_map_reg(kdev, child, 1445 (kdev->version == QMSS_66AK2G) ? 1446 KNAV_L_QUEUE_PUSH_REG_INDEX : 1447 KNAV_QUEUE_PUSH_REG_INDEX); 1448 1449 if (kdev->version == QMSS) { 1450 qmgr->reg_pop = 1451 knav_queue_map_reg(kdev, child, 1452 KNAV_QUEUE_POP_REG_INDEX); 1453 } 1454 1455 if (IS_ERR(qmgr->reg_peek) || 1456 ((kdev->version == QMSS) && 1457 (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) || 1458 IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) || 1459 IS_ERR(qmgr->reg_push)) { 1460 dev_err(dev, "failed to map qmgr regs\n"); 1461 if (kdev->version == QMSS) { 1462 if (!IS_ERR(qmgr->reg_status)) 1463 devm_iounmap(dev, qmgr->reg_status); 1464 if (!IS_ERR(qmgr->reg_pop)) 1465 devm_iounmap(dev, qmgr->reg_pop); 1466 } 1467 if (!IS_ERR(qmgr->reg_peek)) 1468 devm_iounmap(dev, qmgr->reg_peek); 1469 if (!IS_ERR(qmgr->reg_config)) 1470 devm_iounmap(dev, qmgr->reg_config); 1471 if (!IS_ERR(qmgr->reg_region)) 1472 devm_iounmap(dev, qmgr->reg_region); 1473 if (!IS_ERR(qmgr->reg_push)) 1474 devm_iounmap(dev, qmgr->reg_push); 1475 devm_kfree(dev, qmgr); 1476 continue; 1477 } 1478 1479 /* Use same push register for pop as well */ 1480 if (kdev->version == QMSS_66AK2G) 1481 qmgr->reg_pop = qmgr->reg_push; 1482 1483 list_add_tail(&qmgr->list, &kdev->qmgrs); 1484 dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n", 1485 qmgr->start_queue, qmgr->num_queues, 1486 qmgr->reg_peek, qmgr->reg_status, 1487 qmgr->reg_config, qmgr->reg_region, 1488 qmgr->reg_push, qmgr->reg_pop); 1489 } 1490 return 0; 1491 } 1492 1493 static int knav_queue_init_pdsps(struct knav_device *kdev, 1494 struct device_node *pdsps) 1495 { 1496 struct device *dev = kdev->dev; 1497 struct knav_pdsp_info *pdsp; 1498 struct device_node *child; 1499 1500 for_each_child_of_node(pdsps, child) { 1501 pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL); 1502 if (!pdsp) { 1503 of_node_put(child); 1504 dev_err(dev, "out of memory allocating pdsp\n"); 1505 return -ENOMEM; 1506 } 1507 pdsp->name = knav_queue_find_name(child); 1508 pdsp->iram = 1509 knav_queue_map_reg(kdev, child, 1510 KNAV_QUEUE_PDSP_IRAM_REG_INDEX); 1511 pdsp->regs = 1512 knav_queue_map_reg(kdev, child, 1513 KNAV_QUEUE_PDSP_REGS_REG_INDEX); 1514 pdsp->intd = 1515 knav_queue_map_reg(kdev, child, 1516 KNAV_QUEUE_PDSP_INTD_REG_INDEX); 1517 pdsp->command = 1518 knav_queue_map_reg(kdev, child, 1519 KNAV_QUEUE_PDSP_CMD_REG_INDEX); 1520 1521 if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) || 1522 IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) { 1523 dev_err(dev, "failed to map pdsp %s regs\n", 1524 pdsp->name); 1525 if (!IS_ERR(pdsp->command)) 1526 devm_iounmap(dev, pdsp->command); 1527 if (!IS_ERR(pdsp->iram)) 1528 devm_iounmap(dev, pdsp->iram); 1529 if (!IS_ERR(pdsp->regs)) 1530 devm_iounmap(dev, pdsp->regs); 1531 if (!IS_ERR(pdsp->intd)) 1532 devm_iounmap(dev, pdsp->intd); 1533 devm_kfree(dev, pdsp); 1534 continue; 1535 } 1536 of_property_read_u32(child, "id", &pdsp->id); 1537 list_add_tail(&pdsp->list, &kdev->pdsps); 1538 dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n", 1539 pdsp->name, pdsp->command, pdsp->iram, pdsp->regs, 1540 pdsp->intd); 1541 } 1542 return 0; 1543 } 1544 1545 static int knav_queue_stop_pdsp(struct knav_device *kdev, 1546 struct knav_pdsp_info *pdsp) 1547 { 1548 u32 val, timeout = 1000; 1549 int ret; 1550 1551 val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE; 1552 writel_relaxed(val, &pdsp->regs->control); 1553 ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout, 1554 PDSP_CTRL_RUNNING); 1555 if (ret < 0) { 1556 dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name); 1557 return ret; 1558 } 1559 pdsp->loaded = false; 1560 pdsp->started = false; 1561 return 0; 1562 } 1563 1564 static int knav_queue_load_pdsp(struct knav_device *kdev, 1565 struct knav_pdsp_info *pdsp) 1566 { 1567 int i, ret, fwlen; 1568 const struct firmware *fw; 1569 bool found = false; 1570 u32 *fwdata; 1571 1572 for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) { 1573 if (knav_acc_firmwares[i]) { 1574 ret = request_firmware_direct(&fw, 1575 knav_acc_firmwares[i], 1576 kdev->dev); 1577 if (!ret) { 1578 found = true; 1579 break; 1580 } 1581 } 1582 } 1583 1584 if (!found) { 1585 dev_err(kdev->dev, "failed to get firmware for pdsp\n"); 1586 return -ENODEV; 1587 } 1588 1589 dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n", 1590 knav_acc_firmwares[i]); 1591 1592 writel_relaxed(pdsp->id + 1, pdsp->command + 0x18); 1593 /* download the firmware */ 1594 fwdata = (u32 *)fw->data; 1595 fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32); 1596 for (i = 0; i < fwlen; i++) 1597 writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i); 1598 1599 release_firmware(fw); 1600 return 0; 1601 } 1602 1603 static int knav_queue_start_pdsp(struct knav_device *kdev, 1604 struct knav_pdsp_info *pdsp) 1605 { 1606 u32 val, timeout = 1000; 1607 int ret; 1608 1609 /* write a command for sync */ 1610 writel_relaxed(0xffffffff, pdsp->command); 1611 while (readl_relaxed(pdsp->command) != 0xffffffff) 1612 cpu_relax(); 1613 1614 /* soft reset the PDSP */ 1615 val = readl_relaxed(&pdsp->regs->control); 1616 val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET); 1617 writel_relaxed(val, &pdsp->regs->control); 1618 1619 /* enable pdsp */ 1620 val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE; 1621 writel_relaxed(val, &pdsp->regs->control); 1622 1623 /* wait for command register to clear */ 1624 ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0); 1625 if (ret < 0) { 1626 dev_err(kdev->dev, 1627 "timed out on pdsp %s command register wait\n", 1628 pdsp->name); 1629 return ret; 1630 } 1631 return 0; 1632 } 1633 1634 static void knav_queue_stop_pdsps(struct knav_device *kdev) 1635 { 1636 struct knav_pdsp_info *pdsp; 1637 1638 /* disable all pdsps */ 1639 for_each_pdsp(kdev, pdsp) 1640 knav_queue_stop_pdsp(kdev, pdsp); 1641 } 1642 1643 static int knav_queue_start_pdsps(struct knav_device *kdev) 1644 { 1645 struct knav_pdsp_info *pdsp; 1646 int ret; 1647 1648 knav_queue_stop_pdsps(kdev); 1649 /* now load them all. We return success even if pdsp 1650 * is not loaded as acc channels are optional on having 1651 * firmware availability in the system. We set the loaded 1652 * and stated flag and when initialize the acc range, check 1653 * it and init the range only if pdsp is started. 1654 */ 1655 for_each_pdsp(kdev, pdsp) { 1656 ret = knav_queue_load_pdsp(kdev, pdsp); 1657 if (!ret) 1658 pdsp->loaded = true; 1659 } 1660 1661 for_each_pdsp(kdev, pdsp) { 1662 if (pdsp->loaded) { 1663 ret = knav_queue_start_pdsp(kdev, pdsp); 1664 if (!ret) 1665 pdsp->started = true; 1666 } 1667 } 1668 return 0; 1669 } 1670 1671 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id) 1672 { 1673 struct knav_qmgr_info *qmgr; 1674 1675 for_each_qmgr(kdev, qmgr) { 1676 if ((id >= qmgr->start_queue) && 1677 (id < qmgr->start_queue + qmgr->num_queues)) 1678 return qmgr; 1679 } 1680 return NULL; 1681 } 1682 1683 static int knav_queue_init_queue(struct knav_device *kdev, 1684 struct knav_range_info *range, 1685 struct knav_queue_inst *inst, 1686 unsigned id) 1687 { 1688 char irq_name[KNAV_NAME_SIZE]; 1689 inst->qmgr = knav_find_qmgr(id); 1690 if (!inst->qmgr) 1691 return -1; 1692 1693 INIT_LIST_HEAD(&inst->handles); 1694 inst->kdev = kdev; 1695 inst->range = range; 1696 inst->irq_num = -1; 1697 inst->id = id; 1698 scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id); 1699 inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL); 1700 1701 if (range->ops && range->ops->init_queue) 1702 return range->ops->init_queue(range, inst); 1703 else 1704 return 0; 1705 } 1706 1707 static int knav_queue_init_queues(struct knav_device *kdev) 1708 { 1709 struct knav_range_info *range; 1710 int size, id, base_idx; 1711 int idx = 0, ret = 0; 1712 1713 /* how much do we need for instance data? */ 1714 size = sizeof(struct knav_queue_inst); 1715 1716 /* round this up to a power of 2, keep the index to instance 1717 * arithmetic fast. 1718 * */ 1719 kdev->inst_shift = order_base_2(size); 1720 size = (1 << kdev->inst_shift) * kdev->num_queues_in_use; 1721 kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL); 1722 if (!kdev->instances) 1723 return -ENOMEM; 1724 1725 for_each_queue_range(kdev, range) { 1726 if (range->ops && range->ops->init_range) 1727 range->ops->init_range(range); 1728 base_idx = idx; 1729 for (id = range->queue_base; 1730 id < range->queue_base + range->num_queues; id++, idx++) { 1731 ret = knav_queue_init_queue(kdev, range, 1732 knav_queue_idx_to_inst(kdev, idx), id); 1733 if (ret < 0) 1734 return ret; 1735 } 1736 range->queue_base_inst = 1737 knav_queue_idx_to_inst(kdev, base_idx); 1738 } 1739 return 0; 1740 } 1741 1742 /* Match table for of_platform binding */ 1743 static const struct of_device_id keystone_qmss_of_match[] = { 1744 { 1745 .compatible = "ti,keystone-navigator-qmss", 1746 }, 1747 { 1748 .compatible = "ti,66ak2g-navss-qm", 1749 .data = (void *)QMSS_66AK2G, 1750 }, 1751 {}, 1752 }; 1753 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match); 1754 1755 static int knav_queue_probe(struct platform_device *pdev) 1756 { 1757 struct device_node *node = pdev->dev.of_node; 1758 struct device_node *qmgrs, *queue_pools, *regions, *pdsps; 1759 struct device *dev = &pdev->dev; 1760 u32 temp[2]; 1761 int ret; 1762 1763 if (!node) { 1764 dev_err(dev, "device tree info unavailable\n"); 1765 return -ENODEV; 1766 } 1767 1768 kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL); 1769 if (!kdev) { 1770 dev_err(dev, "memory allocation failed\n"); 1771 return -ENOMEM; 1772 } 1773 1774 if (device_get_match_data(dev)) 1775 kdev->version = QMSS_66AK2G; 1776 1777 platform_set_drvdata(pdev, kdev); 1778 kdev->dev = dev; 1779 INIT_LIST_HEAD(&kdev->queue_ranges); 1780 INIT_LIST_HEAD(&kdev->qmgrs); 1781 INIT_LIST_HEAD(&kdev->pools); 1782 INIT_LIST_HEAD(&kdev->regions); 1783 INIT_LIST_HEAD(&kdev->pdsps); 1784 1785 pm_runtime_enable(&pdev->dev); 1786 ret = pm_runtime_resume_and_get(&pdev->dev); 1787 if (ret < 0) { 1788 pm_runtime_disable(&pdev->dev); 1789 dev_err(dev, "Failed to enable QMSS\n"); 1790 return ret; 1791 } 1792 1793 if (of_property_read_u32_array(node, "queue-range", temp, 2)) { 1794 dev_err(dev, "queue-range not specified\n"); 1795 ret = -ENODEV; 1796 goto err; 1797 } 1798 kdev->base_id = temp[0]; 1799 kdev->num_queues = temp[1]; 1800 1801 /* Initialize queue managers using device tree configuration */ 1802 qmgrs = of_get_child_by_name(node, "qmgrs"); 1803 if (!qmgrs) { 1804 dev_err(dev, "queue manager info not specified\n"); 1805 ret = -ENODEV; 1806 goto err; 1807 } 1808 ret = knav_queue_init_qmgrs(kdev, qmgrs); 1809 of_node_put(qmgrs); 1810 if (ret) 1811 goto err; 1812 1813 /* get pdsp configuration values from device tree */ 1814 pdsps = of_get_child_by_name(node, "pdsps"); 1815 if (pdsps) { 1816 ret = knav_queue_init_pdsps(kdev, pdsps); 1817 if (ret) 1818 goto err; 1819 1820 ret = knav_queue_start_pdsps(kdev); 1821 if (ret) 1822 goto err; 1823 } 1824 of_node_put(pdsps); 1825 1826 /* get usable queue range values from device tree */ 1827 queue_pools = of_get_child_by_name(node, "queue-pools"); 1828 if (!queue_pools) { 1829 dev_err(dev, "queue-pools not specified\n"); 1830 ret = -ENODEV; 1831 goto err; 1832 } 1833 ret = knav_setup_queue_pools(kdev, queue_pools); 1834 of_node_put(queue_pools); 1835 if (ret) 1836 goto err; 1837 1838 ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]); 1839 if (ret) { 1840 dev_err(kdev->dev, "could not setup linking ram\n"); 1841 goto err; 1842 } 1843 1844 ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]); 1845 if (ret) { 1846 /* 1847 * nothing really, we have one linking ram already, so we just 1848 * live within our means 1849 */ 1850 } 1851 1852 ret = knav_queue_setup_link_ram(kdev); 1853 if (ret) 1854 goto err; 1855 1856 regions = of_get_child_by_name(node, "descriptor-regions"); 1857 if (!regions) { 1858 dev_err(dev, "descriptor-regions not specified\n"); 1859 ret = -ENODEV; 1860 goto err; 1861 } 1862 ret = knav_queue_setup_regions(kdev, regions); 1863 of_node_put(regions); 1864 if (ret) 1865 goto err; 1866 1867 ret = knav_queue_init_queues(kdev); 1868 if (ret < 0) { 1869 dev_err(dev, "hwqueue initialization failed\n"); 1870 goto err; 1871 } 1872 1873 debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL, 1874 &knav_queue_debug_fops); 1875 device_ready = true; 1876 return 0; 1877 1878 err: 1879 knav_queue_stop_pdsps(kdev); 1880 knav_queue_free_regions(kdev); 1881 knav_free_queue_ranges(kdev); 1882 pm_runtime_put_sync(&pdev->dev); 1883 pm_runtime_disable(&pdev->dev); 1884 return ret; 1885 } 1886 1887 static void knav_queue_remove(struct platform_device *pdev) 1888 { 1889 /* TODO: Free resources */ 1890 pm_runtime_put_sync(&pdev->dev); 1891 pm_runtime_disable(&pdev->dev); 1892 } 1893 1894 static struct platform_driver keystone_qmss_driver = { 1895 .probe = knav_queue_probe, 1896 .remove_new = knav_queue_remove, 1897 .driver = { 1898 .name = "keystone-navigator-qmss", 1899 .of_match_table = keystone_qmss_of_match, 1900 }, 1901 }; 1902 module_platform_driver(keystone_qmss_driver); 1903 1904 MODULE_LICENSE("GPL v2"); 1905 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs"); 1906 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>"); 1907 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>"); 1908