1 /* 2 * Keystone Queue Manager subsystem driver 3 * 4 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com 5 * Authors: Sandeep Nair <sandeep_n@ti.com> 6 * Cyril Chemparathy <cyril@ti.com> 7 * Santosh Shilimkar <santosh.shilimkar@ti.com> 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License 11 * version 2 as published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/device.h> 22 #include <linux/clk.h> 23 #include <linux/io.h> 24 #include <linux/interrupt.h> 25 #include <linux/bitops.h> 26 #include <linux/slab.h> 27 #include <linux/spinlock.h> 28 #include <linux/platform_device.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/of.h> 31 #include <linux/of_irq.h> 32 #include <linux/of_device.h> 33 #include <linux/of_address.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/firmware.h> 36 #include <linux/debugfs.h> 37 #include <linux/seq_file.h> 38 #include <linux/string.h> 39 #include <linux/soc/ti/knav_qmss.h> 40 41 #include "knav_qmss.h" 42 43 static struct knav_device *kdev; 44 static DEFINE_MUTEX(knav_dev_lock); 45 46 /* Queue manager register indices in DTS */ 47 #define KNAV_QUEUE_PEEK_REG_INDEX 0 48 #define KNAV_QUEUE_STATUS_REG_INDEX 1 49 #define KNAV_QUEUE_CONFIG_REG_INDEX 2 50 #define KNAV_QUEUE_REGION_REG_INDEX 3 51 #define KNAV_QUEUE_PUSH_REG_INDEX 4 52 #define KNAV_QUEUE_POP_REG_INDEX 5 53 54 /* PDSP register indices in DTS */ 55 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX 0 56 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX 1 57 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX 2 58 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX 3 59 60 #define knav_queue_idx_to_inst(kdev, idx) \ 61 (kdev->instances + (idx << kdev->inst_shift)) 62 63 #define for_each_handle_rcu(qh, inst) \ 64 list_for_each_entry_rcu(qh, &inst->handles, list) 65 66 #define for_each_instance(idx, inst, kdev) \ 67 for (idx = 0, inst = kdev->instances; \ 68 idx < (kdev)->num_queues_in_use; \ 69 idx++, inst = knav_queue_idx_to_inst(kdev, idx)) 70 71 /** 72 * knav_queue_notify: qmss queue notfier call 73 * 74 * @inst: qmss queue instance like accumulator 75 */ 76 void knav_queue_notify(struct knav_queue_inst *inst) 77 { 78 struct knav_queue *qh; 79 80 if (!inst) 81 return; 82 83 rcu_read_lock(); 84 for_each_handle_rcu(qh, inst) { 85 if (atomic_read(&qh->notifier_enabled) <= 0) 86 continue; 87 if (WARN_ON(!qh->notifier_fn)) 88 continue; 89 atomic_inc(&qh->stats.notifies); 90 qh->notifier_fn(qh->notifier_fn_arg); 91 } 92 rcu_read_unlock(); 93 } 94 EXPORT_SYMBOL_GPL(knav_queue_notify); 95 96 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata) 97 { 98 struct knav_queue_inst *inst = _instdata; 99 100 knav_queue_notify(inst); 101 return IRQ_HANDLED; 102 } 103 104 static int knav_queue_setup_irq(struct knav_range_info *range, 105 struct knav_queue_inst *inst) 106 { 107 unsigned queue = inst->id - range->queue_base; 108 unsigned long cpu_map; 109 int ret = 0, irq; 110 111 if (range->flags & RANGE_HAS_IRQ) { 112 irq = range->irqs[queue].irq; 113 cpu_map = range->irqs[queue].cpu_map; 114 ret = request_irq(irq, knav_queue_int_handler, 0, 115 inst->irq_name, inst); 116 if (ret) 117 return ret; 118 disable_irq(irq); 119 if (cpu_map) { 120 ret = irq_set_affinity_hint(irq, to_cpumask(&cpu_map)); 121 if (ret) { 122 dev_warn(range->kdev->dev, 123 "Failed to set IRQ affinity\n"); 124 return ret; 125 } 126 } 127 } 128 return ret; 129 } 130 131 static void knav_queue_free_irq(struct knav_queue_inst *inst) 132 { 133 struct knav_range_info *range = inst->range; 134 unsigned queue = inst->id - inst->range->queue_base; 135 int irq; 136 137 if (range->flags & RANGE_HAS_IRQ) { 138 irq = range->irqs[queue].irq; 139 irq_set_affinity_hint(irq, NULL); 140 free_irq(irq, inst); 141 } 142 } 143 144 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst) 145 { 146 return !list_empty(&inst->handles); 147 } 148 149 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst) 150 { 151 return inst->range->flags & RANGE_RESERVED; 152 } 153 154 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst) 155 { 156 struct knav_queue *tmp; 157 158 rcu_read_lock(); 159 for_each_handle_rcu(tmp, inst) { 160 if (tmp->flags & KNAV_QUEUE_SHARED) { 161 rcu_read_unlock(); 162 return true; 163 } 164 } 165 rcu_read_unlock(); 166 return false; 167 } 168 169 static inline bool knav_queue_match_type(struct knav_queue_inst *inst, 170 unsigned type) 171 { 172 if ((type == KNAV_QUEUE_QPEND) && 173 (inst->range->flags & RANGE_HAS_IRQ)) { 174 return true; 175 } else if ((type == KNAV_QUEUE_ACC) && 176 (inst->range->flags & RANGE_HAS_ACCUMULATOR)) { 177 return true; 178 } else if ((type == KNAV_QUEUE_GP) && 179 !(inst->range->flags & 180 (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) { 181 return true; 182 } 183 return false; 184 } 185 186 static inline struct knav_queue_inst * 187 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id) 188 { 189 struct knav_queue_inst *inst; 190 int idx; 191 192 for_each_instance(idx, inst, kdev) { 193 if (inst->id == id) 194 return inst; 195 } 196 return NULL; 197 } 198 199 static inline struct knav_queue_inst *knav_queue_find_by_id(int id) 200 { 201 if (kdev->base_id <= id && 202 kdev->base_id + kdev->num_queues > id) { 203 id -= kdev->base_id; 204 return knav_queue_match_id_to_inst(kdev, id); 205 } 206 return NULL; 207 } 208 209 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst, 210 const char *name, unsigned flags) 211 { 212 struct knav_queue *qh; 213 unsigned id; 214 int ret = 0; 215 216 qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL); 217 if (!qh) 218 return ERR_PTR(-ENOMEM); 219 220 qh->flags = flags; 221 qh->inst = inst; 222 id = inst->id - inst->qmgr->start_queue; 223 qh->reg_push = &inst->qmgr->reg_push[id]; 224 qh->reg_pop = &inst->qmgr->reg_pop[id]; 225 qh->reg_peek = &inst->qmgr->reg_peek[id]; 226 227 /* first opener? */ 228 if (!knav_queue_is_busy(inst)) { 229 struct knav_range_info *range = inst->range; 230 231 inst->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL); 232 if (range->ops && range->ops->open_queue) 233 ret = range->ops->open_queue(range, inst, flags); 234 235 if (ret) { 236 devm_kfree(inst->kdev->dev, qh); 237 return ERR_PTR(ret); 238 } 239 } 240 list_add_tail_rcu(&qh->list, &inst->handles); 241 return qh; 242 } 243 244 static struct knav_queue * 245 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags) 246 { 247 struct knav_queue_inst *inst; 248 struct knav_queue *qh; 249 250 mutex_lock(&knav_dev_lock); 251 252 qh = ERR_PTR(-ENODEV); 253 inst = knav_queue_find_by_id(id); 254 if (!inst) 255 goto unlock_ret; 256 257 qh = ERR_PTR(-EEXIST); 258 if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst)) 259 goto unlock_ret; 260 261 qh = ERR_PTR(-EBUSY); 262 if ((flags & KNAV_QUEUE_SHARED) && 263 (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst))) 264 goto unlock_ret; 265 266 qh = __knav_queue_open(inst, name, flags); 267 268 unlock_ret: 269 mutex_unlock(&knav_dev_lock); 270 271 return qh; 272 } 273 274 static struct knav_queue *knav_queue_open_by_type(const char *name, 275 unsigned type, unsigned flags) 276 { 277 struct knav_queue_inst *inst; 278 struct knav_queue *qh = ERR_PTR(-EINVAL); 279 int idx; 280 281 mutex_lock(&knav_dev_lock); 282 283 for_each_instance(idx, inst, kdev) { 284 if (knav_queue_is_reserved(inst)) 285 continue; 286 if (!knav_queue_match_type(inst, type)) 287 continue; 288 if (knav_queue_is_busy(inst)) 289 continue; 290 qh = __knav_queue_open(inst, name, flags); 291 goto unlock_ret; 292 } 293 294 unlock_ret: 295 mutex_unlock(&knav_dev_lock); 296 return qh; 297 } 298 299 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled) 300 { 301 struct knav_range_info *range = inst->range; 302 303 if (range->ops && range->ops->set_notify) 304 range->ops->set_notify(range, inst, enabled); 305 } 306 307 static int knav_queue_enable_notifier(struct knav_queue *qh) 308 { 309 struct knav_queue_inst *inst = qh->inst; 310 bool first; 311 312 if (WARN_ON(!qh->notifier_fn)) 313 return -EINVAL; 314 315 /* Adjust the per handle notifier count */ 316 first = (atomic_inc_return(&qh->notifier_enabled) == 1); 317 if (!first) 318 return 0; /* nothing to do */ 319 320 /* Now adjust the per instance notifier count */ 321 first = (atomic_inc_return(&inst->num_notifiers) == 1); 322 if (first) 323 knav_queue_set_notify(inst, true); 324 325 return 0; 326 } 327 328 static int knav_queue_disable_notifier(struct knav_queue *qh) 329 { 330 struct knav_queue_inst *inst = qh->inst; 331 bool last; 332 333 last = (atomic_dec_return(&qh->notifier_enabled) == 0); 334 if (!last) 335 return 0; /* nothing to do */ 336 337 last = (atomic_dec_return(&inst->num_notifiers) == 0); 338 if (last) 339 knav_queue_set_notify(inst, false); 340 341 return 0; 342 } 343 344 static int knav_queue_set_notifier(struct knav_queue *qh, 345 struct knav_queue_notify_config *cfg) 346 { 347 knav_queue_notify_fn old_fn = qh->notifier_fn; 348 349 if (!cfg) 350 return -EINVAL; 351 352 if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) 353 return -ENOTSUPP; 354 355 if (!cfg->fn && old_fn) 356 knav_queue_disable_notifier(qh); 357 358 qh->notifier_fn = cfg->fn; 359 qh->notifier_fn_arg = cfg->fn_arg; 360 361 if (cfg->fn && !old_fn) 362 knav_queue_enable_notifier(qh); 363 364 return 0; 365 } 366 367 static int knav_gp_set_notify(struct knav_range_info *range, 368 struct knav_queue_inst *inst, 369 bool enabled) 370 { 371 unsigned queue; 372 373 if (range->flags & RANGE_HAS_IRQ) { 374 queue = inst->id - range->queue_base; 375 if (enabled) 376 enable_irq(range->irqs[queue].irq); 377 else 378 disable_irq_nosync(range->irqs[queue].irq); 379 } 380 return 0; 381 } 382 383 static int knav_gp_open_queue(struct knav_range_info *range, 384 struct knav_queue_inst *inst, unsigned flags) 385 { 386 return knav_queue_setup_irq(range, inst); 387 } 388 389 static int knav_gp_close_queue(struct knav_range_info *range, 390 struct knav_queue_inst *inst) 391 { 392 knav_queue_free_irq(inst); 393 return 0; 394 } 395 396 struct knav_range_ops knav_gp_range_ops = { 397 .set_notify = knav_gp_set_notify, 398 .open_queue = knav_gp_open_queue, 399 .close_queue = knav_gp_close_queue, 400 }; 401 402 403 static int knav_queue_get_count(void *qhandle) 404 { 405 struct knav_queue *qh = qhandle; 406 struct knav_queue_inst *inst = qh->inst; 407 408 return readl_relaxed(&qh->reg_peek[0].entry_count) + 409 atomic_read(&inst->desc_count); 410 } 411 412 static void knav_queue_debug_show_instance(struct seq_file *s, 413 struct knav_queue_inst *inst) 414 { 415 struct knav_device *kdev = inst->kdev; 416 struct knav_queue *qh; 417 418 if (!knav_queue_is_busy(inst)) 419 return; 420 421 seq_printf(s, "\tqueue id %d (%s)\n", 422 kdev->base_id + inst->id, inst->name); 423 for_each_handle_rcu(qh, inst) { 424 seq_printf(s, "\t\thandle %p: ", qh); 425 seq_printf(s, "pushes %8d, ", 426 atomic_read(&qh->stats.pushes)); 427 seq_printf(s, "pops %8d, ", 428 atomic_read(&qh->stats.pops)); 429 seq_printf(s, "count %8d, ", 430 knav_queue_get_count(qh)); 431 seq_printf(s, "notifies %8d, ", 432 atomic_read(&qh->stats.notifies)); 433 seq_printf(s, "push errors %8d, ", 434 atomic_read(&qh->stats.push_errors)); 435 seq_printf(s, "pop errors %8d\n", 436 atomic_read(&qh->stats.pop_errors)); 437 } 438 } 439 440 static int knav_queue_debug_show(struct seq_file *s, void *v) 441 { 442 struct knav_queue_inst *inst; 443 int idx; 444 445 mutex_lock(&knav_dev_lock); 446 seq_printf(s, "%s: %u-%u\n", 447 dev_name(kdev->dev), kdev->base_id, 448 kdev->base_id + kdev->num_queues - 1); 449 for_each_instance(idx, inst, kdev) 450 knav_queue_debug_show_instance(s, inst); 451 mutex_unlock(&knav_dev_lock); 452 453 return 0; 454 } 455 456 static int knav_queue_debug_open(struct inode *inode, struct file *file) 457 { 458 return single_open(file, knav_queue_debug_show, NULL); 459 } 460 461 static const struct file_operations knav_queue_debug_ops = { 462 .open = knav_queue_debug_open, 463 .read = seq_read, 464 .llseek = seq_lseek, 465 .release = single_release, 466 }; 467 468 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout, 469 u32 flags) 470 { 471 unsigned long end; 472 u32 val = 0; 473 474 end = jiffies + msecs_to_jiffies(timeout); 475 while (time_after(end, jiffies)) { 476 val = readl_relaxed(addr); 477 if (flags) 478 val &= flags; 479 if (!val) 480 break; 481 cpu_relax(); 482 } 483 return val ? -ETIMEDOUT : 0; 484 } 485 486 487 static int knav_queue_flush(struct knav_queue *qh) 488 { 489 struct knav_queue_inst *inst = qh->inst; 490 unsigned id = inst->id - inst->qmgr->start_queue; 491 492 atomic_set(&inst->desc_count, 0); 493 writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh); 494 return 0; 495 } 496 497 /** 498 * knav_queue_open() - open a hardware queue 499 * @name - name to give the queue handle 500 * @id - desired queue number if any or specifes the type 501 * of queue 502 * @flags - the following flags are applicable to queues: 503 * KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are 504 * exclusive by default. 505 * Subsequent attempts to open a shared queue should 506 * also have this flag. 507 * 508 * Returns a handle to the open hardware queue if successful. Use IS_ERR() 509 * to check the returned value for error codes. 510 */ 511 void *knav_queue_open(const char *name, unsigned id, 512 unsigned flags) 513 { 514 struct knav_queue *qh = ERR_PTR(-EINVAL); 515 516 switch (id) { 517 case KNAV_QUEUE_QPEND: 518 case KNAV_QUEUE_ACC: 519 case KNAV_QUEUE_GP: 520 qh = knav_queue_open_by_type(name, id, flags); 521 break; 522 523 default: 524 qh = knav_queue_open_by_id(name, id, flags); 525 break; 526 } 527 return qh; 528 } 529 EXPORT_SYMBOL_GPL(knav_queue_open); 530 531 /** 532 * knav_queue_close() - close a hardware queue handle 533 * @qh - handle to close 534 */ 535 void knav_queue_close(void *qhandle) 536 { 537 struct knav_queue *qh = qhandle; 538 struct knav_queue_inst *inst = qh->inst; 539 540 while (atomic_read(&qh->notifier_enabled) > 0) 541 knav_queue_disable_notifier(qh); 542 543 mutex_lock(&knav_dev_lock); 544 list_del_rcu(&qh->list); 545 mutex_unlock(&knav_dev_lock); 546 synchronize_rcu(); 547 if (!knav_queue_is_busy(inst)) { 548 struct knav_range_info *range = inst->range; 549 550 if (range->ops && range->ops->close_queue) 551 range->ops->close_queue(range, inst); 552 } 553 devm_kfree(inst->kdev->dev, qh); 554 } 555 EXPORT_SYMBOL_GPL(knav_queue_close); 556 557 /** 558 * knav_queue_device_control() - Perform control operations on a queue 559 * @qh - queue handle 560 * @cmd - control commands 561 * @arg - command argument 562 * 563 * Returns 0 on success, errno otherwise. 564 */ 565 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd, 566 unsigned long arg) 567 { 568 struct knav_queue *qh = qhandle; 569 struct knav_queue_notify_config *cfg; 570 int ret; 571 572 switch ((int)cmd) { 573 case KNAV_QUEUE_GET_ID: 574 ret = qh->inst->kdev->base_id + qh->inst->id; 575 break; 576 577 case KNAV_QUEUE_FLUSH: 578 ret = knav_queue_flush(qh); 579 break; 580 581 case KNAV_QUEUE_SET_NOTIFIER: 582 cfg = (void *)arg; 583 ret = knav_queue_set_notifier(qh, cfg); 584 break; 585 586 case KNAV_QUEUE_ENABLE_NOTIFY: 587 ret = knav_queue_enable_notifier(qh); 588 break; 589 590 case KNAV_QUEUE_DISABLE_NOTIFY: 591 ret = knav_queue_disable_notifier(qh); 592 break; 593 594 case KNAV_QUEUE_GET_COUNT: 595 ret = knav_queue_get_count(qh); 596 break; 597 598 default: 599 ret = -ENOTSUPP; 600 break; 601 } 602 return ret; 603 } 604 EXPORT_SYMBOL_GPL(knav_queue_device_control); 605 606 607 608 /** 609 * knav_queue_push() - push data (or descriptor) to the tail of a queue 610 * @qh - hardware queue handle 611 * @data - data to push 612 * @size - size of data to push 613 * @flags - can be used to pass additional information 614 * 615 * Returns 0 on success, errno otherwise. 616 */ 617 int knav_queue_push(void *qhandle, dma_addr_t dma, 618 unsigned size, unsigned flags) 619 { 620 struct knav_queue *qh = qhandle; 621 u32 val; 622 623 val = (u32)dma | ((size / 16) - 1); 624 writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh); 625 626 atomic_inc(&qh->stats.pushes); 627 return 0; 628 } 629 630 /** 631 * knav_queue_pop() - pop data (or descriptor) from the head of a queue 632 * @qh - hardware queue handle 633 * @size - (optional) size of the data pop'ed. 634 * 635 * Returns a DMA address on success, 0 on failure. 636 */ 637 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size) 638 { 639 struct knav_queue *qh = qhandle; 640 struct knav_queue_inst *inst = qh->inst; 641 dma_addr_t dma; 642 u32 val, idx; 643 644 /* are we accumulated? */ 645 if (inst->descs) { 646 if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) { 647 atomic_inc(&inst->desc_count); 648 return 0; 649 } 650 idx = atomic_inc_return(&inst->desc_head); 651 idx &= ACC_DESCS_MASK; 652 val = inst->descs[idx]; 653 } else { 654 val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh); 655 if (unlikely(!val)) 656 return 0; 657 } 658 659 dma = val & DESC_PTR_MASK; 660 if (size) 661 *size = ((val & DESC_SIZE_MASK) + 1) * 16; 662 663 atomic_inc(&qh->stats.pops); 664 return dma; 665 } 666 667 /* carve out descriptors and push into queue */ 668 static void kdesc_fill_pool(struct knav_pool *pool) 669 { 670 struct knav_region *region; 671 int i; 672 673 region = pool->region; 674 pool->desc_size = region->desc_size; 675 for (i = 0; i < pool->num_desc; i++) { 676 int index = pool->region_offset + i; 677 dma_addr_t dma_addr; 678 unsigned dma_size; 679 dma_addr = region->dma_start + (region->desc_size * index); 680 dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES); 681 dma_sync_single_for_device(pool->dev, dma_addr, dma_size, 682 DMA_TO_DEVICE); 683 knav_queue_push(pool->queue, dma_addr, dma_size, 0); 684 } 685 } 686 687 /* pop out descriptors and close the queue */ 688 static void kdesc_empty_pool(struct knav_pool *pool) 689 { 690 dma_addr_t dma; 691 unsigned size; 692 void *desc; 693 int i; 694 695 if (!pool->queue) 696 return; 697 698 for (i = 0;; i++) { 699 dma = knav_queue_pop(pool->queue, &size); 700 if (!dma) 701 break; 702 desc = knav_pool_desc_dma_to_virt(pool, dma); 703 if (!desc) { 704 dev_dbg(pool->kdev->dev, 705 "couldn't unmap desc, continuing\n"); 706 continue; 707 } 708 } 709 WARN_ON(i != pool->num_desc); 710 knav_queue_close(pool->queue); 711 } 712 713 714 /* Get the DMA address of a descriptor */ 715 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt) 716 { 717 struct knav_pool *pool = ph; 718 return pool->region->dma_start + (virt - pool->region->virt_start); 719 } 720 721 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma) 722 { 723 struct knav_pool *pool = ph; 724 return pool->region->virt_start + (dma - pool->region->dma_start); 725 } 726 727 /** 728 * knav_pool_create() - Create a pool of descriptors 729 * @name - name to give the pool handle 730 * @num_desc - numbers of descriptors in the pool 731 * @region_id - QMSS region id from which the descriptors are to be 732 * allocated. 733 * 734 * Returns a pool handle on success. 735 * Use IS_ERR_OR_NULL() to identify error values on return. 736 */ 737 void *knav_pool_create(const char *name, 738 int num_desc, int region_id) 739 { 740 struct knav_region *reg_itr, *region = NULL; 741 struct knav_pool *pool, *pi; 742 struct list_head *node; 743 unsigned last_offset; 744 bool slot_found; 745 int ret; 746 747 if (!kdev->dev) 748 return ERR_PTR(-ENODEV); 749 750 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL); 751 if (!pool) { 752 dev_err(kdev->dev, "out of memory allocating pool\n"); 753 return ERR_PTR(-ENOMEM); 754 } 755 756 for_each_region(kdev, reg_itr) { 757 if (reg_itr->id != region_id) 758 continue; 759 region = reg_itr; 760 break; 761 } 762 763 if (!region) { 764 dev_err(kdev->dev, "region-id(%d) not found\n", region_id); 765 ret = -EINVAL; 766 goto err; 767 } 768 769 pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0); 770 if (IS_ERR_OR_NULL(pool->queue)) { 771 dev_err(kdev->dev, 772 "failed to open queue for pool(%s), error %ld\n", 773 name, PTR_ERR(pool->queue)); 774 ret = PTR_ERR(pool->queue); 775 goto err; 776 } 777 778 pool->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL); 779 pool->kdev = kdev; 780 pool->dev = kdev->dev; 781 782 mutex_lock(&knav_dev_lock); 783 784 if (num_desc > (region->num_desc - region->used_desc)) { 785 dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n", 786 region_id, name); 787 ret = -ENOMEM; 788 goto err; 789 } 790 791 /* Region maintains a sorted (by region offset) list of pools 792 * use the first free slot which is large enough to accomodate 793 * the request 794 */ 795 last_offset = 0; 796 slot_found = false; 797 node = ®ion->pools; 798 list_for_each_entry(pi, ®ion->pools, region_inst) { 799 if ((pi->region_offset - last_offset) >= num_desc) { 800 slot_found = true; 801 break; 802 } 803 last_offset = pi->region_offset + pi->num_desc; 804 } 805 node = &pi->region_inst; 806 807 if (slot_found) { 808 pool->region = region; 809 pool->num_desc = num_desc; 810 pool->region_offset = last_offset; 811 region->used_desc += num_desc; 812 list_add_tail(&pool->list, &kdev->pools); 813 list_add_tail(&pool->region_inst, node); 814 } else { 815 dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n", 816 name, region_id); 817 ret = -ENOMEM; 818 goto err; 819 } 820 821 mutex_unlock(&knav_dev_lock); 822 kdesc_fill_pool(pool); 823 return pool; 824 825 err: 826 mutex_unlock(&knav_dev_lock); 827 kfree(pool->name); 828 devm_kfree(kdev->dev, pool); 829 return ERR_PTR(ret); 830 } 831 EXPORT_SYMBOL_GPL(knav_pool_create); 832 833 /** 834 * knav_pool_destroy() - Free a pool of descriptors 835 * @pool - pool handle 836 */ 837 void knav_pool_destroy(void *ph) 838 { 839 struct knav_pool *pool = ph; 840 841 if (!pool) 842 return; 843 844 if (!pool->region) 845 return; 846 847 kdesc_empty_pool(pool); 848 mutex_lock(&knav_dev_lock); 849 850 pool->region->used_desc -= pool->num_desc; 851 list_del(&pool->region_inst); 852 list_del(&pool->list); 853 854 mutex_unlock(&knav_dev_lock); 855 kfree(pool->name); 856 devm_kfree(kdev->dev, pool); 857 } 858 EXPORT_SYMBOL_GPL(knav_pool_destroy); 859 860 861 /** 862 * knav_pool_desc_get() - Get a descriptor from the pool 863 * @pool - pool handle 864 * 865 * Returns descriptor from the pool. 866 */ 867 void *knav_pool_desc_get(void *ph) 868 { 869 struct knav_pool *pool = ph; 870 dma_addr_t dma; 871 unsigned size; 872 void *data; 873 874 dma = knav_queue_pop(pool->queue, &size); 875 if (unlikely(!dma)) 876 return ERR_PTR(-ENOMEM); 877 data = knav_pool_desc_dma_to_virt(pool, dma); 878 return data; 879 } 880 881 /** 882 * knav_pool_desc_put() - return a descriptor to the pool 883 * @pool - pool handle 884 */ 885 void knav_pool_desc_put(void *ph, void *desc) 886 { 887 struct knav_pool *pool = ph; 888 dma_addr_t dma; 889 dma = knav_pool_desc_virt_to_dma(pool, desc); 890 knav_queue_push(pool->queue, dma, pool->region->desc_size, 0); 891 } 892 893 /** 894 * knav_pool_desc_map() - Map descriptor for DMA transfer 895 * @pool - pool handle 896 * @desc - address of descriptor to map 897 * @size - size of descriptor to map 898 * @dma - DMA address return pointer 899 * @dma_sz - adjusted return pointer 900 * 901 * Returns 0 on success, errno otherwise. 902 */ 903 int knav_pool_desc_map(void *ph, void *desc, unsigned size, 904 dma_addr_t *dma, unsigned *dma_sz) 905 { 906 struct knav_pool *pool = ph; 907 *dma = knav_pool_desc_virt_to_dma(pool, desc); 908 size = min(size, pool->region->desc_size); 909 size = ALIGN(size, SMP_CACHE_BYTES); 910 *dma_sz = size; 911 dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE); 912 913 /* Ensure the descriptor reaches to the memory */ 914 __iowmb(); 915 916 return 0; 917 } 918 919 /** 920 * knav_pool_desc_unmap() - Unmap descriptor after DMA transfer 921 * @pool - pool handle 922 * @dma - DMA address of descriptor to unmap 923 * @dma_sz - size of descriptor to unmap 924 * 925 * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify 926 * error values on return. 927 */ 928 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz) 929 { 930 struct knav_pool *pool = ph; 931 unsigned desc_sz; 932 void *desc; 933 934 desc_sz = min(dma_sz, pool->region->desc_size); 935 desc = knav_pool_desc_dma_to_virt(pool, dma); 936 dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE); 937 prefetch(desc); 938 return desc; 939 } 940 941 /** 942 * knav_pool_count() - Get the number of descriptors in pool. 943 * @pool - pool handle 944 * Returns number of elements in the pool. 945 */ 946 int knav_pool_count(void *ph) 947 { 948 struct knav_pool *pool = ph; 949 return knav_queue_get_count(pool->queue); 950 } 951 952 static void knav_queue_setup_region(struct knav_device *kdev, 953 struct knav_region *region) 954 { 955 unsigned hw_num_desc, hw_desc_size, size; 956 struct knav_reg_region __iomem *regs; 957 struct knav_qmgr_info *qmgr; 958 struct knav_pool *pool; 959 int id = region->id; 960 struct page *page; 961 962 /* unused region? */ 963 if (!region->num_desc) { 964 dev_warn(kdev->dev, "unused region %s\n", region->name); 965 return; 966 } 967 968 /* get hardware descriptor value */ 969 hw_num_desc = ilog2(region->num_desc - 1) + 1; 970 971 /* did we force fit ourselves into nothingness? */ 972 if (region->num_desc < 32) { 973 region->num_desc = 0; 974 dev_warn(kdev->dev, "too few descriptors in region %s\n", 975 region->name); 976 return; 977 } 978 979 size = region->num_desc * region->desc_size; 980 region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA | 981 GFP_DMA32); 982 if (!region->virt_start) { 983 region->num_desc = 0; 984 dev_err(kdev->dev, "memory alloc failed for region %s\n", 985 region->name); 986 return; 987 } 988 region->virt_end = region->virt_start + size; 989 page = virt_to_page(region->virt_start); 990 991 region->dma_start = dma_map_page(kdev->dev, page, 0, size, 992 DMA_BIDIRECTIONAL); 993 if (dma_mapping_error(kdev->dev, region->dma_start)) { 994 dev_err(kdev->dev, "dma map failed for region %s\n", 995 region->name); 996 goto fail; 997 } 998 region->dma_end = region->dma_start + size; 999 1000 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL); 1001 if (!pool) { 1002 dev_err(kdev->dev, "out of memory allocating dummy pool\n"); 1003 goto fail; 1004 } 1005 pool->num_desc = 0; 1006 pool->region_offset = region->num_desc; 1007 list_add(&pool->region_inst, ®ion->pools); 1008 1009 dev_dbg(kdev->dev, 1010 "region %s (%d): size:%d, link:%d@%d, phys:%08x-%08x, virt:%p-%p\n", 1011 region->name, id, region->desc_size, region->num_desc, 1012 region->link_index, region->dma_start, region->dma_end, 1013 region->virt_start, region->virt_end); 1014 1015 hw_desc_size = (region->desc_size / 16) - 1; 1016 hw_num_desc -= 5; 1017 1018 for_each_qmgr(kdev, qmgr) { 1019 regs = qmgr->reg_region + id; 1020 writel_relaxed(region->dma_start, ®s->base); 1021 writel_relaxed(region->link_index, ®s->start_index); 1022 writel_relaxed(hw_desc_size << 16 | hw_num_desc, 1023 ®s->size_count); 1024 } 1025 return; 1026 1027 fail: 1028 if (region->dma_start) 1029 dma_unmap_page(kdev->dev, region->dma_start, size, 1030 DMA_BIDIRECTIONAL); 1031 if (region->virt_start) 1032 free_pages_exact(region->virt_start, size); 1033 region->num_desc = 0; 1034 return; 1035 } 1036 1037 static const char *knav_queue_find_name(struct device_node *node) 1038 { 1039 const char *name; 1040 1041 if (of_property_read_string(node, "label", &name) < 0) 1042 name = node->name; 1043 if (!name) 1044 name = "unknown"; 1045 return name; 1046 } 1047 1048 static int knav_queue_setup_regions(struct knav_device *kdev, 1049 struct device_node *regions) 1050 { 1051 struct device *dev = kdev->dev; 1052 struct knav_region *region; 1053 struct device_node *child; 1054 u32 temp[2]; 1055 int ret; 1056 1057 for_each_child_of_node(regions, child) { 1058 region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL); 1059 if (!region) { 1060 dev_err(dev, "out of memory allocating region\n"); 1061 return -ENOMEM; 1062 } 1063 1064 region->name = knav_queue_find_name(child); 1065 of_property_read_u32(child, "id", ®ion->id); 1066 ret = of_property_read_u32_array(child, "region-spec", temp, 2); 1067 if (!ret) { 1068 region->num_desc = temp[0]; 1069 region->desc_size = temp[1]; 1070 } else { 1071 dev_err(dev, "invalid region info %s\n", region->name); 1072 devm_kfree(dev, region); 1073 continue; 1074 } 1075 1076 if (!of_get_property(child, "link-index", NULL)) { 1077 dev_err(dev, "No link info for %s\n", region->name); 1078 devm_kfree(dev, region); 1079 continue; 1080 } 1081 ret = of_property_read_u32(child, "link-index", 1082 ®ion->link_index); 1083 if (ret) { 1084 dev_err(dev, "link index not found for %s\n", 1085 region->name); 1086 devm_kfree(dev, region); 1087 continue; 1088 } 1089 1090 INIT_LIST_HEAD(®ion->pools); 1091 list_add_tail(®ion->list, &kdev->regions); 1092 } 1093 if (list_empty(&kdev->regions)) { 1094 dev_err(dev, "no valid region information found\n"); 1095 return -ENODEV; 1096 } 1097 1098 /* Next, we run through the regions and set things up */ 1099 for_each_region(kdev, region) 1100 knav_queue_setup_region(kdev, region); 1101 1102 return 0; 1103 } 1104 1105 static int knav_get_link_ram(struct knav_device *kdev, 1106 const char *name, 1107 struct knav_link_ram_block *block) 1108 { 1109 struct platform_device *pdev = to_platform_device(kdev->dev); 1110 struct device_node *node = pdev->dev.of_node; 1111 u32 temp[2]; 1112 1113 /* 1114 * Note: link ram resources are specified in "entry" sized units. In 1115 * reality, although entries are ~40bits in hardware, we treat them as 1116 * 64-bit entities here. 1117 * 1118 * For example, to specify the internal link ram for Keystone-I class 1119 * devices, we would set the linkram0 resource to 0x80000-0x83fff. 1120 * 1121 * This gets a bit weird when other link rams are used. For example, 1122 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries 1123 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000, 1124 * which accounts for 64-bits per entry, for 16K entries. 1125 */ 1126 if (!of_property_read_u32_array(node, name , temp, 2)) { 1127 if (temp[0]) { 1128 /* 1129 * queue_base specified => using internal or onchip 1130 * link ram WARNING - we do not "reserve" this block 1131 */ 1132 block->phys = (dma_addr_t)temp[0]; 1133 block->virt = NULL; 1134 block->size = temp[1]; 1135 } else { 1136 block->size = temp[1]; 1137 /* queue_base not specific => allocate requested size */ 1138 block->virt = dmam_alloc_coherent(kdev->dev, 1139 8 * block->size, &block->phys, 1140 GFP_KERNEL); 1141 if (!block->virt) { 1142 dev_err(kdev->dev, "failed to alloc linkram\n"); 1143 return -ENOMEM; 1144 } 1145 } 1146 } else { 1147 return -ENODEV; 1148 } 1149 return 0; 1150 } 1151 1152 static int knav_queue_setup_link_ram(struct knav_device *kdev) 1153 { 1154 struct knav_link_ram_block *block; 1155 struct knav_qmgr_info *qmgr; 1156 1157 for_each_qmgr(kdev, qmgr) { 1158 block = &kdev->link_rams[0]; 1159 dev_dbg(kdev->dev, "linkram0: phys:%x, virt:%p, size:%x\n", 1160 block->phys, block->virt, block->size); 1161 writel_relaxed(block->phys, &qmgr->reg_config->link_ram_base0); 1162 writel_relaxed(block->size, &qmgr->reg_config->link_ram_size0); 1163 1164 block++; 1165 if (!block->size) 1166 return 0; 1167 1168 dev_dbg(kdev->dev, "linkram1: phys:%x, virt:%p, size:%x\n", 1169 block->phys, block->virt, block->size); 1170 writel_relaxed(block->phys, &qmgr->reg_config->link_ram_base1); 1171 } 1172 1173 return 0; 1174 } 1175 1176 static int knav_setup_queue_range(struct knav_device *kdev, 1177 struct device_node *node) 1178 { 1179 struct device *dev = kdev->dev; 1180 struct knav_range_info *range; 1181 struct knav_qmgr_info *qmgr; 1182 u32 temp[2], start, end, id, index; 1183 int ret, i; 1184 1185 range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL); 1186 if (!range) { 1187 dev_err(dev, "out of memory allocating range\n"); 1188 return -ENOMEM; 1189 } 1190 1191 range->kdev = kdev; 1192 range->name = knav_queue_find_name(node); 1193 ret = of_property_read_u32_array(node, "qrange", temp, 2); 1194 if (!ret) { 1195 range->queue_base = temp[0] - kdev->base_id; 1196 range->num_queues = temp[1]; 1197 } else { 1198 dev_err(dev, "invalid queue range %s\n", range->name); 1199 devm_kfree(dev, range); 1200 return -EINVAL; 1201 } 1202 1203 for (i = 0; i < RANGE_MAX_IRQS; i++) { 1204 struct of_phandle_args oirq; 1205 1206 if (of_irq_parse_one(node, i, &oirq)) 1207 break; 1208 1209 range->irqs[i].irq = irq_create_of_mapping(&oirq); 1210 if (range->irqs[i].irq == IRQ_NONE) 1211 break; 1212 1213 range->num_irqs++; 1214 1215 if (oirq.args_count == 3) 1216 range->irqs[i].cpu_map = 1217 (oirq.args[2] & 0x0000ff00) >> 8; 1218 } 1219 1220 range->num_irqs = min(range->num_irqs, range->num_queues); 1221 if (range->num_irqs) 1222 range->flags |= RANGE_HAS_IRQ; 1223 1224 if (of_get_property(node, "qalloc-by-id", NULL)) 1225 range->flags |= RANGE_RESERVED; 1226 1227 if (of_get_property(node, "accumulator", NULL)) { 1228 ret = knav_init_acc_range(kdev, node, range); 1229 if (ret < 0) { 1230 devm_kfree(dev, range); 1231 return ret; 1232 } 1233 } else { 1234 range->ops = &knav_gp_range_ops; 1235 } 1236 1237 /* set threshold to 1, and flush out the queues */ 1238 for_each_qmgr(kdev, qmgr) { 1239 start = max(qmgr->start_queue, range->queue_base); 1240 end = min(qmgr->start_queue + qmgr->num_queues, 1241 range->queue_base + range->num_queues); 1242 for (id = start; id < end; id++) { 1243 index = id - qmgr->start_queue; 1244 writel_relaxed(THRESH_GTE | 1, 1245 &qmgr->reg_peek[index].ptr_size_thresh); 1246 writel_relaxed(0, 1247 &qmgr->reg_push[index].ptr_size_thresh); 1248 } 1249 } 1250 1251 list_add_tail(&range->list, &kdev->queue_ranges); 1252 dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n", 1253 range->name, range->queue_base, 1254 range->queue_base + range->num_queues - 1, 1255 range->num_irqs, 1256 (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "", 1257 (range->flags & RANGE_RESERVED) ? ", reserved" : "", 1258 (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : ""); 1259 kdev->num_queues_in_use += range->num_queues; 1260 return 0; 1261 } 1262 1263 static int knav_setup_queue_pools(struct knav_device *kdev, 1264 struct device_node *queue_pools) 1265 { 1266 struct device_node *type, *range; 1267 int ret; 1268 1269 for_each_child_of_node(queue_pools, type) { 1270 for_each_child_of_node(type, range) { 1271 ret = knav_setup_queue_range(kdev, range); 1272 /* return value ignored, we init the rest... */ 1273 } 1274 } 1275 1276 /* ... and barf if they all failed! */ 1277 if (list_empty(&kdev->queue_ranges)) { 1278 dev_err(kdev->dev, "no valid queue range found\n"); 1279 return -ENODEV; 1280 } 1281 return 0; 1282 } 1283 1284 static void knav_free_queue_range(struct knav_device *kdev, 1285 struct knav_range_info *range) 1286 { 1287 if (range->ops && range->ops->free_range) 1288 range->ops->free_range(range); 1289 list_del(&range->list); 1290 devm_kfree(kdev->dev, range); 1291 } 1292 1293 static void knav_free_queue_ranges(struct knav_device *kdev) 1294 { 1295 struct knav_range_info *range; 1296 1297 for (;;) { 1298 range = first_queue_range(kdev); 1299 if (!range) 1300 break; 1301 knav_free_queue_range(kdev, range); 1302 } 1303 } 1304 1305 static void knav_queue_free_regions(struct knav_device *kdev) 1306 { 1307 struct knav_region *region; 1308 struct knav_pool *pool; 1309 unsigned size; 1310 1311 for (;;) { 1312 region = first_region(kdev); 1313 if (!region) 1314 break; 1315 list_for_each_entry(pool, ®ion->pools, region_inst) 1316 knav_pool_destroy(pool); 1317 1318 size = region->virt_end - region->virt_start; 1319 if (size) 1320 free_pages_exact(region->virt_start, size); 1321 list_del(®ion->list); 1322 devm_kfree(kdev->dev, region); 1323 } 1324 } 1325 1326 static void __iomem *knav_queue_map_reg(struct knav_device *kdev, 1327 struct device_node *node, int index) 1328 { 1329 struct resource res; 1330 void __iomem *regs; 1331 int ret; 1332 1333 ret = of_address_to_resource(node, index, &res); 1334 if (ret) { 1335 dev_err(kdev->dev, "Can't translate of node(%s) address for index(%d)\n", 1336 node->name, index); 1337 return ERR_PTR(ret); 1338 } 1339 1340 regs = devm_ioremap_resource(kdev->dev, &res); 1341 if (IS_ERR(regs)) 1342 dev_err(kdev->dev, "Failed to map register base for index(%d) node(%s)\n", 1343 index, node->name); 1344 return regs; 1345 } 1346 1347 static int knav_queue_init_qmgrs(struct knav_device *kdev, 1348 struct device_node *qmgrs) 1349 { 1350 struct device *dev = kdev->dev; 1351 struct knav_qmgr_info *qmgr; 1352 struct device_node *child; 1353 u32 temp[2]; 1354 int ret; 1355 1356 for_each_child_of_node(qmgrs, child) { 1357 qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL); 1358 if (!qmgr) { 1359 dev_err(dev, "out of memory allocating qmgr\n"); 1360 return -ENOMEM; 1361 } 1362 1363 ret = of_property_read_u32_array(child, "managed-queues", 1364 temp, 2); 1365 if (!ret) { 1366 qmgr->start_queue = temp[0]; 1367 qmgr->num_queues = temp[1]; 1368 } else { 1369 dev_err(dev, "invalid qmgr queue range\n"); 1370 devm_kfree(dev, qmgr); 1371 continue; 1372 } 1373 1374 dev_info(dev, "qmgr start queue %d, number of queues %d\n", 1375 qmgr->start_queue, qmgr->num_queues); 1376 1377 qmgr->reg_peek = 1378 knav_queue_map_reg(kdev, child, 1379 KNAV_QUEUE_PEEK_REG_INDEX); 1380 qmgr->reg_status = 1381 knav_queue_map_reg(kdev, child, 1382 KNAV_QUEUE_STATUS_REG_INDEX); 1383 qmgr->reg_config = 1384 knav_queue_map_reg(kdev, child, 1385 KNAV_QUEUE_CONFIG_REG_INDEX); 1386 qmgr->reg_region = 1387 knav_queue_map_reg(kdev, child, 1388 KNAV_QUEUE_REGION_REG_INDEX); 1389 qmgr->reg_push = 1390 knav_queue_map_reg(kdev, child, 1391 KNAV_QUEUE_PUSH_REG_INDEX); 1392 qmgr->reg_pop = 1393 knav_queue_map_reg(kdev, child, 1394 KNAV_QUEUE_POP_REG_INDEX); 1395 1396 if (IS_ERR(qmgr->reg_peek) || IS_ERR(qmgr->reg_status) || 1397 IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) || 1398 IS_ERR(qmgr->reg_push) || IS_ERR(qmgr->reg_pop)) { 1399 dev_err(dev, "failed to map qmgr regs\n"); 1400 if (!IS_ERR(qmgr->reg_peek)) 1401 devm_iounmap(dev, qmgr->reg_peek); 1402 if (!IS_ERR(qmgr->reg_status)) 1403 devm_iounmap(dev, qmgr->reg_status); 1404 if (!IS_ERR(qmgr->reg_config)) 1405 devm_iounmap(dev, qmgr->reg_config); 1406 if (!IS_ERR(qmgr->reg_region)) 1407 devm_iounmap(dev, qmgr->reg_region); 1408 if (!IS_ERR(qmgr->reg_push)) 1409 devm_iounmap(dev, qmgr->reg_push); 1410 if (!IS_ERR(qmgr->reg_pop)) 1411 devm_iounmap(dev, qmgr->reg_pop); 1412 devm_kfree(dev, qmgr); 1413 continue; 1414 } 1415 1416 list_add_tail(&qmgr->list, &kdev->qmgrs); 1417 dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n", 1418 qmgr->start_queue, qmgr->num_queues, 1419 qmgr->reg_peek, qmgr->reg_status, 1420 qmgr->reg_config, qmgr->reg_region, 1421 qmgr->reg_push, qmgr->reg_pop); 1422 } 1423 return 0; 1424 } 1425 1426 static int knav_queue_init_pdsps(struct knav_device *kdev, 1427 struct device_node *pdsps) 1428 { 1429 struct device *dev = kdev->dev; 1430 struct knav_pdsp_info *pdsp; 1431 struct device_node *child; 1432 int ret; 1433 1434 for_each_child_of_node(pdsps, child) { 1435 pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL); 1436 if (!pdsp) { 1437 dev_err(dev, "out of memory allocating pdsp\n"); 1438 return -ENOMEM; 1439 } 1440 pdsp->name = knav_queue_find_name(child); 1441 ret = of_property_read_string(child, "firmware", 1442 &pdsp->firmware); 1443 if (ret < 0 || !pdsp->firmware) { 1444 dev_err(dev, "unknown firmware for pdsp %s\n", 1445 pdsp->name); 1446 devm_kfree(dev, pdsp); 1447 continue; 1448 } 1449 dev_dbg(dev, "pdsp name %s fw name :%s\n", pdsp->name, 1450 pdsp->firmware); 1451 1452 pdsp->iram = 1453 knav_queue_map_reg(kdev, child, 1454 KNAV_QUEUE_PDSP_IRAM_REG_INDEX); 1455 pdsp->regs = 1456 knav_queue_map_reg(kdev, child, 1457 KNAV_QUEUE_PDSP_REGS_REG_INDEX); 1458 pdsp->intd = 1459 knav_queue_map_reg(kdev, child, 1460 KNAV_QUEUE_PDSP_INTD_REG_INDEX); 1461 pdsp->command = 1462 knav_queue_map_reg(kdev, child, 1463 KNAV_QUEUE_PDSP_CMD_REG_INDEX); 1464 1465 if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) || 1466 IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) { 1467 dev_err(dev, "failed to map pdsp %s regs\n", 1468 pdsp->name); 1469 if (!IS_ERR(pdsp->command)) 1470 devm_iounmap(dev, pdsp->command); 1471 if (!IS_ERR(pdsp->iram)) 1472 devm_iounmap(dev, pdsp->iram); 1473 if (!IS_ERR(pdsp->regs)) 1474 devm_iounmap(dev, pdsp->regs); 1475 if (!IS_ERR(pdsp->intd)) 1476 devm_iounmap(dev, pdsp->intd); 1477 devm_kfree(dev, pdsp); 1478 continue; 1479 } 1480 of_property_read_u32(child, "id", &pdsp->id); 1481 list_add_tail(&pdsp->list, &kdev->pdsps); 1482 dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p, firmware %s\n", 1483 pdsp->name, pdsp->command, pdsp->iram, pdsp->regs, 1484 pdsp->intd, pdsp->firmware); 1485 } 1486 return 0; 1487 } 1488 1489 static int knav_queue_stop_pdsp(struct knav_device *kdev, 1490 struct knav_pdsp_info *pdsp) 1491 { 1492 u32 val, timeout = 1000; 1493 int ret; 1494 1495 val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE; 1496 writel_relaxed(val, &pdsp->regs->control); 1497 ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout, 1498 PDSP_CTRL_RUNNING); 1499 if (ret < 0) { 1500 dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name); 1501 return ret; 1502 } 1503 return 0; 1504 } 1505 1506 static int knav_queue_load_pdsp(struct knav_device *kdev, 1507 struct knav_pdsp_info *pdsp) 1508 { 1509 int i, ret, fwlen; 1510 const struct firmware *fw; 1511 u32 *fwdata; 1512 1513 ret = request_firmware(&fw, pdsp->firmware, kdev->dev); 1514 if (ret) { 1515 dev_err(kdev->dev, "failed to get firmware %s for pdsp %s\n", 1516 pdsp->firmware, pdsp->name); 1517 return ret; 1518 } 1519 writel_relaxed(pdsp->id + 1, pdsp->command + 0x18); 1520 /* download the firmware */ 1521 fwdata = (u32 *)fw->data; 1522 fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32); 1523 for (i = 0; i < fwlen; i++) 1524 writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i); 1525 1526 release_firmware(fw); 1527 return 0; 1528 } 1529 1530 static int knav_queue_start_pdsp(struct knav_device *kdev, 1531 struct knav_pdsp_info *pdsp) 1532 { 1533 u32 val, timeout = 1000; 1534 int ret; 1535 1536 /* write a command for sync */ 1537 writel_relaxed(0xffffffff, pdsp->command); 1538 while (readl_relaxed(pdsp->command) != 0xffffffff) 1539 cpu_relax(); 1540 1541 /* soft reset the PDSP */ 1542 val = readl_relaxed(&pdsp->regs->control); 1543 val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET); 1544 writel_relaxed(val, &pdsp->regs->control); 1545 1546 /* enable pdsp */ 1547 val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE; 1548 writel_relaxed(val, &pdsp->regs->control); 1549 1550 /* wait for command register to clear */ 1551 ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0); 1552 if (ret < 0) { 1553 dev_err(kdev->dev, 1554 "timed out on pdsp %s command register wait\n", 1555 pdsp->name); 1556 return ret; 1557 } 1558 return 0; 1559 } 1560 1561 static void knav_queue_stop_pdsps(struct knav_device *kdev) 1562 { 1563 struct knav_pdsp_info *pdsp; 1564 1565 /* disable all pdsps */ 1566 for_each_pdsp(kdev, pdsp) 1567 knav_queue_stop_pdsp(kdev, pdsp); 1568 } 1569 1570 static int knav_queue_start_pdsps(struct knav_device *kdev) 1571 { 1572 struct knav_pdsp_info *pdsp; 1573 int ret; 1574 1575 knav_queue_stop_pdsps(kdev); 1576 /* now load them all */ 1577 for_each_pdsp(kdev, pdsp) { 1578 ret = knav_queue_load_pdsp(kdev, pdsp); 1579 if (ret < 0) 1580 return ret; 1581 } 1582 1583 for_each_pdsp(kdev, pdsp) { 1584 ret = knav_queue_start_pdsp(kdev, pdsp); 1585 WARN_ON(ret); 1586 } 1587 return 0; 1588 } 1589 1590 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id) 1591 { 1592 struct knav_qmgr_info *qmgr; 1593 1594 for_each_qmgr(kdev, qmgr) { 1595 if ((id >= qmgr->start_queue) && 1596 (id < qmgr->start_queue + qmgr->num_queues)) 1597 return qmgr; 1598 } 1599 return NULL; 1600 } 1601 1602 static int knav_queue_init_queue(struct knav_device *kdev, 1603 struct knav_range_info *range, 1604 struct knav_queue_inst *inst, 1605 unsigned id) 1606 { 1607 char irq_name[KNAV_NAME_SIZE]; 1608 inst->qmgr = knav_find_qmgr(id); 1609 if (!inst->qmgr) 1610 return -1; 1611 1612 INIT_LIST_HEAD(&inst->handles); 1613 inst->kdev = kdev; 1614 inst->range = range; 1615 inst->irq_num = -1; 1616 inst->id = id; 1617 scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id); 1618 inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL); 1619 1620 if (range->ops && range->ops->init_queue) 1621 return range->ops->init_queue(range, inst); 1622 else 1623 return 0; 1624 } 1625 1626 static int knav_queue_init_queues(struct knav_device *kdev) 1627 { 1628 struct knav_range_info *range; 1629 int size, id, base_idx; 1630 int idx = 0, ret = 0; 1631 1632 /* how much do we need for instance data? */ 1633 size = sizeof(struct knav_queue_inst); 1634 1635 /* round this up to a power of 2, keep the index to instance 1636 * arithmetic fast. 1637 * */ 1638 kdev->inst_shift = order_base_2(size); 1639 size = (1 << kdev->inst_shift) * kdev->num_queues_in_use; 1640 kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL); 1641 if (!kdev->instances) 1642 return -1; 1643 1644 for_each_queue_range(kdev, range) { 1645 if (range->ops && range->ops->init_range) 1646 range->ops->init_range(range); 1647 base_idx = idx; 1648 for (id = range->queue_base; 1649 id < range->queue_base + range->num_queues; id++, idx++) { 1650 ret = knav_queue_init_queue(kdev, range, 1651 knav_queue_idx_to_inst(kdev, idx), id); 1652 if (ret < 0) 1653 return ret; 1654 } 1655 range->queue_base_inst = 1656 knav_queue_idx_to_inst(kdev, base_idx); 1657 } 1658 return 0; 1659 } 1660 1661 static int knav_queue_probe(struct platform_device *pdev) 1662 { 1663 struct device_node *node = pdev->dev.of_node; 1664 struct device_node *qmgrs, *queue_pools, *regions, *pdsps; 1665 struct device *dev = &pdev->dev; 1666 u32 temp[2]; 1667 int ret; 1668 1669 if (!node) { 1670 dev_err(dev, "device tree info unavailable\n"); 1671 return -ENODEV; 1672 } 1673 1674 kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL); 1675 if (!kdev) { 1676 dev_err(dev, "memory allocation failed\n"); 1677 return -ENOMEM; 1678 } 1679 1680 platform_set_drvdata(pdev, kdev); 1681 kdev->dev = dev; 1682 INIT_LIST_HEAD(&kdev->queue_ranges); 1683 INIT_LIST_HEAD(&kdev->qmgrs); 1684 INIT_LIST_HEAD(&kdev->pools); 1685 INIT_LIST_HEAD(&kdev->regions); 1686 INIT_LIST_HEAD(&kdev->pdsps); 1687 1688 pm_runtime_enable(&pdev->dev); 1689 ret = pm_runtime_get_sync(&pdev->dev); 1690 if (ret < 0) { 1691 dev_err(dev, "Failed to enable QMSS\n"); 1692 return ret; 1693 } 1694 1695 if (of_property_read_u32_array(node, "queue-range", temp, 2)) { 1696 dev_err(dev, "queue-range not specified\n"); 1697 ret = -ENODEV; 1698 goto err; 1699 } 1700 kdev->base_id = temp[0]; 1701 kdev->num_queues = temp[1]; 1702 1703 /* Initialize queue managers using device tree configuration */ 1704 qmgrs = of_get_child_by_name(node, "qmgrs"); 1705 if (!qmgrs) { 1706 dev_err(dev, "queue manager info not specified\n"); 1707 ret = -ENODEV; 1708 goto err; 1709 } 1710 ret = knav_queue_init_qmgrs(kdev, qmgrs); 1711 of_node_put(qmgrs); 1712 if (ret) 1713 goto err; 1714 1715 /* get pdsp configuration values from device tree */ 1716 pdsps = of_get_child_by_name(node, "pdsps"); 1717 if (pdsps) { 1718 ret = knav_queue_init_pdsps(kdev, pdsps); 1719 if (ret) 1720 goto err; 1721 1722 ret = knav_queue_start_pdsps(kdev); 1723 if (ret) 1724 goto err; 1725 } 1726 of_node_put(pdsps); 1727 1728 /* get usable queue range values from device tree */ 1729 queue_pools = of_get_child_by_name(node, "queue-pools"); 1730 if (!queue_pools) { 1731 dev_err(dev, "queue-pools not specified\n"); 1732 ret = -ENODEV; 1733 goto err; 1734 } 1735 ret = knav_setup_queue_pools(kdev, queue_pools); 1736 of_node_put(queue_pools); 1737 if (ret) 1738 goto err; 1739 1740 ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]); 1741 if (ret) { 1742 dev_err(kdev->dev, "could not setup linking ram\n"); 1743 goto err; 1744 } 1745 1746 ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]); 1747 if (ret) { 1748 /* 1749 * nothing really, we have one linking ram already, so we just 1750 * live within our means 1751 */ 1752 } 1753 1754 ret = knav_queue_setup_link_ram(kdev); 1755 if (ret) 1756 goto err; 1757 1758 regions = of_get_child_by_name(node, "descriptor-regions"); 1759 if (!regions) { 1760 dev_err(dev, "descriptor-regions not specified\n"); 1761 goto err; 1762 } 1763 ret = knav_queue_setup_regions(kdev, regions); 1764 of_node_put(regions); 1765 if (ret) 1766 goto err; 1767 1768 ret = knav_queue_init_queues(kdev); 1769 if (ret < 0) { 1770 dev_err(dev, "hwqueue initialization failed\n"); 1771 goto err; 1772 } 1773 1774 debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL, 1775 &knav_queue_debug_ops); 1776 return 0; 1777 1778 err: 1779 knav_queue_stop_pdsps(kdev); 1780 knav_queue_free_regions(kdev); 1781 knav_free_queue_ranges(kdev); 1782 pm_runtime_put_sync(&pdev->dev); 1783 pm_runtime_disable(&pdev->dev); 1784 return ret; 1785 } 1786 1787 static int knav_queue_remove(struct platform_device *pdev) 1788 { 1789 /* TODO: Free resources */ 1790 pm_runtime_put_sync(&pdev->dev); 1791 pm_runtime_disable(&pdev->dev); 1792 return 0; 1793 } 1794 1795 /* Match table for of_platform binding */ 1796 static struct of_device_id keystone_qmss_of_match[] = { 1797 { .compatible = "ti,keystone-navigator-qmss", }, 1798 {}, 1799 }; 1800 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match); 1801 1802 static struct platform_driver keystone_qmss_driver = { 1803 .probe = knav_queue_probe, 1804 .remove = knav_queue_remove, 1805 .driver = { 1806 .name = "keystone-navigator-qmss", 1807 .owner = THIS_MODULE, 1808 .of_match_table = keystone_qmss_of_match, 1809 }, 1810 }; 1811 module_platform_driver(keystone_qmss_driver); 1812 1813 MODULE_LICENSE("GPL v2"); 1814 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs"); 1815 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>"); 1816 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>"); 1817