xref: /linux/drivers/soc/tegra/pmc.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 /*
2  * drivers/soc/tegra/pmc.c
3  *
4  * Copyright (c) 2010 Google, Inc
5  *
6  * Author:
7  *	Colin Cross <ccross@google.com>
8  *
9  * This software is licensed under the terms of the GNU General Public
10  * License version 2, as published by the Free Software Foundation, and
11  * may be copied, distributed, and modified under those terms.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  */
19 
20 #define pr_fmt(fmt) "tegra-pmc: " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/clk.h>
24 #include <linux/clk/tegra.h>
25 #include <linux/debugfs.h>
26 #include <linux/delay.h>
27 #include <linux/err.h>
28 #include <linux/export.h>
29 #include <linux/init.h>
30 #include <linux/io.h>
31 #include <linux/iopoll.h>
32 #include <linux/of.h>
33 #include <linux/of_address.h>
34 #include <linux/of_platform.h>
35 #include <linux/platform_device.h>
36 #include <linux/pm_domain.h>
37 #include <linux/reboot.h>
38 #include <linux/reset.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 
43 #include <soc/tegra/common.h>
44 #include <soc/tegra/fuse.h>
45 #include <soc/tegra/pmc.h>
46 
47 #define PMC_CNTRL			0x0
48 #define  PMC_CNTRL_INTR_POLARITY	BIT(17) /* inverts INTR polarity */
49 #define  PMC_CNTRL_CPU_PWRREQ_OE	BIT(16) /* CPU pwr req enable */
50 #define  PMC_CNTRL_CPU_PWRREQ_POLARITY	BIT(15) /* CPU pwr req polarity */
51 #define  PMC_CNTRL_SIDE_EFFECT_LP0	BIT(14) /* LP0 when CPU pwr gated */
52 #define  PMC_CNTRL_SYSCLK_OE		BIT(11) /* system clock enable */
53 #define  PMC_CNTRL_SYSCLK_POLARITY	BIT(10) /* sys clk polarity */
54 #define  PMC_CNTRL_MAIN_RST		BIT(4)
55 
56 #define DPD_SAMPLE			0x020
57 #define  DPD_SAMPLE_ENABLE		BIT(0)
58 #define  DPD_SAMPLE_DISABLE		(0 << 0)
59 
60 #define PWRGATE_TOGGLE			0x30
61 #define  PWRGATE_TOGGLE_START		BIT(8)
62 
63 #define REMOVE_CLAMPING			0x34
64 
65 #define PWRGATE_STATUS			0x38
66 
67 #define PMC_PWR_DET			0x48
68 
69 #define PMC_SCRATCH0_MODE_RECOVERY	BIT(31)
70 #define PMC_SCRATCH0_MODE_BOOTLOADER	BIT(30)
71 #define PMC_SCRATCH0_MODE_RCM		BIT(1)
72 #define PMC_SCRATCH0_MODE_MASK		(PMC_SCRATCH0_MODE_RECOVERY | \
73 					 PMC_SCRATCH0_MODE_BOOTLOADER | \
74 					 PMC_SCRATCH0_MODE_RCM)
75 
76 #define PMC_CPUPWRGOOD_TIMER		0xc8
77 #define PMC_CPUPWROFF_TIMER		0xcc
78 
79 #define PMC_PWR_DET_VALUE		0xe4
80 
81 #define PMC_SCRATCH41			0x140
82 
83 #define PMC_SENSOR_CTRL			0x1b0
84 #define  PMC_SENSOR_CTRL_SCRATCH_WRITE	BIT(2)
85 #define  PMC_SENSOR_CTRL_ENABLE_RST	BIT(1)
86 
87 #define PMC_RST_STATUS			0x1b4
88 #define  PMC_RST_STATUS_POR		0
89 #define  PMC_RST_STATUS_WATCHDOG	1
90 #define  PMC_RST_STATUS_SENSOR		2
91 #define  PMC_RST_STATUS_SW_MAIN		3
92 #define  PMC_RST_STATUS_LP0		4
93 #define  PMC_RST_STATUS_AOTAG		5
94 
95 #define IO_DPD_REQ			0x1b8
96 #define  IO_DPD_REQ_CODE_IDLE		(0U << 30)
97 #define  IO_DPD_REQ_CODE_OFF		(1U << 30)
98 #define  IO_DPD_REQ_CODE_ON		(2U << 30)
99 #define  IO_DPD_REQ_CODE_MASK		(3U << 30)
100 
101 #define IO_DPD_STATUS			0x1bc
102 #define IO_DPD2_REQ			0x1c0
103 #define IO_DPD2_STATUS			0x1c4
104 #define SEL_DPD_TIM			0x1c8
105 
106 #define PMC_SCRATCH54			0x258
107 #define  PMC_SCRATCH54_DATA_SHIFT	8
108 #define  PMC_SCRATCH54_ADDR_SHIFT	0
109 
110 #define PMC_SCRATCH55			0x25c
111 #define  PMC_SCRATCH55_RESET_TEGRA	BIT(31)
112 #define  PMC_SCRATCH55_CNTRL_ID_SHIFT	27
113 #define  PMC_SCRATCH55_PINMUX_SHIFT	24
114 #define  PMC_SCRATCH55_16BITOP		BIT(15)
115 #define  PMC_SCRATCH55_CHECKSUM_SHIFT	16
116 #define  PMC_SCRATCH55_I2CSLV1_SHIFT	0
117 
118 #define GPU_RG_CNTRL			0x2d4
119 
120 /* Tegra186 and later */
121 #define WAKE_AOWAKE_CTRL 0x4f4
122 #define  WAKE_AOWAKE_CTRL_INTR_POLARITY BIT(0)
123 
124 struct tegra_powergate {
125 	struct generic_pm_domain genpd;
126 	struct tegra_pmc *pmc;
127 	unsigned int id;
128 	struct clk **clks;
129 	unsigned int num_clks;
130 	struct reset_control **resets;
131 	unsigned int num_resets;
132 };
133 
134 struct tegra_io_pad_soc {
135 	enum tegra_io_pad id;
136 	unsigned int dpd;
137 	unsigned int voltage;
138 };
139 
140 struct tegra_pmc_regs {
141 	unsigned int scratch0;
142 	unsigned int dpd_req;
143 	unsigned int dpd_status;
144 	unsigned int dpd2_req;
145 	unsigned int dpd2_status;
146 };
147 
148 struct tegra_pmc_soc {
149 	unsigned int num_powergates;
150 	const char *const *powergates;
151 	unsigned int num_cpu_powergates;
152 	const u8 *cpu_powergates;
153 
154 	bool has_tsense_reset;
155 	bool has_gpu_clamps;
156 
157 	const struct tegra_io_pad_soc *io_pads;
158 	unsigned int num_io_pads;
159 
160 	const struct tegra_pmc_regs *regs;
161 	void (*init)(struct tegra_pmc *pmc);
162 	void (*setup_irq_polarity)(struct tegra_pmc *pmc,
163 				   struct device_node *np,
164 				   bool invert);
165 };
166 
167 /**
168  * struct tegra_pmc - NVIDIA Tegra PMC
169  * @dev: pointer to PMC device structure
170  * @base: pointer to I/O remapped register region
171  * @clk: pointer to pclk clock
172  * @soc: pointer to SoC data structure
173  * @debugfs: pointer to debugfs entry
174  * @rate: currently configured rate of pclk
175  * @suspend_mode: lowest suspend mode available
176  * @cpu_good_time: CPU power good time (in microseconds)
177  * @cpu_off_time: CPU power off time (in microsecends)
178  * @core_osc_time: core power good OSC time (in microseconds)
179  * @core_pmu_time: core power good PMU time (in microseconds)
180  * @core_off_time: core power off time (in microseconds)
181  * @corereq_high: core power request is active-high
182  * @sysclkreq_high: system clock request is active-high
183  * @combined_req: combined power request for CPU & core
184  * @cpu_pwr_good_en: CPU power good signal is enabled
185  * @lp0_vec_phys: physical base address of the LP0 warm boot code
186  * @lp0_vec_size: size of the LP0 warm boot code
187  * @powergates_available: Bitmap of available power gates
188  * @powergates_lock: mutex for power gate register access
189  */
190 struct tegra_pmc {
191 	struct device *dev;
192 	void __iomem *base;
193 	void __iomem *wake;
194 	void __iomem *aotag;
195 	void __iomem *scratch;
196 	struct clk *clk;
197 	struct dentry *debugfs;
198 
199 	const struct tegra_pmc_soc *soc;
200 
201 	unsigned long rate;
202 
203 	enum tegra_suspend_mode suspend_mode;
204 	u32 cpu_good_time;
205 	u32 cpu_off_time;
206 	u32 core_osc_time;
207 	u32 core_pmu_time;
208 	u32 core_off_time;
209 	bool corereq_high;
210 	bool sysclkreq_high;
211 	bool combined_req;
212 	bool cpu_pwr_good_en;
213 	u32 lp0_vec_phys;
214 	u32 lp0_vec_size;
215 	DECLARE_BITMAP(powergates_available, TEGRA_POWERGATE_MAX);
216 
217 	struct mutex powergates_lock;
218 };
219 
220 static struct tegra_pmc *pmc = &(struct tegra_pmc) {
221 	.base = NULL,
222 	.suspend_mode = TEGRA_SUSPEND_NONE,
223 };
224 
225 static inline struct tegra_powergate *
226 to_powergate(struct generic_pm_domain *domain)
227 {
228 	return container_of(domain, struct tegra_powergate, genpd);
229 }
230 
231 static u32 tegra_pmc_readl(unsigned long offset)
232 {
233 	return readl(pmc->base + offset);
234 }
235 
236 static void tegra_pmc_writel(u32 value, unsigned long offset)
237 {
238 	writel(value, pmc->base + offset);
239 }
240 
241 static inline bool tegra_powergate_state(int id)
242 {
243 	if (id == TEGRA_POWERGATE_3D && pmc->soc->has_gpu_clamps)
244 		return (tegra_pmc_readl(GPU_RG_CNTRL) & 0x1) == 0;
245 	else
246 		return (tegra_pmc_readl(PWRGATE_STATUS) & BIT(id)) != 0;
247 }
248 
249 static inline bool tegra_powergate_is_valid(int id)
250 {
251 	return (pmc->soc && pmc->soc->powergates[id]);
252 }
253 
254 static inline bool tegra_powergate_is_available(int id)
255 {
256 	return test_bit(id, pmc->powergates_available);
257 }
258 
259 static int tegra_powergate_lookup(struct tegra_pmc *pmc, const char *name)
260 {
261 	unsigned int i;
262 
263 	if (!pmc || !pmc->soc || !name)
264 		return -EINVAL;
265 
266 	for (i = 0; i < pmc->soc->num_powergates; i++) {
267 		if (!tegra_powergate_is_valid(i))
268 			continue;
269 
270 		if (!strcmp(name, pmc->soc->powergates[i]))
271 			return i;
272 	}
273 
274 	return -ENODEV;
275 }
276 
277 /**
278  * tegra_powergate_set() - set the state of a partition
279  * @id: partition ID
280  * @new_state: new state of the partition
281  */
282 static int tegra_powergate_set(unsigned int id, bool new_state)
283 {
284 	bool status;
285 	int err;
286 
287 	if (id == TEGRA_POWERGATE_3D && pmc->soc->has_gpu_clamps)
288 		return -EINVAL;
289 
290 	mutex_lock(&pmc->powergates_lock);
291 
292 	if (tegra_powergate_state(id) == new_state) {
293 		mutex_unlock(&pmc->powergates_lock);
294 		return 0;
295 	}
296 
297 	tegra_pmc_writel(PWRGATE_TOGGLE_START | id, PWRGATE_TOGGLE);
298 
299 	err = readx_poll_timeout(tegra_powergate_state, id, status,
300 				 status == new_state, 10, 100000);
301 
302 	mutex_unlock(&pmc->powergates_lock);
303 
304 	return err;
305 }
306 
307 static int __tegra_powergate_remove_clamping(unsigned int id)
308 {
309 	u32 mask;
310 
311 	mutex_lock(&pmc->powergates_lock);
312 
313 	/*
314 	 * On Tegra124 and later, the clamps for the GPU are controlled by a
315 	 * separate register (with different semantics).
316 	 */
317 	if (id == TEGRA_POWERGATE_3D) {
318 		if (pmc->soc->has_gpu_clamps) {
319 			tegra_pmc_writel(0, GPU_RG_CNTRL);
320 			goto out;
321 		}
322 	}
323 
324 	/*
325 	 * Tegra 2 has a bug where PCIE and VDE clamping masks are
326 	 * swapped relatively to the partition ids
327 	 */
328 	if (id == TEGRA_POWERGATE_VDEC)
329 		mask = (1 << TEGRA_POWERGATE_PCIE);
330 	else if (id == TEGRA_POWERGATE_PCIE)
331 		mask = (1 << TEGRA_POWERGATE_VDEC);
332 	else
333 		mask = (1 << id);
334 
335 	tegra_pmc_writel(mask, REMOVE_CLAMPING);
336 
337 out:
338 	mutex_unlock(&pmc->powergates_lock);
339 
340 	return 0;
341 }
342 
343 static void tegra_powergate_disable_clocks(struct tegra_powergate *pg)
344 {
345 	unsigned int i;
346 
347 	for (i = 0; i < pg->num_clks; i++)
348 		clk_disable_unprepare(pg->clks[i]);
349 }
350 
351 static int tegra_powergate_enable_clocks(struct tegra_powergate *pg)
352 {
353 	unsigned int i;
354 	int err;
355 
356 	for (i = 0; i < pg->num_clks; i++) {
357 		err = clk_prepare_enable(pg->clks[i]);
358 		if (err)
359 			goto out;
360 	}
361 
362 	return 0;
363 
364 out:
365 	while (i--)
366 		clk_disable_unprepare(pg->clks[i]);
367 
368 	return err;
369 }
370 
371 static int tegra_powergate_reset_assert(struct tegra_powergate *pg)
372 {
373 	unsigned int i;
374 	int err;
375 
376 	for (i = 0; i < pg->num_resets; i++) {
377 		err = reset_control_assert(pg->resets[i]);
378 		if (err)
379 			return err;
380 	}
381 
382 	return 0;
383 }
384 
385 static int tegra_powergate_reset_deassert(struct tegra_powergate *pg)
386 {
387 	unsigned int i;
388 	int err;
389 
390 	for (i = 0; i < pg->num_resets; i++) {
391 		err = reset_control_deassert(pg->resets[i]);
392 		if (err)
393 			return err;
394 	}
395 
396 	return 0;
397 }
398 
399 static int tegra_powergate_power_up(struct tegra_powergate *pg,
400 				    bool disable_clocks)
401 {
402 	int err;
403 
404 	err = tegra_powergate_reset_assert(pg);
405 	if (err)
406 		return err;
407 
408 	usleep_range(10, 20);
409 
410 	err = tegra_powergate_set(pg->id, true);
411 	if (err < 0)
412 		return err;
413 
414 	usleep_range(10, 20);
415 
416 	err = tegra_powergate_enable_clocks(pg);
417 	if (err)
418 		goto disable_clks;
419 
420 	usleep_range(10, 20);
421 
422 	err = __tegra_powergate_remove_clamping(pg->id);
423 	if (err)
424 		goto disable_clks;
425 
426 	usleep_range(10, 20);
427 
428 	err = tegra_powergate_reset_deassert(pg);
429 	if (err)
430 		goto powergate_off;
431 
432 	usleep_range(10, 20);
433 
434 	if (disable_clocks)
435 		tegra_powergate_disable_clocks(pg);
436 
437 	return 0;
438 
439 disable_clks:
440 	tegra_powergate_disable_clocks(pg);
441 	usleep_range(10, 20);
442 
443 powergate_off:
444 	tegra_powergate_set(pg->id, false);
445 
446 	return err;
447 }
448 
449 static int tegra_powergate_power_down(struct tegra_powergate *pg)
450 {
451 	int err;
452 
453 	err = tegra_powergate_enable_clocks(pg);
454 	if (err)
455 		return err;
456 
457 	usleep_range(10, 20);
458 
459 	err = tegra_powergate_reset_assert(pg);
460 	if (err)
461 		goto disable_clks;
462 
463 	usleep_range(10, 20);
464 
465 	tegra_powergate_disable_clocks(pg);
466 
467 	usleep_range(10, 20);
468 
469 	err = tegra_powergate_set(pg->id, false);
470 	if (err)
471 		goto assert_resets;
472 
473 	return 0;
474 
475 assert_resets:
476 	tegra_powergate_enable_clocks(pg);
477 	usleep_range(10, 20);
478 	tegra_powergate_reset_deassert(pg);
479 	usleep_range(10, 20);
480 
481 disable_clks:
482 	tegra_powergate_disable_clocks(pg);
483 
484 	return err;
485 }
486 
487 static int tegra_genpd_power_on(struct generic_pm_domain *domain)
488 {
489 	struct tegra_powergate *pg = to_powergate(domain);
490 	int err;
491 
492 	err = tegra_powergate_power_up(pg, true);
493 	if (err)
494 		pr_err("failed to turn on PM domain %s: %d\n", pg->genpd.name,
495 		       err);
496 
497 	return err;
498 }
499 
500 static int tegra_genpd_power_off(struct generic_pm_domain *domain)
501 {
502 	struct tegra_powergate *pg = to_powergate(domain);
503 	int err;
504 
505 	err = tegra_powergate_power_down(pg);
506 	if (err)
507 		pr_err("failed to turn off PM domain %s: %d\n",
508 		       pg->genpd.name, err);
509 
510 	return err;
511 }
512 
513 /**
514  * tegra_powergate_power_on() - power on partition
515  * @id: partition ID
516  */
517 int tegra_powergate_power_on(unsigned int id)
518 {
519 	if (!tegra_powergate_is_available(id))
520 		return -EINVAL;
521 
522 	return tegra_powergate_set(id, true);
523 }
524 
525 /**
526  * tegra_powergate_power_off() - power off partition
527  * @id: partition ID
528  */
529 int tegra_powergate_power_off(unsigned int id)
530 {
531 	if (!tegra_powergate_is_available(id))
532 		return -EINVAL;
533 
534 	return tegra_powergate_set(id, false);
535 }
536 EXPORT_SYMBOL(tegra_powergate_power_off);
537 
538 /**
539  * tegra_powergate_is_powered() - check if partition is powered
540  * @id: partition ID
541  */
542 int tegra_powergate_is_powered(unsigned int id)
543 {
544 	int status;
545 
546 	if (!tegra_powergate_is_valid(id))
547 		return -EINVAL;
548 
549 	mutex_lock(&pmc->powergates_lock);
550 	status = tegra_powergate_state(id);
551 	mutex_unlock(&pmc->powergates_lock);
552 
553 	return status;
554 }
555 
556 /**
557  * tegra_powergate_remove_clamping() - remove power clamps for partition
558  * @id: partition ID
559  */
560 int tegra_powergate_remove_clamping(unsigned int id)
561 {
562 	if (!tegra_powergate_is_available(id))
563 		return -EINVAL;
564 
565 	return __tegra_powergate_remove_clamping(id);
566 }
567 EXPORT_SYMBOL(tegra_powergate_remove_clamping);
568 
569 /**
570  * tegra_powergate_sequence_power_up() - power up partition
571  * @id: partition ID
572  * @clk: clock for partition
573  * @rst: reset for partition
574  *
575  * Must be called with clk disabled, and returns with clk enabled.
576  */
577 int tegra_powergate_sequence_power_up(unsigned int id, struct clk *clk,
578 				      struct reset_control *rst)
579 {
580 	struct tegra_powergate pg;
581 	int err;
582 
583 	if (!tegra_powergate_is_available(id))
584 		return -EINVAL;
585 
586 	pg.id = id;
587 	pg.clks = &clk;
588 	pg.num_clks = 1;
589 	pg.resets = &rst;
590 	pg.num_resets = 1;
591 
592 	err = tegra_powergate_power_up(&pg, false);
593 	if (err)
594 		pr_err("failed to turn on partition %d: %d\n", id, err);
595 
596 	return err;
597 }
598 EXPORT_SYMBOL(tegra_powergate_sequence_power_up);
599 
600 #ifdef CONFIG_SMP
601 /**
602  * tegra_get_cpu_powergate_id() - convert from CPU ID to partition ID
603  * @cpuid: CPU partition ID
604  *
605  * Returns the partition ID corresponding to the CPU partition ID or a
606  * negative error code on failure.
607  */
608 static int tegra_get_cpu_powergate_id(unsigned int cpuid)
609 {
610 	if (pmc->soc && cpuid < pmc->soc->num_cpu_powergates)
611 		return pmc->soc->cpu_powergates[cpuid];
612 
613 	return -EINVAL;
614 }
615 
616 /**
617  * tegra_pmc_cpu_is_powered() - check if CPU partition is powered
618  * @cpuid: CPU partition ID
619  */
620 bool tegra_pmc_cpu_is_powered(unsigned int cpuid)
621 {
622 	int id;
623 
624 	id = tegra_get_cpu_powergate_id(cpuid);
625 	if (id < 0)
626 		return false;
627 
628 	return tegra_powergate_is_powered(id);
629 }
630 
631 /**
632  * tegra_pmc_cpu_power_on() - power on CPU partition
633  * @cpuid: CPU partition ID
634  */
635 int tegra_pmc_cpu_power_on(unsigned int cpuid)
636 {
637 	int id;
638 
639 	id = tegra_get_cpu_powergate_id(cpuid);
640 	if (id < 0)
641 		return id;
642 
643 	return tegra_powergate_set(id, true);
644 }
645 
646 /**
647  * tegra_pmc_cpu_remove_clamping() - remove power clamps for CPU partition
648  * @cpuid: CPU partition ID
649  */
650 int tegra_pmc_cpu_remove_clamping(unsigned int cpuid)
651 {
652 	int id;
653 
654 	id = tegra_get_cpu_powergate_id(cpuid);
655 	if (id < 0)
656 		return id;
657 
658 	return tegra_powergate_remove_clamping(id);
659 }
660 #endif /* CONFIG_SMP */
661 
662 static int tegra_pmc_restart_notify(struct notifier_block *this,
663 				    unsigned long action, void *data)
664 {
665 	const char *cmd = data;
666 	u32 value;
667 
668 	value = readl(pmc->scratch + pmc->soc->regs->scratch0);
669 	value &= ~PMC_SCRATCH0_MODE_MASK;
670 
671 	if (cmd) {
672 		if (strcmp(cmd, "recovery") == 0)
673 			value |= PMC_SCRATCH0_MODE_RECOVERY;
674 
675 		if (strcmp(cmd, "bootloader") == 0)
676 			value |= PMC_SCRATCH0_MODE_BOOTLOADER;
677 
678 		if (strcmp(cmd, "forced-recovery") == 0)
679 			value |= PMC_SCRATCH0_MODE_RCM;
680 	}
681 
682 	writel(value, pmc->scratch + pmc->soc->regs->scratch0);
683 
684 	/* reset everything but PMC_SCRATCH0 and PMC_RST_STATUS */
685 	value = tegra_pmc_readl(PMC_CNTRL);
686 	value |= PMC_CNTRL_MAIN_RST;
687 	tegra_pmc_writel(value, PMC_CNTRL);
688 
689 	return NOTIFY_DONE;
690 }
691 
692 static struct notifier_block tegra_pmc_restart_handler = {
693 	.notifier_call = tegra_pmc_restart_notify,
694 	.priority = 128,
695 };
696 
697 static int powergate_show(struct seq_file *s, void *data)
698 {
699 	unsigned int i;
700 	int status;
701 
702 	seq_printf(s, " powergate powered\n");
703 	seq_printf(s, "------------------\n");
704 
705 	for (i = 0; i < pmc->soc->num_powergates; i++) {
706 		status = tegra_powergate_is_powered(i);
707 		if (status < 0)
708 			continue;
709 
710 		seq_printf(s, " %9s %7s\n", pmc->soc->powergates[i],
711 			   status ? "yes" : "no");
712 	}
713 
714 	return 0;
715 }
716 
717 static int powergate_open(struct inode *inode, struct file *file)
718 {
719 	return single_open(file, powergate_show, inode->i_private);
720 }
721 
722 static const struct file_operations powergate_fops = {
723 	.open = powergate_open,
724 	.read = seq_read,
725 	.llseek = seq_lseek,
726 	.release = single_release,
727 };
728 
729 static int tegra_powergate_debugfs_init(void)
730 {
731 	pmc->debugfs = debugfs_create_file("powergate", S_IRUGO, NULL, NULL,
732 					   &powergate_fops);
733 	if (!pmc->debugfs)
734 		return -ENOMEM;
735 
736 	return 0;
737 }
738 
739 static int tegra_powergate_of_get_clks(struct tegra_powergate *pg,
740 				       struct device_node *np)
741 {
742 	struct clk *clk;
743 	unsigned int i, count;
744 	int err;
745 
746 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
747 	if (count == 0)
748 		return -ENODEV;
749 
750 	pg->clks = kcalloc(count, sizeof(clk), GFP_KERNEL);
751 	if (!pg->clks)
752 		return -ENOMEM;
753 
754 	for (i = 0; i < count; i++) {
755 		pg->clks[i] = of_clk_get(np, i);
756 		if (IS_ERR(pg->clks[i])) {
757 			err = PTR_ERR(pg->clks[i]);
758 			goto err;
759 		}
760 	}
761 
762 	pg->num_clks = count;
763 
764 	return 0;
765 
766 err:
767 	while (i--)
768 		clk_put(pg->clks[i]);
769 
770 	kfree(pg->clks);
771 
772 	return err;
773 }
774 
775 static int tegra_powergate_of_get_resets(struct tegra_powergate *pg,
776 					 struct device_node *np, bool off)
777 {
778 	struct reset_control *rst;
779 	unsigned int i, count;
780 	int err;
781 
782 	count = of_count_phandle_with_args(np, "resets", "#reset-cells");
783 	if (count == 0)
784 		return -ENODEV;
785 
786 	pg->resets = kcalloc(count, sizeof(rst), GFP_KERNEL);
787 	if (!pg->resets)
788 		return -ENOMEM;
789 
790 	for (i = 0; i < count; i++) {
791 		pg->resets[i] = of_reset_control_get_by_index(np, i);
792 		if (IS_ERR(pg->resets[i])) {
793 			err = PTR_ERR(pg->resets[i]);
794 			goto error;
795 		}
796 
797 		if (off)
798 			err = reset_control_assert(pg->resets[i]);
799 		else
800 			err = reset_control_deassert(pg->resets[i]);
801 
802 		if (err) {
803 			reset_control_put(pg->resets[i]);
804 			goto error;
805 		}
806 	}
807 
808 	pg->num_resets = count;
809 
810 	return 0;
811 
812 error:
813 	while (i--)
814 		reset_control_put(pg->resets[i]);
815 
816 	kfree(pg->resets);
817 
818 	return err;
819 }
820 
821 static void tegra_powergate_add(struct tegra_pmc *pmc, struct device_node *np)
822 {
823 	struct tegra_powergate *pg;
824 	int id, err;
825 	bool off;
826 
827 	pg = kzalloc(sizeof(*pg), GFP_KERNEL);
828 	if (!pg)
829 		return;
830 
831 	id = tegra_powergate_lookup(pmc, np->name);
832 	if (id < 0) {
833 		pr_err("powergate lookup failed for %s: %d\n", np->name, id);
834 		goto free_mem;
835 	}
836 
837 	/*
838 	 * Clear the bit for this powergate so it cannot be managed
839 	 * directly via the legacy APIs for controlling powergates.
840 	 */
841 	clear_bit(id, pmc->powergates_available);
842 
843 	pg->id = id;
844 	pg->genpd.name = np->name;
845 	pg->genpd.power_off = tegra_genpd_power_off;
846 	pg->genpd.power_on = tegra_genpd_power_on;
847 	pg->pmc = pmc;
848 
849 	off = !tegra_powergate_is_powered(pg->id);
850 
851 	err = tegra_powergate_of_get_clks(pg, np);
852 	if (err < 0) {
853 		pr_err("failed to get clocks for %s: %d\n", np->name, err);
854 		goto set_available;
855 	}
856 
857 	err = tegra_powergate_of_get_resets(pg, np, off);
858 	if (err < 0) {
859 		pr_err("failed to get resets for %s: %d\n", np->name, err);
860 		goto remove_clks;
861 	}
862 
863 	if (!IS_ENABLED(CONFIG_PM_GENERIC_DOMAINS)) {
864 		if (off)
865 			WARN_ON(tegra_powergate_power_up(pg, true));
866 
867 		goto remove_resets;
868 	}
869 
870 	/*
871 	 * FIXME: If XHCI is enabled for Tegra, then power-up the XUSB
872 	 * host and super-speed partitions. Once the XHCI driver
873 	 * manages the partitions itself this code can be removed. Note
874 	 * that we don't register these partitions with the genpd core
875 	 * to avoid it from powering down the partitions as they appear
876 	 * to be unused.
877 	 */
878 	if (IS_ENABLED(CONFIG_USB_XHCI_TEGRA) &&
879 	    (id == TEGRA_POWERGATE_XUSBA || id == TEGRA_POWERGATE_XUSBC)) {
880 		if (off)
881 			WARN_ON(tegra_powergate_power_up(pg, true));
882 
883 		goto remove_resets;
884 	}
885 
886 	err = pm_genpd_init(&pg->genpd, NULL, off);
887 	if (err < 0) {
888 		pr_err("failed to initialise PM domain %s: %d\n", np->name,
889 		       err);
890 		goto remove_resets;
891 	}
892 
893 	err = of_genpd_add_provider_simple(np, &pg->genpd);
894 	if (err < 0) {
895 		pr_err("failed to add PM domain provider for %s: %d\n",
896 		       np->name, err);
897 		goto remove_genpd;
898 	}
899 
900 	pr_debug("added PM domain %s\n", pg->genpd.name);
901 
902 	return;
903 
904 remove_genpd:
905 	pm_genpd_remove(&pg->genpd);
906 
907 remove_resets:
908 	while (pg->num_resets--)
909 		reset_control_put(pg->resets[pg->num_resets]);
910 
911 	kfree(pg->resets);
912 
913 remove_clks:
914 	while (pg->num_clks--)
915 		clk_put(pg->clks[pg->num_clks]);
916 
917 	kfree(pg->clks);
918 
919 set_available:
920 	set_bit(id, pmc->powergates_available);
921 
922 free_mem:
923 	kfree(pg);
924 }
925 
926 static void tegra_powergate_init(struct tegra_pmc *pmc,
927 				 struct device_node *parent)
928 {
929 	struct device_node *np, *child;
930 	unsigned int i;
931 
932 	/* Create a bitmap of the available and valid partitions */
933 	for (i = 0; i < pmc->soc->num_powergates; i++)
934 		if (pmc->soc->powergates[i])
935 			set_bit(i, pmc->powergates_available);
936 
937 	np = of_get_child_by_name(parent, "powergates");
938 	if (!np)
939 		return;
940 
941 	for_each_child_of_node(np, child)
942 		tegra_powergate_add(pmc, child);
943 
944 	of_node_put(np);
945 }
946 
947 static const struct tegra_io_pad_soc *
948 tegra_io_pad_find(struct tegra_pmc *pmc, enum tegra_io_pad id)
949 {
950 	unsigned int i;
951 
952 	for (i = 0; i < pmc->soc->num_io_pads; i++)
953 		if (pmc->soc->io_pads[i].id == id)
954 			return &pmc->soc->io_pads[i];
955 
956 	return NULL;
957 }
958 
959 static int tegra_io_pad_prepare(enum tegra_io_pad id, unsigned long *request,
960 				unsigned long *status, u32 *mask)
961 {
962 	const struct tegra_io_pad_soc *pad;
963 	unsigned long rate, value;
964 
965 	pad = tegra_io_pad_find(pmc, id);
966 	if (!pad) {
967 		pr_err("invalid I/O pad ID %u\n", id);
968 		return -ENOENT;
969 	}
970 
971 	if (pad->dpd == UINT_MAX)
972 		return -ENOTSUPP;
973 
974 	*mask = BIT(pad->dpd % 32);
975 
976 	if (pad->dpd < 32) {
977 		*status = pmc->soc->regs->dpd_status;
978 		*request = pmc->soc->regs->dpd_req;
979 	} else {
980 		*status = pmc->soc->regs->dpd2_status;
981 		*request = pmc->soc->regs->dpd2_req;
982 	}
983 
984 	if (pmc->clk) {
985 		rate = clk_get_rate(pmc->clk);
986 		if (!rate) {
987 			pr_err("failed to get clock rate\n");
988 			return -ENODEV;
989 		}
990 
991 		tegra_pmc_writel(DPD_SAMPLE_ENABLE, DPD_SAMPLE);
992 
993 		/* must be at least 200 ns, in APB (PCLK) clock cycles */
994 		value = DIV_ROUND_UP(1000000000, rate);
995 		value = DIV_ROUND_UP(200, value);
996 		tegra_pmc_writel(value, SEL_DPD_TIM);
997 	}
998 
999 	return 0;
1000 }
1001 
1002 static int tegra_io_pad_poll(unsigned long offset, u32 mask,
1003 			     u32 val, unsigned long timeout)
1004 {
1005 	u32 value;
1006 
1007 	timeout = jiffies + msecs_to_jiffies(timeout);
1008 
1009 	while (time_after(timeout, jiffies)) {
1010 		value = tegra_pmc_readl(offset);
1011 		if ((value & mask) == val)
1012 			return 0;
1013 
1014 		usleep_range(250, 1000);
1015 	}
1016 
1017 	return -ETIMEDOUT;
1018 }
1019 
1020 static void tegra_io_pad_unprepare(void)
1021 {
1022 	if (pmc->clk)
1023 		tegra_pmc_writel(DPD_SAMPLE_DISABLE, DPD_SAMPLE);
1024 }
1025 
1026 /**
1027  * tegra_io_pad_power_enable() - enable power to I/O pad
1028  * @id: Tegra I/O pad ID for which to enable power
1029  *
1030  * Returns: 0 on success or a negative error code on failure.
1031  */
1032 int tegra_io_pad_power_enable(enum tegra_io_pad id)
1033 {
1034 	unsigned long request, status;
1035 	u32 mask;
1036 	int err;
1037 
1038 	mutex_lock(&pmc->powergates_lock);
1039 
1040 	err = tegra_io_pad_prepare(id, &request, &status, &mask);
1041 	if (err < 0) {
1042 		pr_err("failed to prepare I/O pad: %d\n", err);
1043 		goto unlock;
1044 	}
1045 
1046 	tegra_pmc_writel(IO_DPD_REQ_CODE_OFF | mask, request);
1047 
1048 	err = tegra_io_pad_poll(status, mask, 0, 250);
1049 	if (err < 0) {
1050 		pr_err("failed to enable I/O pad: %d\n", err);
1051 		goto unlock;
1052 	}
1053 
1054 	tegra_io_pad_unprepare();
1055 
1056 unlock:
1057 	mutex_unlock(&pmc->powergates_lock);
1058 	return err;
1059 }
1060 EXPORT_SYMBOL(tegra_io_pad_power_enable);
1061 
1062 /**
1063  * tegra_io_pad_power_disable() - disable power to I/O pad
1064  * @id: Tegra I/O pad ID for which to disable power
1065  *
1066  * Returns: 0 on success or a negative error code on failure.
1067  */
1068 int tegra_io_pad_power_disable(enum tegra_io_pad id)
1069 {
1070 	unsigned long request, status;
1071 	u32 mask;
1072 	int err;
1073 
1074 	mutex_lock(&pmc->powergates_lock);
1075 
1076 	err = tegra_io_pad_prepare(id, &request, &status, &mask);
1077 	if (err < 0) {
1078 		pr_err("failed to prepare I/O pad: %d\n", err);
1079 		goto unlock;
1080 	}
1081 
1082 	tegra_pmc_writel(IO_DPD_REQ_CODE_ON | mask, request);
1083 
1084 	err = tegra_io_pad_poll(status, mask, mask, 250);
1085 	if (err < 0) {
1086 		pr_err("failed to disable I/O pad: %d\n", err);
1087 		goto unlock;
1088 	}
1089 
1090 	tegra_io_pad_unprepare();
1091 
1092 unlock:
1093 	mutex_unlock(&pmc->powergates_lock);
1094 	return err;
1095 }
1096 EXPORT_SYMBOL(tegra_io_pad_power_disable);
1097 
1098 int tegra_io_pad_set_voltage(enum tegra_io_pad id,
1099 			     enum tegra_io_pad_voltage voltage)
1100 {
1101 	const struct tegra_io_pad_soc *pad;
1102 	u32 value;
1103 
1104 	pad = tegra_io_pad_find(pmc, id);
1105 	if (!pad)
1106 		return -ENOENT;
1107 
1108 	if (pad->voltage == UINT_MAX)
1109 		return -ENOTSUPP;
1110 
1111 	mutex_lock(&pmc->powergates_lock);
1112 
1113 	/* write-enable PMC_PWR_DET_VALUE[pad->voltage] */
1114 	value = tegra_pmc_readl(PMC_PWR_DET);
1115 	value |= BIT(pad->voltage);
1116 	tegra_pmc_writel(value, PMC_PWR_DET);
1117 
1118 	/* update I/O voltage */
1119 	value = tegra_pmc_readl(PMC_PWR_DET_VALUE);
1120 
1121 	if (voltage == TEGRA_IO_PAD_1800000UV)
1122 		value &= ~BIT(pad->voltage);
1123 	else
1124 		value |= BIT(pad->voltage);
1125 
1126 	tegra_pmc_writel(value, PMC_PWR_DET_VALUE);
1127 
1128 	mutex_unlock(&pmc->powergates_lock);
1129 
1130 	usleep_range(100, 250);
1131 
1132 	return 0;
1133 }
1134 EXPORT_SYMBOL(tegra_io_pad_set_voltage);
1135 
1136 int tegra_io_pad_get_voltage(enum tegra_io_pad id)
1137 {
1138 	const struct tegra_io_pad_soc *pad;
1139 	u32 value;
1140 
1141 	pad = tegra_io_pad_find(pmc, id);
1142 	if (!pad)
1143 		return -ENOENT;
1144 
1145 	if (pad->voltage == UINT_MAX)
1146 		return -ENOTSUPP;
1147 
1148 	value = tegra_pmc_readl(PMC_PWR_DET_VALUE);
1149 
1150 	if ((value & BIT(pad->voltage)) == 0)
1151 		return TEGRA_IO_PAD_1800000UV;
1152 
1153 	return TEGRA_IO_PAD_3300000UV;
1154 }
1155 EXPORT_SYMBOL(tegra_io_pad_get_voltage);
1156 
1157 /**
1158  * tegra_io_rail_power_on() - enable power to I/O rail
1159  * @id: Tegra I/O pad ID for which to enable power
1160  *
1161  * See also: tegra_io_pad_power_enable()
1162  */
1163 int tegra_io_rail_power_on(unsigned int id)
1164 {
1165 	return tegra_io_pad_power_enable(id);
1166 }
1167 EXPORT_SYMBOL(tegra_io_rail_power_on);
1168 
1169 /**
1170  * tegra_io_rail_power_off() - disable power to I/O rail
1171  * @id: Tegra I/O pad ID for which to disable power
1172  *
1173  * See also: tegra_io_pad_power_disable()
1174  */
1175 int tegra_io_rail_power_off(unsigned int id)
1176 {
1177 	return tegra_io_pad_power_disable(id);
1178 }
1179 EXPORT_SYMBOL(tegra_io_rail_power_off);
1180 
1181 #ifdef CONFIG_PM_SLEEP
1182 enum tegra_suspend_mode tegra_pmc_get_suspend_mode(void)
1183 {
1184 	return pmc->suspend_mode;
1185 }
1186 
1187 void tegra_pmc_set_suspend_mode(enum tegra_suspend_mode mode)
1188 {
1189 	if (mode < TEGRA_SUSPEND_NONE || mode >= TEGRA_MAX_SUSPEND_MODE)
1190 		return;
1191 
1192 	pmc->suspend_mode = mode;
1193 }
1194 
1195 void tegra_pmc_enter_suspend_mode(enum tegra_suspend_mode mode)
1196 {
1197 	unsigned long long rate = 0;
1198 	u32 value;
1199 
1200 	switch (mode) {
1201 	case TEGRA_SUSPEND_LP1:
1202 		rate = 32768;
1203 		break;
1204 
1205 	case TEGRA_SUSPEND_LP2:
1206 		rate = clk_get_rate(pmc->clk);
1207 		break;
1208 
1209 	default:
1210 		break;
1211 	}
1212 
1213 	if (WARN_ON_ONCE(rate == 0))
1214 		rate = 100000000;
1215 
1216 	if (rate != pmc->rate) {
1217 		u64 ticks;
1218 
1219 		ticks = pmc->cpu_good_time * rate + USEC_PER_SEC - 1;
1220 		do_div(ticks, USEC_PER_SEC);
1221 		tegra_pmc_writel(ticks, PMC_CPUPWRGOOD_TIMER);
1222 
1223 		ticks = pmc->cpu_off_time * rate + USEC_PER_SEC - 1;
1224 		do_div(ticks, USEC_PER_SEC);
1225 		tegra_pmc_writel(ticks, PMC_CPUPWROFF_TIMER);
1226 
1227 		wmb();
1228 
1229 		pmc->rate = rate;
1230 	}
1231 
1232 	value = tegra_pmc_readl(PMC_CNTRL);
1233 	value &= ~PMC_CNTRL_SIDE_EFFECT_LP0;
1234 	value |= PMC_CNTRL_CPU_PWRREQ_OE;
1235 	tegra_pmc_writel(value, PMC_CNTRL);
1236 }
1237 #endif
1238 
1239 static int tegra_pmc_parse_dt(struct tegra_pmc *pmc, struct device_node *np)
1240 {
1241 	u32 value, values[2];
1242 
1243 	if (of_property_read_u32(np, "nvidia,suspend-mode", &value)) {
1244 	} else {
1245 		switch (value) {
1246 		case 0:
1247 			pmc->suspend_mode = TEGRA_SUSPEND_LP0;
1248 			break;
1249 
1250 		case 1:
1251 			pmc->suspend_mode = TEGRA_SUSPEND_LP1;
1252 			break;
1253 
1254 		case 2:
1255 			pmc->suspend_mode = TEGRA_SUSPEND_LP2;
1256 			break;
1257 
1258 		default:
1259 			pmc->suspend_mode = TEGRA_SUSPEND_NONE;
1260 			break;
1261 		}
1262 	}
1263 
1264 	pmc->suspend_mode = tegra_pm_validate_suspend_mode(pmc->suspend_mode);
1265 
1266 	if (of_property_read_u32(np, "nvidia,cpu-pwr-good-time", &value))
1267 		pmc->suspend_mode = TEGRA_SUSPEND_NONE;
1268 
1269 	pmc->cpu_good_time = value;
1270 
1271 	if (of_property_read_u32(np, "nvidia,cpu-pwr-off-time", &value))
1272 		pmc->suspend_mode = TEGRA_SUSPEND_NONE;
1273 
1274 	pmc->cpu_off_time = value;
1275 
1276 	if (of_property_read_u32_array(np, "nvidia,core-pwr-good-time",
1277 				       values, ARRAY_SIZE(values)))
1278 		pmc->suspend_mode = TEGRA_SUSPEND_NONE;
1279 
1280 	pmc->core_osc_time = values[0];
1281 	pmc->core_pmu_time = values[1];
1282 
1283 	if (of_property_read_u32(np, "nvidia,core-pwr-off-time", &value))
1284 		pmc->suspend_mode = TEGRA_SUSPEND_NONE;
1285 
1286 	pmc->core_off_time = value;
1287 
1288 	pmc->corereq_high = of_property_read_bool(np,
1289 				"nvidia,core-power-req-active-high");
1290 
1291 	pmc->sysclkreq_high = of_property_read_bool(np,
1292 				"nvidia,sys-clock-req-active-high");
1293 
1294 	pmc->combined_req = of_property_read_bool(np,
1295 				"nvidia,combined-power-req");
1296 
1297 	pmc->cpu_pwr_good_en = of_property_read_bool(np,
1298 				"nvidia,cpu-pwr-good-en");
1299 
1300 	if (of_property_read_u32_array(np, "nvidia,lp0-vec", values,
1301 				       ARRAY_SIZE(values)))
1302 		if (pmc->suspend_mode == TEGRA_SUSPEND_LP0)
1303 			pmc->suspend_mode = TEGRA_SUSPEND_LP1;
1304 
1305 	pmc->lp0_vec_phys = values[0];
1306 	pmc->lp0_vec_size = values[1];
1307 
1308 	return 0;
1309 }
1310 
1311 static void tegra_pmc_init(struct tegra_pmc *pmc)
1312 {
1313 	if (pmc->soc->init)
1314 		pmc->soc->init(pmc);
1315 }
1316 
1317 static void tegra_pmc_init_tsense_reset(struct tegra_pmc *pmc)
1318 {
1319 	static const char disabled[] = "emergency thermal reset disabled";
1320 	u32 pmu_addr, ctrl_id, reg_addr, reg_data, pinmux;
1321 	struct device *dev = pmc->dev;
1322 	struct device_node *np;
1323 	u32 value, checksum;
1324 
1325 	if (!pmc->soc->has_tsense_reset)
1326 		return;
1327 
1328 	np = of_find_node_by_name(pmc->dev->of_node, "i2c-thermtrip");
1329 	if (!np) {
1330 		dev_warn(dev, "i2c-thermtrip node not found, %s.\n", disabled);
1331 		return;
1332 	}
1333 
1334 	if (of_property_read_u32(np, "nvidia,i2c-controller-id", &ctrl_id)) {
1335 		dev_err(dev, "I2C controller ID missing, %s.\n", disabled);
1336 		goto out;
1337 	}
1338 
1339 	if (of_property_read_u32(np, "nvidia,bus-addr", &pmu_addr)) {
1340 		dev_err(dev, "nvidia,bus-addr missing, %s.\n", disabled);
1341 		goto out;
1342 	}
1343 
1344 	if (of_property_read_u32(np, "nvidia,reg-addr", &reg_addr)) {
1345 		dev_err(dev, "nvidia,reg-addr missing, %s.\n", disabled);
1346 		goto out;
1347 	}
1348 
1349 	if (of_property_read_u32(np, "nvidia,reg-data", &reg_data)) {
1350 		dev_err(dev, "nvidia,reg-data missing, %s.\n", disabled);
1351 		goto out;
1352 	}
1353 
1354 	if (of_property_read_u32(np, "nvidia,pinmux-id", &pinmux))
1355 		pinmux = 0;
1356 
1357 	value = tegra_pmc_readl(PMC_SENSOR_CTRL);
1358 	value |= PMC_SENSOR_CTRL_SCRATCH_WRITE;
1359 	tegra_pmc_writel(value, PMC_SENSOR_CTRL);
1360 
1361 	value = (reg_data << PMC_SCRATCH54_DATA_SHIFT) |
1362 		(reg_addr << PMC_SCRATCH54_ADDR_SHIFT);
1363 	tegra_pmc_writel(value, PMC_SCRATCH54);
1364 
1365 	value = PMC_SCRATCH55_RESET_TEGRA;
1366 	value |= ctrl_id << PMC_SCRATCH55_CNTRL_ID_SHIFT;
1367 	value |= pinmux << PMC_SCRATCH55_PINMUX_SHIFT;
1368 	value |= pmu_addr << PMC_SCRATCH55_I2CSLV1_SHIFT;
1369 
1370 	/*
1371 	 * Calculate checksum of SCRATCH54, SCRATCH55 fields. Bits 23:16 will
1372 	 * contain the checksum and are currently zero, so they are not added.
1373 	 */
1374 	checksum = reg_addr + reg_data + (value & 0xff) + ((value >> 8) & 0xff)
1375 		+ ((value >> 24) & 0xff);
1376 	checksum &= 0xff;
1377 	checksum = 0x100 - checksum;
1378 
1379 	value |= checksum << PMC_SCRATCH55_CHECKSUM_SHIFT;
1380 
1381 	tegra_pmc_writel(value, PMC_SCRATCH55);
1382 
1383 	value = tegra_pmc_readl(PMC_SENSOR_CTRL);
1384 	value |= PMC_SENSOR_CTRL_ENABLE_RST;
1385 	tegra_pmc_writel(value, PMC_SENSOR_CTRL);
1386 
1387 	dev_info(pmc->dev, "emergency thermal reset enabled\n");
1388 
1389 out:
1390 	of_node_put(np);
1391 }
1392 
1393 static int tegra_pmc_probe(struct platform_device *pdev)
1394 {
1395 	void __iomem *base;
1396 	struct resource *res;
1397 	int err;
1398 
1399 	/*
1400 	 * Early initialisation should have configured an initial
1401 	 * register mapping and setup the soc data pointer. If these
1402 	 * are not valid then something went badly wrong!
1403 	 */
1404 	if (WARN_ON(!pmc->base || !pmc->soc))
1405 		return -ENODEV;
1406 
1407 	err = tegra_pmc_parse_dt(pmc, pdev->dev.of_node);
1408 	if (err < 0)
1409 		return err;
1410 
1411 	/* take over the memory region from the early initialization */
1412 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1413 	base = devm_ioremap_resource(&pdev->dev, res);
1414 	if (IS_ERR(base))
1415 		return PTR_ERR(base);
1416 
1417 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "wake");
1418 	if (res) {
1419 		pmc->wake = devm_ioremap_resource(&pdev->dev, res);
1420 		if (IS_ERR(pmc->wake))
1421 			return PTR_ERR(pmc->wake);
1422 	} else {
1423 		pmc->wake = base;
1424 	}
1425 
1426 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "aotag");
1427 	if (res) {
1428 		pmc->aotag = devm_ioremap_resource(&pdev->dev, res);
1429 		if (IS_ERR(pmc->aotag))
1430 			return PTR_ERR(pmc->aotag);
1431 	} else {
1432 		pmc->aotag = base;
1433 	}
1434 
1435 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "scratch");
1436 	if (res) {
1437 		pmc->scratch = devm_ioremap_resource(&pdev->dev, res);
1438 		if (IS_ERR(pmc->scratch))
1439 			return PTR_ERR(pmc->scratch);
1440 	} else {
1441 		pmc->scratch = base;
1442 	}
1443 
1444 	pmc->clk = devm_clk_get(&pdev->dev, "pclk");
1445 	if (IS_ERR(pmc->clk)) {
1446 		err = PTR_ERR(pmc->clk);
1447 
1448 		if (err != -ENOENT) {
1449 			dev_err(&pdev->dev, "failed to get pclk: %d\n", err);
1450 			return err;
1451 		}
1452 
1453 		pmc->clk = NULL;
1454 	}
1455 
1456 	pmc->dev = &pdev->dev;
1457 
1458 	tegra_pmc_init(pmc);
1459 
1460 	tegra_pmc_init_tsense_reset(pmc);
1461 
1462 	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1463 		err = tegra_powergate_debugfs_init();
1464 		if (err < 0)
1465 			return err;
1466 	}
1467 
1468 	err = register_restart_handler(&tegra_pmc_restart_handler);
1469 	if (err) {
1470 		debugfs_remove(pmc->debugfs);
1471 		dev_err(&pdev->dev, "unable to register restart handler, %d\n",
1472 			err);
1473 		return err;
1474 	}
1475 
1476 	mutex_lock(&pmc->powergates_lock);
1477 	iounmap(pmc->base);
1478 	pmc->base = base;
1479 	mutex_unlock(&pmc->powergates_lock);
1480 
1481 	return 0;
1482 }
1483 
1484 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_ARM)
1485 static int tegra_pmc_suspend(struct device *dev)
1486 {
1487 	tegra_pmc_writel(virt_to_phys(tegra_resume), PMC_SCRATCH41);
1488 
1489 	return 0;
1490 }
1491 
1492 static int tegra_pmc_resume(struct device *dev)
1493 {
1494 	tegra_pmc_writel(0x0, PMC_SCRATCH41);
1495 
1496 	return 0;
1497 }
1498 
1499 static SIMPLE_DEV_PM_OPS(tegra_pmc_pm_ops, tegra_pmc_suspend, tegra_pmc_resume);
1500 
1501 #endif
1502 
1503 static const char * const tegra20_powergates[] = {
1504 	[TEGRA_POWERGATE_CPU] = "cpu",
1505 	[TEGRA_POWERGATE_3D] = "3d",
1506 	[TEGRA_POWERGATE_VENC] = "venc",
1507 	[TEGRA_POWERGATE_VDEC] = "vdec",
1508 	[TEGRA_POWERGATE_PCIE] = "pcie",
1509 	[TEGRA_POWERGATE_L2] = "l2",
1510 	[TEGRA_POWERGATE_MPE] = "mpe",
1511 };
1512 
1513 static const struct tegra_pmc_regs tegra20_pmc_regs = {
1514 	.scratch0 = 0x50,
1515 	.dpd_req = 0x1b8,
1516 	.dpd_status = 0x1bc,
1517 	.dpd2_req = 0x1c0,
1518 	.dpd2_status = 0x1c4,
1519 };
1520 
1521 static void tegra20_pmc_init(struct tegra_pmc *pmc)
1522 {
1523 	u32 value;
1524 
1525 	/* Always enable CPU power request */
1526 	value = tegra_pmc_readl(PMC_CNTRL);
1527 	value |= PMC_CNTRL_CPU_PWRREQ_OE;
1528 	tegra_pmc_writel(value, PMC_CNTRL);
1529 
1530 	value = tegra_pmc_readl(PMC_CNTRL);
1531 
1532 	if (pmc->sysclkreq_high)
1533 		value &= ~PMC_CNTRL_SYSCLK_POLARITY;
1534 	else
1535 		value |= PMC_CNTRL_SYSCLK_POLARITY;
1536 
1537 	/* configure the output polarity while the request is tristated */
1538 	tegra_pmc_writel(value, PMC_CNTRL);
1539 
1540 	/* now enable the request */
1541 	value = tegra_pmc_readl(PMC_CNTRL);
1542 	value |= PMC_CNTRL_SYSCLK_OE;
1543 	tegra_pmc_writel(value, PMC_CNTRL);
1544 }
1545 
1546 static void tegra20_pmc_setup_irq_polarity(struct tegra_pmc *pmc,
1547 					   struct device_node *np,
1548 					   bool invert)
1549 {
1550 	u32 value;
1551 
1552 	value = tegra_pmc_readl(PMC_CNTRL);
1553 
1554 	if (invert)
1555 		value |= PMC_CNTRL_INTR_POLARITY;
1556 	else
1557 		value &= ~PMC_CNTRL_INTR_POLARITY;
1558 
1559 	tegra_pmc_writel(value, PMC_CNTRL);
1560 }
1561 
1562 static const struct tegra_pmc_soc tegra20_pmc_soc = {
1563 	.num_powergates = ARRAY_SIZE(tegra20_powergates),
1564 	.powergates = tegra20_powergates,
1565 	.num_cpu_powergates = 0,
1566 	.cpu_powergates = NULL,
1567 	.has_tsense_reset = false,
1568 	.has_gpu_clamps = false,
1569 	.num_io_pads = 0,
1570 	.io_pads = NULL,
1571 	.regs = &tegra20_pmc_regs,
1572 	.init = tegra20_pmc_init,
1573 	.setup_irq_polarity = tegra20_pmc_setup_irq_polarity,
1574 };
1575 
1576 static const char * const tegra30_powergates[] = {
1577 	[TEGRA_POWERGATE_CPU] = "cpu0",
1578 	[TEGRA_POWERGATE_3D] = "3d0",
1579 	[TEGRA_POWERGATE_VENC] = "venc",
1580 	[TEGRA_POWERGATE_VDEC] = "vdec",
1581 	[TEGRA_POWERGATE_PCIE] = "pcie",
1582 	[TEGRA_POWERGATE_L2] = "l2",
1583 	[TEGRA_POWERGATE_MPE] = "mpe",
1584 	[TEGRA_POWERGATE_HEG] = "heg",
1585 	[TEGRA_POWERGATE_SATA] = "sata",
1586 	[TEGRA_POWERGATE_CPU1] = "cpu1",
1587 	[TEGRA_POWERGATE_CPU2] = "cpu2",
1588 	[TEGRA_POWERGATE_CPU3] = "cpu3",
1589 	[TEGRA_POWERGATE_CELP] = "celp",
1590 	[TEGRA_POWERGATE_3D1] = "3d1",
1591 };
1592 
1593 static const u8 tegra30_cpu_powergates[] = {
1594 	TEGRA_POWERGATE_CPU,
1595 	TEGRA_POWERGATE_CPU1,
1596 	TEGRA_POWERGATE_CPU2,
1597 	TEGRA_POWERGATE_CPU3,
1598 };
1599 
1600 static const struct tegra_pmc_soc tegra30_pmc_soc = {
1601 	.num_powergates = ARRAY_SIZE(tegra30_powergates),
1602 	.powergates = tegra30_powergates,
1603 	.num_cpu_powergates = ARRAY_SIZE(tegra30_cpu_powergates),
1604 	.cpu_powergates = tegra30_cpu_powergates,
1605 	.has_tsense_reset = true,
1606 	.has_gpu_clamps = false,
1607 	.num_io_pads = 0,
1608 	.io_pads = NULL,
1609 	.regs = &tegra20_pmc_regs,
1610 	.init = tegra20_pmc_init,
1611 	.setup_irq_polarity = tegra20_pmc_setup_irq_polarity,
1612 };
1613 
1614 static const char * const tegra114_powergates[] = {
1615 	[TEGRA_POWERGATE_CPU] = "crail",
1616 	[TEGRA_POWERGATE_3D] = "3d",
1617 	[TEGRA_POWERGATE_VENC] = "venc",
1618 	[TEGRA_POWERGATE_VDEC] = "vdec",
1619 	[TEGRA_POWERGATE_MPE] = "mpe",
1620 	[TEGRA_POWERGATE_HEG] = "heg",
1621 	[TEGRA_POWERGATE_CPU1] = "cpu1",
1622 	[TEGRA_POWERGATE_CPU2] = "cpu2",
1623 	[TEGRA_POWERGATE_CPU3] = "cpu3",
1624 	[TEGRA_POWERGATE_CELP] = "celp",
1625 	[TEGRA_POWERGATE_CPU0] = "cpu0",
1626 	[TEGRA_POWERGATE_C0NC] = "c0nc",
1627 	[TEGRA_POWERGATE_C1NC] = "c1nc",
1628 	[TEGRA_POWERGATE_DIS] = "dis",
1629 	[TEGRA_POWERGATE_DISB] = "disb",
1630 	[TEGRA_POWERGATE_XUSBA] = "xusba",
1631 	[TEGRA_POWERGATE_XUSBB] = "xusbb",
1632 	[TEGRA_POWERGATE_XUSBC] = "xusbc",
1633 };
1634 
1635 static const u8 tegra114_cpu_powergates[] = {
1636 	TEGRA_POWERGATE_CPU0,
1637 	TEGRA_POWERGATE_CPU1,
1638 	TEGRA_POWERGATE_CPU2,
1639 	TEGRA_POWERGATE_CPU3,
1640 };
1641 
1642 static const struct tegra_pmc_soc tegra114_pmc_soc = {
1643 	.num_powergates = ARRAY_SIZE(tegra114_powergates),
1644 	.powergates = tegra114_powergates,
1645 	.num_cpu_powergates = ARRAY_SIZE(tegra114_cpu_powergates),
1646 	.cpu_powergates = tegra114_cpu_powergates,
1647 	.has_tsense_reset = true,
1648 	.has_gpu_clamps = false,
1649 	.num_io_pads = 0,
1650 	.io_pads = NULL,
1651 	.regs = &tegra20_pmc_regs,
1652 	.init = tegra20_pmc_init,
1653 	.setup_irq_polarity = tegra20_pmc_setup_irq_polarity,
1654 };
1655 
1656 static const char * const tegra124_powergates[] = {
1657 	[TEGRA_POWERGATE_CPU] = "crail",
1658 	[TEGRA_POWERGATE_3D] = "3d",
1659 	[TEGRA_POWERGATE_VENC] = "venc",
1660 	[TEGRA_POWERGATE_PCIE] = "pcie",
1661 	[TEGRA_POWERGATE_VDEC] = "vdec",
1662 	[TEGRA_POWERGATE_MPE] = "mpe",
1663 	[TEGRA_POWERGATE_HEG] = "heg",
1664 	[TEGRA_POWERGATE_SATA] = "sata",
1665 	[TEGRA_POWERGATE_CPU1] = "cpu1",
1666 	[TEGRA_POWERGATE_CPU2] = "cpu2",
1667 	[TEGRA_POWERGATE_CPU3] = "cpu3",
1668 	[TEGRA_POWERGATE_CELP] = "celp",
1669 	[TEGRA_POWERGATE_CPU0] = "cpu0",
1670 	[TEGRA_POWERGATE_C0NC] = "c0nc",
1671 	[TEGRA_POWERGATE_C1NC] = "c1nc",
1672 	[TEGRA_POWERGATE_SOR] = "sor",
1673 	[TEGRA_POWERGATE_DIS] = "dis",
1674 	[TEGRA_POWERGATE_DISB] = "disb",
1675 	[TEGRA_POWERGATE_XUSBA] = "xusba",
1676 	[TEGRA_POWERGATE_XUSBB] = "xusbb",
1677 	[TEGRA_POWERGATE_XUSBC] = "xusbc",
1678 	[TEGRA_POWERGATE_VIC] = "vic",
1679 	[TEGRA_POWERGATE_IRAM] = "iram",
1680 };
1681 
1682 static const u8 tegra124_cpu_powergates[] = {
1683 	TEGRA_POWERGATE_CPU0,
1684 	TEGRA_POWERGATE_CPU1,
1685 	TEGRA_POWERGATE_CPU2,
1686 	TEGRA_POWERGATE_CPU3,
1687 };
1688 
1689 static const struct tegra_io_pad_soc tegra124_io_pads[] = {
1690 	{ .id = TEGRA_IO_PAD_AUDIO, .dpd = 17, .voltage = UINT_MAX },
1691 	{ .id = TEGRA_IO_PAD_BB, .dpd = 15, .voltage = UINT_MAX },
1692 	{ .id = TEGRA_IO_PAD_CAM, .dpd = 36, .voltage = UINT_MAX },
1693 	{ .id = TEGRA_IO_PAD_COMP, .dpd = 22, .voltage = UINT_MAX },
1694 	{ .id = TEGRA_IO_PAD_CSIA, .dpd = 0, .voltage = UINT_MAX },
1695 	{ .id = TEGRA_IO_PAD_CSIB, .dpd = 1, .voltage = UINT_MAX },
1696 	{ .id = TEGRA_IO_PAD_CSIE, .dpd = 44, .voltage = UINT_MAX },
1697 	{ .id = TEGRA_IO_PAD_DSI, .dpd = 2, .voltage = UINT_MAX },
1698 	{ .id = TEGRA_IO_PAD_DSIB, .dpd = 39, .voltage = UINT_MAX },
1699 	{ .id = TEGRA_IO_PAD_DSIC, .dpd = 40, .voltage = UINT_MAX },
1700 	{ .id = TEGRA_IO_PAD_DSID, .dpd = 41, .voltage = UINT_MAX },
1701 	{ .id = TEGRA_IO_PAD_HDMI, .dpd = 28, .voltage = UINT_MAX },
1702 	{ .id = TEGRA_IO_PAD_HSIC, .dpd = 19, .voltage = UINT_MAX },
1703 	{ .id = TEGRA_IO_PAD_HV, .dpd = 38, .voltage = UINT_MAX },
1704 	{ .id = TEGRA_IO_PAD_LVDS, .dpd = 57, .voltage = UINT_MAX },
1705 	{ .id = TEGRA_IO_PAD_MIPI_BIAS, .dpd = 3, .voltage = UINT_MAX },
1706 	{ .id = TEGRA_IO_PAD_NAND, .dpd = 13, .voltage = UINT_MAX },
1707 	{ .id = TEGRA_IO_PAD_PEX_BIAS, .dpd = 4, .voltage = UINT_MAX },
1708 	{ .id = TEGRA_IO_PAD_PEX_CLK1, .dpd = 5, .voltage = UINT_MAX },
1709 	{ .id = TEGRA_IO_PAD_PEX_CLK2, .dpd = 6, .voltage = UINT_MAX },
1710 	{ .id = TEGRA_IO_PAD_PEX_CNTRL, .dpd = 32, .voltage = UINT_MAX },
1711 	{ .id = TEGRA_IO_PAD_SDMMC1, .dpd = 33, .voltage = UINT_MAX },
1712 	{ .id = TEGRA_IO_PAD_SDMMC3, .dpd = 34, .voltage = UINT_MAX },
1713 	{ .id = TEGRA_IO_PAD_SDMMC4, .dpd = 35, .voltage = UINT_MAX },
1714 	{ .id = TEGRA_IO_PAD_SYS_DDC, .dpd = 58, .voltage = UINT_MAX },
1715 	{ .id = TEGRA_IO_PAD_UART, .dpd = 14, .voltage = UINT_MAX },
1716 	{ .id = TEGRA_IO_PAD_USB0, .dpd = 9, .voltage = UINT_MAX },
1717 	{ .id = TEGRA_IO_PAD_USB1, .dpd = 10, .voltage = UINT_MAX },
1718 	{ .id = TEGRA_IO_PAD_USB2, .dpd = 11, .voltage = UINT_MAX },
1719 	{ .id = TEGRA_IO_PAD_USB_BIAS, .dpd = 12, .voltage = UINT_MAX },
1720 };
1721 
1722 static const struct tegra_pmc_soc tegra124_pmc_soc = {
1723 	.num_powergates = ARRAY_SIZE(tegra124_powergates),
1724 	.powergates = tegra124_powergates,
1725 	.num_cpu_powergates = ARRAY_SIZE(tegra124_cpu_powergates),
1726 	.cpu_powergates = tegra124_cpu_powergates,
1727 	.has_tsense_reset = true,
1728 	.has_gpu_clamps = true,
1729 	.num_io_pads = ARRAY_SIZE(tegra124_io_pads),
1730 	.io_pads = tegra124_io_pads,
1731 	.regs = &tegra20_pmc_regs,
1732 	.init = tegra20_pmc_init,
1733 	.setup_irq_polarity = tegra20_pmc_setup_irq_polarity,
1734 };
1735 
1736 static const char * const tegra210_powergates[] = {
1737 	[TEGRA_POWERGATE_CPU] = "crail",
1738 	[TEGRA_POWERGATE_3D] = "3d",
1739 	[TEGRA_POWERGATE_VENC] = "venc",
1740 	[TEGRA_POWERGATE_PCIE] = "pcie",
1741 	[TEGRA_POWERGATE_MPE] = "mpe",
1742 	[TEGRA_POWERGATE_SATA] = "sata",
1743 	[TEGRA_POWERGATE_CPU1] = "cpu1",
1744 	[TEGRA_POWERGATE_CPU2] = "cpu2",
1745 	[TEGRA_POWERGATE_CPU3] = "cpu3",
1746 	[TEGRA_POWERGATE_CPU0] = "cpu0",
1747 	[TEGRA_POWERGATE_C0NC] = "c0nc",
1748 	[TEGRA_POWERGATE_SOR] = "sor",
1749 	[TEGRA_POWERGATE_DIS] = "dis",
1750 	[TEGRA_POWERGATE_DISB] = "disb",
1751 	[TEGRA_POWERGATE_XUSBA] = "xusba",
1752 	[TEGRA_POWERGATE_XUSBB] = "xusbb",
1753 	[TEGRA_POWERGATE_XUSBC] = "xusbc",
1754 	[TEGRA_POWERGATE_VIC] = "vic",
1755 	[TEGRA_POWERGATE_IRAM] = "iram",
1756 	[TEGRA_POWERGATE_NVDEC] = "nvdec",
1757 	[TEGRA_POWERGATE_NVJPG] = "nvjpg",
1758 	[TEGRA_POWERGATE_AUD] = "aud",
1759 	[TEGRA_POWERGATE_DFD] = "dfd",
1760 	[TEGRA_POWERGATE_VE2] = "ve2",
1761 };
1762 
1763 static const u8 tegra210_cpu_powergates[] = {
1764 	TEGRA_POWERGATE_CPU0,
1765 	TEGRA_POWERGATE_CPU1,
1766 	TEGRA_POWERGATE_CPU2,
1767 	TEGRA_POWERGATE_CPU3,
1768 };
1769 
1770 static const struct tegra_io_pad_soc tegra210_io_pads[] = {
1771 	{ .id = TEGRA_IO_PAD_AUDIO, .dpd = 17, .voltage = 5 },
1772 	{ .id = TEGRA_IO_PAD_AUDIO_HV, .dpd = 61, .voltage = 18 },
1773 	{ .id = TEGRA_IO_PAD_CAM, .dpd = 36, .voltage = 10 },
1774 	{ .id = TEGRA_IO_PAD_CSIA, .dpd = 0, .voltage = UINT_MAX },
1775 	{ .id = TEGRA_IO_PAD_CSIB, .dpd = 1, .voltage = UINT_MAX },
1776 	{ .id = TEGRA_IO_PAD_CSIC, .dpd = 42, .voltage = UINT_MAX },
1777 	{ .id = TEGRA_IO_PAD_CSID, .dpd = 43, .voltage = UINT_MAX },
1778 	{ .id = TEGRA_IO_PAD_CSIE, .dpd = 44, .voltage = UINT_MAX },
1779 	{ .id = TEGRA_IO_PAD_CSIF, .dpd = 45, .voltage = UINT_MAX },
1780 	{ .id = TEGRA_IO_PAD_DBG, .dpd = 25, .voltage = 19 },
1781 	{ .id = TEGRA_IO_PAD_DEBUG_NONAO, .dpd = 26, .voltage = UINT_MAX },
1782 	{ .id = TEGRA_IO_PAD_DMIC, .dpd = 50, .voltage = 20 },
1783 	{ .id = TEGRA_IO_PAD_DP, .dpd = 51, .voltage = UINT_MAX },
1784 	{ .id = TEGRA_IO_PAD_DSI, .dpd = 2, .voltage = UINT_MAX },
1785 	{ .id = TEGRA_IO_PAD_DSIB, .dpd = 39, .voltage = UINT_MAX },
1786 	{ .id = TEGRA_IO_PAD_DSIC, .dpd = 40, .voltage = UINT_MAX },
1787 	{ .id = TEGRA_IO_PAD_DSID, .dpd = 41, .voltage = UINT_MAX },
1788 	{ .id = TEGRA_IO_PAD_EMMC, .dpd = 35, .voltage = UINT_MAX },
1789 	{ .id = TEGRA_IO_PAD_EMMC2, .dpd = 37, .voltage = UINT_MAX },
1790 	{ .id = TEGRA_IO_PAD_GPIO, .dpd = 27, .voltage = 21 },
1791 	{ .id = TEGRA_IO_PAD_HDMI, .dpd = 28, .voltage = UINT_MAX },
1792 	{ .id = TEGRA_IO_PAD_HSIC, .dpd = 19, .voltage = UINT_MAX },
1793 	{ .id = TEGRA_IO_PAD_LVDS, .dpd = 57, .voltage = UINT_MAX },
1794 	{ .id = TEGRA_IO_PAD_MIPI_BIAS, .dpd = 3, .voltage = UINT_MAX },
1795 	{ .id = TEGRA_IO_PAD_PEX_BIAS, .dpd = 4, .voltage = UINT_MAX },
1796 	{ .id = TEGRA_IO_PAD_PEX_CLK1, .dpd = 5, .voltage = UINT_MAX },
1797 	{ .id = TEGRA_IO_PAD_PEX_CLK2, .dpd = 6, .voltage = UINT_MAX },
1798 	{ .id = TEGRA_IO_PAD_PEX_CNTRL, .dpd = UINT_MAX, .voltage = 11 },
1799 	{ .id = TEGRA_IO_PAD_SDMMC1, .dpd = 33, .voltage = 12 },
1800 	{ .id = TEGRA_IO_PAD_SDMMC3, .dpd = 34, .voltage = 13 },
1801 	{ .id = TEGRA_IO_PAD_SPI, .dpd = 46, .voltage = 22 },
1802 	{ .id = TEGRA_IO_PAD_SPI_HV, .dpd = 47, .voltage = 23 },
1803 	{ .id = TEGRA_IO_PAD_UART, .dpd = 14, .voltage = 2 },
1804 	{ .id = TEGRA_IO_PAD_USB0, .dpd = 9, .voltage = UINT_MAX },
1805 	{ .id = TEGRA_IO_PAD_USB1, .dpd = 10, .voltage = UINT_MAX },
1806 	{ .id = TEGRA_IO_PAD_USB2, .dpd = 11, .voltage = UINT_MAX },
1807 	{ .id = TEGRA_IO_PAD_USB3, .dpd = 18, .voltage = UINT_MAX },
1808 	{ .id = TEGRA_IO_PAD_USB_BIAS, .dpd = 12, .voltage = UINT_MAX },
1809 };
1810 
1811 static const struct tegra_pmc_soc tegra210_pmc_soc = {
1812 	.num_powergates = ARRAY_SIZE(tegra210_powergates),
1813 	.powergates = tegra210_powergates,
1814 	.num_cpu_powergates = ARRAY_SIZE(tegra210_cpu_powergates),
1815 	.cpu_powergates = tegra210_cpu_powergates,
1816 	.has_tsense_reset = true,
1817 	.has_gpu_clamps = true,
1818 	.num_io_pads = ARRAY_SIZE(tegra210_io_pads),
1819 	.io_pads = tegra210_io_pads,
1820 	.regs = &tegra20_pmc_regs,
1821 	.init = tegra20_pmc_init,
1822 	.setup_irq_polarity = tegra20_pmc_setup_irq_polarity,
1823 };
1824 
1825 static const struct tegra_io_pad_soc tegra186_io_pads[] = {
1826 	{ .id = TEGRA_IO_PAD_CSIA, .dpd = 0, .voltage = UINT_MAX },
1827 	{ .id = TEGRA_IO_PAD_CSIB, .dpd = 1, .voltage = UINT_MAX },
1828 	{ .id = TEGRA_IO_PAD_DSI, .dpd = 2, .voltage = UINT_MAX },
1829 	{ .id = TEGRA_IO_PAD_MIPI_BIAS, .dpd = 3, .voltage = UINT_MAX },
1830 	{ .id = TEGRA_IO_PAD_PEX_CLK_BIAS, .dpd = 4, .voltage = UINT_MAX },
1831 	{ .id = TEGRA_IO_PAD_PEX_CLK3, .dpd = 5, .voltage = UINT_MAX },
1832 	{ .id = TEGRA_IO_PAD_PEX_CLK2, .dpd = 6, .voltage = UINT_MAX },
1833 	{ .id = TEGRA_IO_PAD_PEX_CLK1, .dpd = 7, .voltage = UINT_MAX },
1834 	{ .id = TEGRA_IO_PAD_USB0, .dpd = 9, .voltage = UINT_MAX },
1835 	{ .id = TEGRA_IO_PAD_USB1, .dpd = 10, .voltage = UINT_MAX },
1836 	{ .id = TEGRA_IO_PAD_USB2, .dpd = 11, .voltage = UINT_MAX },
1837 	{ .id = TEGRA_IO_PAD_USB_BIAS, .dpd = 12, .voltage = UINT_MAX },
1838 	{ .id = TEGRA_IO_PAD_UART, .dpd = 14, .voltage = UINT_MAX },
1839 	{ .id = TEGRA_IO_PAD_AUDIO, .dpd = 17, .voltage = UINT_MAX },
1840 	{ .id = TEGRA_IO_PAD_HSIC, .dpd = 19, .voltage = UINT_MAX },
1841 	{ .id = TEGRA_IO_PAD_DBG, .dpd = 25, .voltage = UINT_MAX },
1842 	{ .id = TEGRA_IO_PAD_HDMI_DP0, .dpd = 28, .voltage = UINT_MAX },
1843 	{ .id = TEGRA_IO_PAD_HDMI_DP1, .dpd = 29, .voltage = UINT_MAX },
1844 	{ .id = TEGRA_IO_PAD_PEX_CNTRL, .dpd = 32, .voltage = UINT_MAX },
1845 	{ .id = TEGRA_IO_PAD_SDMMC2_HV, .dpd = 34, .voltage = UINT_MAX },
1846 	{ .id = TEGRA_IO_PAD_SDMMC4, .dpd = 36, .voltage = UINT_MAX },
1847 	{ .id = TEGRA_IO_PAD_CAM, .dpd = 38, .voltage = UINT_MAX },
1848 	{ .id = TEGRA_IO_PAD_DSIB, .dpd = 40, .voltage = UINT_MAX },
1849 	{ .id = TEGRA_IO_PAD_DSIC, .dpd = 41, .voltage = UINT_MAX },
1850 	{ .id = TEGRA_IO_PAD_DSID, .dpd = 42, .voltage = UINT_MAX },
1851 	{ .id = TEGRA_IO_PAD_CSIC, .dpd = 43, .voltage = UINT_MAX },
1852 	{ .id = TEGRA_IO_PAD_CSID, .dpd = 44, .voltage = UINT_MAX },
1853 	{ .id = TEGRA_IO_PAD_CSIE, .dpd = 45, .voltage = UINT_MAX },
1854 	{ .id = TEGRA_IO_PAD_CSIF, .dpd = 46, .voltage = UINT_MAX },
1855 	{ .id = TEGRA_IO_PAD_SPI, .dpd = 47, .voltage = UINT_MAX },
1856 	{ .id = TEGRA_IO_PAD_UFS, .dpd = 49, .voltage = UINT_MAX },
1857 	{ .id = TEGRA_IO_PAD_DMIC_HV, .dpd = 52, .voltage = UINT_MAX },
1858 	{ .id = TEGRA_IO_PAD_EDP, .dpd = 53, .voltage = UINT_MAX },
1859 	{ .id = TEGRA_IO_PAD_SDMMC1_HV, .dpd = 55, .voltage = UINT_MAX },
1860 	{ .id = TEGRA_IO_PAD_SDMMC3_HV, .dpd = 56, .voltage = UINT_MAX },
1861 	{ .id = TEGRA_IO_PAD_CONN, .dpd = 60, .voltage = UINT_MAX },
1862 	{ .id = TEGRA_IO_PAD_AUDIO_HV, .dpd = 61, .voltage = UINT_MAX },
1863 };
1864 
1865 static const struct tegra_pmc_regs tegra186_pmc_regs = {
1866 	.scratch0 = 0x2000,
1867 	.dpd_req = 0x74,
1868 	.dpd_status = 0x78,
1869 	.dpd2_req = 0x7c,
1870 	.dpd2_status = 0x80,
1871 };
1872 
1873 static void tegra186_pmc_setup_irq_polarity(struct tegra_pmc *pmc,
1874 					    struct device_node *np,
1875 					    bool invert)
1876 {
1877 	struct resource regs;
1878 	void __iomem *wake;
1879 	u32 value;
1880 	int index;
1881 
1882 	index = of_property_match_string(np, "reg-names", "wake");
1883 	if (index < 0) {
1884 		pr_err("failed to find PMC wake registers\n");
1885 		return;
1886 	}
1887 
1888 	of_address_to_resource(np, index, &regs);
1889 
1890 	wake = ioremap_nocache(regs.start, resource_size(&regs));
1891 	if (!wake) {
1892 		pr_err("failed to map PMC wake registers\n");
1893 		return;
1894 	}
1895 
1896 	value = readl(wake + WAKE_AOWAKE_CTRL);
1897 
1898 	if (invert)
1899 		value |= WAKE_AOWAKE_CTRL_INTR_POLARITY;
1900 	else
1901 		value &= ~WAKE_AOWAKE_CTRL_INTR_POLARITY;
1902 
1903 	writel(value, wake + WAKE_AOWAKE_CTRL);
1904 
1905 	iounmap(wake);
1906 }
1907 
1908 static const struct tegra_pmc_soc tegra186_pmc_soc = {
1909 	.num_powergates = 0,
1910 	.powergates = NULL,
1911 	.num_cpu_powergates = 0,
1912 	.cpu_powergates = NULL,
1913 	.has_tsense_reset = false,
1914 	.has_gpu_clamps = false,
1915 	.num_io_pads = ARRAY_SIZE(tegra186_io_pads),
1916 	.io_pads = tegra186_io_pads,
1917 	.regs = &tegra186_pmc_regs,
1918 	.init = NULL,
1919 	.setup_irq_polarity = tegra186_pmc_setup_irq_polarity,
1920 };
1921 
1922 static const struct of_device_id tegra_pmc_match[] = {
1923 	{ .compatible = "nvidia,tegra186-pmc", .data = &tegra186_pmc_soc },
1924 	{ .compatible = "nvidia,tegra210-pmc", .data = &tegra210_pmc_soc },
1925 	{ .compatible = "nvidia,tegra132-pmc", .data = &tegra124_pmc_soc },
1926 	{ .compatible = "nvidia,tegra124-pmc", .data = &tegra124_pmc_soc },
1927 	{ .compatible = "nvidia,tegra114-pmc", .data = &tegra114_pmc_soc },
1928 	{ .compatible = "nvidia,tegra30-pmc", .data = &tegra30_pmc_soc },
1929 	{ .compatible = "nvidia,tegra20-pmc", .data = &tegra20_pmc_soc },
1930 	{ }
1931 };
1932 
1933 static struct platform_driver tegra_pmc_driver = {
1934 	.driver = {
1935 		.name = "tegra-pmc",
1936 		.suppress_bind_attrs = true,
1937 		.of_match_table = tegra_pmc_match,
1938 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_ARM)
1939 		.pm = &tegra_pmc_pm_ops,
1940 #endif
1941 	},
1942 	.probe = tegra_pmc_probe,
1943 };
1944 builtin_platform_driver(tegra_pmc_driver);
1945 
1946 /*
1947  * Early initialization to allow access to registers in the very early boot
1948  * process.
1949  */
1950 static int __init tegra_pmc_early_init(void)
1951 {
1952 	const struct of_device_id *match;
1953 	struct device_node *np;
1954 	struct resource regs;
1955 	bool invert;
1956 
1957 	mutex_init(&pmc->powergates_lock);
1958 
1959 	np = of_find_matching_node_and_match(NULL, tegra_pmc_match, &match);
1960 	if (!np) {
1961 		/*
1962 		 * Fall back to legacy initialization for 32-bit ARM only. All
1963 		 * 64-bit ARM device tree files for Tegra are required to have
1964 		 * a PMC node.
1965 		 *
1966 		 * This is for backwards-compatibility with old device trees
1967 		 * that didn't contain a PMC node. Note that in this case the
1968 		 * SoC data can't be matched and therefore powergating is
1969 		 * disabled.
1970 		 */
1971 		if (IS_ENABLED(CONFIG_ARM) && soc_is_tegra()) {
1972 			pr_warn("DT node not found, powergating disabled\n");
1973 
1974 			regs.start = 0x7000e400;
1975 			regs.end = 0x7000e7ff;
1976 			regs.flags = IORESOURCE_MEM;
1977 
1978 			pr_warn("Using memory region %pR\n", &regs);
1979 		} else {
1980 			/*
1981 			 * At this point we're not running on Tegra, so play
1982 			 * nice with multi-platform kernels.
1983 			 */
1984 			return 0;
1985 		}
1986 	} else {
1987 		/*
1988 		 * Extract information from the device tree if we've found a
1989 		 * matching node.
1990 		 */
1991 		if (of_address_to_resource(np, 0, &regs) < 0) {
1992 			pr_err("failed to get PMC registers\n");
1993 			of_node_put(np);
1994 			return -ENXIO;
1995 		}
1996 	}
1997 
1998 	pmc->base = ioremap_nocache(regs.start, resource_size(&regs));
1999 	if (!pmc->base) {
2000 		pr_err("failed to map PMC registers\n");
2001 		of_node_put(np);
2002 		return -ENXIO;
2003 	}
2004 
2005 	if (np) {
2006 		pmc->soc = match->data;
2007 
2008 		tegra_powergate_init(pmc, np);
2009 
2010 		/*
2011 		 * Invert the interrupt polarity if a PMC device tree node
2012 		 * exists and contains the nvidia,invert-interrupt property.
2013 		 */
2014 		invert = of_property_read_bool(np, "nvidia,invert-interrupt");
2015 
2016 		pmc->soc->setup_irq_polarity(pmc, np, invert);
2017 
2018 		of_node_put(np);
2019 	}
2020 
2021 	return 0;
2022 }
2023 early_initcall(tegra_pmc_early_init);
2024