xref: /linux/drivers/soc/qcom/spm.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2011-2014, The Linux Foundation. All rights reserved.
4  * Copyright (c) 2014,2015, Linaro Ltd.
5  *
6  * SAW power controller driver
7  */
8 
9 #include <linux/bitfield.h>
10 #include <linux/err.h>
11 #include <linux/init.h>
12 #include <linux/io.h>
13 #include <linux/iopoll.h>
14 #include <linux/kernel.h>
15 #include <linux/linear_range.h>
16 #include <linux/module.h>
17 #include <linux/of.h>
18 #include <linux/platform_device.h>
19 #include <linux/slab.h>
20 #include <linux/smp.h>
21 
22 #include <linux/regulator/driver.h>
23 
24 #include <soc/qcom/spm.h>
25 
26 #define FIELD_SET(current, mask, val)	\
27 	(((current) & ~(mask)) | FIELD_PREP((mask), (val)))
28 
29 #define SPM_CTL_INDEX		0x7f
30 #define SPM_CTL_INDEX_SHIFT	4
31 #define SPM_CTL_EN		BIT(0)
32 
33 /* These registers might be specific to SPM 1.1 */
34 #define SPM_VCTL_VLVL			GENMASK(7, 0)
35 #define SPM_PMIC_DATA_0_VLVL		GENMASK(7, 0)
36 #define SPM_PMIC_DATA_1_MIN_VSEL	GENMASK(5, 0)
37 #define SPM_PMIC_DATA_1_MAX_VSEL	GENMASK(21, 16)
38 
39 #define SPM_1_1_AVS_CTL_AVS_ENABLED	BIT(27)
40 #define SPM_AVS_CTL_MAX_VLVL		GENMASK(22, 17)
41 #define SPM_AVS_CTL_MIN_VLVL		GENMASK(15, 10)
42 
43 enum spm_reg {
44 	SPM_REG_CFG,
45 	SPM_REG_SPM_CTL,
46 	SPM_REG_DLY,
47 	SPM_REG_PMIC_DLY,
48 	SPM_REG_PMIC_DATA_0,
49 	SPM_REG_PMIC_DATA_1,
50 	SPM_REG_VCTL,
51 	SPM_REG_SEQ_ENTRY,
52 	SPM_REG_STS0,
53 	SPM_REG_STS1,
54 	SPM_REG_PMIC_STS,
55 	SPM_REG_AVS_CTL,
56 	SPM_REG_AVS_LIMIT,
57 	SPM_REG_RST,
58 	SPM_REG_NR,
59 };
60 
61 #define MAX_PMIC_DATA		2
62 #define MAX_SEQ_DATA		64
63 
64 struct spm_reg_data {
65 	const u16 *reg_offset;
66 	u32 spm_cfg;
67 	u32 spm_dly;
68 	u32 pmic_dly;
69 	u32 pmic_data[MAX_PMIC_DATA];
70 	u32 avs_ctl;
71 	u32 avs_limit;
72 	u8 seq[MAX_SEQ_DATA];
73 	u8 start_index[PM_SLEEP_MODE_NR];
74 
75 	smp_call_func_t set_vdd;
76 	/* for now we support only a single range */
77 	struct linear_range *range;
78 	unsigned int ramp_delay;
79 	unsigned int init_uV;
80 };
81 
82 struct spm_driver_data {
83 	void __iomem *reg_base;
84 	const struct spm_reg_data *reg_data;
85 	struct device *dev;
86 	unsigned int volt_sel;
87 	int reg_cpu;
88 };
89 
90 static const u16 spm_reg_offset_v4_1[SPM_REG_NR] = {
91 	[SPM_REG_AVS_CTL]	= 0x904,
92 	[SPM_REG_AVS_LIMIT]	= 0x908,
93 };
94 
95 static const struct spm_reg_data spm_reg_660_gold_l2  = {
96 	.reg_offset = spm_reg_offset_v4_1,
97 	.avs_ctl = 0x1010031,
98 	.avs_limit = 0x4580458,
99 };
100 
101 static const struct spm_reg_data spm_reg_660_silver_l2  = {
102 	.reg_offset = spm_reg_offset_v4_1,
103 	.avs_ctl = 0x101c031,
104 	.avs_limit = 0x4580458,
105 };
106 
107 static const struct spm_reg_data spm_reg_8998_gold_l2  = {
108 	.reg_offset = spm_reg_offset_v4_1,
109 	.avs_ctl = 0x1010031,
110 	.avs_limit = 0x4700470,
111 };
112 
113 static const struct spm_reg_data spm_reg_8998_silver_l2  = {
114 	.reg_offset = spm_reg_offset_v4_1,
115 	.avs_ctl = 0x1010031,
116 	.avs_limit = 0x4200420,
117 };
118 
119 static const u16 spm_reg_offset_v3_0[SPM_REG_NR] = {
120 	[SPM_REG_CFG]		= 0x08,
121 	[SPM_REG_SPM_CTL]	= 0x30,
122 	[SPM_REG_DLY]		= 0x34,
123 	[SPM_REG_SEQ_ENTRY]	= 0x400,
124 };
125 
126 /* SPM register data for 8909 */
127 static const struct spm_reg_data spm_reg_8909_cpu = {
128 	.reg_offset = spm_reg_offset_v3_0,
129 	.spm_cfg = 0x1,
130 	.spm_dly = 0x3C102800,
131 	.seq = { 0x60, 0x03, 0x60, 0x0B, 0x0F, 0x20, 0x10, 0x80, 0x30, 0x90,
132 		0x5B, 0x60, 0x03, 0x60, 0x76, 0x76, 0x0B, 0x94, 0x5B, 0x80,
133 		0x10, 0x26, 0x30, 0x0F },
134 	.start_index[PM_SLEEP_MODE_STBY] = 0,
135 	.start_index[PM_SLEEP_MODE_SPC] = 5,
136 };
137 
138 /* SPM register data for 8916 */
139 static const struct spm_reg_data spm_reg_8916_cpu = {
140 	.reg_offset = spm_reg_offset_v3_0,
141 	.spm_cfg = 0x1,
142 	.spm_dly = 0x3C102800,
143 	.seq = { 0x60, 0x03, 0x60, 0x0B, 0x0F, 0x20, 0x10, 0x80, 0x30, 0x90,
144 		0x5B, 0x60, 0x03, 0x60, 0x3B, 0x76, 0x76, 0x0B, 0x94, 0x5B,
145 		0x80, 0x10, 0x26, 0x30, 0x0F },
146 	.start_index[PM_SLEEP_MODE_STBY] = 0,
147 	.start_index[PM_SLEEP_MODE_SPC] = 5,
148 };
149 
150 static const struct spm_reg_data spm_reg_8939_cpu = {
151 	.reg_offset = spm_reg_offset_v3_0,
152 	.spm_cfg = 0x1,
153 	.spm_dly = 0x3C102800,
154 	.seq = { 0x60, 0x03, 0x60, 0x0B, 0x0F, 0x20, 0x50, 0x1B, 0x10, 0x80,
155 		0x30, 0x90, 0x5B, 0x60, 0x50, 0x03, 0x60, 0x76, 0x76, 0x0B,
156 		0x50, 0x1B, 0x94, 0x5B, 0x80, 0x10, 0x26, 0x30, 0x50, 0x0F },
157 	.start_index[PM_SLEEP_MODE_STBY] = 0,
158 	.start_index[PM_SLEEP_MODE_SPC] = 5,
159 };
160 
161 static const u16 spm_reg_offset_v2_3[SPM_REG_NR] = {
162 	[SPM_REG_CFG]		= 0x08,
163 	[SPM_REG_SPM_CTL]	= 0x30,
164 	[SPM_REG_DLY]		= 0x34,
165 	[SPM_REG_PMIC_DATA_0]	= 0x40,
166 	[SPM_REG_PMIC_DATA_1]	= 0x44,
167 };
168 
169 /* SPM register data for 8976 */
170 static const struct spm_reg_data spm_reg_8976_gold_l2 = {
171 	.reg_offset = spm_reg_offset_v2_3,
172 	.spm_cfg = 0x14,
173 	.spm_dly = 0x3c11840a,
174 	.pmic_data[0] = 0x03030080,
175 	.pmic_data[1] = 0x00030000,
176 	.start_index[PM_SLEEP_MODE_STBY] = 0,
177 	.start_index[PM_SLEEP_MODE_SPC] = 3,
178 };
179 
180 static const struct spm_reg_data spm_reg_8976_silver_l2 = {
181 	.reg_offset = spm_reg_offset_v2_3,
182 	.spm_cfg = 0x14,
183 	.spm_dly = 0x3c102800,
184 	.pmic_data[0] = 0x03030080,
185 	.pmic_data[1] = 0x00030000,
186 	.start_index[PM_SLEEP_MODE_STBY] = 0,
187 	.start_index[PM_SLEEP_MODE_SPC] = 2,
188 };
189 
190 static const u16 spm_reg_offset_v2_1[SPM_REG_NR] = {
191 	[SPM_REG_CFG]		= 0x08,
192 	[SPM_REG_SPM_CTL]	= 0x30,
193 	[SPM_REG_DLY]		= 0x34,
194 	[SPM_REG_SEQ_ENTRY]	= 0x80,
195 };
196 
197 /* SPM register data for 8974, 8084 */
198 static const struct spm_reg_data spm_reg_8974_8084_cpu  = {
199 	.reg_offset = spm_reg_offset_v2_1,
200 	.spm_cfg = 0x1,
201 	.spm_dly = 0x3C102800,
202 	.seq = { 0x03, 0x0B, 0x0F, 0x00, 0x20, 0x80, 0x10, 0xE8, 0x5B, 0x03,
203 		0x3B, 0xE8, 0x5B, 0x82, 0x10, 0x0B, 0x30, 0x06, 0x26, 0x30,
204 		0x0F },
205 	.start_index[PM_SLEEP_MODE_STBY] = 0,
206 	.start_index[PM_SLEEP_MODE_SPC] = 3,
207 };
208 
209 /* SPM register data for 8226 */
210 static const struct spm_reg_data spm_reg_8226_cpu  = {
211 	.reg_offset = spm_reg_offset_v2_1,
212 	.spm_cfg = 0x0,
213 	.spm_dly = 0x3C102800,
214 	.seq = { 0x60, 0x03, 0x60, 0x0B, 0x0F, 0x20, 0x10, 0x80, 0x30, 0x90,
215 		0x5B, 0x60, 0x03, 0x60, 0x3B, 0x76, 0x76, 0x0B, 0x94, 0x5B,
216 		0x80, 0x10, 0x26, 0x30, 0x0F },
217 	.start_index[PM_SLEEP_MODE_STBY] = 0,
218 	.start_index[PM_SLEEP_MODE_SPC] = 5,
219 };
220 
221 static const u16 spm_reg_offset_v1_1[SPM_REG_NR] = {
222 	[SPM_REG_CFG]		= 0x08,
223 	[SPM_REG_STS0]		= 0x0c,
224 	[SPM_REG_STS1]		= 0x10,
225 	[SPM_REG_VCTL]		= 0x14,
226 	[SPM_REG_AVS_CTL]	= 0x18,
227 	[SPM_REG_SPM_CTL]	= 0x20,
228 	[SPM_REG_PMIC_DLY]	= 0x24,
229 	[SPM_REG_PMIC_DATA_0]	= 0x28,
230 	[SPM_REG_PMIC_DATA_1]	= 0x2C,
231 	[SPM_REG_SEQ_ENTRY]	= 0x80,
232 };
233 
234 static void smp_set_vdd_v1_1(void *data);
235 
236 /* SPM register data for 8064 */
237 static struct linear_range spm_v1_1_regulator_range =
238 	REGULATOR_LINEAR_RANGE(700000, 0, 56, 12500);
239 
240 static const struct spm_reg_data spm_reg_8064_cpu = {
241 	.reg_offset = spm_reg_offset_v1_1,
242 	.spm_cfg = 0x1F,
243 	.pmic_dly = 0x02020004,
244 	.pmic_data[0] = 0x0084009C,
245 	.pmic_data[1] = 0x00A4001C,
246 	.seq = { 0x03, 0x0F, 0x00, 0x24, 0x54, 0x10, 0x09, 0x03, 0x01,
247 		0x10, 0x54, 0x30, 0x0C, 0x24, 0x30, 0x0F },
248 	.start_index[PM_SLEEP_MODE_STBY] = 0,
249 	.start_index[PM_SLEEP_MODE_SPC] = 2,
250 	.set_vdd = smp_set_vdd_v1_1,
251 	.range = &spm_v1_1_regulator_range,
252 	.init_uV = 1300000,
253 	.ramp_delay = 1250,
254 };
255 
256 static inline void spm_register_write(struct spm_driver_data *drv,
257 					enum spm_reg reg, u32 val)
258 {
259 	if (drv->reg_data->reg_offset[reg])
260 		writel_relaxed(val, drv->reg_base +
261 				drv->reg_data->reg_offset[reg]);
262 }
263 
264 /* Ensure a guaranteed write, before return */
265 static inline void spm_register_write_sync(struct spm_driver_data *drv,
266 					enum spm_reg reg, u32 val)
267 {
268 	u32 ret;
269 
270 	if (!drv->reg_data->reg_offset[reg])
271 		return;
272 
273 	do {
274 		writel_relaxed(val, drv->reg_base +
275 				drv->reg_data->reg_offset[reg]);
276 		ret = readl_relaxed(drv->reg_base +
277 				drv->reg_data->reg_offset[reg]);
278 		if (ret == val)
279 			break;
280 		cpu_relax();
281 	} while (1);
282 }
283 
284 static inline u32 spm_register_read(struct spm_driver_data *drv,
285 				    enum spm_reg reg)
286 {
287 	return readl_relaxed(drv->reg_base + drv->reg_data->reg_offset[reg]);
288 }
289 
290 void spm_set_low_power_mode(struct spm_driver_data *drv,
291 			    enum pm_sleep_mode mode)
292 {
293 	u32 start_index;
294 	u32 ctl_val;
295 
296 	start_index = drv->reg_data->start_index[mode];
297 
298 	ctl_val = spm_register_read(drv, SPM_REG_SPM_CTL);
299 	ctl_val &= ~(SPM_CTL_INDEX << SPM_CTL_INDEX_SHIFT);
300 	ctl_val |= start_index << SPM_CTL_INDEX_SHIFT;
301 	ctl_val |= SPM_CTL_EN;
302 	spm_register_write_sync(drv, SPM_REG_SPM_CTL, ctl_val);
303 }
304 
305 static int spm_set_voltage_sel(struct regulator_dev *rdev, unsigned int selector)
306 {
307 	struct spm_driver_data *drv = rdev_get_drvdata(rdev);
308 
309 	drv->volt_sel = selector;
310 
311 	/* Always do the SAW register writes on the corresponding CPU */
312 	return smp_call_function_single(drv->reg_cpu, drv->reg_data->set_vdd, drv, true);
313 }
314 
315 static int spm_get_voltage_sel(struct regulator_dev *rdev)
316 {
317 	struct spm_driver_data *drv = rdev_get_drvdata(rdev);
318 
319 	return drv->volt_sel;
320 }
321 
322 static const struct regulator_ops spm_reg_ops = {
323 	.set_voltage_sel	= spm_set_voltage_sel,
324 	.get_voltage_sel	= spm_get_voltage_sel,
325 	.list_voltage		= regulator_list_voltage_linear_range,
326 	.set_voltage_time_sel	= regulator_set_voltage_time_sel,
327 };
328 
329 static void smp_set_vdd_v1_1(void *data)
330 {
331 	struct spm_driver_data *drv = data;
332 	unsigned int vctl, data0, data1, avs_ctl, sts;
333 	unsigned int vlevel, volt_sel;
334 	bool avs_enabled;
335 
336 	volt_sel = drv->volt_sel;
337 	vlevel = volt_sel | 0x80; /* band */
338 
339 	avs_ctl = spm_register_read(drv, SPM_REG_AVS_CTL);
340 	vctl = spm_register_read(drv, SPM_REG_VCTL);
341 	data0 = spm_register_read(drv, SPM_REG_PMIC_DATA_0);
342 	data1 = spm_register_read(drv, SPM_REG_PMIC_DATA_1);
343 
344 	avs_enabled = avs_ctl & SPM_1_1_AVS_CTL_AVS_ENABLED;
345 
346 	/* If AVS is enabled, switch it off during the voltage change */
347 	if (avs_enabled) {
348 		avs_ctl &= ~SPM_1_1_AVS_CTL_AVS_ENABLED;
349 		spm_register_write(drv, SPM_REG_AVS_CTL, avs_ctl);
350 	}
351 
352 	/* Kick the state machine back to idle */
353 	spm_register_write(drv, SPM_REG_RST, 1);
354 
355 	vctl = FIELD_SET(vctl, SPM_VCTL_VLVL, vlevel);
356 	data0 = FIELD_SET(data0, SPM_PMIC_DATA_0_VLVL, vlevel);
357 	data1 = FIELD_SET(data1, SPM_PMIC_DATA_1_MIN_VSEL, volt_sel);
358 	data1 = FIELD_SET(data1, SPM_PMIC_DATA_1_MAX_VSEL, volt_sel);
359 
360 	spm_register_write(drv, SPM_REG_VCTL, vctl);
361 	spm_register_write(drv, SPM_REG_PMIC_DATA_0, data0);
362 	spm_register_write(drv, SPM_REG_PMIC_DATA_1, data1);
363 
364 	if (read_poll_timeout_atomic(spm_register_read,
365 				     sts, sts == vlevel,
366 				     1, 200, false,
367 				     drv, SPM_REG_STS1)) {
368 		dev_err_ratelimited(drv->dev, "timeout setting the voltage (%x %x)!\n", sts, vlevel);
369 		goto enable_avs;
370 	}
371 
372 	if (avs_enabled) {
373 		unsigned int max_avs = volt_sel;
374 		unsigned int min_avs = max(max_avs, 4U) - 4;
375 
376 		avs_ctl = FIELD_SET(avs_ctl, SPM_AVS_CTL_MIN_VLVL, min_avs);
377 		avs_ctl = FIELD_SET(avs_ctl, SPM_AVS_CTL_MAX_VLVL, max_avs);
378 		spm_register_write(drv, SPM_REG_AVS_CTL, avs_ctl);
379 	}
380 
381 enable_avs:
382 	if (avs_enabled) {
383 		avs_ctl |= SPM_1_1_AVS_CTL_AVS_ENABLED;
384 		spm_register_write(drv, SPM_REG_AVS_CTL, avs_ctl);
385 	}
386 }
387 
388 static int spm_get_cpu(struct device *dev)
389 {
390 	int cpu;
391 	bool found;
392 
393 	for_each_possible_cpu(cpu) {
394 		struct device_node *cpu_node, *saw_node;
395 
396 		cpu_node = of_cpu_device_node_get(cpu);
397 		if (!cpu_node)
398 			continue;
399 
400 		saw_node = of_parse_phandle(cpu_node, "qcom,saw", 0);
401 		found = (saw_node == dev->of_node);
402 		of_node_put(saw_node);
403 		of_node_put(cpu_node);
404 
405 		if (found)
406 			return cpu;
407 	}
408 
409 	/* L2 SPM is not bound to any CPU, voltage setting is not supported */
410 
411 	return -EOPNOTSUPP;
412 }
413 
414 static int spm_register_regulator(struct device *dev, struct spm_driver_data *drv)
415 {
416 	struct regulator_config config = {
417 		.dev = dev,
418 		.driver_data = drv,
419 	};
420 	struct regulator_desc *rdesc;
421 	struct regulator_dev *rdev;
422 	int ret;
423 	bool found;
424 
425 	if (!drv->reg_data->set_vdd)
426 		return 0;
427 
428 	rdesc = devm_kzalloc(dev, sizeof(*rdesc), GFP_KERNEL);
429 	if (!rdesc)
430 		return -ENOMEM;
431 
432 	rdesc->name = "spm";
433 	rdesc->of_match = of_match_ptr("regulator");
434 	rdesc->type = REGULATOR_VOLTAGE;
435 	rdesc->owner = THIS_MODULE;
436 	rdesc->ops = &spm_reg_ops;
437 
438 	rdesc->linear_ranges = drv->reg_data->range;
439 	rdesc->n_linear_ranges = 1;
440 	rdesc->n_voltages = rdesc->linear_ranges[rdesc->n_linear_ranges - 1].max_sel + 1;
441 	rdesc->ramp_delay = drv->reg_data->ramp_delay;
442 
443 	ret = spm_get_cpu(dev);
444 	if (ret < 0)
445 		return ret;
446 
447 	drv->reg_cpu = ret;
448 	dev_dbg(dev, "SAW2 bound to CPU %d\n", drv->reg_cpu);
449 
450 	/*
451 	 * Program initial voltage, otherwise registration will also try
452 	 * setting the voltage, which might result in undervolting the CPU.
453 	 */
454 	drv->volt_sel = DIV_ROUND_UP(drv->reg_data->init_uV - rdesc->min_uV,
455 				     rdesc->uV_step);
456 	ret = linear_range_get_selector_high(drv->reg_data->range,
457 					     drv->reg_data->init_uV,
458 					     &drv->volt_sel,
459 					     &found);
460 	if (ret) {
461 		dev_err(dev, "Initial uV value out of bounds\n");
462 		return ret;
463 	}
464 
465 	/* Always do the SAW register writes on the corresponding CPU */
466 	smp_call_function_single(drv->reg_cpu, drv->reg_data->set_vdd, drv, true);
467 
468 	rdev = devm_regulator_register(dev, rdesc, &config);
469 	if (IS_ERR(rdev)) {
470 		dev_err(dev, "failed to register regulator\n");
471 		return PTR_ERR(rdev);
472 	}
473 
474 	return 0;
475 }
476 
477 static const struct of_device_id spm_match_table[] = {
478 	{ .compatible = "qcom,sdm660-gold-saw2-v4.1-l2",
479 	  .data = &spm_reg_660_gold_l2 },
480 	{ .compatible = "qcom,sdm660-silver-saw2-v4.1-l2",
481 	  .data = &spm_reg_660_silver_l2 },
482 	{ .compatible = "qcom,msm8226-saw2-v2.1-cpu",
483 	  .data = &spm_reg_8226_cpu },
484 	{ .compatible = "qcom,msm8909-saw2-v3.0-cpu",
485 	  .data = &spm_reg_8909_cpu },
486 	{ .compatible = "qcom,msm8916-saw2-v3.0-cpu",
487 	  .data = &spm_reg_8916_cpu },
488 	{ .compatible = "qcom,msm8939-saw2-v3.0-cpu",
489 	  .data = &spm_reg_8939_cpu },
490 	{ .compatible = "qcom,msm8974-saw2-v2.1-cpu",
491 	  .data = &spm_reg_8974_8084_cpu },
492 	{ .compatible = "qcom,msm8976-gold-saw2-v2.3-l2",
493 	  .data = &spm_reg_8976_gold_l2 },
494 	{ .compatible = "qcom,msm8976-silver-saw2-v2.3-l2",
495 	  .data = &spm_reg_8976_silver_l2 },
496 	{ .compatible = "qcom,msm8998-gold-saw2-v4.1-l2",
497 	  .data = &spm_reg_8998_gold_l2 },
498 	{ .compatible = "qcom,msm8998-silver-saw2-v4.1-l2",
499 	  .data = &spm_reg_8998_silver_l2 },
500 	{ .compatible = "qcom,apq8084-saw2-v2.1-cpu",
501 	  .data = &spm_reg_8974_8084_cpu },
502 	{ .compatible = "qcom,apq8064-saw2-v1.1-cpu",
503 	  .data = &spm_reg_8064_cpu },
504 	{ },
505 };
506 MODULE_DEVICE_TABLE(of, spm_match_table);
507 
508 static int spm_dev_probe(struct platform_device *pdev)
509 {
510 	const struct of_device_id *match_id;
511 	struct spm_driver_data *drv;
512 	void __iomem *addr;
513 
514 	drv = devm_kzalloc(&pdev->dev, sizeof(*drv), GFP_KERNEL);
515 	if (!drv)
516 		return -ENOMEM;
517 
518 	drv->reg_base = devm_platform_ioremap_resource(pdev, 0);
519 	if (IS_ERR(drv->reg_base))
520 		return PTR_ERR(drv->reg_base);
521 
522 	match_id = of_match_node(spm_match_table, pdev->dev.of_node);
523 	if (!match_id)
524 		return -ENODEV;
525 
526 	drv->reg_data = match_id->data;
527 	drv->dev = &pdev->dev;
528 	platform_set_drvdata(pdev, drv);
529 
530 	/* Write the SPM sequences first.. */
531 	addr = drv->reg_base + drv->reg_data->reg_offset[SPM_REG_SEQ_ENTRY];
532 	__iowrite32_copy(addr, drv->reg_data->seq,
533 			ARRAY_SIZE(drv->reg_data->seq) / 4);
534 
535 	/*
536 	 * ..and then the control registers.
537 	 * On some SoC if the control registers are written first and if the
538 	 * CPU was held in reset, the reset signal could trigger the SPM state
539 	 * machine, before the sequences are completely written.
540 	 */
541 	spm_register_write(drv, SPM_REG_AVS_CTL, drv->reg_data->avs_ctl);
542 	spm_register_write(drv, SPM_REG_AVS_LIMIT, drv->reg_data->avs_limit);
543 	spm_register_write(drv, SPM_REG_CFG, drv->reg_data->spm_cfg);
544 	spm_register_write(drv, SPM_REG_DLY, drv->reg_data->spm_dly);
545 	spm_register_write(drv, SPM_REG_PMIC_DLY, drv->reg_data->pmic_dly);
546 	spm_register_write(drv, SPM_REG_PMIC_DATA_0,
547 				drv->reg_data->pmic_data[0]);
548 	spm_register_write(drv, SPM_REG_PMIC_DATA_1,
549 				drv->reg_data->pmic_data[1]);
550 
551 	/* Set up Standby as the default low power mode */
552 	if (drv->reg_data->reg_offset[SPM_REG_SPM_CTL])
553 		spm_set_low_power_mode(drv, PM_SLEEP_MODE_STBY);
554 
555 	if (IS_ENABLED(CONFIG_REGULATOR))
556 		return spm_register_regulator(&pdev->dev, drv);
557 
558 	return 0;
559 }
560 
561 static struct platform_driver spm_driver = {
562 	.probe = spm_dev_probe,
563 	.driver = {
564 		.name = "qcom_spm",
565 		.of_match_table = spm_match_table,
566 	},
567 };
568 
569 static int __init qcom_spm_init(void)
570 {
571 	return platform_driver_register(&spm_driver);
572 }
573 arch_initcall(qcom_spm_init);
574 
575 MODULE_LICENSE("GPL v2");
576