1 /* 2 * Copyright (c) 2015, Sony Mobile Communications AB. 3 * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 and 7 * only version 2 as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 */ 14 15 #include <linux/hwspinlock.h> 16 #include <linux/io.h> 17 #include <linux/module.h> 18 #include <linux/of.h> 19 #include <linux/of_address.h> 20 #include <linux/platform_device.h> 21 #include <linux/slab.h> 22 #include <linux/soc/qcom/smem.h> 23 24 /* 25 * The Qualcomm shared memory system is a allocate only heap structure that 26 * consists of one of more memory areas that can be accessed by the processors 27 * in the SoC. 28 * 29 * All systems contains a global heap, accessible by all processors in the SoC, 30 * with a table of contents data structure (@smem_header) at the beginning of 31 * the main shared memory block. 32 * 33 * The global header contains meta data for allocations as well as a fixed list 34 * of 512 entries (@smem_global_entry) that can be initialized to reference 35 * parts of the shared memory space. 36 * 37 * 38 * In addition to this global heap a set of "private" heaps can be set up at 39 * boot time with access restrictions so that only certain processor pairs can 40 * access the data. 41 * 42 * These partitions are referenced from an optional partition table 43 * (@smem_ptable), that is found 4kB from the end of the main smem region. The 44 * partition table entries (@smem_ptable_entry) lists the involved processors 45 * (or hosts) and their location in the main shared memory region. 46 * 47 * Each partition starts with a header (@smem_partition_header) that identifies 48 * the partition and holds properties for the two internal memory regions. The 49 * two regions are cached and non-cached memory respectively. Each region 50 * contain a link list of allocation headers (@smem_private_entry) followed by 51 * their data. 52 * 53 * Items in the non-cached region are allocated from the start of the partition 54 * while items in the cached region are allocated from the end. The free area 55 * is hence the region between the cached and non-cached offsets. The header of 56 * cached items comes after the data. 57 * 58 * Version 12 (SMEM_GLOBAL_PART_VERSION) changes the item alloc/get procedure 59 * for the global heap. A new global partition is created from the global heap 60 * region with partition type (SMEM_GLOBAL_HOST) and the max smem item count is 61 * set by the bootloader. 62 * 63 * To synchronize allocations in the shared memory heaps a remote spinlock must 64 * be held - currently lock number 3 of the sfpb or tcsr is used for this on all 65 * platforms. 66 * 67 */ 68 69 /* 70 * The version member of the smem header contains an array of versions for the 71 * various software components in the SoC. We verify that the boot loader 72 * version is a valid version as a sanity check. 73 */ 74 #define SMEM_MASTER_SBL_VERSION_INDEX 7 75 #define SMEM_GLOBAL_HEAP_VERSION 11 76 #define SMEM_GLOBAL_PART_VERSION 12 77 78 /* 79 * The first 8 items are only to be allocated by the boot loader while 80 * initializing the heap. 81 */ 82 #define SMEM_ITEM_LAST_FIXED 8 83 84 /* Highest accepted item number, for both global and private heaps */ 85 #define SMEM_ITEM_COUNT 512 86 87 /* Processor/host identifier for the application processor */ 88 #define SMEM_HOST_APPS 0 89 90 /* Processor/host identifier for the global partition */ 91 #define SMEM_GLOBAL_HOST 0xfffe 92 93 /* Max number of processors/hosts in a system */ 94 #define SMEM_HOST_COUNT 10 95 96 /** 97 * struct smem_proc_comm - proc_comm communication struct (legacy) 98 * @command: current command to be executed 99 * @status: status of the currently requested command 100 * @params: parameters to the command 101 */ 102 struct smem_proc_comm { 103 __le32 command; 104 __le32 status; 105 __le32 params[2]; 106 }; 107 108 /** 109 * struct smem_global_entry - entry to reference smem items on the heap 110 * @allocated: boolean to indicate if this entry is used 111 * @offset: offset to the allocated space 112 * @size: size of the allocated space, 8 byte aligned 113 * @aux_base: base address for the memory region used by this unit, or 0 for 114 * the default region. bits 0,1 are reserved 115 */ 116 struct smem_global_entry { 117 __le32 allocated; 118 __le32 offset; 119 __le32 size; 120 __le32 aux_base; /* bits 1:0 reserved */ 121 }; 122 #define AUX_BASE_MASK 0xfffffffc 123 124 /** 125 * struct smem_header - header found in beginning of primary smem region 126 * @proc_comm: proc_comm communication interface (legacy) 127 * @version: array of versions for the various subsystems 128 * @initialized: boolean to indicate that smem is initialized 129 * @free_offset: index of the first unallocated byte in smem 130 * @available: number of bytes available for allocation 131 * @reserved: reserved field, must be 0 132 * toc: array of references to items 133 */ 134 struct smem_header { 135 struct smem_proc_comm proc_comm[4]; 136 __le32 version[32]; 137 __le32 initialized; 138 __le32 free_offset; 139 __le32 available; 140 __le32 reserved; 141 struct smem_global_entry toc[SMEM_ITEM_COUNT]; 142 }; 143 144 /** 145 * struct smem_ptable_entry - one entry in the @smem_ptable list 146 * @offset: offset, within the main shared memory region, of the partition 147 * @size: size of the partition 148 * @flags: flags for the partition (currently unused) 149 * @host0: first processor/host with access to this partition 150 * @host1: second processor/host with access to this partition 151 * @cacheline: alignment for "cached" entries 152 * @reserved: reserved entries for later use 153 */ 154 struct smem_ptable_entry { 155 __le32 offset; 156 __le32 size; 157 __le32 flags; 158 __le16 host0; 159 __le16 host1; 160 __le32 cacheline; 161 __le32 reserved[7]; 162 }; 163 164 /** 165 * struct smem_ptable - partition table for the private partitions 166 * @magic: magic number, must be SMEM_PTABLE_MAGIC 167 * @version: version of the partition table 168 * @num_entries: number of partitions in the table 169 * @reserved: for now reserved entries 170 * @entry: list of @smem_ptable_entry for the @num_entries partitions 171 */ 172 struct smem_ptable { 173 u8 magic[4]; 174 __le32 version; 175 __le32 num_entries; 176 __le32 reserved[5]; 177 struct smem_ptable_entry entry[]; 178 }; 179 180 static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */ 181 182 /** 183 * struct smem_partition_header - header of the partitions 184 * @magic: magic number, must be SMEM_PART_MAGIC 185 * @host0: first processor/host with access to this partition 186 * @host1: second processor/host with access to this partition 187 * @size: size of the partition 188 * @offset_free_uncached: offset to the first free byte of uncached memory in 189 * this partition 190 * @offset_free_cached: offset to the first free byte of cached memory in this 191 * partition 192 * @reserved: for now reserved entries 193 */ 194 struct smem_partition_header { 195 u8 magic[4]; 196 __le16 host0; 197 __le16 host1; 198 __le32 size; 199 __le32 offset_free_uncached; 200 __le32 offset_free_cached; 201 __le32 reserved[3]; 202 }; 203 204 static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 }; 205 206 /** 207 * struct smem_private_entry - header of each item in the private partition 208 * @canary: magic number, must be SMEM_PRIVATE_CANARY 209 * @item: identifying number of the smem item 210 * @size: size of the data, including padding bytes 211 * @padding_data: number of bytes of padding of data 212 * @padding_hdr: number of bytes of padding between the header and the data 213 * @reserved: for now reserved entry 214 */ 215 struct smem_private_entry { 216 u16 canary; /* bytes are the same so no swapping needed */ 217 __le16 item; 218 __le32 size; /* includes padding bytes */ 219 __le16 padding_data; 220 __le16 padding_hdr; 221 __le32 reserved; 222 }; 223 #define SMEM_PRIVATE_CANARY 0xa5a5 224 225 /** 226 * struct smem_info - smem region info located after the table of contents 227 * @magic: magic number, must be SMEM_INFO_MAGIC 228 * @size: size of the smem region 229 * @base_addr: base address of the smem region 230 * @reserved: for now reserved entry 231 * @num_items: highest accepted item number 232 */ 233 struct smem_info { 234 u8 magic[4]; 235 __le32 size; 236 __le32 base_addr; 237 __le32 reserved; 238 __le16 num_items; 239 }; 240 241 static const u8 SMEM_INFO_MAGIC[] = { 0x53, 0x49, 0x49, 0x49 }; /* SIII */ 242 243 /** 244 * struct smem_region - representation of a chunk of memory used for smem 245 * @aux_base: identifier of aux_mem base 246 * @virt_base: virtual base address of memory with this aux_mem identifier 247 * @size: size of the memory region 248 */ 249 struct smem_region { 250 u32 aux_base; 251 void __iomem *virt_base; 252 size_t size; 253 }; 254 255 /** 256 * struct qcom_smem - device data for the smem device 257 * @dev: device pointer 258 * @hwlock: reference to a hwspinlock 259 * @global_partition: pointer to global partition when in use 260 * @global_cacheline: cacheline size for global partition 261 * @partitions: list of pointers to partitions affecting the current 262 * processor/host 263 * @cacheline: list of cacheline sizes for each host 264 * @item_count: max accepted item number 265 * @num_regions: number of @regions 266 * @regions: list of the memory regions defining the shared memory 267 */ 268 struct qcom_smem { 269 struct device *dev; 270 271 struct hwspinlock *hwlock; 272 273 struct smem_partition_header *global_partition; 274 size_t global_cacheline; 275 struct smem_partition_header *partitions[SMEM_HOST_COUNT]; 276 size_t cacheline[SMEM_HOST_COUNT]; 277 u32 item_count; 278 279 unsigned num_regions; 280 struct smem_region regions[0]; 281 }; 282 283 static void * 284 phdr_to_last_uncached_entry(struct smem_partition_header *phdr) 285 { 286 void *p = phdr; 287 288 return p + le32_to_cpu(phdr->offset_free_uncached); 289 } 290 291 static struct smem_private_entry * 292 phdr_to_first_cached_entry(struct smem_partition_header *phdr, 293 size_t cacheline) 294 { 295 void *p = phdr; 296 struct smem_private_entry *e; 297 298 return p + le32_to_cpu(phdr->size) - ALIGN(sizeof(*e), cacheline); 299 } 300 301 static void * 302 phdr_to_last_cached_entry(struct smem_partition_header *phdr) 303 { 304 void *p = phdr; 305 306 return p + le32_to_cpu(phdr->offset_free_cached); 307 } 308 309 static struct smem_private_entry * 310 phdr_to_first_uncached_entry(struct smem_partition_header *phdr) 311 { 312 void *p = phdr; 313 314 return p + sizeof(*phdr); 315 } 316 317 static struct smem_private_entry * 318 uncached_entry_next(struct smem_private_entry *e) 319 { 320 void *p = e; 321 322 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) + 323 le32_to_cpu(e->size); 324 } 325 326 static struct smem_private_entry * 327 cached_entry_next(struct smem_private_entry *e, size_t cacheline) 328 { 329 void *p = e; 330 331 return p - le32_to_cpu(e->size) - ALIGN(sizeof(*e), cacheline); 332 } 333 334 static void *uncached_entry_to_item(struct smem_private_entry *e) 335 { 336 void *p = e; 337 338 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr); 339 } 340 341 static void *cached_entry_to_item(struct smem_private_entry *e) 342 { 343 void *p = e; 344 345 return p - le32_to_cpu(e->size); 346 } 347 348 /* Pointer to the one and only smem handle */ 349 static struct qcom_smem *__smem; 350 351 /* Timeout (ms) for the trylock of remote spinlocks */ 352 #define HWSPINLOCK_TIMEOUT 1000 353 354 static int qcom_smem_alloc_private(struct qcom_smem *smem, 355 struct smem_partition_header *phdr, 356 unsigned item, 357 size_t size) 358 { 359 struct smem_private_entry *hdr, *end; 360 size_t alloc_size; 361 void *cached; 362 363 hdr = phdr_to_first_uncached_entry(phdr); 364 end = phdr_to_last_uncached_entry(phdr); 365 cached = phdr_to_last_cached_entry(phdr); 366 367 if (smem->global_partition) { 368 dev_err(smem->dev, "Already found the global partition\n"); 369 return -EINVAL; 370 } 371 372 while (hdr < end) { 373 if (hdr->canary != SMEM_PRIVATE_CANARY) 374 goto bad_canary; 375 if (le16_to_cpu(hdr->item) == item) 376 return -EEXIST; 377 378 hdr = uncached_entry_next(hdr); 379 } 380 381 /* Check that we don't grow into the cached region */ 382 alloc_size = sizeof(*hdr) + ALIGN(size, 8); 383 if ((void *)hdr + alloc_size > cached) { 384 dev_err(smem->dev, "Out of memory\n"); 385 return -ENOSPC; 386 } 387 388 hdr->canary = SMEM_PRIVATE_CANARY; 389 hdr->item = cpu_to_le16(item); 390 hdr->size = cpu_to_le32(ALIGN(size, 8)); 391 hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size); 392 hdr->padding_hdr = 0; 393 394 /* 395 * Ensure the header is written before we advance the free offset, so 396 * that remote processors that does not take the remote spinlock still 397 * gets a consistent view of the linked list. 398 */ 399 wmb(); 400 le32_add_cpu(&phdr->offset_free_uncached, alloc_size); 401 402 return 0; 403 bad_canary: 404 dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n", 405 le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1)); 406 407 return -EINVAL; 408 } 409 410 static int qcom_smem_alloc_global(struct qcom_smem *smem, 411 unsigned item, 412 size_t size) 413 { 414 struct smem_global_entry *entry; 415 struct smem_header *header; 416 417 header = smem->regions[0].virt_base; 418 entry = &header->toc[item]; 419 if (entry->allocated) 420 return -EEXIST; 421 422 size = ALIGN(size, 8); 423 if (WARN_ON(size > le32_to_cpu(header->available))) 424 return -ENOMEM; 425 426 entry->offset = header->free_offset; 427 entry->size = cpu_to_le32(size); 428 429 /* 430 * Ensure the header is consistent before we mark the item allocated, 431 * so that remote processors will get a consistent view of the item 432 * even though they do not take the spinlock on read. 433 */ 434 wmb(); 435 entry->allocated = cpu_to_le32(1); 436 437 le32_add_cpu(&header->free_offset, size); 438 le32_add_cpu(&header->available, -size); 439 440 return 0; 441 } 442 443 /** 444 * qcom_smem_alloc() - allocate space for a smem item 445 * @host: remote processor id, or -1 446 * @item: smem item handle 447 * @size: number of bytes to be allocated 448 * 449 * Allocate space for a given smem item of size @size, given that the item is 450 * not yet allocated. 451 */ 452 int qcom_smem_alloc(unsigned host, unsigned item, size_t size) 453 { 454 struct smem_partition_header *phdr; 455 unsigned long flags; 456 int ret; 457 458 if (!__smem) 459 return -EPROBE_DEFER; 460 461 if (item < SMEM_ITEM_LAST_FIXED) { 462 dev_err(__smem->dev, 463 "Rejecting allocation of static entry %d\n", item); 464 return -EINVAL; 465 } 466 467 if (WARN_ON(item >= __smem->item_count)) 468 return -EINVAL; 469 470 ret = hwspin_lock_timeout_irqsave(__smem->hwlock, 471 HWSPINLOCK_TIMEOUT, 472 &flags); 473 if (ret) 474 return ret; 475 476 if (host < SMEM_HOST_COUNT && __smem->partitions[host]) { 477 phdr = __smem->partitions[host]; 478 ret = qcom_smem_alloc_private(__smem, phdr, item, size); 479 } else if (__smem->global_partition) { 480 phdr = __smem->global_partition; 481 ret = qcom_smem_alloc_private(__smem, phdr, item, size); 482 } else { 483 ret = qcom_smem_alloc_global(__smem, item, size); 484 } 485 486 hwspin_unlock_irqrestore(__smem->hwlock, &flags); 487 488 return ret; 489 } 490 EXPORT_SYMBOL(qcom_smem_alloc); 491 492 static void *qcom_smem_get_global(struct qcom_smem *smem, 493 unsigned item, 494 size_t *size) 495 { 496 struct smem_header *header; 497 struct smem_region *area; 498 struct smem_global_entry *entry; 499 u32 aux_base; 500 unsigned i; 501 502 header = smem->regions[0].virt_base; 503 entry = &header->toc[item]; 504 if (!entry->allocated) 505 return ERR_PTR(-ENXIO); 506 507 aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK; 508 509 for (i = 0; i < smem->num_regions; i++) { 510 area = &smem->regions[i]; 511 512 if (area->aux_base == aux_base || !aux_base) { 513 if (size != NULL) 514 *size = le32_to_cpu(entry->size); 515 return area->virt_base + le32_to_cpu(entry->offset); 516 } 517 } 518 519 return ERR_PTR(-ENOENT); 520 } 521 522 static void *qcom_smem_get_private(struct qcom_smem *smem, 523 struct smem_partition_header *phdr, 524 size_t cacheline, 525 unsigned item, 526 size_t *size) 527 { 528 struct smem_private_entry *e, *end; 529 530 e = phdr_to_first_uncached_entry(phdr); 531 end = phdr_to_last_uncached_entry(phdr); 532 533 while (e < end) { 534 if (e->canary != SMEM_PRIVATE_CANARY) 535 goto invalid_canary; 536 537 if (le16_to_cpu(e->item) == item) { 538 if (size != NULL) 539 *size = le32_to_cpu(e->size) - 540 le16_to_cpu(e->padding_data); 541 542 return uncached_entry_to_item(e); 543 } 544 545 e = uncached_entry_next(e); 546 } 547 548 /* Item was not found in the uncached list, search the cached list */ 549 550 e = phdr_to_first_cached_entry(phdr, cacheline); 551 end = phdr_to_last_cached_entry(phdr); 552 553 while (e > end) { 554 if (e->canary != SMEM_PRIVATE_CANARY) 555 goto invalid_canary; 556 557 if (le16_to_cpu(e->item) == item) { 558 if (size != NULL) 559 *size = le32_to_cpu(e->size) - 560 le16_to_cpu(e->padding_data); 561 562 return cached_entry_to_item(e); 563 } 564 565 e = cached_entry_next(e, cacheline); 566 } 567 568 return ERR_PTR(-ENOENT); 569 570 invalid_canary: 571 dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n", 572 le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1)); 573 574 return ERR_PTR(-EINVAL); 575 } 576 577 /** 578 * qcom_smem_get() - resolve ptr of size of a smem item 579 * @host: the remote processor, or -1 580 * @item: smem item handle 581 * @size: pointer to be filled out with size of the item 582 * 583 * Looks up smem item and returns pointer to it. Size of smem 584 * item is returned in @size. 585 */ 586 void *qcom_smem_get(unsigned host, unsigned item, size_t *size) 587 { 588 struct smem_partition_header *phdr; 589 unsigned long flags; 590 size_t cacheln; 591 int ret; 592 void *ptr = ERR_PTR(-EPROBE_DEFER); 593 594 if (!__smem) 595 return ptr; 596 597 if (WARN_ON(item >= __smem->item_count)) 598 return ERR_PTR(-EINVAL); 599 600 ret = hwspin_lock_timeout_irqsave(__smem->hwlock, 601 HWSPINLOCK_TIMEOUT, 602 &flags); 603 if (ret) 604 return ERR_PTR(ret); 605 606 if (host < SMEM_HOST_COUNT && __smem->partitions[host]) { 607 phdr = __smem->partitions[host]; 608 cacheln = __smem->cacheline[host]; 609 ptr = qcom_smem_get_private(__smem, phdr, cacheln, item, size); 610 } else if (__smem->global_partition) { 611 phdr = __smem->global_partition; 612 cacheln = __smem->global_cacheline; 613 ptr = qcom_smem_get_private(__smem, phdr, cacheln, item, size); 614 } else { 615 ptr = qcom_smem_get_global(__smem, item, size); 616 } 617 618 hwspin_unlock_irqrestore(__smem->hwlock, &flags); 619 620 return ptr; 621 622 } 623 EXPORT_SYMBOL(qcom_smem_get); 624 625 /** 626 * qcom_smem_get_free_space() - retrieve amount of free space in a partition 627 * @host: the remote processor identifying a partition, or -1 628 * 629 * To be used by smem clients as a quick way to determine if any new 630 * allocations has been made. 631 */ 632 int qcom_smem_get_free_space(unsigned host) 633 { 634 struct smem_partition_header *phdr; 635 struct smem_header *header; 636 unsigned ret; 637 638 if (!__smem) 639 return -EPROBE_DEFER; 640 641 if (host < SMEM_HOST_COUNT && __smem->partitions[host]) { 642 phdr = __smem->partitions[host]; 643 ret = le32_to_cpu(phdr->offset_free_cached) - 644 le32_to_cpu(phdr->offset_free_uncached); 645 } else if (__smem->global_partition) { 646 phdr = __smem->global_partition; 647 ret = le32_to_cpu(phdr->offset_free_cached) - 648 le32_to_cpu(phdr->offset_free_uncached); 649 } else { 650 header = __smem->regions[0].virt_base; 651 ret = le32_to_cpu(header->available); 652 } 653 654 return ret; 655 } 656 EXPORT_SYMBOL(qcom_smem_get_free_space); 657 658 /** 659 * qcom_smem_virt_to_phys() - return the physical address associated 660 * with an smem item pointer (previously returned by qcom_smem_get() 661 * @p: the virtual address to convert 662 * 663 * Returns 0 if the pointer provided is not within any smem region. 664 */ 665 phys_addr_t qcom_smem_virt_to_phys(void *p) 666 { 667 unsigned i; 668 669 for (i = 0; i < __smem->num_regions; i++) { 670 struct smem_region *region = &__smem->regions[i]; 671 672 if (p < region->virt_base) 673 continue; 674 if (p < region->virt_base + region->size) { 675 u64 offset = p - region->virt_base; 676 677 return (phys_addr_t)region->aux_base + offset; 678 } 679 } 680 681 return 0; 682 } 683 EXPORT_SYMBOL(qcom_smem_virt_to_phys); 684 685 static int qcom_smem_get_sbl_version(struct qcom_smem *smem) 686 { 687 struct smem_header *header; 688 __le32 *versions; 689 690 header = smem->regions[0].virt_base; 691 versions = header->version; 692 693 return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]); 694 } 695 696 static struct smem_ptable *qcom_smem_get_ptable(struct qcom_smem *smem) 697 { 698 struct smem_ptable *ptable; 699 u32 version; 700 701 ptable = smem->regions[0].virt_base + smem->regions[0].size - SZ_4K; 702 if (memcmp(ptable->magic, SMEM_PTABLE_MAGIC, sizeof(ptable->magic))) 703 return ERR_PTR(-ENOENT); 704 705 version = le32_to_cpu(ptable->version); 706 if (version != 1) { 707 dev_err(smem->dev, 708 "Unsupported partition header version %d\n", version); 709 return ERR_PTR(-EINVAL); 710 } 711 return ptable; 712 } 713 714 static u32 qcom_smem_get_item_count(struct qcom_smem *smem) 715 { 716 struct smem_ptable *ptable; 717 struct smem_info *info; 718 719 ptable = qcom_smem_get_ptable(smem); 720 if (IS_ERR_OR_NULL(ptable)) 721 return SMEM_ITEM_COUNT; 722 723 info = (struct smem_info *)&ptable->entry[ptable->num_entries]; 724 if (memcmp(info->magic, SMEM_INFO_MAGIC, sizeof(info->magic))) 725 return SMEM_ITEM_COUNT; 726 727 return le16_to_cpu(info->num_items); 728 } 729 730 static int qcom_smem_set_global_partition(struct qcom_smem *smem) 731 { 732 struct smem_partition_header *header; 733 struct smem_ptable_entry *entry; 734 struct smem_ptable *ptable; 735 u32 host0, host1, size; 736 bool found = false; 737 int i; 738 739 ptable = qcom_smem_get_ptable(smem); 740 if (IS_ERR(ptable)) 741 return PTR_ERR(ptable); 742 743 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) { 744 entry = &ptable->entry[i]; 745 host0 = le16_to_cpu(entry->host0); 746 host1 = le16_to_cpu(entry->host1); 747 748 if (host0 == SMEM_GLOBAL_HOST && host0 == host1) { 749 found = true; 750 break; 751 } 752 } 753 754 if (!found) { 755 dev_err(smem->dev, "Missing entry for global partition\n"); 756 return -EINVAL; 757 } 758 759 if (!le32_to_cpu(entry->offset) || !le32_to_cpu(entry->size)) { 760 dev_err(smem->dev, "Invalid entry for global partition\n"); 761 return -EINVAL; 762 } 763 764 header = smem->regions[0].virt_base + le32_to_cpu(entry->offset); 765 host0 = le16_to_cpu(header->host0); 766 host1 = le16_to_cpu(header->host1); 767 768 if (memcmp(header->magic, SMEM_PART_MAGIC, sizeof(header->magic))) { 769 dev_err(smem->dev, "Global partition has invalid magic\n"); 770 return -EINVAL; 771 } 772 773 if (host0 != SMEM_GLOBAL_HOST && host1 != SMEM_GLOBAL_HOST) { 774 dev_err(smem->dev, "Global partition hosts are invalid\n"); 775 return -EINVAL; 776 } 777 778 if (le32_to_cpu(header->size) != le32_to_cpu(entry->size)) { 779 dev_err(smem->dev, "Global partition has invalid size\n"); 780 return -EINVAL; 781 } 782 783 size = le32_to_cpu(header->offset_free_uncached); 784 if (size > le32_to_cpu(header->size)) { 785 dev_err(smem->dev, 786 "Global partition has invalid free pointer\n"); 787 return -EINVAL; 788 } 789 790 smem->global_partition = header; 791 smem->global_cacheline = le32_to_cpu(entry->cacheline); 792 793 return 0; 794 } 795 796 static int qcom_smem_enumerate_partitions(struct qcom_smem *smem, 797 unsigned int local_host) 798 { 799 struct smem_partition_header *header; 800 struct smem_ptable_entry *entry; 801 struct smem_ptable *ptable; 802 unsigned int remote_host; 803 u32 host0, host1; 804 int i; 805 806 ptable = qcom_smem_get_ptable(smem); 807 if (IS_ERR(ptable)) 808 return PTR_ERR(ptable); 809 810 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) { 811 entry = &ptable->entry[i]; 812 host0 = le16_to_cpu(entry->host0); 813 host1 = le16_to_cpu(entry->host1); 814 815 if (host0 != local_host && host1 != local_host) 816 continue; 817 818 if (!le32_to_cpu(entry->offset)) 819 continue; 820 821 if (!le32_to_cpu(entry->size)) 822 continue; 823 824 if (host0 == local_host) 825 remote_host = host1; 826 else 827 remote_host = host0; 828 829 if (remote_host >= SMEM_HOST_COUNT) { 830 dev_err(smem->dev, 831 "Invalid remote host %d\n", 832 remote_host); 833 return -EINVAL; 834 } 835 836 if (smem->partitions[remote_host]) { 837 dev_err(smem->dev, 838 "Already found a partition for host %d\n", 839 remote_host); 840 return -EINVAL; 841 } 842 843 header = smem->regions[0].virt_base + le32_to_cpu(entry->offset); 844 host0 = le16_to_cpu(header->host0); 845 host1 = le16_to_cpu(header->host1); 846 847 if (memcmp(header->magic, SMEM_PART_MAGIC, 848 sizeof(header->magic))) { 849 dev_err(smem->dev, 850 "Partition %d has invalid magic\n", i); 851 return -EINVAL; 852 } 853 854 if (host0 != local_host && host1 != local_host) { 855 dev_err(smem->dev, 856 "Partition %d hosts are invalid\n", i); 857 return -EINVAL; 858 } 859 860 if (host0 != remote_host && host1 != remote_host) { 861 dev_err(smem->dev, 862 "Partition %d hosts are invalid\n", i); 863 return -EINVAL; 864 } 865 866 if (le32_to_cpu(header->size) != le32_to_cpu(entry->size)) { 867 dev_err(smem->dev, 868 "Partition %d has invalid size\n", i); 869 return -EINVAL; 870 } 871 872 if (le32_to_cpu(header->offset_free_uncached) > le32_to_cpu(header->size)) { 873 dev_err(smem->dev, 874 "Partition %d has invalid free pointer\n", i); 875 return -EINVAL; 876 } 877 878 smem->partitions[remote_host] = header; 879 smem->cacheline[remote_host] = le32_to_cpu(entry->cacheline); 880 } 881 882 return 0; 883 } 884 885 static int qcom_smem_map_memory(struct qcom_smem *smem, struct device *dev, 886 const char *name, int i) 887 { 888 struct device_node *np; 889 struct resource r; 890 int ret; 891 892 np = of_parse_phandle(dev->of_node, name, 0); 893 if (!np) { 894 dev_err(dev, "No %s specified\n", name); 895 return -EINVAL; 896 } 897 898 ret = of_address_to_resource(np, 0, &r); 899 of_node_put(np); 900 if (ret) 901 return ret; 902 903 smem->regions[i].aux_base = (u32)r.start; 904 smem->regions[i].size = resource_size(&r); 905 smem->regions[i].virt_base = devm_ioremap_wc(dev, r.start, resource_size(&r)); 906 if (!smem->regions[i].virt_base) 907 return -ENOMEM; 908 909 return 0; 910 } 911 912 static int qcom_smem_probe(struct platform_device *pdev) 913 { 914 struct smem_header *header; 915 struct qcom_smem *smem; 916 size_t array_size; 917 int num_regions; 918 int hwlock_id; 919 u32 version; 920 int ret; 921 922 num_regions = 1; 923 if (of_find_property(pdev->dev.of_node, "qcom,rpm-msg-ram", NULL)) 924 num_regions++; 925 926 array_size = num_regions * sizeof(struct smem_region); 927 smem = devm_kzalloc(&pdev->dev, sizeof(*smem) + array_size, GFP_KERNEL); 928 if (!smem) 929 return -ENOMEM; 930 931 smem->dev = &pdev->dev; 932 smem->num_regions = num_regions; 933 934 ret = qcom_smem_map_memory(smem, &pdev->dev, "memory-region", 0); 935 if (ret) 936 return ret; 937 938 if (num_regions > 1 && (ret = qcom_smem_map_memory(smem, &pdev->dev, 939 "qcom,rpm-msg-ram", 1))) 940 return ret; 941 942 header = smem->regions[0].virt_base; 943 if (le32_to_cpu(header->initialized) != 1 || 944 le32_to_cpu(header->reserved)) { 945 dev_err(&pdev->dev, "SMEM is not initialized by SBL\n"); 946 return -EINVAL; 947 } 948 949 version = qcom_smem_get_sbl_version(smem); 950 switch (version >> 16) { 951 case SMEM_GLOBAL_PART_VERSION: 952 ret = qcom_smem_set_global_partition(smem); 953 if (ret < 0) 954 return ret; 955 smem->item_count = qcom_smem_get_item_count(smem); 956 break; 957 case SMEM_GLOBAL_HEAP_VERSION: 958 smem->item_count = SMEM_ITEM_COUNT; 959 break; 960 default: 961 dev_err(&pdev->dev, "Unsupported SMEM version 0x%x\n", version); 962 return -EINVAL; 963 } 964 965 ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS); 966 if (ret < 0 && ret != -ENOENT) 967 return ret; 968 969 hwlock_id = of_hwspin_lock_get_id(pdev->dev.of_node, 0); 970 if (hwlock_id < 0) { 971 if (hwlock_id != -EPROBE_DEFER) 972 dev_err(&pdev->dev, "failed to retrieve hwlock\n"); 973 return hwlock_id; 974 } 975 976 smem->hwlock = hwspin_lock_request_specific(hwlock_id); 977 if (!smem->hwlock) 978 return -ENXIO; 979 980 __smem = smem; 981 982 return 0; 983 } 984 985 static int qcom_smem_remove(struct platform_device *pdev) 986 { 987 hwspin_lock_free(__smem->hwlock); 988 __smem = NULL; 989 990 return 0; 991 } 992 993 static const struct of_device_id qcom_smem_of_match[] = { 994 { .compatible = "qcom,smem" }, 995 {} 996 }; 997 MODULE_DEVICE_TABLE(of, qcom_smem_of_match); 998 999 static struct platform_driver qcom_smem_driver = { 1000 .probe = qcom_smem_probe, 1001 .remove = qcom_smem_remove, 1002 .driver = { 1003 .name = "qcom-smem", 1004 .of_match_table = qcom_smem_of_match, 1005 .suppress_bind_attrs = true, 1006 }, 1007 }; 1008 1009 static int __init qcom_smem_init(void) 1010 { 1011 return platform_driver_register(&qcom_smem_driver); 1012 } 1013 arch_initcall(qcom_smem_init); 1014 1015 static void __exit qcom_smem_exit(void) 1016 { 1017 platform_driver_unregister(&qcom_smem_driver); 1018 } 1019 module_exit(qcom_smem_exit) 1020 1021 MODULE_AUTHOR("Bjorn Andersson <bjorn.andersson@sonymobile.com>"); 1022 MODULE_DESCRIPTION("Qualcomm Shared Memory Manager"); 1023 MODULE_LICENSE("GPL v2"); 1024