1 /* 2 * Copyright (c) 2015, Sony Mobile Communications AB. 3 * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 and 7 * only version 2 as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 */ 14 15 #include <linux/hwspinlock.h> 16 #include <linux/io.h> 17 #include <linux/module.h> 18 #include <linux/of.h> 19 #include <linux/of_address.h> 20 #include <linux/platform_device.h> 21 #include <linux/slab.h> 22 #include <linux/soc/qcom/smem.h> 23 24 /* 25 * The Qualcomm shared memory system is a allocate only heap structure that 26 * consists of one of more memory areas that can be accessed by the processors 27 * in the SoC. 28 * 29 * All systems contains a global heap, accessible by all processors in the SoC, 30 * with a table of contents data structure (@smem_header) at the beginning of 31 * the main shared memory block. 32 * 33 * The global header contains meta data for allocations as well as a fixed list 34 * of 512 entries (@smem_global_entry) that can be initialized to reference 35 * parts of the shared memory space. 36 * 37 * 38 * In addition to this global heap a set of "private" heaps can be set up at 39 * boot time with access restrictions so that only certain processor pairs can 40 * access the data. 41 * 42 * These partitions are referenced from an optional partition table 43 * (@smem_ptable), that is found 4kB from the end of the main smem region. The 44 * partition table entries (@smem_ptable_entry) lists the involved processors 45 * (or hosts) and their location in the main shared memory region. 46 * 47 * Each partition starts with a header (@smem_partition_header) that identifies 48 * the partition and holds properties for the two internal memory regions. The 49 * two regions are cached and non-cached memory respectively. Each region 50 * contain a link list of allocation headers (@smem_private_entry) followed by 51 * their data. 52 * 53 * Items in the non-cached region are allocated from the start of the partition 54 * while items in the cached region are allocated from the end. The free area 55 * is hence the region between the cached and non-cached offsets. The header of 56 * cached items comes after the data. 57 * 58 * Version 12 (SMEM_GLOBAL_PART_VERSION) changes the item alloc/get procedure 59 * for the global heap. A new global partition is created from the global heap 60 * region with partition type (SMEM_GLOBAL_HOST) and the max smem item count is 61 * set by the bootloader. 62 * 63 * To synchronize allocations in the shared memory heaps a remote spinlock must 64 * be held - currently lock number 3 of the sfpb or tcsr is used for this on all 65 * platforms. 66 * 67 */ 68 69 /* 70 * The version member of the smem header contains an array of versions for the 71 * various software components in the SoC. We verify that the boot loader 72 * version is a valid version as a sanity check. 73 */ 74 #define SMEM_MASTER_SBL_VERSION_INDEX 7 75 #define SMEM_GLOBAL_HEAP_VERSION 11 76 #define SMEM_GLOBAL_PART_VERSION 12 77 78 /* 79 * The first 8 items are only to be allocated by the boot loader while 80 * initializing the heap. 81 */ 82 #define SMEM_ITEM_LAST_FIXED 8 83 84 /* Highest accepted item number, for both global and private heaps */ 85 #define SMEM_ITEM_COUNT 512 86 87 /* Processor/host identifier for the application processor */ 88 #define SMEM_HOST_APPS 0 89 90 /* Processor/host identifier for the global partition */ 91 #define SMEM_GLOBAL_HOST 0xfffe 92 93 /* Max number of processors/hosts in a system */ 94 #define SMEM_HOST_COUNT 10 95 96 /** 97 * struct smem_proc_comm - proc_comm communication struct (legacy) 98 * @command: current command to be executed 99 * @status: status of the currently requested command 100 * @params: parameters to the command 101 */ 102 struct smem_proc_comm { 103 __le32 command; 104 __le32 status; 105 __le32 params[2]; 106 }; 107 108 /** 109 * struct smem_global_entry - entry to reference smem items on the heap 110 * @allocated: boolean to indicate if this entry is used 111 * @offset: offset to the allocated space 112 * @size: size of the allocated space, 8 byte aligned 113 * @aux_base: base address for the memory region used by this unit, or 0 for 114 * the default region. bits 0,1 are reserved 115 */ 116 struct smem_global_entry { 117 __le32 allocated; 118 __le32 offset; 119 __le32 size; 120 __le32 aux_base; /* bits 1:0 reserved */ 121 }; 122 #define AUX_BASE_MASK 0xfffffffc 123 124 /** 125 * struct smem_header - header found in beginning of primary smem region 126 * @proc_comm: proc_comm communication interface (legacy) 127 * @version: array of versions for the various subsystems 128 * @initialized: boolean to indicate that smem is initialized 129 * @free_offset: index of the first unallocated byte in smem 130 * @available: number of bytes available for allocation 131 * @reserved: reserved field, must be 0 132 * toc: array of references to items 133 */ 134 struct smem_header { 135 struct smem_proc_comm proc_comm[4]; 136 __le32 version[32]; 137 __le32 initialized; 138 __le32 free_offset; 139 __le32 available; 140 __le32 reserved; 141 struct smem_global_entry toc[SMEM_ITEM_COUNT]; 142 }; 143 144 /** 145 * struct smem_ptable_entry - one entry in the @smem_ptable list 146 * @offset: offset, within the main shared memory region, of the partition 147 * @size: size of the partition 148 * @flags: flags for the partition (currently unused) 149 * @host0: first processor/host with access to this partition 150 * @host1: second processor/host with access to this partition 151 * @cacheline: alignment for "cached" entries 152 * @reserved: reserved entries for later use 153 */ 154 struct smem_ptable_entry { 155 __le32 offset; 156 __le32 size; 157 __le32 flags; 158 __le16 host0; 159 __le16 host1; 160 __le32 cacheline; 161 __le32 reserved[7]; 162 }; 163 164 /** 165 * struct smem_ptable - partition table for the private partitions 166 * @magic: magic number, must be SMEM_PTABLE_MAGIC 167 * @version: version of the partition table 168 * @num_entries: number of partitions in the table 169 * @reserved: for now reserved entries 170 * @entry: list of @smem_ptable_entry for the @num_entries partitions 171 */ 172 struct smem_ptable { 173 u8 magic[4]; 174 __le32 version; 175 __le32 num_entries; 176 __le32 reserved[5]; 177 struct smem_ptable_entry entry[]; 178 }; 179 180 static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */ 181 182 /** 183 * struct smem_partition_header - header of the partitions 184 * @magic: magic number, must be SMEM_PART_MAGIC 185 * @host0: first processor/host with access to this partition 186 * @host1: second processor/host with access to this partition 187 * @size: size of the partition 188 * @offset_free_uncached: offset to the first free byte of uncached memory in 189 * this partition 190 * @offset_free_cached: offset to the first free byte of cached memory in this 191 * partition 192 * @reserved: for now reserved entries 193 */ 194 struct smem_partition_header { 195 u8 magic[4]; 196 __le16 host0; 197 __le16 host1; 198 __le32 size; 199 __le32 offset_free_uncached; 200 __le32 offset_free_cached; 201 __le32 reserved[3]; 202 }; 203 204 static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 }; 205 206 /** 207 * struct smem_private_entry - header of each item in the private partition 208 * @canary: magic number, must be SMEM_PRIVATE_CANARY 209 * @item: identifying number of the smem item 210 * @size: size of the data, including padding bytes 211 * @padding_data: number of bytes of padding of data 212 * @padding_hdr: number of bytes of padding between the header and the data 213 * @reserved: for now reserved entry 214 */ 215 struct smem_private_entry { 216 u16 canary; /* bytes are the same so no swapping needed */ 217 __le16 item; 218 __le32 size; /* includes padding bytes */ 219 __le16 padding_data; 220 __le16 padding_hdr; 221 __le32 reserved; 222 }; 223 #define SMEM_PRIVATE_CANARY 0xa5a5 224 225 /** 226 * struct smem_info - smem region info located after the table of contents 227 * @magic: magic number, must be SMEM_INFO_MAGIC 228 * @size: size of the smem region 229 * @base_addr: base address of the smem region 230 * @reserved: for now reserved entry 231 * @num_items: highest accepted item number 232 */ 233 struct smem_info { 234 u8 magic[4]; 235 __le32 size; 236 __le32 base_addr; 237 __le32 reserved; 238 __le16 num_items; 239 }; 240 241 static const u8 SMEM_INFO_MAGIC[] = { 0x53, 0x49, 0x49, 0x49 }; /* SIII */ 242 243 /** 244 * struct smem_region - representation of a chunk of memory used for smem 245 * @aux_base: identifier of aux_mem base 246 * @virt_base: virtual base address of memory with this aux_mem identifier 247 * @size: size of the memory region 248 */ 249 struct smem_region { 250 u32 aux_base; 251 void __iomem *virt_base; 252 size_t size; 253 }; 254 255 /** 256 * struct qcom_smem - device data for the smem device 257 * @dev: device pointer 258 * @hwlock: reference to a hwspinlock 259 * @global_partition: pointer to global partition when in use 260 * @global_cacheline: cacheline size for global partition 261 * @partitions: list of pointers to partitions affecting the current 262 * processor/host 263 * @cacheline: list of cacheline sizes for each host 264 * @item_count: max accepted item number 265 * @num_regions: number of @regions 266 * @regions: list of the memory regions defining the shared memory 267 */ 268 struct qcom_smem { 269 struct device *dev; 270 271 struct hwspinlock *hwlock; 272 273 struct smem_partition_header *global_partition; 274 size_t global_cacheline; 275 struct smem_partition_header *partitions[SMEM_HOST_COUNT]; 276 size_t cacheline[SMEM_HOST_COUNT]; 277 u32 item_count; 278 279 unsigned num_regions; 280 struct smem_region regions[0]; 281 }; 282 283 static struct smem_private_entry * 284 phdr_to_last_uncached_entry(struct smem_partition_header *phdr) 285 { 286 void *p = phdr; 287 288 return p + le32_to_cpu(phdr->offset_free_uncached); 289 } 290 291 static void *phdr_to_first_cached_entry(struct smem_partition_header *phdr, 292 size_t cacheline) 293 { 294 void *p = phdr; 295 296 return p + le32_to_cpu(phdr->size) - ALIGN(sizeof(*phdr), cacheline); 297 } 298 299 static void *phdr_to_last_cached_entry(struct smem_partition_header *phdr) 300 { 301 void *p = phdr; 302 303 return p + le32_to_cpu(phdr->offset_free_cached); 304 } 305 306 static struct smem_private_entry * 307 phdr_to_first_uncached_entry(struct smem_partition_header *phdr) 308 { 309 void *p = phdr; 310 311 return p + sizeof(*phdr); 312 } 313 314 static struct smem_private_entry * 315 uncached_entry_next(struct smem_private_entry *e) 316 { 317 void *p = e; 318 319 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) + 320 le32_to_cpu(e->size); 321 } 322 323 static struct smem_private_entry * 324 cached_entry_next(struct smem_private_entry *e, size_t cacheline) 325 { 326 void *p = e; 327 328 return p - le32_to_cpu(e->size) - ALIGN(sizeof(*e), cacheline); 329 } 330 331 static void *uncached_entry_to_item(struct smem_private_entry *e) 332 { 333 void *p = e; 334 335 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr); 336 } 337 338 static void *cached_entry_to_item(struct smem_private_entry *e) 339 { 340 void *p = e; 341 342 return p - le32_to_cpu(e->size); 343 } 344 345 /* Pointer to the one and only smem handle */ 346 static struct qcom_smem *__smem; 347 348 /* Timeout (ms) for the trylock of remote spinlocks */ 349 #define HWSPINLOCK_TIMEOUT 1000 350 351 static int qcom_smem_alloc_private(struct qcom_smem *smem, 352 struct smem_partition_header *phdr, 353 unsigned item, 354 size_t size) 355 { 356 struct smem_private_entry *hdr, *end; 357 size_t alloc_size; 358 void *cached; 359 360 hdr = phdr_to_first_uncached_entry(phdr); 361 end = phdr_to_last_uncached_entry(phdr); 362 cached = phdr_to_last_cached_entry(phdr); 363 364 while (hdr < end) { 365 if (hdr->canary != SMEM_PRIVATE_CANARY) { 366 dev_err(smem->dev, 367 "Found invalid canary in hosts %d:%d partition\n", 368 phdr->host0, phdr->host1); 369 return -EINVAL; 370 } 371 372 if (le16_to_cpu(hdr->item) == item) 373 return -EEXIST; 374 375 hdr = uncached_entry_next(hdr); 376 } 377 378 /* Check that we don't grow into the cached region */ 379 alloc_size = sizeof(*hdr) + ALIGN(size, 8); 380 if ((void *)hdr + alloc_size >= cached) { 381 dev_err(smem->dev, "Out of memory\n"); 382 return -ENOSPC; 383 } 384 385 hdr->canary = SMEM_PRIVATE_CANARY; 386 hdr->item = cpu_to_le16(item); 387 hdr->size = cpu_to_le32(ALIGN(size, 8)); 388 hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size); 389 hdr->padding_hdr = 0; 390 391 /* 392 * Ensure the header is written before we advance the free offset, so 393 * that remote processors that does not take the remote spinlock still 394 * gets a consistent view of the linked list. 395 */ 396 wmb(); 397 le32_add_cpu(&phdr->offset_free_uncached, alloc_size); 398 399 return 0; 400 } 401 402 static int qcom_smem_alloc_global(struct qcom_smem *smem, 403 unsigned item, 404 size_t size) 405 { 406 struct smem_global_entry *entry; 407 struct smem_header *header; 408 409 header = smem->regions[0].virt_base; 410 entry = &header->toc[item]; 411 if (entry->allocated) 412 return -EEXIST; 413 414 size = ALIGN(size, 8); 415 if (WARN_ON(size > le32_to_cpu(header->available))) 416 return -ENOMEM; 417 418 entry->offset = header->free_offset; 419 entry->size = cpu_to_le32(size); 420 421 /* 422 * Ensure the header is consistent before we mark the item allocated, 423 * so that remote processors will get a consistent view of the item 424 * even though they do not take the spinlock on read. 425 */ 426 wmb(); 427 entry->allocated = cpu_to_le32(1); 428 429 le32_add_cpu(&header->free_offset, size); 430 le32_add_cpu(&header->available, -size); 431 432 return 0; 433 } 434 435 /** 436 * qcom_smem_alloc() - allocate space for a smem item 437 * @host: remote processor id, or -1 438 * @item: smem item handle 439 * @size: number of bytes to be allocated 440 * 441 * Allocate space for a given smem item of size @size, given that the item is 442 * not yet allocated. 443 */ 444 int qcom_smem_alloc(unsigned host, unsigned item, size_t size) 445 { 446 struct smem_partition_header *phdr; 447 unsigned long flags; 448 int ret; 449 450 if (!__smem) 451 return -EPROBE_DEFER; 452 453 if (item < SMEM_ITEM_LAST_FIXED) { 454 dev_err(__smem->dev, 455 "Rejecting allocation of static entry %d\n", item); 456 return -EINVAL; 457 } 458 459 if (WARN_ON(item >= __smem->item_count)) 460 return -EINVAL; 461 462 ret = hwspin_lock_timeout_irqsave(__smem->hwlock, 463 HWSPINLOCK_TIMEOUT, 464 &flags); 465 if (ret) 466 return ret; 467 468 if (host < SMEM_HOST_COUNT && __smem->partitions[host]) { 469 phdr = __smem->partitions[host]; 470 ret = qcom_smem_alloc_private(__smem, phdr, item, size); 471 } else if (__smem->global_partition) { 472 phdr = __smem->global_partition; 473 ret = qcom_smem_alloc_private(__smem, phdr, item, size); 474 } else { 475 ret = qcom_smem_alloc_global(__smem, item, size); 476 } 477 478 hwspin_unlock_irqrestore(__smem->hwlock, &flags); 479 480 return ret; 481 } 482 EXPORT_SYMBOL(qcom_smem_alloc); 483 484 static void *qcom_smem_get_global(struct qcom_smem *smem, 485 unsigned item, 486 size_t *size) 487 { 488 struct smem_header *header; 489 struct smem_region *area; 490 struct smem_global_entry *entry; 491 u32 aux_base; 492 unsigned i; 493 494 header = smem->regions[0].virt_base; 495 entry = &header->toc[item]; 496 if (!entry->allocated) 497 return ERR_PTR(-ENXIO); 498 499 aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK; 500 501 for (i = 0; i < smem->num_regions; i++) { 502 area = &smem->regions[i]; 503 504 if (area->aux_base == aux_base || !aux_base) { 505 if (size != NULL) 506 *size = le32_to_cpu(entry->size); 507 return area->virt_base + le32_to_cpu(entry->offset); 508 } 509 } 510 511 return ERR_PTR(-ENOENT); 512 } 513 514 static void *qcom_smem_get_private(struct qcom_smem *smem, 515 struct smem_partition_header *phdr, 516 size_t cacheline, 517 unsigned item, 518 size_t *size) 519 { 520 struct smem_private_entry *e, *end; 521 522 e = phdr_to_first_uncached_entry(phdr); 523 end = phdr_to_last_uncached_entry(phdr); 524 525 while (e < end) { 526 if (e->canary != SMEM_PRIVATE_CANARY) 527 goto invalid_canary; 528 529 if (le16_to_cpu(e->item) == item) { 530 if (size != NULL) 531 *size = le32_to_cpu(e->size) - 532 le16_to_cpu(e->padding_data); 533 534 return uncached_entry_to_item(e); 535 } 536 537 e = uncached_entry_next(e); 538 } 539 540 /* Item was not found in the uncached list, search the cached list */ 541 542 e = phdr_to_first_cached_entry(phdr, cacheline); 543 end = phdr_to_last_cached_entry(phdr); 544 545 while (e > end) { 546 if (e->canary != SMEM_PRIVATE_CANARY) 547 goto invalid_canary; 548 549 if (le16_to_cpu(e->item) == item) { 550 if (size != NULL) 551 *size = le32_to_cpu(e->size) - 552 le16_to_cpu(e->padding_data); 553 554 return cached_entry_to_item(e); 555 } 556 557 e = cached_entry_next(e, cacheline); 558 } 559 560 return ERR_PTR(-ENOENT); 561 562 invalid_canary: 563 dev_err(smem->dev, "Found invalid canary in hosts %d:%d partition\n", 564 phdr->host0, phdr->host1); 565 566 return ERR_PTR(-EINVAL); 567 } 568 569 /** 570 * qcom_smem_get() - resolve ptr of size of a smem item 571 * @host: the remote processor, or -1 572 * @item: smem item handle 573 * @size: pointer to be filled out with size of the item 574 * 575 * Looks up smem item and returns pointer to it. Size of smem 576 * item is returned in @size. 577 */ 578 void *qcom_smem_get(unsigned host, unsigned item, size_t *size) 579 { 580 struct smem_partition_header *phdr; 581 unsigned long flags; 582 size_t cacheln; 583 int ret; 584 void *ptr = ERR_PTR(-EPROBE_DEFER); 585 586 if (!__smem) 587 return ptr; 588 589 if (WARN_ON(item >= __smem->item_count)) 590 return ERR_PTR(-EINVAL); 591 592 ret = hwspin_lock_timeout_irqsave(__smem->hwlock, 593 HWSPINLOCK_TIMEOUT, 594 &flags); 595 if (ret) 596 return ERR_PTR(ret); 597 598 if (host < SMEM_HOST_COUNT && __smem->partitions[host]) { 599 phdr = __smem->partitions[host]; 600 cacheln = __smem->cacheline[host]; 601 ptr = qcom_smem_get_private(__smem, phdr, cacheln, item, size); 602 } else if (__smem->global_partition) { 603 phdr = __smem->global_partition; 604 cacheln = __smem->global_cacheline; 605 ptr = qcom_smem_get_private(__smem, phdr, cacheln, item, size); 606 } else { 607 ptr = qcom_smem_get_global(__smem, item, size); 608 } 609 610 hwspin_unlock_irqrestore(__smem->hwlock, &flags); 611 612 return ptr; 613 614 } 615 EXPORT_SYMBOL(qcom_smem_get); 616 617 /** 618 * qcom_smem_get_free_space() - retrieve amount of free space in a partition 619 * @host: the remote processor identifying a partition, or -1 620 * 621 * To be used by smem clients as a quick way to determine if any new 622 * allocations has been made. 623 */ 624 int qcom_smem_get_free_space(unsigned host) 625 { 626 struct smem_partition_header *phdr; 627 struct smem_header *header; 628 unsigned ret; 629 630 if (!__smem) 631 return -EPROBE_DEFER; 632 633 if (host < SMEM_HOST_COUNT && __smem->partitions[host]) { 634 phdr = __smem->partitions[host]; 635 ret = le32_to_cpu(phdr->offset_free_cached) - 636 le32_to_cpu(phdr->offset_free_uncached); 637 } else if (__smem->global_partition) { 638 phdr = __smem->global_partition; 639 ret = le32_to_cpu(phdr->offset_free_cached) - 640 le32_to_cpu(phdr->offset_free_uncached); 641 } else { 642 header = __smem->regions[0].virt_base; 643 ret = le32_to_cpu(header->available); 644 } 645 646 return ret; 647 } 648 EXPORT_SYMBOL(qcom_smem_get_free_space); 649 650 static int qcom_smem_get_sbl_version(struct qcom_smem *smem) 651 { 652 struct smem_header *header; 653 __le32 *versions; 654 655 header = smem->regions[0].virt_base; 656 versions = header->version; 657 658 return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]); 659 } 660 661 static struct smem_ptable *qcom_smem_get_ptable(struct qcom_smem *smem) 662 { 663 struct smem_ptable *ptable; 664 u32 version; 665 666 ptable = smem->regions[0].virt_base + smem->regions[0].size - SZ_4K; 667 if (memcmp(ptable->magic, SMEM_PTABLE_MAGIC, sizeof(ptable->magic))) 668 return ERR_PTR(-ENOENT); 669 670 version = le32_to_cpu(ptable->version); 671 if (version != 1) { 672 dev_err(smem->dev, 673 "Unsupported partition header version %d\n", version); 674 return ERR_PTR(-EINVAL); 675 } 676 return ptable; 677 } 678 679 static u32 qcom_smem_get_item_count(struct qcom_smem *smem) 680 { 681 struct smem_ptable *ptable; 682 struct smem_info *info; 683 684 ptable = qcom_smem_get_ptable(smem); 685 if (IS_ERR_OR_NULL(ptable)) 686 return SMEM_ITEM_COUNT; 687 688 info = (struct smem_info *)&ptable->entry[ptable->num_entries]; 689 if (memcmp(info->magic, SMEM_INFO_MAGIC, sizeof(info->magic))) 690 return SMEM_ITEM_COUNT; 691 692 return le16_to_cpu(info->num_items); 693 } 694 695 static int qcom_smem_set_global_partition(struct qcom_smem *smem) 696 { 697 struct smem_partition_header *header; 698 struct smem_ptable_entry *entry = NULL; 699 struct smem_ptable *ptable; 700 u32 host0, host1, size; 701 int i; 702 703 ptable = qcom_smem_get_ptable(smem); 704 if (IS_ERR(ptable)) 705 return PTR_ERR(ptable); 706 707 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) { 708 entry = &ptable->entry[i]; 709 host0 = le16_to_cpu(entry->host0); 710 host1 = le16_to_cpu(entry->host1); 711 712 if (host0 == SMEM_GLOBAL_HOST && host0 == host1) 713 break; 714 } 715 716 if (!entry) { 717 dev_err(smem->dev, "Missing entry for global partition\n"); 718 return -EINVAL; 719 } 720 721 if (!le32_to_cpu(entry->offset) || !le32_to_cpu(entry->size)) { 722 dev_err(smem->dev, "Invalid entry for global partition\n"); 723 return -EINVAL; 724 } 725 726 if (smem->global_partition) { 727 dev_err(smem->dev, "Already found the global partition\n"); 728 return -EINVAL; 729 } 730 731 header = smem->regions[0].virt_base + le32_to_cpu(entry->offset); 732 host0 = le16_to_cpu(header->host0); 733 host1 = le16_to_cpu(header->host1); 734 735 if (memcmp(header->magic, SMEM_PART_MAGIC, sizeof(header->magic))) { 736 dev_err(smem->dev, "Global partition has invalid magic\n"); 737 return -EINVAL; 738 } 739 740 if (host0 != SMEM_GLOBAL_HOST && host1 != SMEM_GLOBAL_HOST) { 741 dev_err(smem->dev, "Global partition hosts are invalid\n"); 742 return -EINVAL; 743 } 744 745 if (le32_to_cpu(header->size) != le32_to_cpu(entry->size)) { 746 dev_err(smem->dev, "Global partition has invalid size\n"); 747 return -EINVAL; 748 } 749 750 size = le32_to_cpu(header->offset_free_uncached); 751 if (size > le32_to_cpu(header->size)) { 752 dev_err(smem->dev, 753 "Global partition has invalid free pointer\n"); 754 return -EINVAL; 755 } 756 757 smem->global_partition = header; 758 smem->global_cacheline = le32_to_cpu(entry->cacheline); 759 760 return 0; 761 } 762 763 static int qcom_smem_enumerate_partitions(struct qcom_smem *smem, 764 unsigned int local_host) 765 { 766 struct smem_partition_header *header; 767 struct smem_ptable_entry *entry; 768 struct smem_ptable *ptable; 769 unsigned int remote_host; 770 u32 host0, host1; 771 int i; 772 773 ptable = qcom_smem_get_ptable(smem); 774 if (IS_ERR(ptable)) 775 return PTR_ERR(ptable); 776 777 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) { 778 entry = &ptable->entry[i]; 779 host0 = le16_to_cpu(entry->host0); 780 host1 = le16_to_cpu(entry->host1); 781 782 if (host0 != local_host && host1 != local_host) 783 continue; 784 785 if (!le32_to_cpu(entry->offset)) 786 continue; 787 788 if (!le32_to_cpu(entry->size)) 789 continue; 790 791 if (host0 == local_host) 792 remote_host = host1; 793 else 794 remote_host = host0; 795 796 if (remote_host >= SMEM_HOST_COUNT) { 797 dev_err(smem->dev, 798 "Invalid remote host %d\n", 799 remote_host); 800 return -EINVAL; 801 } 802 803 if (smem->partitions[remote_host]) { 804 dev_err(smem->dev, 805 "Already found a partition for host %d\n", 806 remote_host); 807 return -EINVAL; 808 } 809 810 header = smem->regions[0].virt_base + le32_to_cpu(entry->offset); 811 host0 = le16_to_cpu(header->host0); 812 host1 = le16_to_cpu(header->host1); 813 814 if (memcmp(header->magic, SMEM_PART_MAGIC, 815 sizeof(header->magic))) { 816 dev_err(smem->dev, 817 "Partition %d has invalid magic\n", i); 818 return -EINVAL; 819 } 820 821 if (host0 != local_host && host1 != local_host) { 822 dev_err(smem->dev, 823 "Partition %d hosts are invalid\n", i); 824 return -EINVAL; 825 } 826 827 if (host0 != remote_host && host1 != remote_host) { 828 dev_err(smem->dev, 829 "Partition %d hosts are invalid\n", i); 830 return -EINVAL; 831 } 832 833 if (le32_to_cpu(header->size) != le32_to_cpu(entry->size)) { 834 dev_err(smem->dev, 835 "Partition %d has invalid size\n", i); 836 return -EINVAL; 837 } 838 839 if (le32_to_cpu(header->offset_free_uncached) > le32_to_cpu(header->size)) { 840 dev_err(smem->dev, 841 "Partition %d has invalid free pointer\n", i); 842 return -EINVAL; 843 } 844 845 smem->partitions[remote_host] = header; 846 smem->cacheline[remote_host] = le32_to_cpu(entry->cacheline); 847 } 848 849 return 0; 850 } 851 852 static int qcom_smem_map_memory(struct qcom_smem *smem, struct device *dev, 853 const char *name, int i) 854 { 855 struct device_node *np; 856 struct resource r; 857 int ret; 858 859 np = of_parse_phandle(dev->of_node, name, 0); 860 if (!np) { 861 dev_err(dev, "No %s specified\n", name); 862 return -EINVAL; 863 } 864 865 ret = of_address_to_resource(np, 0, &r); 866 of_node_put(np); 867 if (ret) 868 return ret; 869 870 smem->regions[i].aux_base = (u32)r.start; 871 smem->regions[i].size = resource_size(&r); 872 smem->regions[i].virt_base = devm_ioremap_wc(dev, r.start, resource_size(&r)); 873 if (!smem->regions[i].virt_base) 874 return -ENOMEM; 875 876 return 0; 877 } 878 879 static int qcom_smem_probe(struct platform_device *pdev) 880 { 881 struct smem_header *header; 882 struct qcom_smem *smem; 883 size_t array_size; 884 int num_regions; 885 int hwlock_id; 886 u32 version; 887 int ret; 888 889 num_regions = 1; 890 if (of_find_property(pdev->dev.of_node, "qcom,rpm-msg-ram", NULL)) 891 num_regions++; 892 893 array_size = num_regions * sizeof(struct smem_region); 894 smem = devm_kzalloc(&pdev->dev, sizeof(*smem) + array_size, GFP_KERNEL); 895 if (!smem) 896 return -ENOMEM; 897 898 smem->dev = &pdev->dev; 899 smem->num_regions = num_regions; 900 901 ret = qcom_smem_map_memory(smem, &pdev->dev, "memory-region", 0); 902 if (ret) 903 return ret; 904 905 if (num_regions > 1 && (ret = qcom_smem_map_memory(smem, &pdev->dev, 906 "qcom,rpm-msg-ram", 1))) 907 return ret; 908 909 header = smem->regions[0].virt_base; 910 if (le32_to_cpu(header->initialized) != 1 || 911 le32_to_cpu(header->reserved)) { 912 dev_err(&pdev->dev, "SMEM is not initialized by SBL\n"); 913 return -EINVAL; 914 } 915 916 version = qcom_smem_get_sbl_version(smem); 917 switch (version >> 16) { 918 case SMEM_GLOBAL_PART_VERSION: 919 ret = qcom_smem_set_global_partition(smem); 920 if (ret < 0) 921 return ret; 922 smem->item_count = qcom_smem_get_item_count(smem); 923 break; 924 case SMEM_GLOBAL_HEAP_VERSION: 925 smem->item_count = SMEM_ITEM_COUNT; 926 break; 927 default: 928 dev_err(&pdev->dev, "Unsupported SMEM version 0x%x\n", version); 929 return -EINVAL; 930 } 931 932 ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS); 933 if (ret < 0 && ret != -ENOENT) 934 return ret; 935 936 hwlock_id = of_hwspin_lock_get_id(pdev->dev.of_node, 0); 937 if (hwlock_id < 0) { 938 if (hwlock_id != -EPROBE_DEFER) 939 dev_err(&pdev->dev, "failed to retrieve hwlock\n"); 940 return hwlock_id; 941 } 942 943 smem->hwlock = hwspin_lock_request_specific(hwlock_id); 944 if (!smem->hwlock) 945 return -ENXIO; 946 947 __smem = smem; 948 949 return 0; 950 } 951 952 static int qcom_smem_remove(struct platform_device *pdev) 953 { 954 hwspin_lock_free(__smem->hwlock); 955 __smem = NULL; 956 957 return 0; 958 } 959 960 static const struct of_device_id qcom_smem_of_match[] = { 961 { .compatible = "qcom,smem" }, 962 {} 963 }; 964 MODULE_DEVICE_TABLE(of, qcom_smem_of_match); 965 966 static struct platform_driver qcom_smem_driver = { 967 .probe = qcom_smem_probe, 968 .remove = qcom_smem_remove, 969 .driver = { 970 .name = "qcom-smem", 971 .of_match_table = qcom_smem_of_match, 972 .suppress_bind_attrs = true, 973 }, 974 }; 975 976 static int __init qcom_smem_init(void) 977 { 978 return platform_driver_register(&qcom_smem_driver); 979 } 980 arch_initcall(qcom_smem_init); 981 982 static void __exit qcom_smem_exit(void) 983 { 984 platform_driver_unregister(&qcom_smem_driver); 985 } 986 module_exit(qcom_smem_exit) 987 988 MODULE_AUTHOR("Bjorn Andersson <bjorn.andersson@sonymobile.com>"); 989 MODULE_DESCRIPTION("Qualcomm Shared Memory Manager"); 990 MODULE_LICENSE("GPL v2"); 991