1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2015, Sony Mobile Communications AB. 4 * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved. 5 */ 6 7 #include <linux/hwspinlock.h> 8 #include <linux/io.h> 9 #include <linux/module.h> 10 #include <linux/of.h> 11 #include <linux/of_address.h> 12 #include <linux/of_reserved_mem.h> 13 #include <linux/platform_device.h> 14 #include <linux/sizes.h> 15 #include <linux/slab.h> 16 #include <linux/soc/qcom/smem.h> 17 #include <linux/soc/qcom/socinfo.h> 18 19 /* 20 * The Qualcomm shared memory system is a allocate only heap structure that 21 * consists of one of more memory areas that can be accessed by the processors 22 * in the SoC. 23 * 24 * All systems contains a global heap, accessible by all processors in the SoC, 25 * with a table of contents data structure (@smem_header) at the beginning of 26 * the main shared memory block. 27 * 28 * The global header contains meta data for allocations as well as a fixed list 29 * of 512 entries (@smem_global_entry) that can be initialized to reference 30 * parts of the shared memory space. 31 * 32 * 33 * In addition to this global heap a set of "private" heaps can be set up at 34 * boot time with access restrictions so that only certain processor pairs can 35 * access the data. 36 * 37 * These partitions are referenced from an optional partition table 38 * (@smem_ptable), that is found 4kB from the end of the main smem region. The 39 * partition table entries (@smem_ptable_entry) lists the involved processors 40 * (or hosts) and their location in the main shared memory region. 41 * 42 * Each partition starts with a header (@smem_partition_header) that identifies 43 * the partition and holds properties for the two internal memory regions. The 44 * two regions are cached and non-cached memory respectively. Each region 45 * contain a link list of allocation headers (@smem_private_entry) followed by 46 * their data. 47 * 48 * Items in the non-cached region are allocated from the start of the partition 49 * while items in the cached region are allocated from the end. The free area 50 * is hence the region between the cached and non-cached offsets. The header of 51 * cached items comes after the data. 52 * 53 * Version 12 (SMEM_GLOBAL_PART_VERSION) changes the item alloc/get procedure 54 * for the global heap. A new global partition is created from the global heap 55 * region with partition type (SMEM_GLOBAL_HOST) and the max smem item count is 56 * set by the bootloader. 57 * 58 * To synchronize allocations in the shared memory heaps a remote spinlock must 59 * be held - currently lock number 3 of the sfpb or tcsr is used for this on all 60 * platforms. 61 * 62 */ 63 64 /* 65 * The version member of the smem header contains an array of versions for the 66 * various software components in the SoC. We verify that the boot loader 67 * version is a valid version as a sanity check. 68 */ 69 #define SMEM_MASTER_SBL_VERSION_INDEX 7 70 #define SMEM_GLOBAL_HEAP_VERSION 11 71 #define SMEM_GLOBAL_PART_VERSION 12 72 73 /* 74 * The first 8 items are only to be allocated by the boot loader while 75 * initializing the heap. 76 */ 77 #define SMEM_ITEM_LAST_FIXED 8 78 79 /* Highest accepted item number, for both global and private heaps */ 80 #define SMEM_ITEM_COUNT 512 81 82 /* Processor/host identifier for the application processor */ 83 #define SMEM_HOST_APPS 0 84 85 /* Processor/host identifier for the global partition */ 86 #define SMEM_GLOBAL_HOST 0xfffe 87 88 /* Max number of processors/hosts in a system */ 89 #define SMEM_HOST_COUNT 20 90 91 /** 92 * struct smem_proc_comm - proc_comm communication struct (legacy) 93 * @command: current command to be executed 94 * @status: status of the currently requested command 95 * @params: parameters to the command 96 */ 97 struct smem_proc_comm { 98 __le32 command; 99 __le32 status; 100 __le32 params[2]; 101 }; 102 103 /** 104 * struct smem_global_entry - entry to reference smem items on the heap 105 * @allocated: boolean to indicate if this entry is used 106 * @offset: offset to the allocated space 107 * @size: size of the allocated space, 8 byte aligned 108 * @aux_base: base address for the memory region used by this unit, or 0 for 109 * the default region. bits 0,1 are reserved 110 */ 111 struct smem_global_entry { 112 __le32 allocated; 113 __le32 offset; 114 __le32 size; 115 __le32 aux_base; /* bits 1:0 reserved */ 116 }; 117 #define AUX_BASE_MASK 0xfffffffc 118 119 /** 120 * struct smem_header - header found in beginning of primary smem region 121 * @proc_comm: proc_comm communication interface (legacy) 122 * @version: array of versions for the various subsystems 123 * @initialized: boolean to indicate that smem is initialized 124 * @free_offset: index of the first unallocated byte in smem 125 * @available: number of bytes available for allocation 126 * @reserved: reserved field, must be 0 127 * @toc: array of references to items 128 */ 129 struct smem_header { 130 struct smem_proc_comm proc_comm[4]; 131 __le32 version[32]; 132 __le32 initialized; 133 __le32 free_offset; 134 __le32 available; 135 __le32 reserved; 136 struct smem_global_entry toc[SMEM_ITEM_COUNT]; 137 }; 138 139 /** 140 * struct smem_ptable_entry - one entry in the @smem_ptable list 141 * @offset: offset, within the main shared memory region, of the partition 142 * @size: size of the partition 143 * @flags: flags for the partition (currently unused) 144 * @host0: first processor/host with access to this partition 145 * @host1: second processor/host with access to this partition 146 * @cacheline: alignment for "cached" entries 147 * @reserved: reserved entries for later use 148 */ 149 struct smem_ptable_entry { 150 __le32 offset; 151 __le32 size; 152 __le32 flags; 153 __le16 host0; 154 __le16 host1; 155 __le32 cacheline; 156 __le32 reserved[7]; 157 }; 158 159 /** 160 * struct smem_ptable - partition table for the private partitions 161 * @magic: magic number, must be SMEM_PTABLE_MAGIC 162 * @version: version of the partition table 163 * @num_entries: number of partitions in the table 164 * @reserved: for now reserved entries 165 * @entry: list of @smem_ptable_entry for the @num_entries partitions 166 */ 167 struct smem_ptable { 168 u8 magic[4]; 169 __le32 version; 170 __le32 num_entries; 171 __le32 reserved[5]; 172 struct smem_ptable_entry entry[]; 173 }; 174 175 static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */ 176 177 /** 178 * struct smem_partition_header - header of the partitions 179 * @magic: magic number, must be SMEM_PART_MAGIC 180 * @host0: first processor/host with access to this partition 181 * @host1: second processor/host with access to this partition 182 * @size: size of the partition 183 * @offset_free_uncached: offset to the first free byte of uncached memory in 184 * this partition 185 * @offset_free_cached: offset to the first free byte of cached memory in this 186 * partition 187 * @reserved: for now reserved entries 188 */ 189 struct smem_partition_header { 190 u8 magic[4]; 191 __le16 host0; 192 __le16 host1; 193 __le32 size; 194 __le32 offset_free_uncached; 195 __le32 offset_free_cached; 196 __le32 reserved[3]; 197 }; 198 199 /** 200 * struct smem_partition - describes smem partition 201 * @virt_base: starting virtual address of partition 202 * @phys_base: starting physical address of partition 203 * @cacheline: alignment for "cached" entries 204 * @size: size of partition 205 */ 206 struct smem_partition { 207 void __iomem *virt_base; 208 phys_addr_t phys_base; 209 size_t cacheline; 210 size_t size; 211 }; 212 213 static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 }; 214 215 /** 216 * struct smem_private_entry - header of each item in the private partition 217 * @canary: magic number, must be SMEM_PRIVATE_CANARY 218 * @item: identifying number of the smem item 219 * @size: size of the data, including padding bytes 220 * @padding_data: number of bytes of padding of data 221 * @padding_hdr: number of bytes of padding between the header and the data 222 * @reserved: for now reserved entry 223 */ 224 struct smem_private_entry { 225 u16 canary; /* bytes are the same so no swapping needed */ 226 __le16 item; 227 __le32 size; /* includes padding bytes */ 228 __le16 padding_data; 229 __le16 padding_hdr; 230 __le32 reserved; 231 }; 232 #define SMEM_PRIVATE_CANARY 0xa5a5 233 234 /** 235 * struct smem_info - smem region info located after the table of contents 236 * @magic: magic number, must be SMEM_INFO_MAGIC 237 * @size: size of the smem region 238 * @base_addr: base address of the smem region 239 * @reserved: for now reserved entry 240 * @num_items: highest accepted item number 241 */ 242 struct smem_info { 243 u8 magic[4]; 244 __le32 size; 245 __le32 base_addr; 246 __le32 reserved; 247 __le16 num_items; 248 }; 249 250 static const u8 SMEM_INFO_MAGIC[] = { 0x53, 0x49, 0x49, 0x49 }; /* SIII */ 251 252 /** 253 * struct smem_region - representation of a chunk of memory used for smem 254 * @aux_base: identifier of aux_mem base 255 * @virt_base: virtual base address of memory with this aux_mem identifier 256 * @size: size of the memory region 257 */ 258 struct smem_region { 259 phys_addr_t aux_base; 260 void __iomem *virt_base; 261 size_t size; 262 }; 263 264 /** 265 * struct qcom_smem - device data for the smem device 266 * @dev: device pointer 267 * @hwlock: reference to a hwspinlock 268 * @ptable: virtual base of partition table 269 * @global_partition: describes for global partition when in use 270 * @partitions: list of partitions of current processor/host 271 * @item_count: max accepted item number 272 * @socinfo: platform device pointer 273 * @num_regions: number of @regions 274 * @regions: list of the memory regions defining the shared memory 275 */ 276 struct qcom_smem { 277 struct device *dev; 278 279 struct hwspinlock *hwlock; 280 281 u32 item_count; 282 struct platform_device *socinfo; 283 struct smem_ptable *ptable; 284 struct smem_partition global_partition; 285 struct smem_partition partitions[SMEM_HOST_COUNT]; 286 287 unsigned num_regions; 288 struct smem_region regions[] __counted_by(num_regions); 289 }; 290 291 static void * 292 phdr_to_last_uncached_entry(struct smem_partition_header *phdr) 293 { 294 void *p = phdr; 295 296 return p + le32_to_cpu(phdr->offset_free_uncached); 297 } 298 299 static struct smem_private_entry * 300 phdr_to_first_cached_entry(struct smem_partition_header *phdr, 301 size_t cacheline) 302 { 303 void *p = phdr; 304 struct smem_private_entry *e; 305 306 return p + le32_to_cpu(phdr->size) - ALIGN(sizeof(*e), cacheline); 307 } 308 309 static void * 310 phdr_to_last_cached_entry(struct smem_partition_header *phdr) 311 { 312 void *p = phdr; 313 314 return p + le32_to_cpu(phdr->offset_free_cached); 315 } 316 317 static struct smem_private_entry * 318 phdr_to_first_uncached_entry(struct smem_partition_header *phdr) 319 { 320 void *p = phdr; 321 322 return p + sizeof(*phdr); 323 } 324 325 static struct smem_private_entry * 326 uncached_entry_next(struct smem_private_entry *e) 327 { 328 void *p = e; 329 330 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) + 331 le32_to_cpu(e->size); 332 } 333 334 static struct smem_private_entry * 335 cached_entry_next(struct smem_private_entry *e, size_t cacheline) 336 { 337 void *p = e; 338 339 return p - le32_to_cpu(e->size) - ALIGN(sizeof(*e), cacheline); 340 } 341 342 static void *uncached_entry_to_item(struct smem_private_entry *e) 343 { 344 void *p = e; 345 346 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr); 347 } 348 349 static void *cached_entry_to_item(struct smem_private_entry *e) 350 { 351 void *p = e; 352 353 return p - le32_to_cpu(e->size); 354 } 355 356 /* Pointer to the one and only smem handle */ 357 static struct qcom_smem *__smem; 358 359 /* Timeout (ms) for the trylock of remote spinlocks */ 360 #define HWSPINLOCK_TIMEOUT 1000 361 362 /* The qcom hwspinlock id is always plus one from the smem host id */ 363 #define SMEM_HOST_ID_TO_HWSPINLOCK_ID(__x) ((__x) + 1) 364 365 /** 366 * qcom_smem_bust_hwspin_lock_by_host() - bust the smem hwspinlock for a host 367 * @host: remote processor id 368 * 369 * Busts the hwspin_lock for the given smem host id. This helper is intended 370 * for remoteproc drivers that manage remoteprocs with an equivalent smem 371 * driver instance in the remote firmware. Drivers can force a release of the 372 * smem hwspin_lock if the rproc unexpectedly goes into a bad state. 373 * 374 * Context: Process context. 375 * 376 * Returns: 0 on success, otherwise negative errno. 377 */ 378 int qcom_smem_bust_hwspin_lock_by_host(unsigned int host) 379 { 380 /* This function is for remote procs, so ignore SMEM_HOST_APPS */ 381 if (host == SMEM_HOST_APPS || host >= SMEM_HOST_COUNT) 382 return -EINVAL; 383 384 return hwspin_lock_bust(__smem->hwlock, SMEM_HOST_ID_TO_HWSPINLOCK_ID(host)); 385 } 386 EXPORT_SYMBOL_GPL(qcom_smem_bust_hwspin_lock_by_host); 387 388 /** 389 * qcom_smem_is_available() - Check if SMEM is available 390 * 391 * Return: true if SMEM is available, false otherwise. 392 */ 393 bool qcom_smem_is_available(void) 394 { 395 return !!__smem; 396 } 397 EXPORT_SYMBOL_GPL(qcom_smem_is_available); 398 399 static int qcom_smem_alloc_private(struct qcom_smem *smem, 400 struct smem_partition *part, 401 unsigned item, 402 size_t size) 403 { 404 struct smem_private_entry *hdr, *end; 405 struct smem_partition_header *phdr; 406 size_t alloc_size; 407 void *cached; 408 void *p_end; 409 410 phdr = (struct smem_partition_header __force *)part->virt_base; 411 p_end = (void *)phdr + part->size; 412 413 hdr = phdr_to_first_uncached_entry(phdr); 414 end = phdr_to_last_uncached_entry(phdr); 415 cached = phdr_to_last_cached_entry(phdr); 416 417 if (WARN_ON((void *)end > p_end || cached > p_end)) 418 return -EINVAL; 419 420 while (hdr < end) { 421 if (hdr->canary != SMEM_PRIVATE_CANARY) 422 goto bad_canary; 423 if (le16_to_cpu(hdr->item) == item) 424 return -EEXIST; 425 426 hdr = uncached_entry_next(hdr); 427 } 428 429 if (WARN_ON((void *)hdr > p_end)) 430 return -EINVAL; 431 432 /* Check that we don't grow into the cached region */ 433 alloc_size = sizeof(*hdr) + ALIGN(size, 8); 434 if ((void *)hdr + alloc_size > cached) { 435 dev_err(smem->dev, "Out of memory\n"); 436 return -ENOSPC; 437 } 438 439 hdr->canary = SMEM_PRIVATE_CANARY; 440 hdr->item = cpu_to_le16(item); 441 hdr->size = cpu_to_le32(ALIGN(size, 8)); 442 hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size); 443 hdr->padding_hdr = 0; 444 445 /* 446 * Ensure the header is written before we advance the free offset, so 447 * that remote processors that does not take the remote spinlock still 448 * gets a consistent view of the linked list. 449 */ 450 wmb(); 451 le32_add_cpu(&phdr->offset_free_uncached, alloc_size); 452 453 return 0; 454 bad_canary: 455 dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n", 456 le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1)); 457 458 return -EINVAL; 459 } 460 461 static int qcom_smem_alloc_global(struct qcom_smem *smem, 462 unsigned item, 463 size_t size) 464 { 465 struct smem_global_entry *entry; 466 struct smem_header *header; 467 468 header = smem->regions[0].virt_base; 469 entry = &header->toc[item]; 470 if (entry->allocated) 471 return -EEXIST; 472 473 size = ALIGN(size, 8); 474 if (WARN_ON(size > le32_to_cpu(header->available))) 475 return -ENOMEM; 476 477 entry->offset = header->free_offset; 478 entry->size = cpu_to_le32(size); 479 480 /* 481 * Ensure the header is consistent before we mark the item allocated, 482 * so that remote processors will get a consistent view of the item 483 * even though they do not take the spinlock on read. 484 */ 485 wmb(); 486 entry->allocated = cpu_to_le32(1); 487 488 le32_add_cpu(&header->free_offset, size); 489 le32_add_cpu(&header->available, -size); 490 491 return 0; 492 } 493 494 /** 495 * qcom_smem_alloc() - allocate space for a smem item 496 * @host: remote processor id, or -1 497 * @item: smem item handle 498 * @size: number of bytes to be allocated 499 * 500 * Allocate space for a given smem item of size @size, given that the item is 501 * not yet allocated. 502 * 503 * Return: 0 on success, negative errno on failure. 504 */ 505 int qcom_smem_alloc(unsigned host, unsigned item, size_t size) 506 { 507 struct smem_partition *part; 508 unsigned long flags; 509 int ret; 510 511 if (!__smem) 512 return -EPROBE_DEFER; 513 514 if (item < SMEM_ITEM_LAST_FIXED) { 515 dev_err(__smem->dev, 516 "Rejecting allocation of static entry %d\n", item); 517 return -EINVAL; 518 } 519 520 if (WARN_ON(item >= __smem->item_count)) 521 return -EINVAL; 522 523 ret = hwspin_lock_timeout_irqsave(__smem->hwlock, 524 HWSPINLOCK_TIMEOUT, 525 &flags); 526 if (ret) 527 return ret; 528 529 if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) { 530 part = &__smem->partitions[host]; 531 ret = qcom_smem_alloc_private(__smem, part, item, size); 532 } else if (__smem->global_partition.virt_base) { 533 part = &__smem->global_partition; 534 ret = qcom_smem_alloc_private(__smem, part, item, size); 535 } else { 536 ret = qcom_smem_alloc_global(__smem, item, size); 537 } 538 539 hwspin_unlock_irqrestore(__smem->hwlock, &flags); 540 541 return ret; 542 } 543 EXPORT_SYMBOL_GPL(qcom_smem_alloc); 544 545 static void *qcom_smem_get_global(struct qcom_smem *smem, 546 unsigned item, 547 size_t *size) 548 { 549 struct smem_header *header; 550 struct smem_region *region; 551 struct smem_global_entry *entry; 552 u64 entry_offset; 553 u32 e_size; 554 u32 aux_base; 555 unsigned i; 556 557 header = smem->regions[0].virt_base; 558 entry = &header->toc[item]; 559 if (!entry->allocated) 560 return ERR_PTR(-ENXIO); 561 562 aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK; 563 564 for (i = 0; i < smem->num_regions; i++) { 565 region = &smem->regions[i]; 566 567 if ((u32)region->aux_base == aux_base || !aux_base) { 568 e_size = le32_to_cpu(entry->size); 569 entry_offset = le32_to_cpu(entry->offset); 570 571 if (WARN_ON(e_size + entry_offset > region->size)) 572 return ERR_PTR(-EINVAL); 573 574 if (size != NULL) 575 *size = e_size; 576 577 return region->virt_base + entry_offset; 578 } 579 } 580 581 return ERR_PTR(-ENOENT); 582 } 583 584 static void *qcom_smem_get_private(struct qcom_smem *smem, 585 struct smem_partition *part, 586 unsigned item, 587 size_t *size) 588 { 589 struct smem_private_entry *e, *end; 590 struct smem_partition_header *phdr; 591 void *item_ptr, *p_end; 592 u32 padding_data; 593 u32 e_size; 594 595 phdr = (struct smem_partition_header __force *)part->virt_base; 596 p_end = (void *)phdr + part->size; 597 598 e = phdr_to_first_uncached_entry(phdr); 599 end = phdr_to_last_uncached_entry(phdr); 600 601 while (e < end) { 602 if (e->canary != SMEM_PRIVATE_CANARY) 603 goto invalid_canary; 604 605 if (le16_to_cpu(e->item) == item) { 606 if (size != NULL) { 607 e_size = le32_to_cpu(e->size); 608 padding_data = le16_to_cpu(e->padding_data); 609 610 if (WARN_ON(e_size > part->size || padding_data > e_size)) 611 return ERR_PTR(-EINVAL); 612 613 *size = e_size - padding_data; 614 } 615 616 item_ptr = uncached_entry_to_item(e); 617 if (WARN_ON(item_ptr > p_end)) 618 return ERR_PTR(-EINVAL); 619 620 return item_ptr; 621 } 622 623 e = uncached_entry_next(e); 624 } 625 626 if (WARN_ON((void *)e > p_end)) 627 return ERR_PTR(-EINVAL); 628 629 /* Item was not found in the uncached list, search the cached list */ 630 631 e = phdr_to_first_cached_entry(phdr, part->cacheline); 632 end = phdr_to_last_cached_entry(phdr); 633 634 if (WARN_ON((void *)e < (void *)phdr || (void *)end > p_end)) 635 return ERR_PTR(-EINVAL); 636 637 while (e > end) { 638 if (e->canary != SMEM_PRIVATE_CANARY) 639 goto invalid_canary; 640 641 if (le16_to_cpu(e->item) == item) { 642 if (size != NULL) { 643 e_size = le32_to_cpu(e->size); 644 padding_data = le16_to_cpu(e->padding_data); 645 646 if (WARN_ON(e_size > part->size || padding_data > e_size)) 647 return ERR_PTR(-EINVAL); 648 649 *size = e_size - padding_data; 650 } 651 652 item_ptr = cached_entry_to_item(e); 653 if (WARN_ON(item_ptr < (void *)phdr)) 654 return ERR_PTR(-EINVAL); 655 656 return item_ptr; 657 } 658 659 e = cached_entry_next(e, part->cacheline); 660 } 661 662 if (WARN_ON((void *)e < (void *)phdr)) 663 return ERR_PTR(-EINVAL); 664 665 return ERR_PTR(-ENOENT); 666 667 invalid_canary: 668 dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n", 669 le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1)); 670 671 return ERR_PTR(-EINVAL); 672 } 673 674 /** 675 * qcom_smem_get() - resolve ptr of size of a smem item 676 * @host: the remote processor, or -1 677 * @item: smem item handle 678 * @size: pointer to be filled out with size of the item 679 * 680 * Looks up smem item and returns pointer to it. Size of smem 681 * item is returned in @size. 682 * 683 * Return: a pointer to an SMEM item on success, ERR_PTR() on failure. 684 */ 685 void *qcom_smem_get(unsigned host, unsigned item, size_t *size) 686 { 687 struct smem_partition *part; 688 void *ptr = ERR_PTR(-EPROBE_DEFER); 689 690 if (!__smem) 691 return ptr; 692 693 if (WARN_ON(item >= __smem->item_count)) 694 return ERR_PTR(-EINVAL); 695 696 if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) { 697 part = &__smem->partitions[host]; 698 ptr = qcom_smem_get_private(__smem, part, item, size); 699 } else if (__smem->global_partition.virt_base) { 700 part = &__smem->global_partition; 701 ptr = qcom_smem_get_private(__smem, part, item, size); 702 } else { 703 ptr = qcom_smem_get_global(__smem, item, size); 704 } 705 706 return ptr; 707 } 708 EXPORT_SYMBOL_GPL(qcom_smem_get); 709 710 /** 711 * qcom_smem_get_free_space() - retrieve amount of free space in a partition 712 * @host: the remote processor identifying a partition, or -1 713 * 714 * To be used by smem clients as a quick way to determine if any new 715 * allocations has been made. 716 * 717 * Return: number of available bytes on success, negative errno on failure. 718 */ 719 int qcom_smem_get_free_space(unsigned host) 720 { 721 struct smem_partition *part; 722 struct smem_partition_header *phdr; 723 struct smem_header *header; 724 unsigned ret; 725 726 if (!__smem) 727 return -EPROBE_DEFER; 728 729 if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) { 730 part = &__smem->partitions[host]; 731 phdr = part->virt_base; 732 ret = le32_to_cpu(phdr->offset_free_cached) - 733 le32_to_cpu(phdr->offset_free_uncached); 734 735 if (ret > le32_to_cpu(part->size)) 736 return -EINVAL; 737 } else if (__smem->global_partition.virt_base) { 738 part = &__smem->global_partition; 739 phdr = part->virt_base; 740 ret = le32_to_cpu(phdr->offset_free_cached) - 741 le32_to_cpu(phdr->offset_free_uncached); 742 743 if (ret > le32_to_cpu(part->size)) 744 return -EINVAL; 745 } else { 746 header = __smem->regions[0].virt_base; 747 ret = le32_to_cpu(header->available); 748 749 if (ret > __smem->regions[0].size) 750 return -EINVAL; 751 } 752 753 return ret; 754 } 755 EXPORT_SYMBOL_GPL(qcom_smem_get_free_space); 756 757 static bool addr_in_range(void __iomem *base, size_t size, void *addr) 758 { 759 return base && ((void __iomem *)addr >= base && (void __iomem *)addr < base + size); 760 } 761 762 /** 763 * qcom_smem_virt_to_phys() - return the physical address associated 764 * with an smem item pointer (previously returned by qcom_smem_get() 765 * @p: the virtual address to convert 766 * 767 * Return: physical address of the SMEM item (if found), 0 otherwise 768 */ 769 phys_addr_t qcom_smem_virt_to_phys(void *p) 770 { 771 struct smem_partition *part; 772 struct smem_region *area; 773 u64 offset; 774 u32 i; 775 776 for (i = 0; i < SMEM_HOST_COUNT; i++) { 777 part = &__smem->partitions[i]; 778 779 if (addr_in_range(part->virt_base, part->size, p)) { 780 offset = p - part->virt_base; 781 782 return (phys_addr_t)part->phys_base + offset; 783 } 784 } 785 786 part = &__smem->global_partition; 787 788 if (addr_in_range(part->virt_base, part->size, p)) { 789 offset = p - part->virt_base; 790 791 return (phys_addr_t)part->phys_base + offset; 792 } 793 794 for (i = 0; i < __smem->num_regions; i++) { 795 area = &__smem->regions[i]; 796 797 if (addr_in_range(area->virt_base, area->size, p)) { 798 offset = p - area->virt_base; 799 800 return (phys_addr_t)area->aux_base + offset; 801 } 802 } 803 804 return 0; 805 } 806 EXPORT_SYMBOL_GPL(qcom_smem_virt_to_phys); 807 808 /** 809 * qcom_smem_get_soc_id() - return the SoC ID 810 * @id: On success, we return the SoC ID here. 811 * 812 * Look up SoC ID from HW/SW build ID and return it. 813 * 814 * Return: 0 on success, negative errno on failure. 815 */ 816 int qcom_smem_get_soc_id(u32 *id) 817 { 818 struct socinfo *info; 819 820 info = qcom_smem_get(QCOM_SMEM_HOST_ANY, SMEM_HW_SW_BUILD_ID, NULL); 821 if (IS_ERR(info)) 822 return PTR_ERR(info); 823 824 *id = __le32_to_cpu(info->id); 825 826 return 0; 827 } 828 EXPORT_SYMBOL_GPL(qcom_smem_get_soc_id); 829 830 /** 831 * qcom_smem_get_feature_code() - return the feature code 832 * @code: On success, return the feature code here. 833 * 834 * Look up the feature code identifier from SMEM and return it. 835 * 836 * Return: 0 on success, negative errno on failure. 837 */ 838 int qcom_smem_get_feature_code(u32 *code) 839 { 840 struct socinfo *info; 841 u32 raw_code; 842 843 info = qcom_smem_get(QCOM_SMEM_HOST_ANY, SMEM_HW_SW_BUILD_ID, NULL); 844 if (IS_ERR(info)) 845 return PTR_ERR(info); 846 847 /* This only makes sense for socinfo >= 16 */ 848 if (__le32_to_cpu(info->fmt) < SOCINFO_VERSION(0, 16)) 849 return -EOPNOTSUPP; 850 851 raw_code = __le32_to_cpu(info->feature_code); 852 853 /* Ensure the value makes sense */ 854 if (raw_code > SOCINFO_FC_INT_MAX) 855 raw_code = SOCINFO_FC_UNKNOWN; 856 857 *code = raw_code; 858 859 return 0; 860 } 861 EXPORT_SYMBOL_GPL(qcom_smem_get_feature_code); 862 863 static int qcom_smem_get_sbl_version(struct qcom_smem *smem) 864 { 865 struct smem_header *header; 866 __le32 *versions; 867 868 header = smem->regions[0].virt_base; 869 versions = header->version; 870 871 return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]); 872 } 873 874 static struct smem_ptable *qcom_smem_get_ptable(struct qcom_smem *smem) 875 { 876 struct smem_ptable *ptable; 877 u32 version; 878 879 ptable = smem->ptable; 880 if (memcmp(ptable->magic, SMEM_PTABLE_MAGIC, sizeof(ptable->magic))) 881 return ERR_PTR(-ENOENT); 882 883 version = le32_to_cpu(ptable->version); 884 if (version != 1) { 885 dev_err(smem->dev, 886 "Unsupported partition header version %d\n", version); 887 return ERR_PTR(-EINVAL); 888 } 889 return ptable; 890 } 891 892 static u32 qcom_smem_get_item_count(struct qcom_smem *smem) 893 { 894 struct smem_ptable *ptable; 895 struct smem_info *info; 896 897 ptable = qcom_smem_get_ptable(smem); 898 if (IS_ERR_OR_NULL(ptable)) 899 return SMEM_ITEM_COUNT; 900 901 info = (struct smem_info *)&ptable->entry[ptable->num_entries]; 902 if (memcmp(info->magic, SMEM_INFO_MAGIC, sizeof(info->magic))) 903 return SMEM_ITEM_COUNT; 904 905 return le16_to_cpu(info->num_items); 906 } 907 908 /* 909 * Validate the partition header for a partition whose partition 910 * table entry is supplied. Returns a pointer to its header if 911 * valid, or a null pointer otherwise. 912 */ 913 static struct smem_partition_header * 914 qcom_smem_partition_header(struct qcom_smem *smem, 915 struct smem_ptable_entry *entry, u16 host0, u16 host1) 916 { 917 struct smem_partition_header *header; 918 u32 phys_addr; 919 u32 size; 920 921 phys_addr = smem->regions[0].aux_base + le32_to_cpu(entry->offset); 922 header = devm_ioremap_wc(smem->dev, phys_addr, le32_to_cpu(entry->size)); 923 924 if (!header) 925 return NULL; 926 927 if (memcmp(header->magic, SMEM_PART_MAGIC, sizeof(header->magic))) { 928 dev_err(smem->dev, "bad partition magic %4ph\n", header->magic); 929 return NULL; 930 } 931 932 if (host0 != le16_to_cpu(header->host0)) { 933 dev_err(smem->dev, "bad host0 (%hu != %hu)\n", 934 host0, le16_to_cpu(header->host0)); 935 return NULL; 936 } 937 if (host1 != le16_to_cpu(header->host1)) { 938 dev_err(smem->dev, "bad host1 (%hu != %hu)\n", 939 host1, le16_to_cpu(header->host1)); 940 return NULL; 941 } 942 943 size = le32_to_cpu(header->size); 944 if (size != le32_to_cpu(entry->size)) { 945 dev_err(smem->dev, "bad partition size (%u != %u)\n", 946 size, le32_to_cpu(entry->size)); 947 return NULL; 948 } 949 950 if (le32_to_cpu(header->offset_free_uncached) > size) { 951 dev_err(smem->dev, "bad partition free uncached (%u > %u)\n", 952 le32_to_cpu(header->offset_free_uncached), size); 953 return NULL; 954 } 955 956 return header; 957 } 958 959 static int qcom_smem_set_global_partition(struct qcom_smem *smem) 960 { 961 struct smem_partition_header *header; 962 struct smem_ptable_entry *entry; 963 struct smem_ptable *ptable; 964 bool found = false; 965 int i; 966 967 if (smem->global_partition.virt_base) { 968 dev_err(smem->dev, "Already found the global partition\n"); 969 return -EINVAL; 970 } 971 972 ptable = qcom_smem_get_ptable(smem); 973 if (IS_ERR(ptable)) 974 return PTR_ERR(ptable); 975 976 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) { 977 entry = &ptable->entry[i]; 978 if (!le32_to_cpu(entry->offset)) 979 continue; 980 if (!le32_to_cpu(entry->size)) 981 continue; 982 983 if (le16_to_cpu(entry->host0) != SMEM_GLOBAL_HOST) 984 continue; 985 986 if (le16_to_cpu(entry->host1) == SMEM_GLOBAL_HOST) { 987 found = true; 988 break; 989 } 990 } 991 992 if (!found) { 993 dev_err(smem->dev, "Missing entry for global partition\n"); 994 return -EINVAL; 995 } 996 997 header = qcom_smem_partition_header(smem, entry, 998 SMEM_GLOBAL_HOST, SMEM_GLOBAL_HOST); 999 if (!header) 1000 return -EINVAL; 1001 1002 smem->global_partition.virt_base = (void __iomem *)header; 1003 smem->global_partition.phys_base = smem->regions[0].aux_base + 1004 le32_to_cpu(entry->offset); 1005 smem->global_partition.size = le32_to_cpu(entry->size); 1006 smem->global_partition.cacheline = le32_to_cpu(entry->cacheline); 1007 1008 return 0; 1009 } 1010 1011 static int 1012 qcom_smem_enumerate_partitions(struct qcom_smem *smem, u16 local_host) 1013 { 1014 struct smem_partition_header *header; 1015 struct smem_ptable_entry *entry; 1016 struct smem_ptable *ptable; 1017 u16 remote_host; 1018 u16 host0, host1; 1019 int i; 1020 1021 ptable = qcom_smem_get_ptable(smem); 1022 if (IS_ERR(ptable)) 1023 return PTR_ERR(ptable); 1024 1025 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) { 1026 entry = &ptable->entry[i]; 1027 if (!le32_to_cpu(entry->offset)) 1028 continue; 1029 if (!le32_to_cpu(entry->size)) 1030 continue; 1031 1032 host0 = le16_to_cpu(entry->host0); 1033 host1 = le16_to_cpu(entry->host1); 1034 if (host0 == local_host) 1035 remote_host = host1; 1036 else if (host1 == local_host) 1037 remote_host = host0; 1038 else 1039 continue; 1040 1041 if (remote_host >= SMEM_HOST_COUNT) { 1042 dev_err(smem->dev, "bad host %u\n", remote_host); 1043 return -EINVAL; 1044 } 1045 1046 if (smem->partitions[remote_host].virt_base) { 1047 dev_err(smem->dev, "duplicate host %u\n", remote_host); 1048 return -EINVAL; 1049 } 1050 1051 header = qcom_smem_partition_header(smem, entry, host0, host1); 1052 if (!header) 1053 return -EINVAL; 1054 1055 smem->partitions[remote_host].virt_base = (void __iomem *)header; 1056 smem->partitions[remote_host].phys_base = smem->regions[0].aux_base + 1057 le32_to_cpu(entry->offset); 1058 smem->partitions[remote_host].size = le32_to_cpu(entry->size); 1059 smem->partitions[remote_host].cacheline = le32_to_cpu(entry->cacheline); 1060 } 1061 1062 return 0; 1063 } 1064 1065 static int qcom_smem_map_toc(struct qcom_smem *smem, struct smem_region *region) 1066 { 1067 u32 ptable_start; 1068 1069 /* map starting 4K for smem header */ 1070 region->virt_base = devm_ioremap_wc(smem->dev, region->aux_base, SZ_4K); 1071 ptable_start = region->aux_base + region->size - SZ_4K; 1072 /* map last 4k for toc */ 1073 smem->ptable = devm_ioremap_wc(smem->dev, ptable_start, SZ_4K); 1074 1075 if (!region->virt_base || !smem->ptable) 1076 return -ENOMEM; 1077 1078 return 0; 1079 } 1080 1081 static int qcom_smem_map_global(struct qcom_smem *smem, u32 size) 1082 { 1083 u32 phys_addr; 1084 1085 phys_addr = smem->regions[0].aux_base; 1086 1087 smem->regions[0].size = size; 1088 smem->regions[0].virt_base = devm_ioremap_wc(smem->dev, phys_addr, size); 1089 1090 if (!smem->regions[0].virt_base) 1091 return -ENOMEM; 1092 1093 return 0; 1094 } 1095 1096 static int qcom_smem_resolve_mem(struct qcom_smem *smem, const char *name, 1097 struct smem_region *region) 1098 { 1099 struct device *dev = smem->dev; 1100 struct device_node *np; 1101 struct resource r; 1102 int ret; 1103 1104 np = of_parse_phandle(dev->of_node, name, 0); 1105 if (!np) { 1106 dev_err(dev, "No %s specified\n", name); 1107 return -EINVAL; 1108 } 1109 1110 ret = of_address_to_resource(np, 0, &r); 1111 of_node_put(np); 1112 if (ret) 1113 return ret; 1114 1115 region->aux_base = r.start; 1116 region->size = resource_size(&r); 1117 1118 return 0; 1119 } 1120 1121 static int qcom_smem_probe(struct platform_device *pdev) 1122 { 1123 struct smem_header *header; 1124 struct reserved_mem *rmem; 1125 struct qcom_smem *smem; 1126 unsigned long flags; 1127 int num_regions; 1128 int hwlock_id; 1129 u32 version; 1130 u32 size; 1131 int ret; 1132 int i; 1133 1134 num_regions = 1; 1135 if (of_property_present(pdev->dev.of_node, "qcom,rpm-msg-ram")) 1136 num_regions++; 1137 1138 smem = devm_kzalloc(&pdev->dev, struct_size(smem, regions, num_regions), 1139 GFP_KERNEL); 1140 if (!smem) 1141 return -ENOMEM; 1142 1143 smem->dev = &pdev->dev; 1144 smem->num_regions = num_regions; 1145 1146 rmem = of_reserved_mem_lookup(pdev->dev.of_node); 1147 if (rmem) { 1148 smem->regions[0].aux_base = rmem->base; 1149 smem->regions[0].size = rmem->size; 1150 } else { 1151 /* 1152 * Fall back to the memory-region reference, if we're not a 1153 * reserved-memory node. 1154 */ 1155 ret = qcom_smem_resolve_mem(smem, "memory-region", &smem->regions[0]); 1156 if (ret) 1157 return ret; 1158 } 1159 1160 if (num_regions > 1) { 1161 ret = qcom_smem_resolve_mem(smem, "qcom,rpm-msg-ram", &smem->regions[1]); 1162 if (ret) 1163 return ret; 1164 } 1165 1166 1167 ret = qcom_smem_map_toc(smem, &smem->regions[0]); 1168 if (ret) 1169 return ret; 1170 1171 for (i = 1; i < num_regions; i++) { 1172 smem->regions[i].virt_base = devm_ioremap_wc(&pdev->dev, 1173 smem->regions[i].aux_base, 1174 smem->regions[i].size); 1175 if (!smem->regions[i].virt_base) { 1176 dev_err(&pdev->dev, "failed to remap %pa\n", &smem->regions[i].aux_base); 1177 return -ENOMEM; 1178 } 1179 } 1180 1181 header = smem->regions[0].virt_base; 1182 if (le32_to_cpu(header->initialized) != 1 || 1183 le32_to_cpu(header->reserved)) { 1184 dev_err(&pdev->dev, "SMEM is not initialized by SBL\n"); 1185 return -EINVAL; 1186 } 1187 1188 hwlock_id = of_hwspin_lock_get_id(pdev->dev.of_node, 0); 1189 if (hwlock_id < 0) 1190 return dev_err_probe(&pdev->dev, hwlock_id, 1191 "failed to retrieve hwlock\n"); 1192 1193 smem->hwlock = hwspin_lock_request_specific(hwlock_id); 1194 if (!smem->hwlock) 1195 return -ENXIO; 1196 1197 ret = hwspin_lock_timeout_irqsave(smem->hwlock, HWSPINLOCK_TIMEOUT, &flags); 1198 if (ret) 1199 return ret; 1200 size = readl_relaxed(&header->available) + readl_relaxed(&header->free_offset); 1201 hwspin_unlock_irqrestore(smem->hwlock, &flags); 1202 1203 version = qcom_smem_get_sbl_version(smem); 1204 /* 1205 * smem header mapping is required only in heap version scheme, so unmap 1206 * it here. It will be remapped in qcom_smem_map_global() when whole 1207 * partition is mapped again. 1208 */ 1209 devm_iounmap(smem->dev, smem->regions[0].virt_base); 1210 switch (version >> 16) { 1211 case SMEM_GLOBAL_PART_VERSION: 1212 ret = qcom_smem_set_global_partition(smem); 1213 if (ret < 0) 1214 return ret; 1215 smem->item_count = qcom_smem_get_item_count(smem); 1216 break; 1217 case SMEM_GLOBAL_HEAP_VERSION: 1218 qcom_smem_map_global(smem, size); 1219 smem->item_count = SMEM_ITEM_COUNT; 1220 break; 1221 default: 1222 dev_err(&pdev->dev, "Unsupported SMEM version 0x%x\n", version); 1223 return -EINVAL; 1224 } 1225 1226 BUILD_BUG_ON(SMEM_HOST_APPS >= SMEM_HOST_COUNT); 1227 ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS); 1228 if (ret < 0 && ret != -ENOENT) 1229 return ret; 1230 1231 __smem = smem; 1232 1233 smem->socinfo = platform_device_register_data(&pdev->dev, "qcom-socinfo", 1234 PLATFORM_DEVID_NONE, NULL, 1235 0); 1236 if (IS_ERR(smem->socinfo)) 1237 dev_dbg(&pdev->dev, "failed to register socinfo device\n"); 1238 1239 return 0; 1240 } 1241 1242 static void qcom_smem_remove(struct platform_device *pdev) 1243 { 1244 platform_device_unregister(__smem->socinfo); 1245 1246 hwspin_lock_free(__smem->hwlock); 1247 __smem = NULL; 1248 } 1249 1250 static const struct of_device_id qcom_smem_of_match[] = { 1251 { .compatible = "qcom,smem" }, 1252 {} 1253 }; 1254 MODULE_DEVICE_TABLE(of, qcom_smem_of_match); 1255 1256 static struct platform_driver qcom_smem_driver = { 1257 .probe = qcom_smem_probe, 1258 .remove = qcom_smem_remove, 1259 .driver = { 1260 .name = "qcom-smem", 1261 .of_match_table = qcom_smem_of_match, 1262 .suppress_bind_attrs = true, 1263 }, 1264 }; 1265 1266 static int __init qcom_smem_init(void) 1267 { 1268 return platform_driver_register(&qcom_smem_driver); 1269 } 1270 arch_initcall(qcom_smem_init); 1271 1272 static void __exit qcom_smem_exit(void) 1273 { 1274 platform_driver_unregister(&qcom_smem_driver); 1275 } 1276 module_exit(qcom_smem_exit) 1277 1278 MODULE_AUTHOR("Bjorn Andersson <bjorn.andersson@sonymobile.com>"); 1279 MODULE_DESCRIPTION("Qualcomm Shared Memory Manager"); 1280 MODULE_LICENSE("GPL v2"); 1281