1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2015, Sony Mobile Communications AB. 4 * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved. 5 */ 6 7 #include <linux/hwspinlock.h> 8 #include <linux/io.h> 9 #include <linux/module.h> 10 #include <linux/of.h> 11 #include <linux/of_address.h> 12 #include <linux/of_reserved_mem.h> 13 #include <linux/platform_device.h> 14 #include <linux/sizes.h> 15 #include <linux/slab.h> 16 #include <linux/soc/qcom/smem.h> 17 #include <linux/soc/qcom/socinfo.h> 18 19 /* 20 * The Qualcomm shared memory system is a allocate only heap structure that 21 * consists of one of more memory areas that can be accessed by the processors 22 * in the SoC. 23 * 24 * All systems contains a global heap, accessible by all processors in the SoC, 25 * with a table of contents data structure (@smem_header) at the beginning of 26 * the main shared memory block. 27 * 28 * The global header contains meta data for allocations as well as a fixed list 29 * of 512 entries (@smem_global_entry) that can be initialized to reference 30 * parts of the shared memory space. 31 * 32 * 33 * In addition to this global heap a set of "private" heaps can be set up at 34 * boot time with access restrictions so that only certain processor pairs can 35 * access the data. 36 * 37 * These partitions are referenced from an optional partition table 38 * (@smem_ptable), that is found 4kB from the end of the main smem region. The 39 * partition table entries (@smem_ptable_entry) lists the involved processors 40 * (or hosts) and their location in the main shared memory region. 41 * 42 * Each partition starts with a header (@smem_partition_header) that identifies 43 * the partition and holds properties for the two internal memory regions. The 44 * two regions are cached and non-cached memory respectively. Each region 45 * contain a link list of allocation headers (@smem_private_entry) followed by 46 * their data. 47 * 48 * Items in the non-cached region are allocated from the start of the partition 49 * while items in the cached region are allocated from the end. The free area 50 * is hence the region between the cached and non-cached offsets. The header of 51 * cached items comes after the data. 52 * 53 * Version 12 (SMEM_GLOBAL_PART_VERSION) changes the item alloc/get procedure 54 * for the global heap. A new global partition is created from the global heap 55 * region with partition type (SMEM_GLOBAL_HOST) and the max smem item count is 56 * set by the bootloader. 57 * 58 * To synchronize allocations in the shared memory heaps a remote spinlock must 59 * be held - currently lock number 3 of the sfpb or tcsr is used for this on all 60 * platforms. 61 * 62 */ 63 64 /* 65 * The version member of the smem header contains an array of versions for the 66 * various software components in the SoC. We verify that the boot loader 67 * version is a valid version as a sanity check. 68 */ 69 #define SMEM_MASTER_SBL_VERSION_INDEX 7 70 #define SMEM_GLOBAL_HEAP_VERSION 11 71 #define SMEM_GLOBAL_PART_VERSION 12 72 73 /* 74 * The first 8 items are only to be allocated by the boot loader while 75 * initializing the heap. 76 */ 77 #define SMEM_ITEM_LAST_FIXED 8 78 79 /* Highest accepted item number, for both global and private heaps */ 80 #define SMEM_ITEM_COUNT 512 81 82 /* Processor/host identifier for the application processor */ 83 #define SMEM_HOST_APPS 0 84 85 /* Processor/host identifier for the global partition */ 86 #define SMEM_GLOBAL_HOST 0xfffe 87 88 /* Max number of processors/hosts in a system */ 89 #define SMEM_HOST_COUNT 25 90 91 /** 92 * struct smem_proc_comm - proc_comm communication struct (legacy) 93 * @command: current command to be executed 94 * @status: status of the currently requested command 95 * @params: parameters to the command 96 */ 97 struct smem_proc_comm { 98 __le32 command; 99 __le32 status; 100 __le32 params[2]; 101 }; 102 103 /** 104 * struct smem_global_entry - entry to reference smem items on the heap 105 * @allocated: boolean to indicate if this entry is used 106 * @offset: offset to the allocated space 107 * @size: size of the allocated space, 8 byte aligned 108 * @aux_base: base address for the memory region used by this unit, or 0 for 109 * the default region. bits 0,1 are reserved 110 */ 111 struct smem_global_entry { 112 __le32 allocated; 113 __le32 offset; 114 __le32 size; 115 __le32 aux_base; /* bits 1:0 reserved */ 116 }; 117 #define AUX_BASE_MASK 0xfffffffc 118 119 /** 120 * struct smem_header - header found in beginning of primary smem region 121 * @proc_comm: proc_comm communication interface (legacy) 122 * @version: array of versions for the various subsystems 123 * @initialized: boolean to indicate that smem is initialized 124 * @free_offset: index of the first unallocated byte in smem 125 * @available: number of bytes available for allocation 126 * @reserved: reserved field, must be 0 127 * @toc: array of references to items 128 */ 129 struct smem_header { 130 struct smem_proc_comm proc_comm[4]; 131 __le32 version[32]; 132 __le32 initialized; 133 __le32 free_offset; 134 __le32 available; 135 __le32 reserved; 136 struct smem_global_entry toc[SMEM_ITEM_COUNT]; 137 }; 138 139 /** 140 * struct smem_ptable_entry - one entry in the @smem_ptable list 141 * @offset: offset, within the main shared memory region, of the partition 142 * @size: size of the partition 143 * @flags: flags for the partition (currently unused) 144 * @host0: first processor/host with access to this partition 145 * @host1: second processor/host with access to this partition 146 * @cacheline: alignment for "cached" entries 147 * @reserved: reserved entries for later use 148 */ 149 struct smem_ptable_entry { 150 __le32 offset; 151 __le32 size; 152 __le32 flags; 153 __le16 host0; 154 __le16 host1; 155 __le32 cacheline; 156 __le32 reserved[7]; 157 }; 158 159 /** 160 * struct smem_ptable - partition table for the private partitions 161 * @magic: magic number, must be SMEM_PTABLE_MAGIC 162 * @version: version of the partition table 163 * @num_entries: number of partitions in the table 164 * @reserved: for now reserved entries 165 * @entry: list of @smem_ptable_entry for the @num_entries partitions 166 */ 167 struct smem_ptable { 168 u8 magic[4]; 169 __le32 version; 170 __le32 num_entries; 171 __le32 reserved[5]; 172 struct smem_ptable_entry entry[]; 173 }; 174 175 static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */ 176 177 /** 178 * struct smem_partition_header - header of the partitions 179 * @magic: magic number, must be SMEM_PART_MAGIC 180 * @host0: first processor/host with access to this partition 181 * @host1: second processor/host with access to this partition 182 * @size: size of the partition 183 * @offset_free_uncached: offset to the first free byte of uncached memory in 184 * this partition 185 * @offset_free_cached: offset to the first free byte of cached memory in this 186 * partition 187 * @reserved: for now reserved entries 188 */ 189 struct smem_partition_header { 190 u8 magic[4]; 191 __le16 host0; 192 __le16 host1; 193 __le32 size; 194 __le32 offset_free_uncached; 195 __le32 offset_free_cached; 196 __le32 reserved[3]; 197 }; 198 199 /** 200 * struct smem_partition - describes smem partition 201 * @virt_base: starting virtual address of partition 202 * @phys_base: starting physical address of partition 203 * @cacheline: alignment for "cached" entries 204 * @size: size of partition 205 */ 206 struct smem_partition { 207 void __iomem *virt_base; 208 phys_addr_t phys_base; 209 size_t cacheline; 210 size_t size; 211 }; 212 213 static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 }; 214 215 /** 216 * struct smem_private_entry - header of each item in the private partition 217 * @canary: magic number, must be SMEM_PRIVATE_CANARY 218 * @item: identifying number of the smem item 219 * @size: size of the data, including padding bytes 220 * @padding_data: number of bytes of padding of data 221 * @padding_hdr: number of bytes of padding between the header and the data 222 * @reserved: for now reserved entry 223 */ 224 struct smem_private_entry { 225 u16 canary; /* bytes are the same so no swapping needed */ 226 __le16 item; 227 __le32 size; /* includes padding bytes */ 228 __le16 padding_data; 229 __le16 padding_hdr; 230 __le32 reserved; 231 }; 232 #define SMEM_PRIVATE_CANARY 0xa5a5 233 234 /** 235 * struct smem_info - smem region info located after the table of contents 236 * @magic: magic number, must be SMEM_INFO_MAGIC 237 * @size: size of the smem region 238 * @base_addr: base address of the smem region 239 * @reserved: for now reserved entry 240 * @num_items: highest accepted item number 241 */ 242 struct smem_info { 243 u8 magic[4]; 244 __le32 size; 245 __le32 base_addr; 246 __le32 reserved; 247 __le16 num_items; 248 }; 249 250 static const u8 SMEM_INFO_MAGIC[] = { 0x53, 0x49, 0x49, 0x49 }; /* SIII */ 251 252 /** 253 * struct smem_region - representation of a chunk of memory used for smem 254 * @aux_base: identifier of aux_mem base 255 * @virt_base: virtual base address of memory with this aux_mem identifier 256 * @size: size of the memory region 257 */ 258 struct smem_region { 259 phys_addr_t aux_base; 260 void __iomem *virt_base; 261 size_t size; 262 }; 263 264 /** 265 * struct qcom_smem - device data for the smem device 266 * @dev: device pointer 267 * @hwlock: reference to a hwspinlock 268 * @ptable: virtual base of partition table 269 * @global_partition: describes for global partition when in use 270 * @partitions: list of partitions of current processor/host 271 * @item_count: max accepted item number 272 * @socinfo: platform device pointer 273 * @num_regions: number of @regions 274 * @regions: list of the memory regions defining the shared memory 275 */ 276 struct qcom_smem { 277 struct device *dev; 278 279 struct hwspinlock *hwlock; 280 281 u32 item_count; 282 struct platform_device *socinfo; 283 struct smem_ptable *ptable; 284 struct smem_partition global_partition; 285 struct smem_partition partitions[SMEM_HOST_COUNT]; 286 287 unsigned num_regions; 288 struct smem_region regions[] __counted_by(num_regions); 289 }; 290 291 static void * 292 phdr_to_last_uncached_entry(struct smem_partition_header *phdr) 293 { 294 void *p = phdr; 295 296 return p + le32_to_cpu(phdr->offset_free_uncached); 297 } 298 299 static struct smem_private_entry * 300 phdr_to_first_cached_entry(struct smem_partition_header *phdr, 301 size_t cacheline) 302 { 303 void *p = phdr; 304 struct smem_private_entry *e; 305 306 return p + le32_to_cpu(phdr->size) - ALIGN(sizeof(*e), cacheline); 307 } 308 309 static void * 310 phdr_to_last_cached_entry(struct smem_partition_header *phdr) 311 { 312 void *p = phdr; 313 314 return p + le32_to_cpu(phdr->offset_free_cached); 315 } 316 317 static struct smem_private_entry * 318 phdr_to_first_uncached_entry(struct smem_partition_header *phdr) 319 { 320 void *p = phdr; 321 322 return p + sizeof(*phdr); 323 } 324 325 static struct smem_private_entry * 326 uncached_entry_next(struct smem_private_entry *e) 327 { 328 void *p = e; 329 330 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) + 331 le32_to_cpu(e->size); 332 } 333 334 static struct smem_private_entry * 335 cached_entry_next(struct smem_private_entry *e, size_t cacheline) 336 { 337 void *p = e; 338 339 return p - le32_to_cpu(e->size) - ALIGN(sizeof(*e), cacheline); 340 } 341 342 static void *uncached_entry_to_item(struct smem_private_entry *e) 343 { 344 void *p = e; 345 346 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr); 347 } 348 349 static void *cached_entry_to_item(struct smem_private_entry *e) 350 { 351 void *p = e; 352 353 return p - le32_to_cpu(e->size); 354 } 355 356 /* 357 * Pointer to the one and only smem handle. 358 * Init to -EPROBE_DEFER to signal SMEM still has to be probed. 359 * Can be set to -ENODEV if SMEM is not initialized by SBL. 360 */ 361 static struct qcom_smem *__smem = INIT_ERR_PTR(-EPROBE_DEFER); 362 363 /* Timeout (ms) for the trylock of remote spinlocks */ 364 #define HWSPINLOCK_TIMEOUT 1000 365 366 /* The qcom hwspinlock id is always plus one from the smem host id */ 367 #define SMEM_HOST_ID_TO_HWSPINLOCK_ID(__x) ((__x) + 1) 368 369 /** 370 * qcom_smem_bust_hwspin_lock_by_host() - bust the smem hwspinlock for a host 371 * @host: remote processor id 372 * 373 * Busts the hwspin_lock for the given smem host id. This helper is intended 374 * for remoteproc drivers that manage remoteprocs with an equivalent smem 375 * driver instance in the remote firmware. Drivers can force a release of the 376 * smem hwspin_lock if the rproc unexpectedly goes into a bad state. 377 * 378 * Context: Process context. 379 * 380 * Returns: 0 on success, otherwise negative errno. 381 */ 382 int qcom_smem_bust_hwspin_lock_by_host(unsigned int host) 383 { 384 /* This function is for remote procs, so ignore SMEM_HOST_APPS */ 385 if (host == SMEM_HOST_APPS || host >= SMEM_HOST_COUNT) 386 return -EINVAL; 387 388 return hwspin_lock_bust(__smem->hwlock, SMEM_HOST_ID_TO_HWSPINLOCK_ID(host)); 389 } 390 EXPORT_SYMBOL_GPL(qcom_smem_bust_hwspin_lock_by_host); 391 392 /** 393 * qcom_smem_is_available() - Check if SMEM is available 394 * 395 * Return: true if SMEM is available, false otherwise. 396 */ 397 bool qcom_smem_is_available(void) 398 { 399 return !!__smem; 400 } 401 EXPORT_SYMBOL_GPL(qcom_smem_is_available); 402 403 static int qcom_smem_alloc_private(struct qcom_smem *smem, 404 struct smem_partition *part, 405 unsigned item, 406 size_t size) 407 { 408 struct smem_private_entry *hdr, *end; 409 struct smem_partition_header *phdr; 410 size_t alloc_size; 411 void *cached; 412 void *p_end; 413 414 phdr = (struct smem_partition_header __force *)part->virt_base; 415 p_end = (void *)phdr + part->size; 416 417 hdr = phdr_to_first_uncached_entry(phdr); 418 end = phdr_to_last_uncached_entry(phdr); 419 cached = phdr_to_last_cached_entry(phdr); 420 421 if (WARN_ON((void *)end > p_end || cached > p_end)) 422 return -EINVAL; 423 424 while (hdr < end) { 425 if (hdr->canary != SMEM_PRIVATE_CANARY) 426 goto bad_canary; 427 if (le16_to_cpu(hdr->item) == item) 428 return -EEXIST; 429 430 hdr = uncached_entry_next(hdr); 431 } 432 433 if (WARN_ON((void *)hdr > p_end)) 434 return -EINVAL; 435 436 /* Check that we don't grow into the cached region */ 437 alloc_size = sizeof(*hdr) + ALIGN(size, 8); 438 if ((void *)hdr + alloc_size > cached) { 439 dev_err(smem->dev, "Out of memory\n"); 440 return -ENOSPC; 441 } 442 443 hdr->canary = SMEM_PRIVATE_CANARY; 444 hdr->item = cpu_to_le16(item); 445 hdr->size = cpu_to_le32(ALIGN(size, 8)); 446 hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size); 447 hdr->padding_hdr = 0; 448 449 /* 450 * Ensure the header is written before we advance the free offset, so 451 * that remote processors that does not take the remote spinlock still 452 * gets a consistent view of the linked list. 453 */ 454 wmb(); 455 le32_add_cpu(&phdr->offset_free_uncached, alloc_size); 456 457 return 0; 458 bad_canary: 459 dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n", 460 le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1)); 461 462 return -EINVAL; 463 } 464 465 static int qcom_smem_alloc_global(struct qcom_smem *smem, 466 unsigned item, 467 size_t size) 468 { 469 struct smem_global_entry *entry; 470 struct smem_header *header; 471 472 header = smem->regions[0].virt_base; 473 entry = &header->toc[item]; 474 if (entry->allocated) 475 return -EEXIST; 476 477 size = ALIGN(size, 8); 478 if (WARN_ON(size > le32_to_cpu(header->available))) 479 return -ENOMEM; 480 481 entry->offset = header->free_offset; 482 entry->size = cpu_to_le32(size); 483 484 /* 485 * Ensure the header is consistent before we mark the item allocated, 486 * so that remote processors will get a consistent view of the item 487 * even though they do not take the spinlock on read. 488 */ 489 wmb(); 490 entry->allocated = cpu_to_le32(1); 491 492 le32_add_cpu(&header->free_offset, size); 493 le32_add_cpu(&header->available, -size); 494 495 return 0; 496 } 497 498 /** 499 * qcom_smem_alloc() - allocate space for a smem item 500 * @host: remote processor id, or -1 501 * @item: smem item handle 502 * @size: number of bytes to be allocated 503 * 504 * Allocate space for a given smem item of size @size, given that the item is 505 * not yet allocated. 506 * 507 * Return: 0 on success, negative errno on failure. 508 */ 509 int qcom_smem_alloc(unsigned host, unsigned item, size_t size) 510 { 511 struct smem_partition *part; 512 unsigned long flags; 513 int ret; 514 515 if (IS_ERR(__smem)) 516 return PTR_ERR(__smem); 517 518 if (item < SMEM_ITEM_LAST_FIXED) { 519 dev_err(__smem->dev, 520 "Rejecting allocation of static entry %d\n", item); 521 return -EINVAL; 522 } 523 524 if (item >= __smem->item_count) 525 return -EINVAL; 526 527 ret = hwspin_lock_timeout_irqsave(__smem->hwlock, 528 HWSPINLOCK_TIMEOUT, 529 &flags); 530 if (ret) 531 return ret; 532 533 if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) { 534 part = &__smem->partitions[host]; 535 ret = qcom_smem_alloc_private(__smem, part, item, size); 536 } else if (__smem->global_partition.virt_base) { 537 part = &__smem->global_partition; 538 ret = qcom_smem_alloc_private(__smem, part, item, size); 539 } else { 540 ret = qcom_smem_alloc_global(__smem, item, size); 541 } 542 543 hwspin_unlock_irqrestore(__smem->hwlock, &flags); 544 545 return ret; 546 } 547 EXPORT_SYMBOL_GPL(qcom_smem_alloc); 548 549 static void *qcom_smem_get_global(struct qcom_smem *smem, 550 unsigned item, 551 size_t *size) 552 { 553 struct smem_header *header; 554 struct smem_region *region; 555 struct smem_global_entry *entry; 556 u64 entry_offset; 557 u32 e_size; 558 u32 aux_base; 559 unsigned i; 560 561 header = smem->regions[0].virt_base; 562 entry = &header->toc[item]; 563 if (!entry->allocated) 564 return ERR_PTR(-ENXIO); 565 566 aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK; 567 568 for (i = 0; i < smem->num_regions; i++) { 569 region = &smem->regions[i]; 570 571 if ((u32)region->aux_base == aux_base || !aux_base) { 572 e_size = le32_to_cpu(entry->size); 573 entry_offset = le32_to_cpu(entry->offset); 574 575 if (WARN_ON(e_size + entry_offset > region->size)) 576 return ERR_PTR(-EINVAL); 577 578 if (size != NULL) 579 *size = e_size; 580 581 return region->virt_base + entry_offset; 582 } 583 } 584 585 return ERR_PTR(-ENOENT); 586 } 587 588 static void *qcom_smem_get_private(struct qcom_smem *smem, 589 struct smem_partition *part, 590 unsigned item, 591 size_t *size) 592 { 593 struct smem_private_entry *e, *end; 594 struct smem_partition_header *phdr; 595 void *item_ptr, *p_end; 596 u32 padding_data; 597 u32 e_size; 598 599 phdr = (struct smem_partition_header __force *)part->virt_base; 600 p_end = (void *)phdr + part->size; 601 602 e = phdr_to_first_uncached_entry(phdr); 603 end = phdr_to_last_uncached_entry(phdr); 604 605 while (e < end) { 606 if (e->canary != SMEM_PRIVATE_CANARY) 607 goto invalid_canary; 608 609 if (le16_to_cpu(e->item) == item) { 610 if (size != NULL) { 611 e_size = le32_to_cpu(e->size); 612 padding_data = le16_to_cpu(e->padding_data); 613 614 if (WARN_ON(e_size > part->size || padding_data > e_size)) 615 return ERR_PTR(-EINVAL); 616 617 *size = e_size - padding_data; 618 } 619 620 item_ptr = uncached_entry_to_item(e); 621 if (WARN_ON(item_ptr > p_end)) 622 return ERR_PTR(-EINVAL); 623 624 return item_ptr; 625 } 626 627 e = uncached_entry_next(e); 628 } 629 630 if (WARN_ON((void *)e > p_end)) 631 return ERR_PTR(-EINVAL); 632 633 /* Item was not found in the uncached list, search the cached list */ 634 635 e = phdr_to_first_cached_entry(phdr, part->cacheline); 636 end = phdr_to_last_cached_entry(phdr); 637 638 if (WARN_ON((void *)e < (void *)phdr || (void *)end > p_end)) 639 return ERR_PTR(-EINVAL); 640 641 while (e > end) { 642 if (e->canary != SMEM_PRIVATE_CANARY) 643 goto invalid_canary; 644 645 if (le16_to_cpu(e->item) == item) { 646 if (size != NULL) { 647 e_size = le32_to_cpu(e->size); 648 padding_data = le16_to_cpu(e->padding_data); 649 650 if (WARN_ON(e_size > part->size || padding_data > e_size)) 651 return ERR_PTR(-EINVAL); 652 653 *size = e_size - padding_data; 654 } 655 656 item_ptr = cached_entry_to_item(e); 657 if (WARN_ON(item_ptr < (void *)phdr)) 658 return ERR_PTR(-EINVAL); 659 660 return item_ptr; 661 } 662 663 e = cached_entry_next(e, part->cacheline); 664 } 665 666 if (WARN_ON((void *)e < (void *)phdr)) 667 return ERR_PTR(-EINVAL); 668 669 return ERR_PTR(-ENOENT); 670 671 invalid_canary: 672 dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n", 673 le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1)); 674 675 return ERR_PTR(-EINVAL); 676 } 677 678 /** 679 * qcom_smem_get() - resolve ptr of size of a smem item 680 * @host: the remote processor, or -1 681 * @item: smem item handle 682 * @size: pointer to be filled out with size of the item 683 * 684 * Looks up smem item and returns pointer to it. Size of smem 685 * item is returned in @size. 686 * 687 * Return: a pointer to an SMEM item on success, ERR_PTR() on failure. 688 */ 689 void *qcom_smem_get(unsigned host, unsigned item, size_t *size) 690 { 691 struct smem_partition *part; 692 void *ptr; 693 694 if (IS_ERR(__smem)) 695 return __smem; 696 697 if (item >= __smem->item_count) 698 return ERR_PTR(-EINVAL); 699 700 if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) { 701 part = &__smem->partitions[host]; 702 ptr = qcom_smem_get_private(__smem, part, item, size); 703 } else if (__smem->global_partition.virt_base) { 704 part = &__smem->global_partition; 705 ptr = qcom_smem_get_private(__smem, part, item, size); 706 } else { 707 ptr = qcom_smem_get_global(__smem, item, size); 708 } 709 710 return ptr; 711 } 712 EXPORT_SYMBOL_GPL(qcom_smem_get); 713 714 /** 715 * qcom_smem_get_free_space() - retrieve amount of free space in a partition 716 * @host: the remote processor identifying a partition, or -1 717 * 718 * To be used by smem clients as a quick way to determine if any new 719 * allocations has been made. 720 * 721 * Return: number of available bytes on success, negative errno on failure. 722 */ 723 int qcom_smem_get_free_space(unsigned host) 724 { 725 struct smem_partition *part; 726 struct smem_partition_header *phdr; 727 struct smem_header *header; 728 unsigned ret; 729 730 if (IS_ERR(__smem)) 731 return PTR_ERR(__smem); 732 733 if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) { 734 part = &__smem->partitions[host]; 735 phdr = part->virt_base; 736 ret = le32_to_cpu(phdr->offset_free_cached) - 737 le32_to_cpu(phdr->offset_free_uncached); 738 739 if (ret > le32_to_cpu(part->size)) 740 return -EINVAL; 741 } else if (__smem->global_partition.virt_base) { 742 part = &__smem->global_partition; 743 phdr = part->virt_base; 744 ret = le32_to_cpu(phdr->offset_free_cached) - 745 le32_to_cpu(phdr->offset_free_uncached); 746 747 if (ret > le32_to_cpu(part->size)) 748 return -EINVAL; 749 } else { 750 header = __smem->regions[0].virt_base; 751 ret = le32_to_cpu(header->available); 752 753 if (ret > __smem->regions[0].size) 754 return -EINVAL; 755 } 756 757 return ret; 758 } 759 EXPORT_SYMBOL_GPL(qcom_smem_get_free_space); 760 761 static bool addr_in_range(void __iomem *base, size_t size, void *addr) 762 { 763 return base && ((void __iomem *)addr >= base && (void __iomem *)addr < base + size); 764 } 765 766 /** 767 * qcom_smem_virt_to_phys() - return the physical address associated 768 * with an smem item pointer (previously returned by qcom_smem_get() 769 * @p: the virtual address to convert 770 * 771 * Return: physical address of the SMEM item (if found), 0 otherwise 772 */ 773 phys_addr_t qcom_smem_virt_to_phys(void *p) 774 { 775 struct smem_partition *part; 776 struct smem_region *area; 777 u64 offset; 778 u32 i; 779 780 for (i = 0; i < SMEM_HOST_COUNT; i++) { 781 part = &__smem->partitions[i]; 782 783 if (addr_in_range(part->virt_base, part->size, p)) { 784 offset = p - part->virt_base; 785 786 return (phys_addr_t)part->phys_base + offset; 787 } 788 } 789 790 part = &__smem->global_partition; 791 792 if (addr_in_range(part->virt_base, part->size, p)) { 793 offset = p - part->virt_base; 794 795 return (phys_addr_t)part->phys_base + offset; 796 } 797 798 for (i = 0; i < __smem->num_regions; i++) { 799 area = &__smem->regions[i]; 800 801 if (addr_in_range(area->virt_base, area->size, p)) { 802 offset = p - area->virt_base; 803 804 return (phys_addr_t)area->aux_base + offset; 805 } 806 } 807 808 return 0; 809 } 810 EXPORT_SYMBOL_GPL(qcom_smem_virt_to_phys); 811 812 /** 813 * qcom_smem_get_soc_id() - return the SoC ID 814 * @id: On success, we return the SoC ID here. 815 * 816 * Look up SoC ID from HW/SW build ID and return it. 817 * 818 * Return: 0 on success, negative errno on failure. 819 */ 820 int qcom_smem_get_soc_id(u32 *id) 821 { 822 struct socinfo *info; 823 824 info = qcom_smem_get(QCOM_SMEM_HOST_ANY, SMEM_HW_SW_BUILD_ID, NULL); 825 if (IS_ERR(info)) 826 return PTR_ERR(info); 827 828 *id = __le32_to_cpu(info->id); 829 830 return 0; 831 } 832 EXPORT_SYMBOL_GPL(qcom_smem_get_soc_id); 833 834 /** 835 * qcom_smem_get_feature_code() - return the feature code 836 * @code: On success, return the feature code here. 837 * 838 * Look up the feature code identifier from SMEM and return it. 839 * 840 * Return: 0 on success, negative errno on failure. 841 */ 842 int qcom_smem_get_feature_code(u32 *code) 843 { 844 struct socinfo *info; 845 u32 raw_code; 846 847 info = qcom_smem_get(QCOM_SMEM_HOST_ANY, SMEM_HW_SW_BUILD_ID, NULL); 848 if (IS_ERR(info)) 849 return PTR_ERR(info); 850 851 /* This only makes sense for socinfo >= 16 */ 852 if (__le32_to_cpu(info->fmt) < SOCINFO_VERSION(0, 16)) 853 return -EOPNOTSUPP; 854 855 raw_code = __le32_to_cpu(info->feature_code); 856 857 /* Ensure the value makes sense */ 858 if (raw_code > SOCINFO_FC_INT_MAX) 859 raw_code = SOCINFO_FC_UNKNOWN; 860 861 *code = raw_code; 862 863 return 0; 864 } 865 EXPORT_SYMBOL_GPL(qcom_smem_get_feature_code); 866 867 static int qcom_smem_get_sbl_version(struct qcom_smem *smem) 868 { 869 struct smem_header *header; 870 __le32 *versions; 871 872 header = smem->regions[0].virt_base; 873 versions = header->version; 874 875 return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]); 876 } 877 878 static struct smem_ptable *qcom_smem_get_ptable(struct qcom_smem *smem) 879 { 880 struct smem_ptable *ptable; 881 u32 version; 882 883 ptable = smem->ptable; 884 if (memcmp(ptable->magic, SMEM_PTABLE_MAGIC, sizeof(ptable->magic))) 885 return ERR_PTR(-ENOENT); 886 887 version = le32_to_cpu(ptable->version); 888 if (version != 1) { 889 dev_err(smem->dev, 890 "Unsupported partition header version %d\n", version); 891 return ERR_PTR(-EINVAL); 892 } 893 return ptable; 894 } 895 896 static u32 qcom_smem_get_item_count(struct qcom_smem *smem) 897 { 898 struct smem_ptable *ptable; 899 struct smem_info *info; 900 901 ptable = qcom_smem_get_ptable(smem); 902 if (IS_ERR_OR_NULL(ptable)) 903 return SMEM_ITEM_COUNT; 904 905 info = (struct smem_info *)&ptable->entry[le32_to_cpu(ptable->num_entries)]; 906 if (memcmp(info->magic, SMEM_INFO_MAGIC, sizeof(info->magic))) 907 return SMEM_ITEM_COUNT; 908 909 return le16_to_cpu(info->num_items); 910 } 911 912 /* 913 * Validate the partition header for a partition whose partition 914 * table entry is supplied. Returns a pointer to its header if 915 * valid, or a null pointer otherwise. 916 */ 917 static struct smem_partition_header * 918 qcom_smem_partition_header(struct qcom_smem *smem, 919 struct smem_ptable_entry *entry, u16 host0, u16 host1) 920 { 921 struct smem_partition_header *header; 922 u32 phys_addr; 923 u32 size; 924 925 phys_addr = smem->regions[0].aux_base + le32_to_cpu(entry->offset); 926 header = devm_ioremap_wc(smem->dev, phys_addr, le32_to_cpu(entry->size)); 927 928 if (!header) 929 return NULL; 930 931 if (memcmp(header->magic, SMEM_PART_MAGIC, sizeof(header->magic))) { 932 dev_err(smem->dev, "bad partition magic %4ph\n", header->magic); 933 return NULL; 934 } 935 936 if (host0 != le16_to_cpu(header->host0)) { 937 dev_err(smem->dev, "bad host0 (%hu != %hu)\n", 938 host0, le16_to_cpu(header->host0)); 939 return NULL; 940 } 941 if (host1 != le16_to_cpu(header->host1)) { 942 dev_err(smem->dev, "bad host1 (%hu != %hu)\n", 943 host1, le16_to_cpu(header->host1)); 944 return NULL; 945 } 946 947 size = le32_to_cpu(header->size); 948 if (size != le32_to_cpu(entry->size)) { 949 dev_err(smem->dev, "bad partition size (%u != %u)\n", 950 size, le32_to_cpu(entry->size)); 951 return NULL; 952 } 953 954 if (le32_to_cpu(header->offset_free_uncached) > size) { 955 dev_err(smem->dev, "bad partition free uncached (%u > %u)\n", 956 le32_to_cpu(header->offset_free_uncached), size); 957 return NULL; 958 } 959 960 return header; 961 } 962 963 static int qcom_smem_set_global_partition(struct qcom_smem *smem) 964 { 965 struct smem_partition_header *header; 966 struct smem_ptable_entry *entry; 967 struct smem_ptable *ptable; 968 bool found = false; 969 int i; 970 971 if (smem->global_partition.virt_base) { 972 dev_err(smem->dev, "Already found the global partition\n"); 973 return -EINVAL; 974 } 975 976 ptable = qcom_smem_get_ptable(smem); 977 if (IS_ERR(ptable)) 978 return PTR_ERR(ptable); 979 980 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) { 981 entry = &ptable->entry[i]; 982 if (!le32_to_cpu(entry->offset)) 983 continue; 984 if (!le32_to_cpu(entry->size)) 985 continue; 986 987 if (le16_to_cpu(entry->host0) != SMEM_GLOBAL_HOST) 988 continue; 989 990 if (le16_to_cpu(entry->host1) == SMEM_GLOBAL_HOST) { 991 found = true; 992 break; 993 } 994 } 995 996 if (!found) { 997 dev_err(smem->dev, "Missing entry for global partition\n"); 998 return -EINVAL; 999 } 1000 1001 header = qcom_smem_partition_header(smem, entry, 1002 SMEM_GLOBAL_HOST, SMEM_GLOBAL_HOST); 1003 if (!header) 1004 return -EINVAL; 1005 1006 smem->global_partition.virt_base = (void __iomem *)header; 1007 smem->global_partition.phys_base = smem->regions[0].aux_base + 1008 le32_to_cpu(entry->offset); 1009 smem->global_partition.size = le32_to_cpu(entry->size); 1010 smem->global_partition.cacheline = le32_to_cpu(entry->cacheline); 1011 1012 return 0; 1013 } 1014 1015 static int 1016 qcom_smem_enumerate_partitions(struct qcom_smem *smem, u16 local_host) 1017 { 1018 struct smem_partition_header *header; 1019 struct smem_ptable_entry *entry; 1020 struct smem_ptable *ptable; 1021 u16 remote_host; 1022 u16 host0, host1; 1023 int i; 1024 1025 ptable = qcom_smem_get_ptable(smem); 1026 if (IS_ERR(ptable)) 1027 return PTR_ERR(ptable); 1028 1029 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) { 1030 entry = &ptable->entry[i]; 1031 if (!le32_to_cpu(entry->offset)) 1032 continue; 1033 if (!le32_to_cpu(entry->size)) 1034 continue; 1035 1036 host0 = le16_to_cpu(entry->host0); 1037 host1 = le16_to_cpu(entry->host1); 1038 if (host0 == local_host) 1039 remote_host = host1; 1040 else if (host1 == local_host) 1041 remote_host = host0; 1042 else 1043 continue; 1044 1045 if (remote_host >= SMEM_HOST_COUNT) { 1046 dev_err(smem->dev, "bad host %u\n", remote_host); 1047 return -EINVAL; 1048 } 1049 1050 if (smem->partitions[remote_host].virt_base) { 1051 dev_err(smem->dev, "duplicate host %u\n", remote_host); 1052 return -EINVAL; 1053 } 1054 1055 header = qcom_smem_partition_header(smem, entry, host0, host1); 1056 if (!header) 1057 return -EINVAL; 1058 1059 smem->partitions[remote_host].virt_base = (void __iomem *)header; 1060 smem->partitions[remote_host].phys_base = smem->regions[0].aux_base + 1061 le32_to_cpu(entry->offset); 1062 smem->partitions[remote_host].size = le32_to_cpu(entry->size); 1063 smem->partitions[remote_host].cacheline = le32_to_cpu(entry->cacheline); 1064 } 1065 1066 return 0; 1067 } 1068 1069 static int qcom_smem_map_toc(struct qcom_smem *smem, struct smem_region *region) 1070 { 1071 u32 ptable_start; 1072 1073 /* map starting 4K for smem header */ 1074 region->virt_base = devm_ioremap_wc(smem->dev, region->aux_base, SZ_4K); 1075 ptable_start = region->aux_base + region->size - SZ_4K; 1076 /* map last 4k for toc */ 1077 smem->ptable = devm_ioremap_wc(smem->dev, ptable_start, SZ_4K); 1078 1079 if (!region->virt_base || !smem->ptable) 1080 return -ENOMEM; 1081 1082 return 0; 1083 } 1084 1085 static int qcom_smem_map_global(struct qcom_smem *smem, u32 size) 1086 { 1087 u32 phys_addr; 1088 1089 phys_addr = smem->regions[0].aux_base; 1090 1091 smem->regions[0].size = size; 1092 smem->regions[0].virt_base = devm_ioremap_wc(smem->dev, phys_addr, size); 1093 1094 if (!smem->regions[0].virt_base) 1095 return -ENOMEM; 1096 1097 return 0; 1098 } 1099 1100 static int qcom_smem_resolve_mem(struct qcom_smem *smem, const char *name, 1101 struct smem_region *region) 1102 { 1103 struct device *dev = smem->dev; 1104 struct device_node *np; 1105 struct resource r; 1106 int ret; 1107 1108 np = of_parse_phandle(dev->of_node, name, 0); 1109 if (!np) { 1110 dev_err(dev, "No %s specified\n", name); 1111 return -EINVAL; 1112 } 1113 1114 ret = of_address_to_resource(np, 0, &r); 1115 of_node_put(np); 1116 if (ret) 1117 return ret; 1118 1119 region->aux_base = r.start; 1120 region->size = resource_size(&r); 1121 1122 return 0; 1123 } 1124 1125 static int qcom_smem_probe(struct platform_device *pdev) 1126 { 1127 struct smem_header *header; 1128 struct reserved_mem *rmem; 1129 struct qcom_smem *smem; 1130 unsigned long flags; 1131 int num_regions; 1132 int hwlock_id; 1133 u32 version; 1134 u32 size; 1135 int ret; 1136 int i; 1137 1138 num_regions = 1; 1139 if (of_property_present(pdev->dev.of_node, "qcom,rpm-msg-ram")) 1140 num_regions++; 1141 1142 smem = devm_kzalloc(&pdev->dev, struct_size(smem, regions, num_regions), 1143 GFP_KERNEL); 1144 if (!smem) 1145 return -ENOMEM; 1146 1147 smem->dev = &pdev->dev; 1148 smem->num_regions = num_regions; 1149 1150 rmem = of_reserved_mem_lookup(pdev->dev.of_node); 1151 if (rmem) { 1152 smem->regions[0].aux_base = rmem->base; 1153 smem->regions[0].size = rmem->size; 1154 } else { 1155 /* 1156 * Fall back to the memory-region reference, if we're not a 1157 * reserved-memory node. 1158 */ 1159 ret = qcom_smem_resolve_mem(smem, "memory-region", &smem->regions[0]); 1160 if (ret) 1161 return ret; 1162 } 1163 1164 if (num_regions > 1) { 1165 ret = qcom_smem_resolve_mem(smem, "qcom,rpm-msg-ram", &smem->regions[1]); 1166 if (ret) 1167 return ret; 1168 } 1169 1170 1171 ret = qcom_smem_map_toc(smem, &smem->regions[0]); 1172 if (ret) 1173 return ret; 1174 1175 for (i = 1; i < num_regions; i++) { 1176 smem->regions[i].virt_base = devm_ioremap_wc(&pdev->dev, 1177 smem->regions[i].aux_base, 1178 smem->regions[i].size); 1179 if (!smem->regions[i].virt_base) { 1180 dev_err(&pdev->dev, "failed to remap %pa\n", &smem->regions[i].aux_base); 1181 return -ENOMEM; 1182 } 1183 } 1184 1185 header = smem->regions[0].virt_base; 1186 if (le32_to_cpu(header->initialized) != 1 || 1187 le32_to_cpu(header->reserved)) { 1188 __smem = ERR_PTR(-ENODEV); 1189 return dev_err_probe(&pdev->dev, PTR_ERR(__smem), "SMEM is not initialized by SBL\n"); 1190 } 1191 1192 hwlock_id = of_hwspin_lock_get_id(pdev->dev.of_node, 0); 1193 if (hwlock_id < 0) 1194 return dev_err_probe(&pdev->dev, hwlock_id, 1195 "failed to retrieve hwlock\n"); 1196 1197 smem->hwlock = devm_hwspin_lock_request_specific(&pdev->dev, hwlock_id); 1198 if (!smem->hwlock) 1199 return -ENXIO; 1200 1201 ret = hwspin_lock_timeout_irqsave(smem->hwlock, HWSPINLOCK_TIMEOUT, &flags); 1202 if (ret) 1203 return ret; 1204 size = readl_relaxed(&header->available) + readl_relaxed(&header->free_offset); 1205 hwspin_unlock_irqrestore(smem->hwlock, &flags); 1206 1207 version = qcom_smem_get_sbl_version(smem); 1208 /* 1209 * smem header mapping is required only in heap version scheme, so unmap 1210 * it here. It will be remapped in qcom_smem_map_global() when whole 1211 * partition is mapped again. 1212 */ 1213 devm_iounmap(smem->dev, smem->regions[0].virt_base); 1214 switch (version >> 16) { 1215 case SMEM_GLOBAL_PART_VERSION: 1216 ret = qcom_smem_set_global_partition(smem); 1217 if (ret < 0) 1218 return ret; 1219 smem->item_count = qcom_smem_get_item_count(smem); 1220 break; 1221 case SMEM_GLOBAL_HEAP_VERSION: 1222 qcom_smem_map_global(smem, size); 1223 smem->item_count = SMEM_ITEM_COUNT; 1224 break; 1225 default: 1226 dev_err(&pdev->dev, "Unsupported SMEM version 0x%x\n", version); 1227 return -EINVAL; 1228 } 1229 1230 BUILD_BUG_ON(SMEM_HOST_APPS >= SMEM_HOST_COUNT); 1231 ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS); 1232 if (ret < 0 && ret != -ENOENT) 1233 return ret; 1234 1235 __smem = smem; 1236 1237 smem->socinfo = platform_device_register_data(&pdev->dev, "qcom-socinfo", 1238 PLATFORM_DEVID_NONE, NULL, 1239 0); 1240 if (IS_ERR(smem->socinfo)) 1241 dev_dbg(&pdev->dev, "failed to register socinfo device\n"); 1242 1243 return 0; 1244 } 1245 1246 static void qcom_smem_remove(struct platform_device *pdev) 1247 { 1248 platform_device_unregister(__smem->socinfo); 1249 1250 __smem = NULL; 1251 } 1252 1253 static const struct of_device_id qcom_smem_of_match[] = { 1254 { .compatible = "qcom,smem" }, 1255 {} 1256 }; 1257 MODULE_DEVICE_TABLE(of, qcom_smem_of_match); 1258 1259 static struct platform_driver qcom_smem_driver = { 1260 .probe = qcom_smem_probe, 1261 .remove = qcom_smem_remove, 1262 .driver = { 1263 .name = "qcom-smem", 1264 .of_match_table = qcom_smem_of_match, 1265 .suppress_bind_attrs = true, 1266 }, 1267 }; 1268 1269 static int __init qcom_smem_init(void) 1270 { 1271 return platform_driver_register(&qcom_smem_driver); 1272 } 1273 arch_initcall(qcom_smem_init); 1274 1275 static void __exit qcom_smem_exit(void) 1276 { 1277 platform_driver_unregister(&qcom_smem_driver); 1278 } 1279 module_exit(qcom_smem_exit) 1280 1281 MODULE_AUTHOR("Bjorn Andersson <bjorn.andersson@sonymobile.com>"); 1282 MODULE_DESCRIPTION("Qualcomm Shared Memory Manager"); 1283 MODULE_LICENSE("GPL v2"); 1284