xref: /linux/drivers/soc/qcom/smem.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015, Sony Mobile Communications AB.
4  * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
5  */
6 
7 #include <linux/hwspinlock.h>
8 #include <linux/io.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/of_address.h>
12 #include <linux/of_reserved_mem.h>
13 #include <linux/platform_device.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 #include <linux/soc/qcom/smem.h>
17 
18 /*
19  * The Qualcomm shared memory system is a allocate only heap structure that
20  * consists of one of more memory areas that can be accessed by the processors
21  * in the SoC.
22  *
23  * All systems contains a global heap, accessible by all processors in the SoC,
24  * with a table of contents data structure (@smem_header) at the beginning of
25  * the main shared memory block.
26  *
27  * The global header contains meta data for allocations as well as a fixed list
28  * of 512 entries (@smem_global_entry) that can be initialized to reference
29  * parts of the shared memory space.
30  *
31  *
32  * In addition to this global heap a set of "private" heaps can be set up at
33  * boot time with access restrictions so that only certain processor pairs can
34  * access the data.
35  *
36  * These partitions are referenced from an optional partition table
37  * (@smem_ptable), that is found 4kB from the end of the main smem region. The
38  * partition table entries (@smem_ptable_entry) lists the involved processors
39  * (or hosts) and their location in the main shared memory region.
40  *
41  * Each partition starts with a header (@smem_partition_header) that identifies
42  * the partition and holds properties for the two internal memory regions. The
43  * two regions are cached and non-cached memory respectively. Each region
44  * contain a link list of allocation headers (@smem_private_entry) followed by
45  * their data.
46  *
47  * Items in the non-cached region are allocated from the start of the partition
48  * while items in the cached region are allocated from the end. The free area
49  * is hence the region between the cached and non-cached offsets. The header of
50  * cached items comes after the data.
51  *
52  * Version 12 (SMEM_GLOBAL_PART_VERSION) changes the item alloc/get procedure
53  * for the global heap. A new global partition is created from the global heap
54  * region with partition type (SMEM_GLOBAL_HOST) and the max smem item count is
55  * set by the bootloader.
56  *
57  * To synchronize allocations in the shared memory heaps a remote spinlock must
58  * be held - currently lock number 3 of the sfpb or tcsr is used for this on all
59  * platforms.
60  *
61  */
62 
63 /*
64  * The version member of the smem header contains an array of versions for the
65  * various software components in the SoC. We verify that the boot loader
66  * version is a valid version as a sanity check.
67  */
68 #define SMEM_MASTER_SBL_VERSION_INDEX	7
69 #define SMEM_GLOBAL_HEAP_VERSION	11
70 #define SMEM_GLOBAL_PART_VERSION	12
71 
72 /*
73  * The first 8 items are only to be allocated by the boot loader while
74  * initializing the heap.
75  */
76 #define SMEM_ITEM_LAST_FIXED	8
77 
78 /* Highest accepted item number, for both global and private heaps */
79 #define SMEM_ITEM_COUNT		512
80 
81 /* Processor/host identifier for the application processor */
82 #define SMEM_HOST_APPS		0
83 
84 /* Processor/host identifier for the global partition */
85 #define SMEM_GLOBAL_HOST	0xfffe
86 
87 /* Max number of processors/hosts in a system */
88 #define SMEM_HOST_COUNT		15
89 
90 /**
91   * struct smem_proc_comm - proc_comm communication struct (legacy)
92   * @command:	current command to be executed
93   * @status:	status of the currently requested command
94   * @params:	parameters to the command
95   */
96 struct smem_proc_comm {
97 	__le32 command;
98 	__le32 status;
99 	__le32 params[2];
100 };
101 
102 /**
103  * struct smem_global_entry - entry to reference smem items on the heap
104  * @allocated:	boolean to indicate if this entry is used
105  * @offset:	offset to the allocated space
106  * @size:	size of the allocated space, 8 byte aligned
107  * @aux_base:	base address for the memory region used by this unit, or 0 for
108  *		the default region. bits 0,1 are reserved
109  */
110 struct smem_global_entry {
111 	__le32 allocated;
112 	__le32 offset;
113 	__le32 size;
114 	__le32 aux_base; /* bits 1:0 reserved */
115 };
116 #define AUX_BASE_MASK		0xfffffffc
117 
118 /**
119  * struct smem_header - header found in beginning of primary smem region
120  * @proc_comm:		proc_comm communication interface (legacy)
121  * @version:		array of versions for the various subsystems
122  * @initialized:	boolean to indicate that smem is initialized
123  * @free_offset:	index of the first unallocated byte in smem
124  * @available:		number of bytes available for allocation
125  * @reserved:		reserved field, must be 0
126  * @toc:		array of references to items
127  */
128 struct smem_header {
129 	struct smem_proc_comm proc_comm[4];
130 	__le32 version[32];
131 	__le32 initialized;
132 	__le32 free_offset;
133 	__le32 available;
134 	__le32 reserved;
135 	struct smem_global_entry toc[SMEM_ITEM_COUNT];
136 };
137 
138 /**
139  * struct smem_ptable_entry - one entry in the @smem_ptable list
140  * @offset:	offset, within the main shared memory region, of the partition
141  * @size:	size of the partition
142  * @flags:	flags for the partition (currently unused)
143  * @host0:	first processor/host with access to this partition
144  * @host1:	second processor/host with access to this partition
145  * @cacheline:	alignment for "cached" entries
146  * @reserved:	reserved entries for later use
147  */
148 struct smem_ptable_entry {
149 	__le32 offset;
150 	__le32 size;
151 	__le32 flags;
152 	__le16 host0;
153 	__le16 host1;
154 	__le32 cacheline;
155 	__le32 reserved[7];
156 };
157 
158 /**
159  * struct smem_ptable - partition table for the private partitions
160  * @magic:	magic number, must be SMEM_PTABLE_MAGIC
161  * @version:	version of the partition table
162  * @num_entries: number of partitions in the table
163  * @reserved:	for now reserved entries
164  * @entry:	list of @smem_ptable_entry for the @num_entries partitions
165  */
166 struct smem_ptable {
167 	u8 magic[4];
168 	__le32 version;
169 	__le32 num_entries;
170 	__le32 reserved[5];
171 	struct smem_ptable_entry entry[];
172 };
173 
174 static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */
175 
176 /**
177  * struct smem_partition_header - header of the partitions
178  * @magic:	magic number, must be SMEM_PART_MAGIC
179  * @host0:	first processor/host with access to this partition
180  * @host1:	second processor/host with access to this partition
181  * @size:	size of the partition
182  * @offset_free_uncached: offset to the first free byte of uncached memory in
183  *		this partition
184  * @offset_free_cached: offset to the first free byte of cached memory in this
185  *		partition
186  * @reserved:	for now reserved entries
187  */
188 struct smem_partition_header {
189 	u8 magic[4];
190 	__le16 host0;
191 	__le16 host1;
192 	__le32 size;
193 	__le32 offset_free_uncached;
194 	__le32 offset_free_cached;
195 	__le32 reserved[3];
196 };
197 
198 /**
199  * struct smem_partition - describes smem partition
200  * @virt_base:	starting virtual address of partition
201  * @phys_base:	starting physical address of partition
202  * @cacheline:	alignment for "cached" entries
203  * @size:	size of partition
204  */
205 struct smem_partition {
206 	void __iomem *virt_base;
207 	phys_addr_t phys_base;
208 	size_t cacheline;
209 	size_t size;
210 };
211 
212 static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 };
213 
214 /**
215  * struct smem_private_entry - header of each item in the private partition
216  * @canary:	magic number, must be SMEM_PRIVATE_CANARY
217  * @item:	identifying number of the smem item
218  * @size:	size of the data, including padding bytes
219  * @padding_data: number of bytes of padding of data
220  * @padding_hdr: number of bytes of padding between the header and the data
221  * @reserved:	for now reserved entry
222  */
223 struct smem_private_entry {
224 	u16 canary; /* bytes are the same so no swapping needed */
225 	__le16 item;
226 	__le32 size; /* includes padding bytes */
227 	__le16 padding_data;
228 	__le16 padding_hdr;
229 	__le32 reserved;
230 };
231 #define SMEM_PRIVATE_CANARY	0xa5a5
232 
233 /**
234  * struct smem_info - smem region info located after the table of contents
235  * @magic:	magic number, must be SMEM_INFO_MAGIC
236  * @size:	size of the smem region
237  * @base_addr:	base address of the smem region
238  * @reserved:	for now reserved entry
239  * @num_items:	highest accepted item number
240  */
241 struct smem_info {
242 	u8 magic[4];
243 	__le32 size;
244 	__le32 base_addr;
245 	__le32 reserved;
246 	__le16 num_items;
247 };
248 
249 static const u8 SMEM_INFO_MAGIC[] = { 0x53, 0x49, 0x49, 0x49 }; /* SIII */
250 
251 /**
252  * struct smem_region - representation of a chunk of memory used for smem
253  * @aux_base:	identifier of aux_mem base
254  * @virt_base:	virtual base address of memory with this aux_mem identifier
255  * @size:	size of the memory region
256  */
257 struct smem_region {
258 	phys_addr_t aux_base;
259 	void __iomem *virt_base;
260 	size_t size;
261 };
262 
263 /**
264  * struct qcom_smem - device data for the smem device
265  * @dev:	device pointer
266  * @hwlock:	reference to a hwspinlock
267  * @ptable: virtual base of partition table
268  * @global_partition: describes for global partition when in use
269  * @partitions: list of partitions of current processor/host
270  * @item_count: max accepted item number
271  * @socinfo:	platform device pointer
272  * @num_regions: number of @regions
273  * @regions:	list of the memory regions defining the shared memory
274  */
275 struct qcom_smem {
276 	struct device *dev;
277 
278 	struct hwspinlock *hwlock;
279 
280 	u32 item_count;
281 	struct platform_device *socinfo;
282 	struct smem_ptable *ptable;
283 	struct smem_partition global_partition;
284 	struct smem_partition partitions[SMEM_HOST_COUNT];
285 
286 	unsigned num_regions;
287 	struct smem_region regions[];
288 };
289 
290 static void *
291 phdr_to_last_uncached_entry(struct smem_partition_header *phdr)
292 {
293 	void *p = phdr;
294 
295 	return p + le32_to_cpu(phdr->offset_free_uncached);
296 }
297 
298 static struct smem_private_entry *
299 phdr_to_first_cached_entry(struct smem_partition_header *phdr,
300 					size_t cacheline)
301 {
302 	void *p = phdr;
303 	struct smem_private_entry *e;
304 
305 	return p + le32_to_cpu(phdr->size) - ALIGN(sizeof(*e), cacheline);
306 }
307 
308 static void *
309 phdr_to_last_cached_entry(struct smem_partition_header *phdr)
310 {
311 	void *p = phdr;
312 
313 	return p + le32_to_cpu(phdr->offset_free_cached);
314 }
315 
316 static struct smem_private_entry *
317 phdr_to_first_uncached_entry(struct smem_partition_header *phdr)
318 {
319 	void *p = phdr;
320 
321 	return p + sizeof(*phdr);
322 }
323 
324 static struct smem_private_entry *
325 uncached_entry_next(struct smem_private_entry *e)
326 {
327 	void *p = e;
328 
329 	return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) +
330 	       le32_to_cpu(e->size);
331 }
332 
333 static struct smem_private_entry *
334 cached_entry_next(struct smem_private_entry *e, size_t cacheline)
335 {
336 	void *p = e;
337 
338 	return p - le32_to_cpu(e->size) - ALIGN(sizeof(*e), cacheline);
339 }
340 
341 static void *uncached_entry_to_item(struct smem_private_entry *e)
342 {
343 	void *p = e;
344 
345 	return p + sizeof(*e) + le16_to_cpu(e->padding_hdr);
346 }
347 
348 static void *cached_entry_to_item(struct smem_private_entry *e)
349 {
350 	void *p = e;
351 
352 	return p - le32_to_cpu(e->size);
353 }
354 
355 /* Pointer to the one and only smem handle */
356 static struct qcom_smem *__smem;
357 
358 /* Timeout (ms) for the trylock of remote spinlocks */
359 #define HWSPINLOCK_TIMEOUT	1000
360 
361 static int qcom_smem_alloc_private(struct qcom_smem *smem,
362 				   struct smem_partition *part,
363 				   unsigned item,
364 				   size_t size)
365 {
366 	struct smem_private_entry *hdr, *end;
367 	struct smem_partition_header *phdr;
368 	size_t alloc_size;
369 	void *cached;
370 	void *p_end;
371 
372 	phdr = (struct smem_partition_header __force *)part->virt_base;
373 	p_end = (void *)phdr + part->size;
374 
375 	hdr = phdr_to_first_uncached_entry(phdr);
376 	end = phdr_to_last_uncached_entry(phdr);
377 	cached = phdr_to_last_cached_entry(phdr);
378 
379 	if (WARN_ON((void *)end > p_end || cached > p_end))
380 		return -EINVAL;
381 
382 	while (hdr < end) {
383 		if (hdr->canary != SMEM_PRIVATE_CANARY)
384 			goto bad_canary;
385 		if (le16_to_cpu(hdr->item) == item)
386 			return -EEXIST;
387 
388 		hdr = uncached_entry_next(hdr);
389 	}
390 
391 	if (WARN_ON((void *)hdr > p_end))
392 		return -EINVAL;
393 
394 	/* Check that we don't grow into the cached region */
395 	alloc_size = sizeof(*hdr) + ALIGN(size, 8);
396 	if ((void *)hdr + alloc_size > cached) {
397 		dev_err(smem->dev, "Out of memory\n");
398 		return -ENOSPC;
399 	}
400 
401 	hdr->canary = SMEM_PRIVATE_CANARY;
402 	hdr->item = cpu_to_le16(item);
403 	hdr->size = cpu_to_le32(ALIGN(size, 8));
404 	hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size);
405 	hdr->padding_hdr = 0;
406 
407 	/*
408 	 * Ensure the header is written before we advance the free offset, so
409 	 * that remote processors that does not take the remote spinlock still
410 	 * gets a consistent view of the linked list.
411 	 */
412 	wmb();
413 	le32_add_cpu(&phdr->offset_free_uncached, alloc_size);
414 
415 	return 0;
416 bad_canary:
417 	dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
418 		le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
419 
420 	return -EINVAL;
421 }
422 
423 static int qcom_smem_alloc_global(struct qcom_smem *smem,
424 				  unsigned item,
425 				  size_t size)
426 {
427 	struct smem_global_entry *entry;
428 	struct smem_header *header;
429 
430 	header = smem->regions[0].virt_base;
431 	entry = &header->toc[item];
432 	if (entry->allocated)
433 		return -EEXIST;
434 
435 	size = ALIGN(size, 8);
436 	if (WARN_ON(size > le32_to_cpu(header->available)))
437 		return -ENOMEM;
438 
439 	entry->offset = header->free_offset;
440 	entry->size = cpu_to_le32(size);
441 
442 	/*
443 	 * Ensure the header is consistent before we mark the item allocated,
444 	 * so that remote processors will get a consistent view of the item
445 	 * even though they do not take the spinlock on read.
446 	 */
447 	wmb();
448 	entry->allocated = cpu_to_le32(1);
449 
450 	le32_add_cpu(&header->free_offset, size);
451 	le32_add_cpu(&header->available, -size);
452 
453 	return 0;
454 }
455 
456 /**
457  * qcom_smem_alloc() - allocate space for a smem item
458  * @host:	remote processor id, or -1
459  * @item:	smem item handle
460  * @size:	number of bytes to be allocated
461  *
462  * Allocate space for a given smem item of size @size, given that the item is
463  * not yet allocated.
464  */
465 int qcom_smem_alloc(unsigned host, unsigned item, size_t size)
466 {
467 	struct smem_partition *part;
468 	unsigned long flags;
469 	int ret;
470 
471 	if (!__smem)
472 		return -EPROBE_DEFER;
473 
474 	if (item < SMEM_ITEM_LAST_FIXED) {
475 		dev_err(__smem->dev,
476 			"Rejecting allocation of static entry %d\n", item);
477 		return -EINVAL;
478 	}
479 
480 	if (WARN_ON(item >= __smem->item_count))
481 		return -EINVAL;
482 
483 	ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
484 					  HWSPINLOCK_TIMEOUT,
485 					  &flags);
486 	if (ret)
487 		return ret;
488 
489 	if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) {
490 		part = &__smem->partitions[host];
491 		ret = qcom_smem_alloc_private(__smem, part, item, size);
492 	} else if (__smem->global_partition.virt_base) {
493 		part = &__smem->global_partition;
494 		ret = qcom_smem_alloc_private(__smem, part, item, size);
495 	} else {
496 		ret = qcom_smem_alloc_global(__smem, item, size);
497 	}
498 
499 	hwspin_unlock_irqrestore(__smem->hwlock, &flags);
500 
501 	return ret;
502 }
503 EXPORT_SYMBOL(qcom_smem_alloc);
504 
505 static void *qcom_smem_get_global(struct qcom_smem *smem,
506 				  unsigned item,
507 				  size_t *size)
508 {
509 	struct smem_header *header;
510 	struct smem_region *region;
511 	struct smem_global_entry *entry;
512 	u64 entry_offset;
513 	u32 e_size;
514 	u32 aux_base;
515 	unsigned i;
516 
517 	header = smem->regions[0].virt_base;
518 	entry = &header->toc[item];
519 	if (!entry->allocated)
520 		return ERR_PTR(-ENXIO);
521 
522 	aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK;
523 
524 	for (i = 0; i < smem->num_regions; i++) {
525 		region = &smem->regions[i];
526 
527 		if ((u32)region->aux_base == aux_base || !aux_base) {
528 			e_size = le32_to_cpu(entry->size);
529 			entry_offset = le32_to_cpu(entry->offset);
530 
531 			if (WARN_ON(e_size + entry_offset > region->size))
532 				return ERR_PTR(-EINVAL);
533 
534 			if (size != NULL)
535 				*size = e_size;
536 
537 			return region->virt_base + entry_offset;
538 		}
539 	}
540 
541 	return ERR_PTR(-ENOENT);
542 }
543 
544 static void *qcom_smem_get_private(struct qcom_smem *smem,
545 				   struct smem_partition *part,
546 				   unsigned item,
547 				   size_t *size)
548 {
549 	struct smem_private_entry *e, *end;
550 	struct smem_partition_header *phdr;
551 	void *item_ptr, *p_end;
552 	u32 padding_data;
553 	u32 e_size;
554 
555 	phdr = (struct smem_partition_header __force *)part->virt_base;
556 	p_end = (void *)phdr + part->size;
557 
558 	e = phdr_to_first_uncached_entry(phdr);
559 	end = phdr_to_last_uncached_entry(phdr);
560 
561 	while (e < end) {
562 		if (e->canary != SMEM_PRIVATE_CANARY)
563 			goto invalid_canary;
564 
565 		if (le16_to_cpu(e->item) == item) {
566 			if (size != NULL) {
567 				e_size = le32_to_cpu(e->size);
568 				padding_data = le16_to_cpu(e->padding_data);
569 
570 				if (WARN_ON(e_size > part->size || padding_data > e_size))
571 					return ERR_PTR(-EINVAL);
572 
573 				*size = e_size - padding_data;
574 			}
575 
576 			item_ptr = uncached_entry_to_item(e);
577 			if (WARN_ON(item_ptr > p_end))
578 				return ERR_PTR(-EINVAL);
579 
580 			return item_ptr;
581 		}
582 
583 		e = uncached_entry_next(e);
584 	}
585 
586 	if (WARN_ON((void *)e > p_end))
587 		return ERR_PTR(-EINVAL);
588 
589 	/* Item was not found in the uncached list, search the cached list */
590 
591 	e = phdr_to_first_cached_entry(phdr, part->cacheline);
592 	end = phdr_to_last_cached_entry(phdr);
593 
594 	if (WARN_ON((void *)e < (void *)phdr || (void *)end > p_end))
595 		return ERR_PTR(-EINVAL);
596 
597 	while (e > end) {
598 		if (e->canary != SMEM_PRIVATE_CANARY)
599 			goto invalid_canary;
600 
601 		if (le16_to_cpu(e->item) == item) {
602 			if (size != NULL) {
603 				e_size = le32_to_cpu(e->size);
604 				padding_data = le16_to_cpu(e->padding_data);
605 
606 				if (WARN_ON(e_size > part->size || padding_data > e_size))
607 					return ERR_PTR(-EINVAL);
608 
609 				*size = e_size - padding_data;
610 			}
611 
612 			item_ptr = cached_entry_to_item(e);
613 			if (WARN_ON(item_ptr < (void *)phdr))
614 				return ERR_PTR(-EINVAL);
615 
616 			return item_ptr;
617 		}
618 
619 		e = cached_entry_next(e, part->cacheline);
620 	}
621 
622 	if (WARN_ON((void *)e < (void *)phdr))
623 		return ERR_PTR(-EINVAL);
624 
625 	return ERR_PTR(-ENOENT);
626 
627 invalid_canary:
628 	dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
629 			le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
630 
631 	return ERR_PTR(-EINVAL);
632 }
633 
634 /**
635  * qcom_smem_get() - resolve ptr of size of a smem item
636  * @host:	the remote processor, or -1
637  * @item:	smem item handle
638  * @size:	pointer to be filled out with size of the item
639  *
640  * Looks up smem item and returns pointer to it. Size of smem
641  * item is returned in @size.
642  */
643 void *qcom_smem_get(unsigned host, unsigned item, size_t *size)
644 {
645 	struct smem_partition *part;
646 	unsigned long flags;
647 	int ret;
648 	void *ptr = ERR_PTR(-EPROBE_DEFER);
649 
650 	if (!__smem)
651 		return ptr;
652 
653 	if (WARN_ON(item >= __smem->item_count))
654 		return ERR_PTR(-EINVAL);
655 
656 	ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
657 					  HWSPINLOCK_TIMEOUT,
658 					  &flags);
659 	if (ret)
660 		return ERR_PTR(ret);
661 
662 	if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) {
663 		part = &__smem->partitions[host];
664 		ptr = qcom_smem_get_private(__smem, part, item, size);
665 	} else if (__smem->global_partition.virt_base) {
666 		part = &__smem->global_partition;
667 		ptr = qcom_smem_get_private(__smem, part, item, size);
668 	} else {
669 		ptr = qcom_smem_get_global(__smem, item, size);
670 	}
671 
672 	hwspin_unlock_irqrestore(__smem->hwlock, &flags);
673 
674 	return ptr;
675 
676 }
677 EXPORT_SYMBOL(qcom_smem_get);
678 
679 /**
680  * qcom_smem_get_free_space() - retrieve amount of free space in a partition
681  * @host:	the remote processor identifying a partition, or -1
682  *
683  * To be used by smem clients as a quick way to determine if any new
684  * allocations has been made.
685  */
686 int qcom_smem_get_free_space(unsigned host)
687 {
688 	struct smem_partition *part;
689 	struct smem_partition_header *phdr;
690 	struct smem_header *header;
691 	unsigned ret;
692 
693 	if (!__smem)
694 		return -EPROBE_DEFER;
695 
696 	if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) {
697 		part = &__smem->partitions[host];
698 		phdr = part->virt_base;
699 		ret = le32_to_cpu(phdr->offset_free_cached) -
700 		      le32_to_cpu(phdr->offset_free_uncached);
701 
702 		if (ret > le32_to_cpu(part->size))
703 			return -EINVAL;
704 	} else if (__smem->global_partition.virt_base) {
705 		part = &__smem->global_partition;
706 		phdr = part->virt_base;
707 		ret = le32_to_cpu(phdr->offset_free_cached) -
708 		      le32_to_cpu(phdr->offset_free_uncached);
709 
710 		if (ret > le32_to_cpu(part->size))
711 			return -EINVAL;
712 	} else {
713 		header = __smem->regions[0].virt_base;
714 		ret = le32_to_cpu(header->available);
715 
716 		if (ret > __smem->regions[0].size)
717 			return -EINVAL;
718 	}
719 
720 	return ret;
721 }
722 EXPORT_SYMBOL(qcom_smem_get_free_space);
723 
724 static bool addr_in_range(void __iomem *base, size_t size, void *addr)
725 {
726 	return base && (addr >= base && addr < base + size);
727 }
728 
729 /**
730  * qcom_smem_virt_to_phys() - return the physical address associated
731  * with an smem item pointer (previously returned by qcom_smem_get()
732  * @p:	the virtual address to convert
733  *
734  * Returns 0 if the pointer provided is not within any smem region.
735  */
736 phys_addr_t qcom_smem_virt_to_phys(void *p)
737 {
738 	struct smem_partition *part;
739 	struct smem_region *area;
740 	u64 offset;
741 	u32 i;
742 
743 	for (i = 0; i < SMEM_HOST_COUNT; i++) {
744 		part = &__smem->partitions[i];
745 
746 		if (addr_in_range(part->virt_base, part->size, p)) {
747 			offset = p - part->virt_base;
748 
749 			return (phys_addr_t)part->phys_base + offset;
750 		}
751 	}
752 
753 	part = &__smem->global_partition;
754 
755 	if (addr_in_range(part->virt_base, part->size, p)) {
756 		offset = p - part->virt_base;
757 
758 		return (phys_addr_t)part->phys_base + offset;
759 	}
760 
761 	for (i = 0; i < __smem->num_regions; i++) {
762 		area = &__smem->regions[i];
763 
764 		if (addr_in_range(area->virt_base, area->size, p)) {
765 			offset = p - area->virt_base;
766 
767 			return (phys_addr_t)area->aux_base + offset;
768 		}
769 	}
770 
771 	return 0;
772 }
773 EXPORT_SYMBOL(qcom_smem_virt_to_phys);
774 
775 static int qcom_smem_get_sbl_version(struct qcom_smem *smem)
776 {
777 	struct smem_header *header;
778 	__le32 *versions;
779 
780 	header = smem->regions[0].virt_base;
781 	versions = header->version;
782 
783 	return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]);
784 }
785 
786 static struct smem_ptable *qcom_smem_get_ptable(struct qcom_smem *smem)
787 {
788 	struct smem_ptable *ptable;
789 	u32 version;
790 
791 	ptable = smem->ptable;
792 	if (memcmp(ptable->magic, SMEM_PTABLE_MAGIC, sizeof(ptable->magic)))
793 		return ERR_PTR(-ENOENT);
794 
795 	version = le32_to_cpu(ptable->version);
796 	if (version != 1) {
797 		dev_err(smem->dev,
798 			"Unsupported partition header version %d\n", version);
799 		return ERR_PTR(-EINVAL);
800 	}
801 	return ptable;
802 }
803 
804 static u32 qcom_smem_get_item_count(struct qcom_smem *smem)
805 {
806 	struct smem_ptable *ptable;
807 	struct smem_info *info;
808 
809 	ptable = qcom_smem_get_ptable(smem);
810 	if (IS_ERR_OR_NULL(ptable))
811 		return SMEM_ITEM_COUNT;
812 
813 	info = (struct smem_info *)&ptable->entry[ptable->num_entries];
814 	if (memcmp(info->magic, SMEM_INFO_MAGIC, sizeof(info->magic)))
815 		return SMEM_ITEM_COUNT;
816 
817 	return le16_to_cpu(info->num_items);
818 }
819 
820 /*
821  * Validate the partition header for a partition whose partition
822  * table entry is supplied.  Returns a pointer to its header if
823  * valid, or a null pointer otherwise.
824  */
825 static struct smem_partition_header *
826 qcom_smem_partition_header(struct qcom_smem *smem,
827 		struct smem_ptable_entry *entry, u16 host0, u16 host1)
828 {
829 	struct smem_partition_header *header;
830 	u32 phys_addr;
831 	u32 size;
832 
833 	phys_addr = smem->regions[0].aux_base + le32_to_cpu(entry->offset);
834 	header = devm_ioremap_wc(smem->dev, phys_addr, le32_to_cpu(entry->size));
835 
836 	if (!header)
837 		return NULL;
838 
839 	if (memcmp(header->magic, SMEM_PART_MAGIC, sizeof(header->magic))) {
840 		dev_err(smem->dev, "bad partition magic %4ph\n", header->magic);
841 		return NULL;
842 	}
843 
844 	if (host0 != le16_to_cpu(header->host0)) {
845 		dev_err(smem->dev, "bad host0 (%hu != %hu)\n",
846 				host0, le16_to_cpu(header->host0));
847 		return NULL;
848 	}
849 	if (host1 != le16_to_cpu(header->host1)) {
850 		dev_err(smem->dev, "bad host1 (%hu != %hu)\n",
851 				host1, le16_to_cpu(header->host1));
852 		return NULL;
853 	}
854 
855 	size = le32_to_cpu(header->size);
856 	if (size != le32_to_cpu(entry->size)) {
857 		dev_err(smem->dev, "bad partition size (%u != %u)\n",
858 			size, le32_to_cpu(entry->size));
859 		return NULL;
860 	}
861 
862 	if (le32_to_cpu(header->offset_free_uncached) > size) {
863 		dev_err(smem->dev, "bad partition free uncached (%u > %u)\n",
864 			le32_to_cpu(header->offset_free_uncached), size);
865 		return NULL;
866 	}
867 
868 	return header;
869 }
870 
871 static int qcom_smem_set_global_partition(struct qcom_smem *smem)
872 {
873 	struct smem_partition_header *header;
874 	struct smem_ptable_entry *entry;
875 	struct smem_ptable *ptable;
876 	bool found = false;
877 	int i;
878 
879 	if (smem->global_partition.virt_base) {
880 		dev_err(smem->dev, "Already found the global partition\n");
881 		return -EINVAL;
882 	}
883 
884 	ptable = qcom_smem_get_ptable(smem);
885 	if (IS_ERR(ptable))
886 		return PTR_ERR(ptable);
887 
888 	for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
889 		entry = &ptable->entry[i];
890 		if (!le32_to_cpu(entry->offset))
891 			continue;
892 		if (!le32_to_cpu(entry->size))
893 			continue;
894 
895 		if (le16_to_cpu(entry->host0) != SMEM_GLOBAL_HOST)
896 			continue;
897 
898 		if (le16_to_cpu(entry->host1) == SMEM_GLOBAL_HOST) {
899 			found = true;
900 			break;
901 		}
902 	}
903 
904 	if (!found) {
905 		dev_err(smem->dev, "Missing entry for global partition\n");
906 		return -EINVAL;
907 	}
908 
909 	header = qcom_smem_partition_header(smem, entry,
910 				SMEM_GLOBAL_HOST, SMEM_GLOBAL_HOST);
911 	if (!header)
912 		return -EINVAL;
913 
914 	smem->global_partition.virt_base = (void __iomem *)header;
915 	smem->global_partition.phys_base = smem->regions[0].aux_base +
916 								le32_to_cpu(entry->offset);
917 	smem->global_partition.size = le32_to_cpu(entry->size);
918 	smem->global_partition.cacheline = le32_to_cpu(entry->cacheline);
919 
920 	return 0;
921 }
922 
923 static int
924 qcom_smem_enumerate_partitions(struct qcom_smem *smem, u16 local_host)
925 {
926 	struct smem_partition_header *header;
927 	struct smem_ptable_entry *entry;
928 	struct smem_ptable *ptable;
929 	unsigned int remote_host;
930 	u16 host0, host1;
931 	int i;
932 
933 	ptable = qcom_smem_get_ptable(smem);
934 	if (IS_ERR(ptable))
935 		return PTR_ERR(ptable);
936 
937 	for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
938 		entry = &ptable->entry[i];
939 		if (!le32_to_cpu(entry->offset))
940 			continue;
941 		if (!le32_to_cpu(entry->size))
942 			continue;
943 
944 		host0 = le16_to_cpu(entry->host0);
945 		host1 = le16_to_cpu(entry->host1);
946 		if (host0 == local_host)
947 			remote_host = host1;
948 		else if (host1 == local_host)
949 			remote_host = host0;
950 		else
951 			continue;
952 
953 		if (remote_host >= SMEM_HOST_COUNT) {
954 			dev_err(smem->dev, "bad host %hu\n", remote_host);
955 			return -EINVAL;
956 		}
957 
958 		if (smem->partitions[remote_host].virt_base) {
959 			dev_err(smem->dev, "duplicate host %hu\n", remote_host);
960 			return -EINVAL;
961 		}
962 
963 		header = qcom_smem_partition_header(smem, entry, host0, host1);
964 		if (!header)
965 			return -EINVAL;
966 
967 		smem->partitions[remote_host].virt_base = (void __iomem *)header;
968 		smem->partitions[remote_host].phys_base = smem->regions[0].aux_base +
969 										le32_to_cpu(entry->offset);
970 		smem->partitions[remote_host].size = le32_to_cpu(entry->size);
971 		smem->partitions[remote_host].cacheline = le32_to_cpu(entry->cacheline);
972 	}
973 
974 	return 0;
975 }
976 
977 static int qcom_smem_map_toc(struct qcom_smem *smem, struct smem_region *region)
978 {
979 	u32 ptable_start;
980 
981 	/* map starting 4K for smem header */
982 	region->virt_base = devm_ioremap_wc(smem->dev, region->aux_base, SZ_4K);
983 	ptable_start = region->aux_base + region->size - SZ_4K;
984 	/* map last 4k for toc */
985 	smem->ptable = devm_ioremap_wc(smem->dev, ptable_start, SZ_4K);
986 
987 	if (!region->virt_base || !smem->ptable)
988 		return -ENOMEM;
989 
990 	return 0;
991 }
992 
993 static int qcom_smem_map_global(struct qcom_smem *smem, u32 size)
994 {
995 	u32 phys_addr;
996 
997 	phys_addr = smem->regions[0].aux_base;
998 
999 	smem->regions[0].size = size;
1000 	smem->regions[0].virt_base = devm_ioremap_wc(smem->dev, phys_addr, size);
1001 
1002 	if (!smem->regions[0].virt_base)
1003 		return -ENOMEM;
1004 
1005 	return 0;
1006 }
1007 
1008 static int qcom_smem_resolve_mem(struct qcom_smem *smem, const char *name,
1009 				 struct smem_region *region)
1010 {
1011 	struct device *dev = smem->dev;
1012 	struct device_node *np;
1013 	struct resource r;
1014 	int ret;
1015 
1016 	np = of_parse_phandle(dev->of_node, name, 0);
1017 	if (!np) {
1018 		dev_err(dev, "No %s specified\n", name);
1019 		return -EINVAL;
1020 	}
1021 
1022 	ret = of_address_to_resource(np, 0, &r);
1023 	of_node_put(np);
1024 	if (ret)
1025 		return ret;
1026 
1027 	region->aux_base = r.start;
1028 	region->size = resource_size(&r);
1029 
1030 	return 0;
1031 }
1032 
1033 static int qcom_smem_probe(struct platform_device *pdev)
1034 {
1035 	struct smem_header *header;
1036 	struct reserved_mem *rmem;
1037 	struct qcom_smem *smem;
1038 	unsigned long flags;
1039 	size_t array_size;
1040 	int num_regions;
1041 	int hwlock_id;
1042 	u32 version;
1043 	u32 size;
1044 	int ret;
1045 	int i;
1046 
1047 	num_regions = 1;
1048 	if (of_find_property(pdev->dev.of_node, "qcom,rpm-msg-ram", NULL))
1049 		num_regions++;
1050 
1051 	array_size = num_regions * sizeof(struct smem_region);
1052 	smem = devm_kzalloc(&pdev->dev, sizeof(*smem) + array_size, GFP_KERNEL);
1053 	if (!smem)
1054 		return -ENOMEM;
1055 
1056 	smem->dev = &pdev->dev;
1057 	smem->num_regions = num_regions;
1058 
1059 	rmem = of_reserved_mem_lookup(pdev->dev.of_node);
1060 	if (rmem) {
1061 		smem->regions[0].aux_base = rmem->base;
1062 		smem->regions[0].size = rmem->size;
1063 	} else {
1064 		/*
1065 		 * Fall back to the memory-region reference, if we're not a
1066 		 * reserved-memory node.
1067 		 */
1068 		ret = qcom_smem_resolve_mem(smem, "memory-region", &smem->regions[0]);
1069 		if (ret)
1070 			return ret;
1071 	}
1072 
1073 	if (num_regions > 1) {
1074 		ret = qcom_smem_resolve_mem(smem, "qcom,rpm-msg-ram", &smem->regions[1]);
1075 		if (ret)
1076 			return ret;
1077 	}
1078 
1079 
1080 	ret = qcom_smem_map_toc(smem, &smem->regions[0]);
1081 	if (ret)
1082 		return ret;
1083 
1084 	for (i = 1; i < num_regions; i++) {
1085 		smem->regions[i].virt_base = devm_ioremap_wc(&pdev->dev,
1086 							     smem->regions[i].aux_base,
1087 							     smem->regions[i].size);
1088 		if (!smem->regions[i].virt_base) {
1089 			dev_err(&pdev->dev, "failed to remap %pa\n", &smem->regions[i].aux_base);
1090 			return -ENOMEM;
1091 		}
1092 	}
1093 
1094 	header = smem->regions[0].virt_base;
1095 	if (le32_to_cpu(header->initialized) != 1 ||
1096 	    le32_to_cpu(header->reserved)) {
1097 		dev_err(&pdev->dev, "SMEM is not initialized by SBL\n");
1098 		return -EINVAL;
1099 	}
1100 
1101 	hwlock_id = of_hwspin_lock_get_id(pdev->dev.of_node, 0);
1102 	if (hwlock_id < 0) {
1103 		if (hwlock_id != -EPROBE_DEFER)
1104 			dev_err(&pdev->dev, "failed to retrieve hwlock\n");
1105 		return hwlock_id;
1106 	}
1107 
1108 	smem->hwlock = hwspin_lock_request_specific(hwlock_id);
1109 	if (!smem->hwlock)
1110 		return -ENXIO;
1111 
1112 	ret = hwspin_lock_timeout_irqsave(smem->hwlock, HWSPINLOCK_TIMEOUT, &flags);
1113 	if (ret)
1114 		return ret;
1115 	size = readl_relaxed(&header->available) + readl_relaxed(&header->free_offset);
1116 	hwspin_unlock_irqrestore(smem->hwlock, &flags);
1117 
1118 	version = qcom_smem_get_sbl_version(smem);
1119 	/*
1120 	 * smem header mapping is required only in heap version scheme, so unmap
1121 	 * it here. It will be remapped in qcom_smem_map_global() when whole
1122 	 * partition is mapped again.
1123 	 */
1124 	devm_iounmap(smem->dev, smem->regions[0].virt_base);
1125 	switch (version >> 16) {
1126 	case SMEM_GLOBAL_PART_VERSION:
1127 		ret = qcom_smem_set_global_partition(smem);
1128 		if (ret < 0)
1129 			return ret;
1130 		smem->item_count = qcom_smem_get_item_count(smem);
1131 		break;
1132 	case SMEM_GLOBAL_HEAP_VERSION:
1133 		qcom_smem_map_global(smem, size);
1134 		smem->item_count = SMEM_ITEM_COUNT;
1135 		break;
1136 	default:
1137 		dev_err(&pdev->dev, "Unsupported SMEM version 0x%x\n", version);
1138 		return -EINVAL;
1139 	}
1140 
1141 	BUILD_BUG_ON(SMEM_HOST_APPS >= SMEM_HOST_COUNT);
1142 	ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS);
1143 	if (ret < 0 && ret != -ENOENT)
1144 		return ret;
1145 
1146 	__smem = smem;
1147 
1148 	smem->socinfo = platform_device_register_data(&pdev->dev, "qcom-socinfo",
1149 						      PLATFORM_DEVID_NONE, NULL,
1150 						      0);
1151 	if (IS_ERR(smem->socinfo))
1152 		dev_dbg(&pdev->dev, "failed to register socinfo device\n");
1153 
1154 	return 0;
1155 }
1156 
1157 static int qcom_smem_remove(struct platform_device *pdev)
1158 {
1159 	platform_device_unregister(__smem->socinfo);
1160 
1161 	hwspin_lock_free(__smem->hwlock);
1162 	__smem = NULL;
1163 
1164 	return 0;
1165 }
1166 
1167 static const struct of_device_id qcom_smem_of_match[] = {
1168 	{ .compatible = "qcom,smem" },
1169 	{}
1170 };
1171 MODULE_DEVICE_TABLE(of, qcom_smem_of_match);
1172 
1173 static struct platform_driver qcom_smem_driver = {
1174 	.probe = qcom_smem_probe,
1175 	.remove = qcom_smem_remove,
1176 	.driver  = {
1177 		.name = "qcom-smem",
1178 		.of_match_table = qcom_smem_of_match,
1179 		.suppress_bind_attrs = true,
1180 	},
1181 };
1182 
1183 static int __init qcom_smem_init(void)
1184 {
1185 	return platform_driver_register(&qcom_smem_driver);
1186 }
1187 arch_initcall(qcom_smem_init);
1188 
1189 static void __exit qcom_smem_exit(void)
1190 {
1191 	platform_driver_unregister(&qcom_smem_driver);
1192 }
1193 module_exit(qcom_smem_exit)
1194 
1195 MODULE_AUTHOR("Bjorn Andersson <bjorn.andersson@sonymobile.com>");
1196 MODULE_DESCRIPTION("Qualcomm Shared Memory Manager");
1197 MODULE_LICENSE("GPL v2");
1198