1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2015, Sony Mobile Communications AB. 4 * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved. 5 */ 6 7 #include <linux/hwspinlock.h> 8 #include <linux/io.h> 9 #include <linux/module.h> 10 #include <linux/of.h> 11 #include <linux/of_address.h> 12 #include <linux/of_reserved_mem.h> 13 #include <linux/platform_device.h> 14 #include <linux/sizes.h> 15 #include <linux/slab.h> 16 #include <linux/soc/qcom/smem.h> 17 #include <linux/soc/qcom/socinfo.h> 18 19 /* 20 * The Qualcomm shared memory system is a allocate only heap structure that 21 * consists of one of more memory areas that can be accessed by the processors 22 * in the SoC. 23 * 24 * All systems contains a global heap, accessible by all processors in the SoC, 25 * with a table of contents data structure (@smem_header) at the beginning of 26 * the main shared memory block. 27 * 28 * The global header contains meta data for allocations as well as a fixed list 29 * of 512 entries (@smem_global_entry) that can be initialized to reference 30 * parts of the shared memory space. 31 * 32 * 33 * In addition to this global heap a set of "private" heaps can be set up at 34 * boot time with access restrictions so that only certain processor pairs can 35 * access the data. 36 * 37 * These partitions are referenced from an optional partition table 38 * (@smem_ptable), that is found 4kB from the end of the main smem region. The 39 * partition table entries (@smem_ptable_entry) lists the involved processors 40 * (or hosts) and their location in the main shared memory region. 41 * 42 * Each partition starts with a header (@smem_partition_header) that identifies 43 * the partition and holds properties for the two internal memory regions. The 44 * two regions are cached and non-cached memory respectively. Each region 45 * contain a link list of allocation headers (@smem_private_entry) followed by 46 * their data. 47 * 48 * Items in the non-cached region are allocated from the start of the partition 49 * while items in the cached region are allocated from the end. The free area 50 * is hence the region between the cached and non-cached offsets. The header of 51 * cached items comes after the data. 52 * 53 * Version 12 (SMEM_GLOBAL_PART_VERSION) changes the item alloc/get procedure 54 * for the global heap. A new global partition is created from the global heap 55 * region with partition type (SMEM_GLOBAL_HOST) and the max smem item count is 56 * set by the bootloader. 57 * 58 * To synchronize allocations in the shared memory heaps a remote spinlock must 59 * be held - currently lock number 3 of the sfpb or tcsr is used for this on all 60 * platforms. 61 * 62 */ 63 64 /* 65 * The version member of the smem header contains an array of versions for the 66 * various software components in the SoC. We verify that the boot loader 67 * version is a valid version as a sanity check. 68 */ 69 #define SMEM_MASTER_SBL_VERSION_INDEX 7 70 #define SMEM_GLOBAL_HEAP_VERSION 11 71 #define SMEM_GLOBAL_PART_VERSION 12 72 73 /* 74 * The first 8 items are only to be allocated by the boot loader while 75 * initializing the heap. 76 */ 77 #define SMEM_ITEM_LAST_FIXED 8 78 79 /* Highest accepted item number, for both global and private heaps */ 80 #define SMEM_ITEM_COUNT 512 81 82 /* Processor/host identifier for the application processor */ 83 #define SMEM_HOST_APPS 0 84 85 /* Processor/host identifier for the global partition */ 86 #define SMEM_GLOBAL_HOST 0xfffe 87 88 /* Max number of processors/hosts in a system */ 89 #define SMEM_HOST_COUNT 20 90 91 /** 92 * struct smem_proc_comm - proc_comm communication struct (legacy) 93 * @command: current command to be executed 94 * @status: status of the currently requested command 95 * @params: parameters to the command 96 */ 97 struct smem_proc_comm { 98 __le32 command; 99 __le32 status; 100 __le32 params[2]; 101 }; 102 103 /** 104 * struct smem_global_entry - entry to reference smem items on the heap 105 * @allocated: boolean to indicate if this entry is used 106 * @offset: offset to the allocated space 107 * @size: size of the allocated space, 8 byte aligned 108 * @aux_base: base address for the memory region used by this unit, or 0 for 109 * the default region. bits 0,1 are reserved 110 */ 111 struct smem_global_entry { 112 __le32 allocated; 113 __le32 offset; 114 __le32 size; 115 __le32 aux_base; /* bits 1:0 reserved */ 116 }; 117 #define AUX_BASE_MASK 0xfffffffc 118 119 /** 120 * struct smem_header - header found in beginning of primary smem region 121 * @proc_comm: proc_comm communication interface (legacy) 122 * @version: array of versions for the various subsystems 123 * @initialized: boolean to indicate that smem is initialized 124 * @free_offset: index of the first unallocated byte in smem 125 * @available: number of bytes available for allocation 126 * @reserved: reserved field, must be 0 127 * @toc: array of references to items 128 */ 129 struct smem_header { 130 struct smem_proc_comm proc_comm[4]; 131 __le32 version[32]; 132 __le32 initialized; 133 __le32 free_offset; 134 __le32 available; 135 __le32 reserved; 136 struct smem_global_entry toc[SMEM_ITEM_COUNT]; 137 }; 138 139 /** 140 * struct smem_ptable_entry - one entry in the @smem_ptable list 141 * @offset: offset, within the main shared memory region, of the partition 142 * @size: size of the partition 143 * @flags: flags for the partition (currently unused) 144 * @host0: first processor/host with access to this partition 145 * @host1: second processor/host with access to this partition 146 * @cacheline: alignment for "cached" entries 147 * @reserved: reserved entries for later use 148 */ 149 struct smem_ptable_entry { 150 __le32 offset; 151 __le32 size; 152 __le32 flags; 153 __le16 host0; 154 __le16 host1; 155 __le32 cacheline; 156 __le32 reserved[7]; 157 }; 158 159 /** 160 * struct smem_ptable - partition table for the private partitions 161 * @magic: magic number, must be SMEM_PTABLE_MAGIC 162 * @version: version of the partition table 163 * @num_entries: number of partitions in the table 164 * @reserved: for now reserved entries 165 * @entry: list of @smem_ptable_entry for the @num_entries partitions 166 */ 167 struct smem_ptable { 168 u8 magic[4]; 169 __le32 version; 170 __le32 num_entries; 171 __le32 reserved[5]; 172 struct smem_ptable_entry entry[]; 173 }; 174 175 static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */ 176 177 /** 178 * struct smem_partition_header - header of the partitions 179 * @magic: magic number, must be SMEM_PART_MAGIC 180 * @host0: first processor/host with access to this partition 181 * @host1: second processor/host with access to this partition 182 * @size: size of the partition 183 * @offset_free_uncached: offset to the first free byte of uncached memory in 184 * this partition 185 * @offset_free_cached: offset to the first free byte of cached memory in this 186 * partition 187 * @reserved: for now reserved entries 188 */ 189 struct smem_partition_header { 190 u8 magic[4]; 191 __le16 host0; 192 __le16 host1; 193 __le32 size; 194 __le32 offset_free_uncached; 195 __le32 offset_free_cached; 196 __le32 reserved[3]; 197 }; 198 199 /** 200 * struct smem_partition - describes smem partition 201 * @virt_base: starting virtual address of partition 202 * @phys_base: starting physical address of partition 203 * @cacheline: alignment for "cached" entries 204 * @size: size of partition 205 */ 206 struct smem_partition { 207 void __iomem *virt_base; 208 phys_addr_t phys_base; 209 size_t cacheline; 210 size_t size; 211 }; 212 213 static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 }; 214 215 /** 216 * struct smem_private_entry - header of each item in the private partition 217 * @canary: magic number, must be SMEM_PRIVATE_CANARY 218 * @item: identifying number of the smem item 219 * @size: size of the data, including padding bytes 220 * @padding_data: number of bytes of padding of data 221 * @padding_hdr: number of bytes of padding between the header and the data 222 * @reserved: for now reserved entry 223 */ 224 struct smem_private_entry { 225 u16 canary; /* bytes are the same so no swapping needed */ 226 __le16 item; 227 __le32 size; /* includes padding bytes */ 228 __le16 padding_data; 229 __le16 padding_hdr; 230 __le32 reserved; 231 }; 232 #define SMEM_PRIVATE_CANARY 0xa5a5 233 234 /** 235 * struct smem_info - smem region info located after the table of contents 236 * @magic: magic number, must be SMEM_INFO_MAGIC 237 * @size: size of the smem region 238 * @base_addr: base address of the smem region 239 * @reserved: for now reserved entry 240 * @num_items: highest accepted item number 241 */ 242 struct smem_info { 243 u8 magic[4]; 244 __le32 size; 245 __le32 base_addr; 246 __le32 reserved; 247 __le16 num_items; 248 }; 249 250 static const u8 SMEM_INFO_MAGIC[] = { 0x53, 0x49, 0x49, 0x49 }; /* SIII */ 251 252 /** 253 * struct smem_region - representation of a chunk of memory used for smem 254 * @aux_base: identifier of aux_mem base 255 * @virt_base: virtual base address of memory with this aux_mem identifier 256 * @size: size of the memory region 257 */ 258 struct smem_region { 259 phys_addr_t aux_base; 260 void __iomem *virt_base; 261 size_t size; 262 }; 263 264 /** 265 * struct qcom_smem - device data for the smem device 266 * @dev: device pointer 267 * @hwlock: reference to a hwspinlock 268 * @ptable: virtual base of partition table 269 * @global_partition: describes for global partition when in use 270 * @partitions: list of partitions of current processor/host 271 * @item_count: max accepted item number 272 * @socinfo: platform device pointer 273 * @num_regions: number of @regions 274 * @regions: list of the memory regions defining the shared memory 275 */ 276 struct qcom_smem { 277 struct device *dev; 278 279 struct hwspinlock *hwlock; 280 281 u32 item_count; 282 struct platform_device *socinfo; 283 struct smem_ptable *ptable; 284 struct smem_partition global_partition; 285 struct smem_partition partitions[SMEM_HOST_COUNT]; 286 287 unsigned num_regions; 288 struct smem_region regions[] __counted_by(num_regions); 289 }; 290 291 static void * 292 phdr_to_last_uncached_entry(struct smem_partition_header *phdr) 293 { 294 void *p = phdr; 295 296 return p + le32_to_cpu(phdr->offset_free_uncached); 297 } 298 299 static struct smem_private_entry * 300 phdr_to_first_cached_entry(struct smem_partition_header *phdr, 301 size_t cacheline) 302 { 303 void *p = phdr; 304 struct smem_private_entry *e; 305 306 return p + le32_to_cpu(phdr->size) - ALIGN(sizeof(*e), cacheline); 307 } 308 309 static void * 310 phdr_to_last_cached_entry(struct smem_partition_header *phdr) 311 { 312 void *p = phdr; 313 314 return p + le32_to_cpu(phdr->offset_free_cached); 315 } 316 317 static struct smem_private_entry * 318 phdr_to_first_uncached_entry(struct smem_partition_header *phdr) 319 { 320 void *p = phdr; 321 322 return p + sizeof(*phdr); 323 } 324 325 static struct smem_private_entry * 326 uncached_entry_next(struct smem_private_entry *e) 327 { 328 void *p = e; 329 330 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) + 331 le32_to_cpu(e->size); 332 } 333 334 static struct smem_private_entry * 335 cached_entry_next(struct smem_private_entry *e, size_t cacheline) 336 { 337 void *p = e; 338 339 return p - le32_to_cpu(e->size) - ALIGN(sizeof(*e), cacheline); 340 } 341 342 static void *uncached_entry_to_item(struct smem_private_entry *e) 343 { 344 void *p = e; 345 346 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr); 347 } 348 349 static void *cached_entry_to_item(struct smem_private_entry *e) 350 { 351 void *p = e; 352 353 return p - le32_to_cpu(e->size); 354 } 355 356 /* Pointer to the one and only smem handle */ 357 static struct qcom_smem *__smem; 358 359 /* Timeout (ms) for the trylock of remote spinlocks */ 360 #define HWSPINLOCK_TIMEOUT 1000 361 362 /* The qcom hwspinlock id is always plus one from the smem host id */ 363 #define SMEM_HOST_ID_TO_HWSPINLOCK_ID(__x) ((__x) + 1) 364 365 /** 366 * qcom_smem_bust_hwspin_lock_by_host() - bust the smem hwspinlock for a host 367 * @host: remote processor id 368 * 369 * Busts the hwspin_lock for the given smem host id. This helper is intended 370 * for remoteproc drivers that manage remoteprocs with an equivalent smem 371 * driver instance in the remote firmware. Drivers can force a release of the 372 * smem hwspin_lock if the rproc unexpectedly goes into a bad state. 373 * 374 * Context: Process context. 375 * 376 * Returns: 0 on success, otherwise negative errno. 377 */ 378 int qcom_smem_bust_hwspin_lock_by_host(unsigned int host) 379 { 380 /* This function is for remote procs, so ignore SMEM_HOST_APPS */ 381 if (host == SMEM_HOST_APPS || host >= SMEM_HOST_COUNT) 382 return -EINVAL; 383 384 return hwspin_lock_bust(__smem->hwlock, SMEM_HOST_ID_TO_HWSPINLOCK_ID(host)); 385 } 386 EXPORT_SYMBOL_GPL(qcom_smem_bust_hwspin_lock_by_host); 387 388 /** 389 * qcom_smem_is_available() - Check if SMEM is available 390 * 391 * Return: true if SMEM is available, false otherwise. 392 */ 393 bool qcom_smem_is_available(void) 394 { 395 return !!__smem; 396 } 397 EXPORT_SYMBOL_GPL(qcom_smem_is_available); 398 399 static int qcom_smem_alloc_private(struct qcom_smem *smem, 400 struct smem_partition *part, 401 unsigned item, 402 size_t size) 403 { 404 struct smem_private_entry *hdr, *end; 405 struct smem_partition_header *phdr; 406 size_t alloc_size; 407 void *cached; 408 void *p_end; 409 410 phdr = (struct smem_partition_header __force *)part->virt_base; 411 p_end = (void *)phdr + part->size; 412 413 hdr = phdr_to_first_uncached_entry(phdr); 414 end = phdr_to_last_uncached_entry(phdr); 415 cached = phdr_to_last_cached_entry(phdr); 416 417 if (WARN_ON((void *)end > p_end || cached > p_end)) 418 return -EINVAL; 419 420 while (hdr < end) { 421 if (hdr->canary != SMEM_PRIVATE_CANARY) 422 goto bad_canary; 423 if (le16_to_cpu(hdr->item) == item) 424 return -EEXIST; 425 426 hdr = uncached_entry_next(hdr); 427 } 428 429 if (WARN_ON((void *)hdr > p_end)) 430 return -EINVAL; 431 432 /* Check that we don't grow into the cached region */ 433 alloc_size = sizeof(*hdr) + ALIGN(size, 8); 434 if ((void *)hdr + alloc_size > cached) { 435 dev_err(smem->dev, "Out of memory\n"); 436 return -ENOSPC; 437 } 438 439 hdr->canary = SMEM_PRIVATE_CANARY; 440 hdr->item = cpu_to_le16(item); 441 hdr->size = cpu_to_le32(ALIGN(size, 8)); 442 hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size); 443 hdr->padding_hdr = 0; 444 445 /* 446 * Ensure the header is written before we advance the free offset, so 447 * that remote processors that does not take the remote spinlock still 448 * gets a consistent view of the linked list. 449 */ 450 wmb(); 451 le32_add_cpu(&phdr->offset_free_uncached, alloc_size); 452 453 return 0; 454 bad_canary: 455 dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n", 456 le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1)); 457 458 return -EINVAL; 459 } 460 461 static int qcom_smem_alloc_global(struct qcom_smem *smem, 462 unsigned item, 463 size_t size) 464 { 465 struct smem_global_entry *entry; 466 struct smem_header *header; 467 468 header = smem->regions[0].virt_base; 469 entry = &header->toc[item]; 470 if (entry->allocated) 471 return -EEXIST; 472 473 size = ALIGN(size, 8); 474 if (WARN_ON(size > le32_to_cpu(header->available))) 475 return -ENOMEM; 476 477 entry->offset = header->free_offset; 478 entry->size = cpu_to_le32(size); 479 480 /* 481 * Ensure the header is consistent before we mark the item allocated, 482 * so that remote processors will get a consistent view of the item 483 * even though they do not take the spinlock on read. 484 */ 485 wmb(); 486 entry->allocated = cpu_to_le32(1); 487 488 le32_add_cpu(&header->free_offset, size); 489 le32_add_cpu(&header->available, -size); 490 491 return 0; 492 } 493 494 /** 495 * qcom_smem_alloc() - allocate space for a smem item 496 * @host: remote processor id, or -1 497 * @item: smem item handle 498 * @size: number of bytes to be allocated 499 * 500 * Allocate space for a given smem item of size @size, given that the item is 501 * not yet allocated. 502 */ 503 int qcom_smem_alloc(unsigned host, unsigned item, size_t size) 504 { 505 struct smem_partition *part; 506 unsigned long flags; 507 int ret; 508 509 if (!__smem) 510 return -EPROBE_DEFER; 511 512 if (item < SMEM_ITEM_LAST_FIXED) { 513 dev_err(__smem->dev, 514 "Rejecting allocation of static entry %d\n", item); 515 return -EINVAL; 516 } 517 518 if (WARN_ON(item >= __smem->item_count)) 519 return -EINVAL; 520 521 ret = hwspin_lock_timeout_irqsave(__smem->hwlock, 522 HWSPINLOCK_TIMEOUT, 523 &flags); 524 if (ret) 525 return ret; 526 527 if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) { 528 part = &__smem->partitions[host]; 529 ret = qcom_smem_alloc_private(__smem, part, item, size); 530 } else if (__smem->global_partition.virt_base) { 531 part = &__smem->global_partition; 532 ret = qcom_smem_alloc_private(__smem, part, item, size); 533 } else { 534 ret = qcom_smem_alloc_global(__smem, item, size); 535 } 536 537 hwspin_unlock_irqrestore(__smem->hwlock, &flags); 538 539 return ret; 540 } 541 EXPORT_SYMBOL_GPL(qcom_smem_alloc); 542 543 static void *qcom_smem_get_global(struct qcom_smem *smem, 544 unsigned item, 545 size_t *size) 546 { 547 struct smem_header *header; 548 struct smem_region *region; 549 struct smem_global_entry *entry; 550 u64 entry_offset; 551 u32 e_size; 552 u32 aux_base; 553 unsigned i; 554 555 header = smem->regions[0].virt_base; 556 entry = &header->toc[item]; 557 if (!entry->allocated) 558 return ERR_PTR(-ENXIO); 559 560 aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK; 561 562 for (i = 0; i < smem->num_regions; i++) { 563 region = &smem->regions[i]; 564 565 if ((u32)region->aux_base == aux_base || !aux_base) { 566 e_size = le32_to_cpu(entry->size); 567 entry_offset = le32_to_cpu(entry->offset); 568 569 if (WARN_ON(e_size + entry_offset > region->size)) 570 return ERR_PTR(-EINVAL); 571 572 if (size != NULL) 573 *size = e_size; 574 575 return region->virt_base + entry_offset; 576 } 577 } 578 579 return ERR_PTR(-ENOENT); 580 } 581 582 static void *qcom_smem_get_private(struct qcom_smem *smem, 583 struct smem_partition *part, 584 unsigned item, 585 size_t *size) 586 { 587 struct smem_private_entry *e, *end; 588 struct smem_partition_header *phdr; 589 void *item_ptr, *p_end; 590 u32 padding_data; 591 u32 e_size; 592 593 phdr = (struct smem_partition_header __force *)part->virt_base; 594 p_end = (void *)phdr + part->size; 595 596 e = phdr_to_first_uncached_entry(phdr); 597 end = phdr_to_last_uncached_entry(phdr); 598 599 while (e < end) { 600 if (e->canary != SMEM_PRIVATE_CANARY) 601 goto invalid_canary; 602 603 if (le16_to_cpu(e->item) == item) { 604 if (size != NULL) { 605 e_size = le32_to_cpu(e->size); 606 padding_data = le16_to_cpu(e->padding_data); 607 608 if (WARN_ON(e_size > part->size || padding_data > e_size)) 609 return ERR_PTR(-EINVAL); 610 611 *size = e_size - padding_data; 612 } 613 614 item_ptr = uncached_entry_to_item(e); 615 if (WARN_ON(item_ptr > p_end)) 616 return ERR_PTR(-EINVAL); 617 618 return item_ptr; 619 } 620 621 e = uncached_entry_next(e); 622 } 623 624 if (WARN_ON((void *)e > p_end)) 625 return ERR_PTR(-EINVAL); 626 627 /* Item was not found in the uncached list, search the cached list */ 628 629 e = phdr_to_first_cached_entry(phdr, part->cacheline); 630 end = phdr_to_last_cached_entry(phdr); 631 632 if (WARN_ON((void *)e < (void *)phdr || (void *)end > p_end)) 633 return ERR_PTR(-EINVAL); 634 635 while (e > end) { 636 if (e->canary != SMEM_PRIVATE_CANARY) 637 goto invalid_canary; 638 639 if (le16_to_cpu(e->item) == item) { 640 if (size != NULL) { 641 e_size = le32_to_cpu(e->size); 642 padding_data = le16_to_cpu(e->padding_data); 643 644 if (WARN_ON(e_size > part->size || padding_data > e_size)) 645 return ERR_PTR(-EINVAL); 646 647 *size = e_size - padding_data; 648 } 649 650 item_ptr = cached_entry_to_item(e); 651 if (WARN_ON(item_ptr < (void *)phdr)) 652 return ERR_PTR(-EINVAL); 653 654 return item_ptr; 655 } 656 657 e = cached_entry_next(e, part->cacheline); 658 } 659 660 if (WARN_ON((void *)e < (void *)phdr)) 661 return ERR_PTR(-EINVAL); 662 663 return ERR_PTR(-ENOENT); 664 665 invalid_canary: 666 dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n", 667 le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1)); 668 669 return ERR_PTR(-EINVAL); 670 } 671 672 /** 673 * qcom_smem_get() - resolve ptr of size of a smem item 674 * @host: the remote processor, or -1 675 * @item: smem item handle 676 * @size: pointer to be filled out with size of the item 677 * 678 * Looks up smem item and returns pointer to it. Size of smem 679 * item is returned in @size. 680 */ 681 void *qcom_smem_get(unsigned host, unsigned item, size_t *size) 682 { 683 struct smem_partition *part; 684 void *ptr = ERR_PTR(-EPROBE_DEFER); 685 686 if (!__smem) 687 return ptr; 688 689 if (WARN_ON(item >= __smem->item_count)) 690 return ERR_PTR(-EINVAL); 691 692 if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) { 693 part = &__smem->partitions[host]; 694 ptr = qcom_smem_get_private(__smem, part, item, size); 695 } else if (__smem->global_partition.virt_base) { 696 part = &__smem->global_partition; 697 ptr = qcom_smem_get_private(__smem, part, item, size); 698 } else { 699 ptr = qcom_smem_get_global(__smem, item, size); 700 } 701 702 return ptr; 703 } 704 EXPORT_SYMBOL_GPL(qcom_smem_get); 705 706 /** 707 * qcom_smem_get_free_space() - retrieve amount of free space in a partition 708 * @host: the remote processor identifying a partition, or -1 709 * 710 * To be used by smem clients as a quick way to determine if any new 711 * allocations has been made. 712 */ 713 int qcom_smem_get_free_space(unsigned host) 714 { 715 struct smem_partition *part; 716 struct smem_partition_header *phdr; 717 struct smem_header *header; 718 unsigned ret; 719 720 if (!__smem) 721 return -EPROBE_DEFER; 722 723 if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) { 724 part = &__smem->partitions[host]; 725 phdr = part->virt_base; 726 ret = le32_to_cpu(phdr->offset_free_cached) - 727 le32_to_cpu(phdr->offset_free_uncached); 728 729 if (ret > le32_to_cpu(part->size)) 730 return -EINVAL; 731 } else if (__smem->global_partition.virt_base) { 732 part = &__smem->global_partition; 733 phdr = part->virt_base; 734 ret = le32_to_cpu(phdr->offset_free_cached) - 735 le32_to_cpu(phdr->offset_free_uncached); 736 737 if (ret > le32_to_cpu(part->size)) 738 return -EINVAL; 739 } else { 740 header = __smem->regions[0].virt_base; 741 ret = le32_to_cpu(header->available); 742 743 if (ret > __smem->regions[0].size) 744 return -EINVAL; 745 } 746 747 return ret; 748 } 749 EXPORT_SYMBOL_GPL(qcom_smem_get_free_space); 750 751 static bool addr_in_range(void __iomem *base, size_t size, void *addr) 752 { 753 return base && ((void __iomem *)addr >= base && (void __iomem *)addr < base + size); 754 } 755 756 /** 757 * qcom_smem_virt_to_phys() - return the physical address associated 758 * with an smem item pointer (previously returned by qcom_smem_get() 759 * @p: the virtual address to convert 760 * 761 * Returns 0 if the pointer provided is not within any smem region. 762 */ 763 phys_addr_t qcom_smem_virt_to_phys(void *p) 764 { 765 struct smem_partition *part; 766 struct smem_region *area; 767 u64 offset; 768 u32 i; 769 770 for (i = 0; i < SMEM_HOST_COUNT; i++) { 771 part = &__smem->partitions[i]; 772 773 if (addr_in_range(part->virt_base, part->size, p)) { 774 offset = p - part->virt_base; 775 776 return (phys_addr_t)part->phys_base + offset; 777 } 778 } 779 780 part = &__smem->global_partition; 781 782 if (addr_in_range(part->virt_base, part->size, p)) { 783 offset = p - part->virt_base; 784 785 return (phys_addr_t)part->phys_base + offset; 786 } 787 788 for (i = 0; i < __smem->num_regions; i++) { 789 area = &__smem->regions[i]; 790 791 if (addr_in_range(area->virt_base, area->size, p)) { 792 offset = p - area->virt_base; 793 794 return (phys_addr_t)area->aux_base + offset; 795 } 796 } 797 798 return 0; 799 } 800 EXPORT_SYMBOL_GPL(qcom_smem_virt_to_phys); 801 802 /** 803 * qcom_smem_get_soc_id() - return the SoC ID 804 * @id: On success, we return the SoC ID here. 805 * 806 * Look up SoC ID from HW/SW build ID and return it. 807 * 808 * Return: 0 on success, negative errno on failure. 809 */ 810 int qcom_smem_get_soc_id(u32 *id) 811 { 812 struct socinfo *info; 813 814 info = qcom_smem_get(QCOM_SMEM_HOST_ANY, SMEM_HW_SW_BUILD_ID, NULL); 815 if (IS_ERR(info)) 816 return PTR_ERR(info); 817 818 *id = __le32_to_cpu(info->id); 819 820 return 0; 821 } 822 EXPORT_SYMBOL_GPL(qcom_smem_get_soc_id); 823 824 /** 825 * qcom_smem_get_feature_code() - return the feature code 826 * @code: On success, return the feature code here. 827 * 828 * Look up the feature code identifier from SMEM and return it. 829 * 830 * Return: 0 on success, negative errno on failure. 831 */ 832 int qcom_smem_get_feature_code(u32 *code) 833 { 834 struct socinfo *info; 835 u32 raw_code; 836 837 info = qcom_smem_get(QCOM_SMEM_HOST_ANY, SMEM_HW_SW_BUILD_ID, NULL); 838 if (IS_ERR(info)) 839 return PTR_ERR(info); 840 841 /* This only makes sense for socinfo >= 16 */ 842 if (__le32_to_cpu(info->fmt) < SOCINFO_VERSION(0, 16)) 843 return -EOPNOTSUPP; 844 845 raw_code = __le32_to_cpu(info->feature_code); 846 847 /* Ensure the value makes sense */ 848 if (raw_code > SOCINFO_FC_INT_MAX) 849 raw_code = SOCINFO_FC_UNKNOWN; 850 851 *code = raw_code; 852 853 return 0; 854 } 855 EXPORT_SYMBOL_GPL(qcom_smem_get_feature_code); 856 857 static int qcom_smem_get_sbl_version(struct qcom_smem *smem) 858 { 859 struct smem_header *header; 860 __le32 *versions; 861 862 header = smem->regions[0].virt_base; 863 versions = header->version; 864 865 return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]); 866 } 867 868 static struct smem_ptable *qcom_smem_get_ptable(struct qcom_smem *smem) 869 { 870 struct smem_ptable *ptable; 871 u32 version; 872 873 ptable = smem->ptable; 874 if (memcmp(ptable->magic, SMEM_PTABLE_MAGIC, sizeof(ptable->magic))) 875 return ERR_PTR(-ENOENT); 876 877 version = le32_to_cpu(ptable->version); 878 if (version != 1) { 879 dev_err(smem->dev, 880 "Unsupported partition header version %d\n", version); 881 return ERR_PTR(-EINVAL); 882 } 883 return ptable; 884 } 885 886 static u32 qcom_smem_get_item_count(struct qcom_smem *smem) 887 { 888 struct smem_ptable *ptable; 889 struct smem_info *info; 890 891 ptable = qcom_smem_get_ptable(smem); 892 if (IS_ERR_OR_NULL(ptable)) 893 return SMEM_ITEM_COUNT; 894 895 info = (struct smem_info *)&ptable->entry[ptable->num_entries]; 896 if (memcmp(info->magic, SMEM_INFO_MAGIC, sizeof(info->magic))) 897 return SMEM_ITEM_COUNT; 898 899 return le16_to_cpu(info->num_items); 900 } 901 902 /* 903 * Validate the partition header for a partition whose partition 904 * table entry is supplied. Returns a pointer to its header if 905 * valid, or a null pointer otherwise. 906 */ 907 static struct smem_partition_header * 908 qcom_smem_partition_header(struct qcom_smem *smem, 909 struct smem_ptable_entry *entry, u16 host0, u16 host1) 910 { 911 struct smem_partition_header *header; 912 u32 phys_addr; 913 u32 size; 914 915 phys_addr = smem->regions[0].aux_base + le32_to_cpu(entry->offset); 916 header = devm_ioremap_wc(smem->dev, phys_addr, le32_to_cpu(entry->size)); 917 918 if (!header) 919 return NULL; 920 921 if (memcmp(header->magic, SMEM_PART_MAGIC, sizeof(header->magic))) { 922 dev_err(smem->dev, "bad partition magic %4ph\n", header->magic); 923 return NULL; 924 } 925 926 if (host0 != le16_to_cpu(header->host0)) { 927 dev_err(smem->dev, "bad host0 (%hu != %hu)\n", 928 host0, le16_to_cpu(header->host0)); 929 return NULL; 930 } 931 if (host1 != le16_to_cpu(header->host1)) { 932 dev_err(smem->dev, "bad host1 (%hu != %hu)\n", 933 host1, le16_to_cpu(header->host1)); 934 return NULL; 935 } 936 937 size = le32_to_cpu(header->size); 938 if (size != le32_to_cpu(entry->size)) { 939 dev_err(smem->dev, "bad partition size (%u != %u)\n", 940 size, le32_to_cpu(entry->size)); 941 return NULL; 942 } 943 944 if (le32_to_cpu(header->offset_free_uncached) > size) { 945 dev_err(smem->dev, "bad partition free uncached (%u > %u)\n", 946 le32_to_cpu(header->offset_free_uncached), size); 947 return NULL; 948 } 949 950 return header; 951 } 952 953 static int qcom_smem_set_global_partition(struct qcom_smem *smem) 954 { 955 struct smem_partition_header *header; 956 struct smem_ptable_entry *entry; 957 struct smem_ptable *ptable; 958 bool found = false; 959 int i; 960 961 if (smem->global_partition.virt_base) { 962 dev_err(smem->dev, "Already found the global partition\n"); 963 return -EINVAL; 964 } 965 966 ptable = qcom_smem_get_ptable(smem); 967 if (IS_ERR(ptable)) 968 return PTR_ERR(ptable); 969 970 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) { 971 entry = &ptable->entry[i]; 972 if (!le32_to_cpu(entry->offset)) 973 continue; 974 if (!le32_to_cpu(entry->size)) 975 continue; 976 977 if (le16_to_cpu(entry->host0) != SMEM_GLOBAL_HOST) 978 continue; 979 980 if (le16_to_cpu(entry->host1) == SMEM_GLOBAL_HOST) { 981 found = true; 982 break; 983 } 984 } 985 986 if (!found) { 987 dev_err(smem->dev, "Missing entry for global partition\n"); 988 return -EINVAL; 989 } 990 991 header = qcom_smem_partition_header(smem, entry, 992 SMEM_GLOBAL_HOST, SMEM_GLOBAL_HOST); 993 if (!header) 994 return -EINVAL; 995 996 smem->global_partition.virt_base = (void __iomem *)header; 997 smem->global_partition.phys_base = smem->regions[0].aux_base + 998 le32_to_cpu(entry->offset); 999 smem->global_partition.size = le32_to_cpu(entry->size); 1000 smem->global_partition.cacheline = le32_to_cpu(entry->cacheline); 1001 1002 return 0; 1003 } 1004 1005 static int 1006 qcom_smem_enumerate_partitions(struct qcom_smem *smem, u16 local_host) 1007 { 1008 struct smem_partition_header *header; 1009 struct smem_ptable_entry *entry; 1010 struct smem_ptable *ptable; 1011 u16 remote_host; 1012 u16 host0, host1; 1013 int i; 1014 1015 ptable = qcom_smem_get_ptable(smem); 1016 if (IS_ERR(ptable)) 1017 return PTR_ERR(ptable); 1018 1019 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) { 1020 entry = &ptable->entry[i]; 1021 if (!le32_to_cpu(entry->offset)) 1022 continue; 1023 if (!le32_to_cpu(entry->size)) 1024 continue; 1025 1026 host0 = le16_to_cpu(entry->host0); 1027 host1 = le16_to_cpu(entry->host1); 1028 if (host0 == local_host) 1029 remote_host = host1; 1030 else if (host1 == local_host) 1031 remote_host = host0; 1032 else 1033 continue; 1034 1035 if (remote_host >= SMEM_HOST_COUNT) { 1036 dev_err(smem->dev, "bad host %u\n", remote_host); 1037 return -EINVAL; 1038 } 1039 1040 if (smem->partitions[remote_host].virt_base) { 1041 dev_err(smem->dev, "duplicate host %u\n", remote_host); 1042 return -EINVAL; 1043 } 1044 1045 header = qcom_smem_partition_header(smem, entry, host0, host1); 1046 if (!header) 1047 return -EINVAL; 1048 1049 smem->partitions[remote_host].virt_base = (void __iomem *)header; 1050 smem->partitions[remote_host].phys_base = smem->regions[0].aux_base + 1051 le32_to_cpu(entry->offset); 1052 smem->partitions[remote_host].size = le32_to_cpu(entry->size); 1053 smem->partitions[remote_host].cacheline = le32_to_cpu(entry->cacheline); 1054 } 1055 1056 return 0; 1057 } 1058 1059 static int qcom_smem_map_toc(struct qcom_smem *smem, struct smem_region *region) 1060 { 1061 u32 ptable_start; 1062 1063 /* map starting 4K for smem header */ 1064 region->virt_base = devm_ioremap_wc(smem->dev, region->aux_base, SZ_4K); 1065 ptable_start = region->aux_base + region->size - SZ_4K; 1066 /* map last 4k for toc */ 1067 smem->ptable = devm_ioremap_wc(smem->dev, ptable_start, SZ_4K); 1068 1069 if (!region->virt_base || !smem->ptable) 1070 return -ENOMEM; 1071 1072 return 0; 1073 } 1074 1075 static int qcom_smem_map_global(struct qcom_smem *smem, u32 size) 1076 { 1077 u32 phys_addr; 1078 1079 phys_addr = smem->regions[0].aux_base; 1080 1081 smem->regions[0].size = size; 1082 smem->regions[0].virt_base = devm_ioremap_wc(smem->dev, phys_addr, size); 1083 1084 if (!smem->regions[0].virt_base) 1085 return -ENOMEM; 1086 1087 return 0; 1088 } 1089 1090 static int qcom_smem_resolve_mem(struct qcom_smem *smem, const char *name, 1091 struct smem_region *region) 1092 { 1093 struct device *dev = smem->dev; 1094 struct device_node *np; 1095 struct resource r; 1096 int ret; 1097 1098 np = of_parse_phandle(dev->of_node, name, 0); 1099 if (!np) { 1100 dev_err(dev, "No %s specified\n", name); 1101 return -EINVAL; 1102 } 1103 1104 ret = of_address_to_resource(np, 0, &r); 1105 of_node_put(np); 1106 if (ret) 1107 return ret; 1108 1109 region->aux_base = r.start; 1110 region->size = resource_size(&r); 1111 1112 return 0; 1113 } 1114 1115 static int qcom_smem_probe(struct platform_device *pdev) 1116 { 1117 struct smem_header *header; 1118 struct reserved_mem *rmem; 1119 struct qcom_smem *smem; 1120 unsigned long flags; 1121 int num_regions; 1122 int hwlock_id; 1123 u32 version; 1124 u32 size; 1125 int ret; 1126 int i; 1127 1128 num_regions = 1; 1129 if (of_property_present(pdev->dev.of_node, "qcom,rpm-msg-ram")) 1130 num_regions++; 1131 1132 smem = devm_kzalloc(&pdev->dev, struct_size(smem, regions, num_regions), 1133 GFP_KERNEL); 1134 if (!smem) 1135 return -ENOMEM; 1136 1137 smem->dev = &pdev->dev; 1138 smem->num_regions = num_regions; 1139 1140 rmem = of_reserved_mem_lookup(pdev->dev.of_node); 1141 if (rmem) { 1142 smem->regions[0].aux_base = rmem->base; 1143 smem->regions[0].size = rmem->size; 1144 } else { 1145 /* 1146 * Fall back to the memory-region reference, if we're not a 1147 * reserved-memory node. 1148 */ 1149 ret = qcom_smem_resolve_mem(smem, "memory-region", &smem->regions[0]); 1150 if (ret) 1151 return ret; 1152 } 1153 1154 if (num_regions > 1) { 1155 ret = qcom_smem_resolve_mem(smem, "qcom,rpm-msg-ram", &smem->regions[1]); 1156 if (ret) 1157 return ret; 1158 } 1159 1160 1161 ret = qcom_smem_map_toc(smem, &smem->regions[0]); 1162 if (ret) 1163 return ret; 1164 1165 for (i = 1; i < num_regions; i++) { 1166 smem->regions[i].virt_base = devm_ioremap_wc(&pdev->dev, 1167 smem->regions[i].aux_base, 1168 smem->regions[i].size); 1169 if (!smem->regions[i].virt_base) { 1170 dev_err(&pdev->dev, "failed to remap %pa\n", &smem->regions[i].aux_base); 1171 return -ENOMEM; 1172 } 1173 } 1174 1175 header = smem->regions[0].virt_base; 1176 if (le32_to_cpu(header->initialized) != 1 || 1177 le32_to_cpu(header->reserved)) { 1178 dev_err(&pdev->dev, "SMEM is not initialized by SBL\n"); 1179 return -EINVAL; 1180 } 1181 1182 hwlock_id = of_hwspin_lock_get_id(pdev->dev.of_node, 0); 1183 if (hwlock_id < 0) { 1184 if (hwlock_id != -EPROBE_DEFER) 1185 dev_err(&pdev->dev, "failed to retrieve hwlock\n"); 1186 return hwlock_id; 1187 } 1188 1189 smem->hwlock = hwspin_lock_request_specific(hwlock_id); 1190 if (!smem->hwlock) 1191 return -ENXIO; 1192 1193 ret = hwspin_lock_timeout_irqsave(smem->hwlock, HWSPINLOCK_TIMEOUT, &flags); 1194 if (ret) 1195 return ret; 1196 size = readl_relaxed(&header->available) + readl_relaxed(&header->free_offset); 1197 hwspin_unlock_irqrestore(smem->hwlock, &flags); 1198 1199 version = qcom_smem_get_sbl_version(smem); 1200 /* 1201 * smem header mapping is required only in heap version scheme, so unmap 1202 * it here. It will be remapped in qcom_smem_map_global() when whole 1203 * partition is mapped again. 1204 */ 1205 devm_iounmap(smem->dev, smem->regions[0].virt_base); 1206 switch (version >> 16) { 1207 case SMEM_GLOBAL_PART_VERSION: 1208 ret = qcom_smem_set_global_partition(smem); 1209 if (ret < 0) 1210 return ret; 1211 smem->item_count = qcom_smem_get_item_count(smem); 1212 break; 1213 case SMEM_GLOBAL_HEAP_VERSION: 1214 qcom_smem_map_global(smem, size); 1215 smem->item_count = SMEM_ITEM_COUNT; 1216 break; 1217 default: 1218 dev_err(&pdev->dev, "Unsupported SMEM version 0x%x\n", version); 1219 return -EINVAL; 1220 } 1221 1222 BUILD_BUG_ON(SMEM_HOST_APPS >= SMEM_HOST_COUNT); 1223 ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS); 1224 if (ret < 0 && ret != -ENOENT) 1225 return ret; 1226 1227 __smem = smem; 1228 1229 smem->socinfo = platform_device_register_data(&pdev->dev, "qcom-socinfo", 1230 PLATFORM_DEVID_NONE, NULL, 1231 0); 1232 if (IS_ERR(smem->socinfo)) 1233 dev_dbg(&pdev->dev, "failed to register socinfo device\n"); 1234 1235 return 0; 1236 } 1237 1238 static void qcom_smem_remove(struct platform_device *pdev) 1239 { 1240 platform_device_unregister(__smem->socinfo); 1241 1242 hwspin_lock_free(__smem->hwlock); 1243 __smem = NULL; 1244 } 1245 1246 static const struct of_device_id qcom_smem_of_match[] = { 1247 { .compatible = "qcom,smem" }, 1248 {} 1249 }; 1250 MODULE_DEVICE_TABLE(of, qcom_smem_of_match); 1251 1252 static struct platform_driver qcom_smem_driver = { 1253 .probe = qcom_smem_probe, 1254 .remove_new = qcom_smem_remove, 1255 .driver = { 1256 .name = "qcom-smem", 1257 .of_match_table = qcom_smem_of_match, 1258 .suppress_bind_attrs = true, 1259 }, 1260 }; 1261 1262 static int __init qcom_smem_init(void) 1263 { 1264 return platform_driver_register(&qcom_smem_driver); 1265 } 1266 arch_initcall(qcom_smem_init); 1267 1268 static void __exit qcom_smem_exit(void) 1269 { 1270 platform_driver_unregister(&qcom_smem_driver); 1271 } 1272 module_exit(qcom_smem_exit) 1273 1274 MODULE_AUTHOR("Bjorn Andersson <bjorn.andersson@sonymobile.com>"); 1275 MODULE_DESCRIPTION("Qualcomm Shared Memory Manager"); 1276 MODULE_LICENSE("GPL v2"); 1277