xref: /linux/drivers/soc/qcom/smem.c (revision 2845f512232de9e436b9e3b5529e906e62414013)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015, Sony Mobile Communications AB.
4  * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
5  */
6 
7 #include <linux/hwspinlock.h>
8 #include <linux/io.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/of_address.h>
12 #include <linux/of_reserved_mem.h>
13 #include <linux/platform_device.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 #include <linux/soc/qcom/smem.h>
17 #include <linux/soc/qcom/socinfo.h>
18 
19 /*
20  * The Qualcomm shared memory system is a allocate only heap structure that
21  * consists of one of more memory areas that can be accessed by the processors
22  * in the SoC.
23  *
24  * All systems contains a global heap, accessible by all processors in the SoC,
25  * with a table of contents data structure (@smem_header) at the beginning of
26  * the main shared memory block.
27  *
28  * The global header contains meta data for allocations as well as a fixed list
29  * of 512 entries (@smem_global_entry) that can be initialized to reference
30  * parts of the shared memory space.
31  *
32  *
33  * In addition to this global heap a set of "private" heaps can be set up at
34  * boot time with access restrictions so that only certain processor pairs can
35  * access the data.
36  *
37  * These partitions are referenced from an optional partition table
38  * (@smem_ptable), that is found 4kB from the end of the main smem region. The
39  * partition table entries (@smem_ptable_entry) lists the involved processors
40  * (or hosts) and their location in the main shared memory region.
41  *
42  * Each partition starts with a header (@smem_partition_header) that identifies
43  * the partition and holds properties for the two internal memory regions. The
44  * two regions are cached and non-cached memory respectively. Each region
45  * contain a link list of allocation headers (@smem_private_entry) followed by
46  * their data.
47  *
48  * Items in the non-cached region are allocated from the start of the partition
49  * while items in the cached region are allocated from the end. The free area
50  * is hence the region between the cached and non-cached offsets. The header of
51  * cached items comes after the data.
52  *
53  * Version 12 (SMEM_GLOBAL_PART_VERSION) changes the item alloc/get procedure
54  * for the global heap. A new global partition is created from the global heap
55  * region with partition type (SMEM_GLOBAL_HOST) and the max smem item count is
56  * set by the bootloader.
57  *
58  * To synchronize allocations in the shared memory heaps a remote spinlock must
59  * be held - currently lock number 3 of the sfpb or tcsr is used for this on all
60  * platforms.
61  *
62  */
63 
64 /*
65  * The version member of the smem header contains an array of versions for the
66  * various software components in the SoC. We verify that the boot loader
67  * version is a valid version as a sanity check.
68  */
69 #define SMEM_MASTER_SBL_VERSION_INDEX	7
70 #define SMEM_GLOBAL_HEAP_VERSION	11
71 #define SMEM_GLOBAL_PART_VERSION	12
72 
73 /*
74  * The first 8 items are only to be allocated by the boot loader while
75  * initializing the heap.
76  */
77 #define SMEM_ITEM_LAST_FIXED	8
78 
79 /* Highest accepted item number, for both global and private heaps */
80 #define SMEM_ITEM_COUNT		512
81 
82 /* Processor/host identifier for the application processor */
83 #define SMEM_HOST_APPS		0
84 
85 /* Processor/host identifier for the global partition */
86 #define SMEM_GLOBAL_HOST	0xfffe
87 
88 /* Max number of processors/hosts in a system */
89 #define SMEM_HOST_COUNT		20
90 
91 /**
92   * struct smem_proc_comm - proc_comm communication struct (legacy)
93   * @command:	current command to be executed
94   * @status:	status of the currently requested command
95   * @params:	parameters to the command
96   */
97 struct smem_proc_comm {
98 	__le32 command;
99 	__le32 status;
100 	__le32 params[2];
101 };
102 
103 /**
104  * struct smem_global_entry - entry to reference smem items on the heap
105  * @allocated:	boolean to indicate if this entry is used
106  * @offset:	offset to the allocated space
107  * @size:	size of the allocated space, 8 byte aligned
108  * @aux_base:	base address for the memory region used by this unit, or 0 for
109  *		the default region. bits 0,1 are reserved
110  */
111 struct smem_global_entry {
112 	__le32 allocated;
113 	__le32 offset;
114 	__le32 size;
115 	__le32 aux_base; /* bits 1:0 reserved */
116 };
117 #define AUX_BASE_MASK		0xfffffffc
118 
119 /**
120  * struct smem_header - header found in beginning of primary smem region
121  * @proc_comm:		proc_comm communication interface (legacy)
122  * @version:		array of versions for the various subsystems
123  * @initialized:	boolean to indicate that smem is initialized
124  * @free_offset:	index of the first unallocated byte in smem
125  * @available:		number of bytes available for allocation
126  * @reserved:		reserved field, must be 0
127  * @toc:		array of references to items
128  */
129 struct smem_header {
130 	struct smem_proc_comm proc_comm[4];
131 	__le32 version[32];
132 	__le32 initialized;
133 	__le32 free_offset;
134 	__le32 available;
135 	__le32 reserved;
136 	struct smem_global_entry toc[SMEM_ITEM_COUNT];
137 };
138 
139 /**
140  * struct smem_ptable_entry - one entry in the @smem_ptable list
141  * @offset:	offset, within the main shared memory region, of the partition
142  * @size:	size of the partition
143  * @flags:	flags for the partition (currently unused)
144  * @host0:	first processor/host with access to this partition
145  * @host1:	second processor/host with access to this partition
146  * @cacheline:	alignment for "cached" entries
147  * @reserved:	reserved entries for later use
148  */
149 struct smem_ptable_entry {
150 	__le32 offset;
151 	__le32 size;
152 	__le32 flags;
153 	__le16 host0;
154 	__le16 host1;
155 	__le32 cacheline;
156 	__le32 reserved[7];
157 };
158 
159 /**
160  * struct smem_ptable - partition table for the private partitions
161  * @magic:	magic number, must be SMEM_PTABLE_MAGIC
162  * @version:	version of the partition table
163  * @num_entries: number of partitions in the table
164  * @reserved:	for now reserved entries
165  * @entry:	list of @smem_ptable_entry for the @num_entries partitions
166  */
167 struct smem_ptable {
168 	u8 magic[4];
169 	__le32 version;
170 	__le32 num_entries;
171 	__le32 reserved[5];
172 	struct smem_ptable_entry entry[];
173 };
174 
175 static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */
176 
177 /**
178  * struct smem_partition_header - header of the partitions
179  * @magic:	magic number, must be SMEM_PART_MAGIC
180  * @host0:	first processor/host with access to this partition
181  * @host1:	second processor/host with access to this partition
182  * @size:	size of the partition
183  * @offset_free_uncached: offset to the first free byte of uncached memory in
184  *		this partition
185  * @offset_free_cached: offset to the first free byte of cached memory in this
186  *		partition
187  * @reserved:	for now reserved entries
188  */
189 struct smem_partition_header {
190 	u8 magic[4];
191 	__le16 host0;
192 	__le16 host1;
193 	__le32 size;
194 	__le32 offset_free_uncached;
195 	__le32 offset_free_cached;
196 	__le32 reserved[3];
197 };
198 
199 /**
200  * struct smem_partition - describes smem partition
201  * @virt_base:	starting virtual address of partition
202  * @phys_base:	starting physical address of partition
203  * @cacheline:	alignment for "cached" entries
204  * @size:	size of partition
205  */
206 struct smem_partition {
207 	void __iomem *virt_base;
208 	phys_addr_t phys_base;
209 	size_t cacheline;
210 	size_t size;
211 };
212 
213 static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 };
214 
215 /**
216  * struct smem_private_entry - header of each item in the private partition
217  * @canary:	magic number, must be SMEM_PRIVATE_CANARY
218  * @item:	identifying number of the smem item
219  * @size:	size of the data, including padding bytes
220  * @padding_data: number of bytes of padding of data
221  * @padding_hdr: number of bytes of padding between the header and the data
222  * @reserved:	for now reserved entry
223  */
224 struct smem_private_entry {
225 	u16 canary; /* bytes are the same so no swapping needed */
226 	__le16 item;
227 	__le32 size; /* includes padding bytes */
228 	__le16 padding_data;
229 	__le16 padding_hdr;
230 	__le32 reserved;
231 };
232 #define SMEM_PRIVATE_CANARY	0xa5a5
233 
234 /**
235  * struct smem_info - smem region info located after the table of contents
236  * @magic:	magic number, must be SMEM_INFO_MAGIC
237  * @size:	size of the smem region
238  * @base_addr:	base address of the smem region
239  * @reserved:	for now reserved entry
240  * @num_items:	highest accepted item number
241  */
242 struct smem_info {
243 	u8 magic[4];
244 	__le32 size;
245 	__le32 base_addr;
246 	__le32 reserved;
247 	__le16 num_items;
248 };
249 
250 static const u8 SMEM_INFO_MAGIC[] = { 0x53, 0x49, 0x49, 0x49 }; /* SIII */
251 
252 /**
253  * struct smem_region - representation of a chunk of memory used for smem
254  * @aux_base:	identifier of aux_mem base
255  * @virt_base:	virtual base address of memory with this aux_mem identifier
256  * @size:	size of the memory region
257  */
258 struct smem_region {
259 	phys_addr_t aux_base;
260 	void __iomem *virt_base;
261 	size_t size;
262 };
263 
264 /**
265  * struct qcom_smem - device data for the smem device
266  * @dev:	device pointer
267  * @hwlock:	reference to a hwspinlock
268  * @ptable: virtual base of partition table
269  * @global_partition: describes for global partition when in use
270  * @partitions: list of partitions of current processor/host
271  * @item_count: max accepted item number
272  * @socinfo:	platform device pointer
273  * @num_regions: number of @regions
274  * @regions:	list of the memory regions defining the shared memory
275  */
276 struct qcom_smem {
277 	struct device *dev;
278 
279 	struct hwspinlock *hwlock;
280 
281 	u32 item_count;
282 	struct platform_device *socinfo;
283 	struct smem_ptable *ptable;
284 	struct smem_partition global_partition;
285 	struct smem_partition partitions[SMEM_HOST_COUNT];
286 
287 	unsigned num_regions;
288 	struct smem_region regions[] __counted_by(num_regions);
289 };
290 
291 static void *
292 phdr_to_last_uncached_entry(struct smem_partition_header *phdr)
293 {
294 	void *p = phdr;
295 
296 	return p + le32_to_cpu(phdr->offset_free_uncached);
297 }
298 
299 static struct smem_private_entry *
300 phdr_to_first_cached_entry(struct smem_partition_header *phdr,
301 					size_t cacheline)
302 {
303 	void *p = phdr;
304 	struct smem_private_entry *e;
305 
306 	return p + le32_to_cpu(phdr->size) - ALIGN(sizeof(*e), cacheline);
307 }
308 
309 static void *
310 phdr_to_last_cached_entry(struct smem_partition_header *phdr)
311 {
312 	void *p = phdr;
313 
314 	return p + le32_to_cpu(phdr->offset_free_cached);
315 }
316 
317 static struct smem_private_entry *
318 phdr_to_first_uncached_entry(struct smem_partition_header *phdr)
319 {
320 	void *p = phdr;
321 
322 	return p + sizeof(*phdr);
323 }
324 
325 static struct smem_private_entry *
326 uncached_entry_next(struct smem_private_entry *e)
327 {
328 	void *p = e;
329 
330 	return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) +
331 	       le32_to_cpu(e->size);
332 }
333 
334 static struct smem_private_entry *
335 cached_entry_next(struct smem_private_entry *e, size_t cacheline)
336 {
337 	void *p = e;
338 
339 	return p - le32_to_cpu(e->size) - ALIGN(sizeof(*e), cacheline);
340 }
341 
342 static void *uncached_entry_to_item(struct smem_private_entry *e)
343 {
344 	void *p = e;
345 
346 	return p + sizeof(*e) + le16_to_cpu(e->padding_hdr);
347 }
348 
349 static void *cached_entry_to_item(struct smem_private_entry *e)
350 {
351 	void *p = e;
352 
353 	return p - le32_to_cpu(e->size);
354 }
355 
356 /* Pointer to the one and only smem handle */
357 static struct qcom_smem *__smem;
358 
359 /* Timeout (ms) for the trylock of remote spinlocks */
360 #define HWSPINLOCK_TIMEOUT	1000
361 
362 /**
363  * qcom_smem_is_available() - Check if SMEM is available
364  *
365  * Return: true if SMEM is available, false otherwise.
366  */
367 bool qcom_smem_is_available(void)
368 {
369 	return !!__smem;
370 }
371 EXPORT_SYMBOL_GPL(qcom_smem_is_available);
372 
373 static int qcom_smem_alloc_private(struct qcom_smem *smem,
374 				   struct smem_partition *part,
375 				   unsigned item,
376 				   size_t size)
377 {
378 	struct smem_private_entry *hdr, *end;
379 	struct smem_partition_header *phdr;
380 	size_t alloc_size;
381 	void *cached;
382 	void *p_end;
383 
384 	phdr = (struct smem_partition_header __force *)part->virt_base;
385 	p_end = (void *)phdr + part->size;
386 
387 	hdr = phdr_to_first_uncached_entry(phdr);
388 	end = phdr_to_last_uncached_entry(phdr);
389 	cached = phdr_to_last_cached_entry(phdr);
390 
391 	if (WARN_ON((void *)end > p_end || cached > p_end))
392 		return -EINVAL;
393 
394 	while (hdr < end) {
395 		if (hdr->canary != SMEM_PRIVATE_CANARY)
396 			goto bad_canary;
397 		if (le16_to_cpu(hdr->item) == item)
398 			return -EEXIST;
399 
400 		hdr = uncached_entry_next(hdr);
401 	}
402 
403 	if (WARN_ON((void *)hdr > p_end))
404 		return -EINVAL;
405 
406 	/* Check that we don't grow into the cached region */
407 	alloc_size = sizeof(*hdr) + ALIGN(size, 8);
408 	if ((void *)hdr + alloc_size > cached) {
409 		dev_err(smem->dev, "Out of memory\n");
410 		return -ENOSPC;
411 	}
412 
413 	hdr->canary = SMEM_PRIVATE_CANARY;
414 	hdr->item = cpu_to_le16(item);
415 	hdr->size = cpu_to_le32(ALIGN(size, 8));
416 	hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size);
417 	hdr->padding_hdr = 0;
418 
419 	/*
420 	 * Ensure the header is written before we advance the free offset, so
421 	 * that remote processors that does not take the remote spinlock still
422 	 * gets a consistent view of the linked list.
423 	 */
424 	wmb();
425 	le32_add_cpu(&phdr->offset_free_uncached, alloc_size);
426 
427 	return 0;
428 bad_canary:
429 	dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
430 		le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
431 
432 	return -EINVAL;
433 }
434 
435 static int qcom_smem_alloc_global(struct qcom_smem *smem,
436 				  unsigned item,
437 				  size_t size)
438 {
439 	struct smem_global_entry *entry;
440 	struct smem_header *header;
441 
442 	header = smem->regions[0].virt_base;
443 	entry = &header->toc[item];
444 	if (entry->allocated)
445 		return -EEXIST;
446 
447 	size = ALIGN(size, 8);
448 	if (WARN_ON(size > le32_to_cpu(header->available)))
449 		return -ENOMEM;
450 
451 	entry->offset = header->free_offset;
452 	entry->size = cpu_to_le32(size);
453 
454 	/*
455 	 * Ensure the header is consistent before we mark the item allocated,
456 	 * so that remote processors will get a consistent view of the item
457 	 * even though they do not take the spinlock on read.
458 	 */
459 	wmb();
460 	entry->allocated = cpu_to_le32(1);
461 
462 	le32_add_cpu(&header->free_offset, size);
463 	le32_add_cpu(&header->available, -size);
464 
465 	return 0;
466 }
467 
468 /**
469  * qcom_smem_alloc() - allocate space for a smem item
470  * @host:	remote processor id, or -1
471  * @item:	smem item handle
472  * @size:	number of bytes to be allocated
473  *
474  * Allocate space for a given smem item of size @size, given that the item is
475  * not yet allocated.
476  */
477 int qcom_smem_alloc(unsigned host, unsigned item, size_t size)
478 {
479 	struct smem_partition *part;
480 	unsigned long flags;
481 	int ret;
482 
483 	if (!__smem)
484 		return -EPROBE_DEFER;
485 
486 	if (item < SMEM_ITEM_LAST_FIXED) {
487 		dev_err(__smem->dev,
488 			"Rejecting allocation of static entry %d\n", item);
489 		return -EINVAL;
490 	}
491 
492 	if (WARN_ON(item >= __smem->item_count))
493 		return -EINVAL;
494 
495 	ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
496 					  HWSPINLOCK_TIMEOUT,
497 					  &flags);
498 	if (ret)
499 		return ret;
500 
501 	if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) {
502 		part = &__smem->partitions[host];
503 		ret = qcom_smem_alloc_private(__smem, part, item, size);
504 	} else if (__smem->global_partition.virt_base) {
505 		part = &__smem->global_partition;
506 		ret = qcom_smem_alloc_private(__smem, part, item, size);
507 	} else {
508 		ret = qcom_smem_alloc_global(__smem, item, size);
509 	}
510 
511 	hwspin_unlock_irqrestore(__smem->hwlock, &flags);
512 
513 	return ret;
514 }
515 EXPORT_SYMBOL_GPL(qcom_smem_alloc);
516 
517 static void *qcom_smem_get_global(struct qcom_smem *smem,
518 				  unsigned item,
519 				  size_t *size)
520 {
521 	struct smem_header *header;
522 	struct smem_region *region;
523 	struct smem_global_entry *entry;
524 	u64 entry_offset;
525 	u32 e_size;
526 	u32 aux_base;
527 	unsigned i;
528 
529 	header = smem->regions[0].virt_base;
530 	entry = &header->toc[item];
531 	if (!entry->allocated)
532 		return ERR_PTR(-ENXIO);
533 
534 	aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK;
535 
536 	for (i = 0; i < smem->num_regions; i++) {
537 		region = &smem->regions[i];
538 
539 		if ((u32)region->aux_base == aux_base || !aux_base) {
540 			e_size = le32_to_cpu(entry->size);
541 			entry_offset = le32_to_cpu(entry->offset);
542 
543 			if (WARN_ON(e_size + entry_offset > region->size))
544 				return ERR_PTR(-EINVAL);
545 
546 			if (size != NULL)
547 				*size = e_size;
548 
549 			return region->virt_base + entry_offset;
550 		}
551 	}
552 
553 	return ERR_PTR(-ENOENT);
554 }
555 
556 static void *qcom_smem_get_private(struct qcom_smem *smem,
557 				   struct smem_partition *part,
558 				   unsigned item,
559 				   size_t *size)
560 {
561 	struct smem_private_entry *e, *end;
562 	struct smem_partition_header *phdr;
563 	void *item_ptr, *p_end;
564 	u32 padding_data;
565 	u32 e_size;
566 
567 	phdr = (struct smem_partition_header __force *)part->virt_base;
568 	p_end = (void *)phdr + part->size;
569 
570 	e = phdr_to_first_uncached_entry(phdr);
571 	end = phdr_to_last_uncached_entry(phdr);
572 
573 	while (e < end) {
574 		if (e->canary != SMEM_PRIVATE_CANARY)
575 			goto invalid_canary;
576 
577 		if (le16_to_cpu(e->item) == item) {
578 			if (size != NULL) {
579 				e_size = le32_to_cpu(e->size);
580 				padding_data = le16_to_cpu(e->padding_data);
581 
582 				if (WARN_ON(e_size > part->size || padding_data > e_size))
583 					return ERR_PTR(-EINVAL);
584 
585 				*size = e_size - padding_data;
586 			}
587 
588 			item_ptr = uncached_entry_to_item(e);
589 			if (WARN_ON(item_ptr > p_end))
590 				return ERR_PTR(-EINVAL);
591 
592 			return item_ptr;
593 		}
594 
595 		e = uncached_entry_next(e);
596 	}
597 
598 	if (WARN_ON((void *)e > p_end))
599 		return ERR_PTR(-EINVAL);
600 
601 	/* Item was not found in the uncached list, search the cached list */
602 
603 	e = phdr_to_first_cached_entry(phdr, part->cacheline);
604 	end = phdr_to_last_cached_entry(phdr);
605 
606 	if (WARN_ON((void *)e < (void *)phdr || (void *)end > p_end))
607 		return ERR_PTR(-EINVAL);
608 
609 	while (e > end) {
610 		if (e->canary != SMEM_PRIVATE_CANARY)
611 			goto invalid_canary;
612 
613 		if (le16_to_cpu(e->item) == item) {
614 			if (size != NULL) {
615 				e_size = le32_to_cpu(e->size);
616 				padding_data = le16_to_cpu(e->padding_data);
617 
618 				if (WARN_ON(e_size > part->size || padding_data > e_size))
619 					return ERR_PTR(-EINVAL);
620 
621 				*size = e_size - padding_data;
622 			}
623 
624 			item_ptr = cached_entry_to_item(e);
625 			if (WARN_ON(item_ptr < (void *)phdr))
626 				return ERR_PTR(-EINVAL);
627 
628 			return item_ptr;
629 		}
630 
631 		e = cached_entry_next(e, part->cacheline);
632 	}
633 
634 	if (WARN_ON((void *)e < (void *)phdr))
635 		return ERR_PTR(-EINVAL);
636 
637 	return ERR_PTR(-ENOENT);
638 
639 invalid_canary:
640 	dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
641 			le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
642 
643 	return ERR_PTR(-EINVAL);
644 }
645 
646 /**
647  * qcom_smem_get() - resolve ptr of size of a smem item
648  * @host:	the remote processor, or -1
649  * @item:	smem item handle
650  * @size:	pointer to be filled out with size of the item
651  *
652  * Looks up smem item and returns pointer to it. Size of smem
653  * item is returned in @size.
654  */
655 void *qcom_smem_get(unsigned host, unsigned item, size_t *size)
656 {
657 	struct smem_partition *part;
658 	void *ptr = ERR_PTR(-EPROBE_DEFER);
659 
660 	if (!__smem)
661 		return ptr;
662 
663 	if (WARN_ON(item >= __smem->item_count))
664 		return ERR_PTR(-EINVAL);
665 
666 	if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) {
667 		part = &__smem->partitions[host];
668 		ptr = qcom_smem_get_private(__smem, part, item, size);
669 	} else if (__smem->global_partition.virt_base) {
670 		part = &__smem->global_partition;
671 		ptr = qcom_smem_get_private(__smem, part, item, size);
672 	} else {
673 		ptr = qcom_smem_get_global(__smem, item, size);
674 	}
675 
676 	return ptr;
677 }
678 EXPORT_SYMBOL_GPL(qcom_smem_get);
679 
680 /**
681  * qcom_smem_get_free_space() - retrieve amount of free space in a partition
682  * @host:	the remote processor identifying a partition, or -1
683  *
684  * To be used by smem clients as a quick way to determine if any new
685  * allocations has been made.
686  */
687 int qcom_smem_get_free_space(unsigned host)
688 {
689 	struct smem_partition *part;
690 	struct smem_partition_header *phdr;
691 	struct smem_header *header;
692 	unsigned ret;
693 
694 	if (!__smem)
695 		return -EPROBE_DEFER;
696 
697 	if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) {
698 		part = &__smem->partitions[host];
699 		phdr = part->virt_base;
700 		ret = le32_to_cpu(phdr->offset_free_cached) -
701 		      le32_to_cpu(phdr->offset_free_uncached);
702 
703 		if (ret > le32_to_cpu(part->size))
704 			return -EINVAL;
705 	} else if (__smem->global_partition.virt_base) {
706 		part = &__smem->global_partition;
707 		phdr = part->virt_base;
708 		ret = le32_to_cpu(phdr->offset_free_cached) -
709 		      le32_to_cpu(phdr->offset_free_uncached);
710 
711 		if (ret > le32_to_cpu(part->size))
712 			return -EINVAL;
713 	} else {
714 		header = __smem->regions[0].virt_base;
715 		ret = le32_to_cpu(header->available);
716 
717 		if (ret > __smem->regions[0].size)
718 			return -EINVAL;
719 	}
720 
721 	return ret;
722 }
723 EXPORT_SYMBOL_GPL(qcom_smem_get_free_space);
724 
725 static bool addr_in_range(void __iomem *base, size_t size, void *addr)
726 {
727 	return base && ((void __iomem *)addr >= base && (void __iomem *)addr < base + size);
728 }
729 
730 /**
731  * qcom_smem_virt_to_phys() - return the physical address associated
732  * with an smem item pointer (previously returned by qcom_smem_get()
733  * @p:	the virtual address to convert
734  *
735  * Returns 0 if the pointer provided is not within any smem region.
736  */
737 phys_addr_t qcom_smem_virt_to_phys(void *p)
738 {
739 	struct smem_partition *part;
740 	struct smem_region *area;
741 	u64 offset;
742 	u32 i;
743 
744 	for (i = 0; i < SMEM_HOST_COUNT; i++) {
745 		part = &__smem->partitions[i];
746 
747 		if (addr_in_range(part->virt_base, part->size, p)) {
748 			offset = p - part->virt_base;
749 
750 			return (phys_addr_t)part->phys_base + offset;
751 		}
752 	}
753 
754 	part = &__smem->global_partition;
755 
756 	if (addr_in_range(part->virt_base, part->size, p)) {
757 		offset = p - part->virt_base;
758 
759 		return (phys_addr_t)part->phys_base + offset;
760 	}
761 
762 	for (i = 0; i < __smem->num_regions; i++) {
763 		area = &__smem->regions[i];
764 
765 		if (addr_in_range(area->virt_base, area->size, p)) {
766 			offset = p - area->virt_base;
767 
768 			return (phys_addr_t)area->aux_base + offset;
769 		}
770 	}
771 
772 	return 0;
773 }
774 EXPORT_SYMBOL_GPL(qcom_smem_virt_to_phys);
775 
776 /**
777  * qcom_smem_get_soc_id() - return the SoC ID
778  * @id:	On success, we return the SoC ID here.
779  *
780  * Look up SoC ID from HW/SW build ID and return it.
781  *
782  * Return: 0 on success, negative errno on failure.
783  */
784 int qcom_smem_get_soc_id(u32 *id)
785 {
786 	struct socinfo *info;
787 
788 	info = qcom_smem_get(QCOM_SMEM_HOST_ANY, SMEM_HW_SW_BUILD_ID, NULL);
789 	if (IS_ERR(info))
790 		return PTR_ERR(info);
791 
792 	*id = __le32_to_cpu(info->id);
793 
794 	return 0;
795 }
796 EXPORT_SYMBOL_GPL(qcom_smem_get_soc_id);
797 
798 /**
799  * qcom_smem_get_feature_code() - return the feature code
800  * @code: On success, return the feature code here.
801  *
802  * Look up the feature code identifier from SMEM and return it.
803  *
804  * Return: 0 on success, negative errno on failure.
805  */
806 int qcom_smem_get_feature_code(u32 *code)
807 {
808 	struct socinfo *info;
809 	u32 raw_code;
810 
811 	info = qcom_smem_get(QCOM_SMEM_HOST_ANY, SMEM_HW_SW_BUILD_ID, NULL);
812 	if (IS_ERR(info))
813 		return PTR_ERR(info);
814 
815 	/* This only makes sense for socinfo >= 16 */
816 	if (__le32_to_cpu(info->fmt) < SOCINFO_VERSION(0, 16))
817 		return -EOPNOTSUPP;
818 
819 	raw_code = __le32_to_cpu(info->feature_code);
820 
821 	/* Ensure the value makes sense */
822 	if (raw_code > SOCINFO_FC_INT_MAX)
823 		raw_code = SOCINFO_FC_UNKNOWN;
824 
825 	*code = raw_code;
826 
827 	return 0;
828 }
829 EXPORT_SYMBOL_GPL(qcom_smem_get_feature_code);
830 
831 static int qcom_smem_get_sbl_version(struct qcom_smem *smem)
832 {
833 	struct smem_header *header;
834 	__le32 *versions;
835 
836 	header = smem->regions[0].virt_base;
837 	versions = header->version;
838 
839 	return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]);
840 }
841 
842 static struct smem_ptable *qcom_smem_get_ptable(struct qcom_smem *smem)
843 {
844 	struct smem_ptable *ptable;
845 	u32 version;
846 
847 	ptable = smem->ptable;
848 	if (memcmp(ptable->magic, SMEM_PTABLE_MAGIC, sizeof(ptable->magic)))
849 		return ERR_PTR(-ENOENT);
850 
851 	version = le32_to_cpu(ptable->version);
852 	if (version != 1) {
853 		dev_err(smem->dev,
854 			"Unsupported partition header version %d\n", version);
855 		return ERR_PTR(-EINVAL);
856 	}
857 	return ptable;
858 }
859 
860 static u32 qcom_smem_get_item_count(struct qcom_smem *smem)
861 {
862 	struct smem_ptable *ptable;
863 	struct smem_info *info;
864 
865 	ptable = qcom_smem_get_ptable(smem);
866 	if (IS_ERR_OR_NULL(ptable))
867 		return SMEM_ITEM_COUNT;
868 
869 	info = (struct smem_info *)&ptable->entry[ptable->num_entries];
870 	if (memcmp(info->magic, SMEM_INFO_MAGIC, sizeof(info->magic)))
871 		return SMEM_ITEM_COUNT;
872 
873 	return le16_to_cpu(info->num_items);
874 }
875 
876 /*
877  * Validate the partition header for a partition whose partition
878  * table entry is supplied.  Returns a pointer to its header if
879  * valid, or a null pointer otherwise.
880  */
881 static struct smem_partition_header *
882 qcom_smem_partition_header(struct qcom_smem *smem,
883 		struct smem_ptable_entry *entry, u16 host0, u16 host1)
884 {
885 	struct smem_partition_header *header;
886 	u32 phys_addr;
887 	u32 size;
888 
889 	phys_addr = smem->regions[0].aux_base + le32_to_cpu(entry->offset);
890 	header = devm_ioremap_wc(smem->dev, phys_addr, le32_to_cpu(entry->size));
891 
892 	if (!header)
893 		return NULL;
894 
895 	if (memcmp(header->magic, SMEM_PART_MAGIC, sizeof(header->magic))) {
896 		dev_err(smem->dev, "bad partition magic %4ph\n", header->magic);
897 		return NULL;
898 	}
899 
900 	if (host0 != le16_to_cpu(header->host0)) {
901 		dev_err(smem->dev, "bad host0 (%hu != %hu)\n",
902 				host0, le16_to_cpu(header->host0));
903 		return NULL;
904 	}
905 	if (host1 != le16_to_cpu(header->host1)) {
906 		dev_err(smem->dev, "bad host1 (%hu != %hu)\n",
907 				host1, le16_to_cpu(header->host1));
908 		return NULL;
909 	}
910 
911 	size = le32_to_cpu(header->size);
912 	if (size != le32_to_cpu(entry->size)) {
913 		dev_err(smem->dev, "bad partition size (%u != %u)\n",
914 			size, le32_to_cpu(entry->size));
915 		return NULL;
916 	}
917 
918 	if (le32_to_cpu(header->offset_free_uncached) > size) {
919 		dev_err(smem->dev, "bad partition free uncached (%u > %u)\n",
920 			le32_to_cpu(header->offset_free_uncached), size);
921 		return NULL;
922 	}
923 
924 	return header;
925 }
926 
927 static int qcom_smem_set_global_partition(struct qcom_smem *smem)
928 {
929 	struct smem_partition_header *header;
930 	struct smem_ptable_entry *entry;
931 	struct smem_ptable *ptable;
932 	bool found = false;
933 	int i;
934 
935 	if (smem->global_partition.virt_base) {
936 		dev_err(smem->dev, "Already found the global partition\n");
937 		return -EINVAL;
938 	}
939 
940 	ptable = qcom_smem_get_ptable(smem);
941 	if (IS_ERR(ptable))
942 		return PTR_ERR(ptable);
943 
944 	for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
945 		entry = &ptable->entry[i];
946 		if (!le32_to_cpu(entry->offset))
947 			continue;
948 		if (!le32_to_cpu(entry->size))
949 			continue;
950 
951 		if (le16_to_cpu(entry->host0) != SMEM_GLOBAL_HOST)
952 			continue;
953 
954 		if (le16_to_cpu(entry->host1) == SMEM_GLOBAL_HOST) {
955 			found = true;
956 			break;
957 		}
958 	}
959 
960 	if (!found) {
961 		dev_err(smem->dev, "Missing entry for global partition\n");
962 		return -EINVAL;
963 	}
964 
965 	header = qcom_smem_partition_header(smem, entry,
966 				SMEM_GLOBAL_HOST, SMEM_GLOBAL_HOST);
967 	if (!header)
968 		return -EINVAL;
969 
970 	smem->global_partition.virt_base = (void __iomem *)header;
971 	smem->global_partition.phys_base = smem->regions[0].aux_base +
972 								le32_to_cpu(entry->offset);
973 	smem->global_partition.size = le32_to_cpu(entry->size);
974 	smem->global_partition.cacheline = le32_to_cpu(entry->cacheline);
975 
976 	return 0;
977 }
978 
979 static int
980 qcom_smem_enumerate_partitions(struct qcom_smem *smem, u16 local_host)
981 {
982 	struct smem_partition_header *header;
983 	struct smem_ptable_entry *entry;
984 	struct smem_ptable *ptable;
985 	u16 remote_host;
986 	u16 host0, host1;
987 	int i;
988 
989 	ptable = qcom_smem_get_ptable(smem);
990 	if (IS_ERR(ptable))
991 		return PTR_ERR(ptable);
992 
993 	for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
994 		entry = &ptable->entry[i];
995 		if (!le32_to_cpu(entry->offset))
996 			continue;
997 		if (!le32_to_cpu(entry->size))
998 			continue;
999 
1000 		host0 = le16_to_cpu(entry->host0);
1001 		host1 = le16_to_cpu(entry->host1);
1002 		if (host0 == local_host)
1003 			remote_host = host1;
1004 		else if (host1 == local_host)
1005 			remote_host = host0;
1006 		else
1007 			continue;
1008 
1009 		if (remote_host >= SMEM_HOST_COUNT) {
1010 			dev_err(smem->dev, "bad host %u\n", remote_host);
1011 			return -EINVAL;
1012 		}
1013 
1014 		if (smem->partitions[remote_host].virt_base) {
1015 			dev_err(smem->dev, "duplicate host %u\n", remote_host);
1016 			return -EINVAL;
1017 		}
1018 
1019 		header = qcom_smem_partition_header(smem, entry, host0, host1);
1020 		if (!header)
1021 			return -EINVAL;
1022 
1023 		smem->partitions[remote_host].virt_base = (void __iomem *)header;
1024 		smem->partitions[remote_host].phys_base = smem->regions[0].aux_base +
1025 										le32_to_cpu(entry->offset);
1026 		smem->partitions[remote_host].size = le32_to_cpu(entry->size);
1027 		smem->partitions[remote_host].cacheline = le32_to_cpu(entry->cacheline);
1028 	}
1029 
1030 	return 0;
1031 }
1032 
1033 static int qcom_smem_map_toc(struct qcom_smem *smem, struct smem_region *region)
1034 {
1035 	u32 ptable_start;
1036 
1037 	/* map starting 4K for smem header */
1038 	region->virt_base = devm_ioremap_wc(smem->dev, region->aux_base, SZ_4K);
1039 	ptable_start = region->aux_base + region->size - SZ_4K;
1040 	/* map last 4k for toc */
1041 	smem->ptable = devm_ioremap_wc(smem->dev, ptable_start, SZ_4K);
1042 
1043 	if (!region->virt_base || !smem->ptable)
1044 		return -ENOMEM;
1045 
1046 	return 0;
1047 }
1048 
1049 static int qcom_smem_map_global(struct qcom_smem *smem, u32 size)
1050 {
1051 	u32 phys_addr;
1052 
1053 	phys_addr = smem->regions[0].aux_base;
1054 
1055 	smem->regions[0].size = size;
1056 	smem->regions[0].virt_base = devm_ioremap_wc(smem->dev, phys_addr, size);
1057 
1058 	if (!smem->regions[0].virt_base)
1059 		return -ENOMEM;
1060 
1061 	return 0;
1062 }
1063 
1064 static int qcom_smem_resolve_mem(struct qcom_smem *smem, const char *name,
1065 				 struct smem_region *region)
1066 {
1067 	struct device *dev = smem->dev;
1068 	struct device_node *np;
1069 	struct resource r;
1070 	int ret;
1071 
1072 	np = of_parse_phandle(dev->of_node, name, 0);
1073 	if (!np) {
1074 		dev_err(dev, "No %s specified\n", name);
1075 		return -EINVAL;
1076 	}
1077 
1078 	ret = of_address_to_resource(np, 0, &r);
1079 	of_node_put(np);
1080 	if (ret)
1081 		return ret;
1082 
1083 	region->aux_base = r.start;
1084 	region->size = resource_size(&r);
1085 
1086 	return 0;
1087 }
1088 
1089 static int qcom_smem_probe(struct platform_device *pdev)
1090 {
1091 	struct smem_header *header;
1092 	struct reserved_mem *rmem;
1093 	struct qcom_smem *smem;
1094 	unsigned long flags;
1095 	int num_regions;
1096 	int hwlock_id;
1097 	u32 version;
1098 	u32 size;
1099 	int ret;
1100 	int i;
1101 
1102 	num_regions = 1;
1103 	if (of_property_present(pdev->dev.of_node, "qcom,rpm-msg-ram"))
1104 		num_regions++;
1105 
1106 	smem = devm_kzalloc(&pdev->dev, struct_size(smem, regions, num_regions),
1107 			    GFP_KERNEL);
1108 	if (!smem)
1109 		return -ENOMEM;
1110 
1111 	smem->dev = &pdev->dev;
1112 	smem->num_regions = num_regions;
1113 
1114 	rmem = of_reserved_mem_lookup(pdev->dev.of_node);
1115 	if (rmem) {
1116 		smem->regions[0].aux_base = rmem->base;
1117 		smem->regions[0].size = rmem->size;
1118 	} else {
1119 		/*
1120 		 * Fall back to the memory-region reference, if we're not a
1121 		 * reserved-memory node.
1122 		 */
1123 		ret = qcom_smem_resolve_mem(smem, "memory-region", &smem->regions[0]);
1124 		if (ret)
1125 			return ret;
1126 	}
1127 
1128 	if (num_regions > 1) {
1129 		ret = qcom_smem_resolve_mem(smem, "qcom,rpm-msg-ram", &smem->regions[1]);
1130 		if (ret)
1131 			return ret;
1132 	}
1133 
1134 
1135 	ret = qcom_smem_map_toc(smem, &smem->regions[0]);
1136 	if (ret)
1137 		return ret;
1138 
1139 	for (i = 1; i < num_regions; i++) {
1140 		smem->regions[i].virt_base = devm_ioremap_wc(&pdev->dev,
1141 							     smem->regions[i].aux_base,
1142 							     smem->regions[i].size);
1143 		if (!smem->regions[i].virt_base) {
1144 			dev_err(&pdev->dev, "failed to remap %pa\n", &smem->regions[i].aux_base);
1145 			return -ENOMEM;
1146 		}
1147 	}
1148 
1149 	header = smem->regions[0].virt_base;
1150 	if (le32_to_cpu(header->initialized) != 1 ||
1151 	    le32_to_cpu(header->reserved)) {
1152 		dev_err(&pdev->dev, "SMEM is not initialized by SBL\n");
1153 		return -EINVAL;
1154 	}
1155 
1156 	hwlock_id = of_hwspin_lock_get_id(pdev->dev.of_node, 0);
1157 	if (hwlock_id < 0) {
1158 		if (hwlock_id != -EPROBE_DEFER)
1159 			dev_err(&pdev->dev, "failed to retrieve hwlock\n");
1160 		return hwlock_id;
1161 	}
1162 
1163 	smem->hwlock = hwspin_lock_request_specific(hwlock_id);
1164 	if (!smem->hwlock)
1165 		return -ENXIO;
1166 
1167 	ret = hwspin_lock_timeout_irqsave(smem->hwlock, HWSPINLOCK_TIMEOUT, &flags);
1168 	if (ret)
1169 		return ret;
1170 	size = readl_relaxed(&header->available) + readl_relaxed(&header->free_offset);
1171 	hwspin_unlock_irqrestore(smem->hwlock, &flags);
1172 
1173 	version = qcom_smem_get_sbl_version(smem);
1174 	/*
1175 	 * smem header mapping is required only in heap version scheme, so unmap
1176 	 * it here. It will be remapped in qcom_smem_map_global() when whole
1177 	 * partition is mapped again.
1178 	 */
1179 	devm_iounmap(smem->dev, smem->regions[0].virt_base);
1180 	switch (version >> 16) {
1181 	case SMEM_GLOBAL_PART_VERSION:
1182 		ret = qcom_smem_set_global_partition(smem);
1183 		if (ret < 0)
1184 			return ret;
1185 		smem->item_count = qcom_smem_get_item_count(smem);
1186 		break;
1187 	case SMEM_GLOBAL_HEAP_VERSION:
1188 		qcom_smem_map_global(smem, size);
1189 		smem->item_count = SMEM_ITEM_COUNT;
1190 		break;
1191 	default:
1192 		dev_err(&pdev->dev, "Unsupported SMEM version 0x%x\n", version);
1193 		return -EINVAL;
1194 	}
1195 
1196 	BUILD_BUG_ON(SMEM_HOST_APPS >= SMEM_HOST_COUNT);
1197 	ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS);
1198 	if (ret < 0 && ret != -ENOENT)
1199 		return ret;
1200 
1201 	__smem = smem;
1202 
1203 	smem->socinfo = platform_device_register_data(&pdev->dev, "qcom-socinfo",
1204 						      PLATFORM_DEVID_NONE, NULL,
1205 						      0);
1206 	if (IS_ERR(smem->socinfo))
1207 		dev_dbg(&pdev->dev, "failed to register socinfo device\n");
1208 
1209 	return 0;
1210 }
1211 
1212 static void qcom_smem_remove(struct platform_device *pdev)
1213 {
1214 	platform_device_unregister(__smem->socinfo);
1215 
1216 	hwspin_lock_free(__smem->hwlock);
1217 	__smem = NULL;
1218 }
1219 
1220 static const struct of_device_id qcom_smem_of_match[] = {
1221 	{ .compatible = "qcom,smem" },
1222 	{}
1223 };
1224 MODULE_DEVICE_TABLE(of, qcom_smem_of_match);
1225 
1226 static struct platform_driver qcom_smem_driver = {
1227 	.probe = qcom_smem_probe,
1228 	.remove_new = qcom_smem_remove,
1229 	.driver  = {
1230 		.name = "qcom-smem",
1231 		.of_match_table = qcom_smem_of_match,
1232 		.suppress_bind_attrs = true,
1233 	},
1234 };
1235 
1236 static int __init qcom_smem_init(void)
1237 {
1238 	return platform_driver_register(&qcom_smem_driver);
1239 }
1240 arch_initcall(qcom_smem_init);
1241 
1242 static void __exit qcom_smem_exit(void)
1243 {
1244 	platform_driver_unregister(&qcom_smem_driver);
1245 }
1246 module_exit(qcom_smem_exit)
1247 
1248 MODULE_AUTHOR("Bjorn Andersson <bjorn.andersson@sonymobile.com>");
1249 MODULE_DESCRIPTION("Qualcomm Shared Memory Manager");
1250 MODULE_LICENSE("GPL v2");
1251