1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2015, Sony Mobile Communications AB. 4 * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved. 5 */ 6 7 #include <linux/hwspinlock.h> 8 #include <linux/io.h> 9 #include <linux/module.h> 10 #include <linux/of.h> 11 #include <linux/of_address.h> 12 #include <linux/of_reserved_mem.h> 13 #include <linux/platform_device.h> 14 #include <linux/sizes.h> 15 #include <linux/slab.h> 16 #include <linux/soc/qcom/smem.h> 17 #include <linux/soc/qcom/socinfo.h> 18 19 /* 20 * The Qualcomm shared memory system is a allocate only heap structure that 21 * consists of one of more memory areas that can be accessed by the processors 22 * in the SoC. 23 * 24 * All systems contains a global heap, accessible by all processors in the SoC, 25 * with a table of contents data structure (@smem_header) at the beginning of 26 * the main shared memory block. 27 * 28 * The global header contains meta data for allocations as well as a fixed list 29 * of 512 entries (@smem_global_entry) that can be initialized to reference 30 * parts of the shared memory space. 31 * 32 * 33 * In addition to this global heap a set of "private" heaps can be set up at 34 * boot time with access restrictions so that only certain processor pairs can 35 * access the data. 36 * 37 * These partitions are referenced from an optional partition table 38 * (@smem_ptable), that is found 4kB from the end of the main smem region. The 39 * partition table entries (@smem_ptable_entry) lists the involved processors 40 * (or hosts) and their location in the main shared memory region. 41 * 42 * Each partition starts with a header (@smem_partition_header) that identifies 43 * the partition and holds properties for the two internal memory regions. The 44 * two regions are cached and non-cached memory respectively. Each region 45 * contain a link list of allocation headers (@smem_private_entry) followed by 46 * their data. 47 * 48 * Items in the non-cached region are allocated from the start of the partition 49 * while items in the cached region are allocated from the end. The free area 50 * is hence the region between the cached and non-cached offsets. The header of 51 * cached items comes after the data. 52 * 53 * Version 12 (SMEM_GLOBAL_PART_VERSION) changes the item alloc/get procedure 54 * for the global heap. A new global partition is created from the global heap 55 * region with partition type (SMEM_GLOBAL_HOST) and the max smem item count is 56 * set by the bootloader. 57 * 58 * To synchronize allocations in the shared memory heaps a remote spinlock must 59 * be held - currently lock number 3 of the sfpb or tcsr is used for this on all 60 * platforms. 61 * 62 */ 63 64 /* 65 * The version member of the smem header contains an array of versions for the 66 * various software components in the SoC. We verify that the boot loader 67 * version is a valid version as a sanity check. 68 */ 69 #define SMEM_MASTER_SBL_VERSION_INDEX 7 70 #define SMEM_GLOBAL_HEAP_VERSION 11 71 #define SMEM_GLOBAL_PART_VERSION 12 72 73 /* 74 * The first 8 items are only to be allocated by the boot loader while 75 * initializing the heap. 76 */ 77 #define SMEM_ITEM_LAST_FIXED 8 78 79 /* Highest accepted item number, for both global and private heaps */ 80 #define SMEM_ITEM_COUNT 512 81 82 /* Processor/host identifier for the application processor */ 83 #define SMEM_HOST_APPS 0 84 85 /* Processor/host identifier for the global partition */ 86 #define SMEM_GLOBAL_HOST 0xfffe 87 88 /* Max number of processors/hosts in a system */ 89 #define SMEM_HOST_COUNT 20 90 91 /** 92 * struct smem_proc_comm - proc_comm communication struct (legacy) 93 * @command: current command to be executed 94 * @status: status of the currently requested command 95 * @params: parameters to the command 96 */ 97 struct smem_proc_comm { 98 __le32 command; 99 __le32 status; 100 __le32 params[2]; 101 }; 102 103 /** 104 * struct smem_global_entry - entry to reference smem items on the heap 105 * @allocated: boolean to indicate if this entry is used 106 * @offset: offset to the allocated space 107 * @size: size of the allocated space, 8 byte aligned 108 * @aux_base: base address for the memory region used by this unit, or 0 for 109 * the default region. bits 0,1 are reserved 110 */ 111 struct smem_global_entry { 112 __le32 allocated; 113 __le32 offset; 114 __le32 size; 115 __le32 aux_base; /* bits 1:0 reserved */ 116 }; 117 #define AUX_BASE_MASK 0xfffffffc 118 119 /** 120 * struct smem_header - header found in beginning of primary smem region 121 * @proc_comm: proc_comm communication interface (legacy) 122 * @version: array of versions for the various subsystems 123 * @initialized: boolean to indicate that smem is initialized 124 * @free_offset: index of the first unallocated byte in smem 125 * @available: number of bytes available for allocation 126 * @reserved: reserved field, must be 0 127 * @toc: array of references to items 128 */ 129 struct smem_header { 130 struct smem_proc_comm proc_comm[4]; 131 __le32 version[32]; 132 __le32 initialized; 133 __le32 free_offset; 134 __le32 available; 135 __le32 reserved; 136 struct smem_global_entry toc[SMEM_ITEM_COUNT]; 137 }; 138 139 /** 140 * struct smem_ptable_entry - one entry in the @smem_ptable list 141 * @offset: offset, within the main shared memory region, of the partition 142 * @size: size of the partition 143 * @flags: flags for the partition (currently unused) 144 * @host0: first processor/host with access to this partition 145 * @host1: second processor/host with access to this partition 146 * @cacheline: alignment for "cached" entries 147 * @reserved: reserved entries for later use 148 */ 149 struct smem_ptable_entry { 150 __le32 offset; 151 __le32 size; 152 __le32 flags; 153 __le16 host0; 154 __le16 host1; 155 __le32 cacheline; 156 __le32 reserved[7]; 157 }; 158 159 /** 160 * struct smem_ptable - partition table for the private partitions 161 * @magic: magic number, must be SMEM_PTABLE_MAGIC 162 * @version: version of the partition table 163 * @num_entries: number of partitions in the table 164 * @reserved: for now reserved entries 165 * @entry: list of @smem_ptable_entry for the @num_entries partitions 166 */ 167 struct smem_ptable { 168 u8 magic[4]; 169 __le32 version; 170 __le32 num_entries; 171 __le32 reserved[5]; 172 struct smem_ptable_entry entry[]; 173 }; 174 175 static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */ 176 177 /** 178 * struct smem_partition_header - header of the partitions 179 * @magic: magic number, must be SMEM_PART_MAGIC 180 * @host0: first processor/host with access to this partition 181 * @host1: second processor/host with access to this partition 182 * @size: size of the partition 183 * @offset_free_uncached: offset to the first free byte of uncached memory in 184 * this partition 185 * @offset_free_cached: offset to the first free byte of cached memory in this 186 * partition 187 * @reserved: for now reserved entries 188 */ 189 struct smem_partition_header { 190 u8 magic[4]; 191 __le16 host0; 192 __le16 host1; 193 __le32 size; 194 __le32 offset_free_uncached; 195 __le32 offset_free_cached; 196 __le32 reserved[3]; 197 }; 198 199 /** 200 * struct smem_partition - describes smem partition 201 * @virt_base: starting virtual address of partition 202 * @phys_base: starting physical address of partition 203 * @cacheline: alignment for "cached" entries 204 * @size: size of partition 205 */ 206 struct smem_partition { 207 void __iomem *virt_base; 208 phys_addr_t phys_base; 209 size_t cacheline; 210 size_t size; 211 }; 212 213 static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 }; 214 215 /** 216 * struct smem_private_entry - header of each item in the private partition 217 * @canary: magic number, must be SMEM_PRIVATE_CANARY 218 * @item: identifying number of the smem item 219 * @size: size of the data, including padding bytes 220 * @padding_data: number of bytes of padding of data 221 * @padding_hdr: number of bytes of padding between the header and the data 222 * @reserved: for now reserved entry 223 */ 224 struct smem_private_entry { 225 u16 canary; /* bytes are the same so no swapping needed */ 226 __le16 item; 227 __le32 size; /* includes padding bytes */ 228 __le16 padding_data; 229 __le16 padding_hdr; 230 __le32 reserved; 231 }; 232 #define SMEM_PRIVATE_CANARY 0xa5a5 233 234 /** 235 * struct smem_info - smem region info located after the table of contents 236 * @magic: magic number, must be SMEM_INFO_MAGIC 237 * @size: size of the smem region 238 * @base_addr: base address of the smem region 239 * @reserved: for now reserved entry 240 * @num_items: highest accepted item number 241 */ 242 struct smem_info { 243 u8 magic[4]; 244 __le32 size; 245 __le32 base_addr; 246 __le32 reserved; 247 __le16 num_items; 248 }; 249 250 static const u8 SMEM_INFO_MAGIC[] = { 0x53, 0x49, 0x49, 0x49 }; /* SIII */ 251 252 /** 253 * struct smem_region - representation of a chunk of memory used for smem 254 * @aux_base: identifier of aux_mem base 255 * @virt_base: virtual base address of memory with this aux_mem identifier 256 * @size: size of the memory region 257 */ 258 struct smem_region { 259 phys_addr_t aux_base; 260 void __iomem *virt_base; 261 size_t size; 262 }; 263 264 /** 265 * struct qcom_smem - device data for the smem device 266 * @dev: device pointer 267 * @hwlock: reference to a hwspinlock 268 * @ptable: virtual base of partition table 269 * @global_partition: describes for global partition when in use 270 * @partitions: list of partitions of current processor/host 271 * @item_count: max accepted item number 272 * @socinfo: platform device pointer 273 * @num_regions: number of @regions 274 * @regions: list of the memory regions defining the shared memory 275 */ 276 struct qcom_smem { 277 struct device *dev; 278 279 struct hwspinlock *hwlock; 280 281 u32 item_count; 282 struct platform_device *socinfo; 283 struct smem_ptable *ptable; 284 struct smem_partition global_partition; 285 struct smem_partition partitions[SMEM_HOST_COUNT]; 286 287 unsigned num_regions; 288 struct smem_region regions[] __counted_by(num_regions); 289 }; 290 291 static void * 292 phdr_to_last_uncached_entry(struct smem_partition_header *phdr) 293 { 294 void *p = phdr; 295 296 return p + le32_to_cpu(phdr->offset_free_uncached); 297 } 298 299 static struct smem_private_entry * 300 phdr_to_first_cached_entry(struct smem_partition_header *phdr, 301 size_t cacheline) 302 { 303 void *p = phdr; 304 struct smem_private_entry *e; 305 306 return p + le32_to_cpu(phdr->size) - ALIGN(sizeof(*e), cacheline); 307 } 308 309 static void * 310 phdr_to_last_cached_entry(struct smem_partition_header *phdr) 311 { 312 void *p = phdr; 313 314 return p + le32_to_cpu(phdr->offset_free_cached); 315 } 316 317 static struct smem_private_entry * 318 phdr_to_first_uncached_entry(struct smem_partition_header *phdr) 319 { 320 void *p = phdr; 321 322 return p + sizeof(*phdr); 323 } 324 325 static struct smem_private_entry * 326 uncached_entry_next(struct smem_private_entry *e) 327 { 328 void *p = e; 329 330 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) + 331 le32_to_cpu(e->size); 332 } 333 334 static struct smem_private_entry * 335 cached_entry_next(struct smem_private_entry *e, size_t cacheline) 336 { 337 void *p = e; 338 339 return p - le32_to_cpu(e->size) - ALIGN(sizeof(*e), cacheline); 340 } 341 342 static void *uncached_entry_to_item(struct smem_private_entry *e) 343 { 344 void *p = e; 345 346 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr); 347 } 348 349 static void *cached_entry_to_item(struct smem_private_entry *e) 350 { 351 void *p = e; 352 353 return p - le32_to_cpu(e->size); 354 } 355 356 /* Pointer to the one and only smem handle */ 357 static struct qcom_smem *__smem; 358 359 /* Timeout (ms) for the trylock of remote spinlocks */ 360 #define HWSPINLOCK_TIMEOUT 1000 361 362 /** 363 * qcom_smem_is_available() - Check if SMEM is available 364 * 365 * Return: true if SMEM is available, false otherwise. 366 */ 367 bool qcom_smem_is_available(void) 368 { 369 return !!__smem; 370 } 371 EXPORT_SYMBOL_GPL(qcom_smem_is_available); 372 373 static int qcom_smem_alloc_private(struct qcom_smem *smem, 374 struct smem_partition *part, 375 unsigned item, 376 size_t size) 377 { 378 struct smem_private_entry *hdr, *end; 379 struct smem_partition_header *phdr; 380 size_t alloc_size; 381 void *cached; 382 void *p_end; 383 384 phdr = (struct smem_partition_header __force *)part->virt_base; 385 p_end = (void *)phdr + part->size; 386 387 hdr = phdr_to_first_uncached_entry(phdr); 388 end = phdr_to_last_uncached_entry(phdr); 389 cached = phdr_to_last_cached_entry(phdr); 390 391 if (WARN_ON((void *)end > p_end || cached > p_end)) 392 return -EINVAL; 393 394 while (hdr < end) { 395 if (hdr->canary != SMEM_PRIVATE_CANARY) 396 goto bad_canary; 397 if (le16_to_cpu(hdr->item) == item) 398 return -EEXIST; 399 400 hdr = uncached_entry_next(hdr); 401 } 402 403 if (WARN_ON((void *)hdr > p_end)) 404 return -EINVAL; 405 406 /* Check that we don't grow into the cached region */ 407 alloc_size = sizeof(*hdr) + ALIGN(size, 8); 408 if ((void *)hdr + alloc_size > cached) { 409 dev_err(smem->dev, "Out of memory\n"); 410 return -ENOSPC; 411 } 412 413 hdr->canary = SMEM_PRIVATE_CANARY; 414 hdr->item = cpu_to_le16(item); 415 hdr->size = cpu_to_le32(ALIGN(size, 8)); 416 hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size); 417 hdr->padding_hdr = 0; 418 419 /* 420 * Ensure the header is written before we advance the free offset, so 421 * that remote processors that does not take the remote spinlock still 422 * gets a consistent view of the linked list. 423 */ 424 wmb(); 425 le32_add_cpu(&phdr->offset_free_uncached, alloc_size); 426 427 return 0; 428 bad_canary: 429 dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n", 430 le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1)); 431 432 return -EINVAL; 433 } 434 435 static int qcom_smem_alloc_global(struct qcom_smem *smem, 436 unsigned item, 437 size_t size) 438 { 439 struct smem_global_entry *entry; 440 struct smem_header *header; 441 442 header = smem->regions[0].virt_base; 443 entry = &header->toc[item]; 444 if (entry->allocated) 445 return -EEXIST; 446 447 size = ALIGN(size, 8); 448 if (WARN_ON(size > le32_to_cpu(header->available))) 449 return -ENOMEM; 450 451 entry->offset = header->free_offset; 452 entry->size = cpu_to_le32(size); 453 454 /* 455 * Ensure the header is consistent before we mark the item allocated, 456 * so that remote processors will get a consistent view of the item 457 * even though they do not take the spinlock on read. 458 */ 459 wmb(); 460 entry->allocated = cpu_to_le32(1); 461 462 le32_add_cpu(&header->free_offset, size); 463 le32_add_cpu(&header->available, -size); 464 465 return 0; 466 } 467 468 /** 469 * qcom_smem_alloc() - allocate space for a smem item 470 * @host: remote processor id, or -1 471 * @item: smem item handle 472 * @size: number of bytes to be allocated 473 * 474 * Allocate space for a given smem item of size @size, given that the item is 475 * not yet allocated. 476 */ 477 int qcom_smem_alloc(unsigned host, unsigned item, size_t size) 478 { 479 struct smem_partition *part; 480 unsigned long flags; 481 int ret; 482 483 if (!__smem) 484 return -EPROBE_DEFER; 485 486 if (item < SMEM_ITEM_LAST_FIXED) { 487 dev_err(__smem->dev, 488 "Rejecting allocation of static entry %d\n", item); 489 return -EINVAL; 490 } 491 492 if (WARN_ON(item >= __smem->item_count)) 493 return -EINVAL; 494 495 ret = hwspin_lock_timeout_irqsave(__smem->hwlock, 496 HWSPINLOCK_TIMEOUT, 497 &flags); 498 if (ret) 499 return ret; 500 501 if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) { 502 part = &__smem->partitions[host]; 503 ret = qcom_smem_alloc_private(__smem, part, item, size); 504 } else if (__smem->global_partition.virt_base) { 505 part = &__smem->global_partition; 506 ret = qcom_smem_alloc_private(__smem, part, item, size); 507 } else { 508 ret = qcom_smem_alloc_global(__smem, item, size); 509 } 510 511 hwspin_unlock_irqrestore(__smem->hwlock, &flags); 512 513 return ret; 514 } 515 EXPORT_SYMBOL_GPL(qcom_smem_alloc); 516 517 static void *qcom_smem_get_global(struct qcom_smem *smem, 518 unsigned item, 519 size_t *size) 520 { 521 struct smem_header *header; 522 struct smem_region *region; 523 struct smem_global_entry *entry; 524 u64 entry_offset; 525 u32 e_size; 526 u32 aux_base; 527 unsigned i; 528 529 header = smem->regions[0].virt_base; 530 entry = &header->toc[item]; 531 if (!entry->allocated) 532 return ERR_PTR(-ENXIO); 533 534 aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK; 535 536 for (i = 0; i < smem->num_regions; i++) { 537 region = &smem->regions[i]; 538 539 if ((u32)region->aux_base == aux_base || !aux_base) { 540 e_size = le32_to_cpu(entry->size); 541 entry_offset = le32_to_cpu(entry->offset); 542 543 if (WARN_ON(e_size + entry_offset > region->size)) 544 return ERR_PTR(-EINVAL); 545 546 if (size != NULL) 547 *size = e_size; 548 549 return region->virt_base + entry_offset; 550 } 551 } 552 553 return ERR_PTR(-ENOENT); 554 } 555 556 static void *qcom_smem_get_private(struct qcom_smem *smem, 557 struct smem_partition *part, 558 unsigned item, 559 size_t *size) 560 { 561 struct smem_private_entry *e, *end; 562 struct smem_partition_header *phdr; 563 void *item_ptr, *p_end; 564 u32 padding_data; 565 u32 e_size; 566 567 phdr = (struct smem_partition_header __force *)part->virt_base; 568 p_end = (void *)phdr + part->size; 569 570 e = phdr_to_first_uncached_entry(phdr); 571 end = phdr_to_last_uncached_entry(phdr); 572 573 while (e < end) { 574 if (e->canary != SMEM_PRIVATE_CANARY) 575 goto invalid_canary; 576 577 if (le16_to_cpu(e->item) == item) { 578 if (size != NULL) { 579 e_size = le32_to_cpu(e->size); 580 padding_data = le16_to_cpu(e->padding_data); 581 582 if (WARN_ON(e_size > part->size || padding_data > e_size)) 583 return ERR_PTR(-EINVAL); 584 585 *size = e_size - padding_data; 586 } 587 588 item_ptr = uncached_entry_to_item(e); 589 if (WARN_ON(item_ptr > p_end)) 590 return ERR_PTR(-EINVAL); 591 592 return item_ptr; 593 } 594 595 e = uncached_entry_next(e); 596 } 597 598 if (WARN_ON((void *)e > p_end)) 599 return ERR_PTR(-EINVAL); 600 601 /* Item was not found in the uncached list, search the cached list */ 602 603 e = phdr_to_first_cached_entry(phdr, part->cacheline); 604 end = phdr_to_last_cached_entry(phdr); 605 606 if (WARN_ON((void *)e < (void *)phdr || (void *)end > p_end)) 607 return ERR_PTR(-EINVAL); 608 609 while (e > end) { 610 if (e->canary != SMEM_PRIVATE_CANARY) 611 goto invalid_canary; 612 613 if (le16_to_cpu(e->item) == item) { 614 if (size != NULL) { 615 e_size = le32_to_cpu(e->size); 616 padding_data = le16_to_cpu(e->padding_data); 617 618 if (WARN_ON(e_size > part->size || padding_data > e_size)) 619 return ERR_PTR(-EINVAL); 620 621 *size = e_size - padding_data; 622 } 623 624 item_ptr = cached_entry_to_item(e); 625 if (WARN_ON(item_ptr < (void *)phdr)) 626 return ERR_PTR(-EINVAL); 627 628 return item_ptr; 629 } 630 631 e = cached_entry_next(e, part->cacheline); 632 } 633 634 if (WARN_ON((void *)e < (void *)phdr)) 635 return ERR_PTR(-EINVAL); 636 637 return ERR_PTR(-ENOENT); 638 639 invalid_canary: 640 dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n", 641 le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1)); 642 643 return ERR_PTR(-EINVAL); 644 } 645 646 /** 647 * qcom_smem_get() - resolve ptr of size of a smem item 648 * @host: the remote processor, or -1 649 * @item: smem item handle 650 * @size: pointer to be filled out with size of the item 651 * 652 * Looks up smem item and returns pointer to it. Size of smem 653 * item is returned in @size. 654 */ 655 void *qcom_smem_get(unsigned host, unsigned item, size_t *size) 656 { 657 struct smem_partition *part; 658 unsigned long flags; 659 int ret; 660 void *ptr = ERR_PTR(-EPROBE_DEFER); 661 662 if (!__smem) 663 return ptr; 664 665 if (WARN_ON(item >= __smem->item_count)) 666 return ERR_PTR(-EINVAL); 667 668 ret = hwspin_lock_timeout_irqsave(__smem->hwlock, 669 HWSPINLOCK_TIMEOUT, 670 &flags); 671 if (ret) 672 return ERR_PTR(ret); 673 674 if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) { 675 part = &__smem->partitions[host]; 676 ptr = qcom_smem_get_private(__smem, part, item, size); 677 } else if (__smem->global_partition.virt_base) { 678 part = &__smem->global_partition; 679 ptr = qcom_smem_get_private(__smem, part, item, size); 680 } else { 681 ptr = qcom_smem_get_global(__smem, item, size); 682 } 683 684 hwspin_unlock_irqrestore(__smem->hwlock, &flags); 685 686 return ptr; 687 688 } 689 EXPORT_SYMBOL_GPL(qcom_smem_get); 690 691 /** 692 * qcom_smem_get_free_space() - retrieve amount of free space in a partition 693 * @host: the remote processor identifying a partition, or -1 694 * 695 * To be used by smem clients as a quick way to determine if any new 696 * allocations has been made. 697 */ 698 int qcom_smem_get_free_space(unsigned host) 699 { 700 struct smem_partition *part; 701 struct smem_partition_header *phdr; 702 struct smem_header *header; 703 unsigned ret; 704 705 if (!__smem) 706 return -EPROBE_DEFER; 707 708 if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) { 709 part = &__smem->partitions[host]; 710 phdr = part->virt_base; 711 ret = le32_to_cpu(phdr->offset_free_cached) - 712 le32_to_cpu(phdr->offset_free_uncached); 713 714 if (ret > le32_to_cpu(part->size)) 715 return -EINVAL; 716 } else if (__smem->global_partition.virt_base) { 717 part = &__smem->global_partition; 718 phdr = part->virt_base; 719 ret = le32_to_cpu(phdr->offset_free_cached) - 720 le32_to_cpu(phdr->offset_free_uncached); 721 722 if (ret > le32_to_cpu(part->size)) 723 return -EINVAL; 724 } else { 725 header = __smem->regions[0].virt_base; 726 ret = le32_to_cpu(header->available); 727 728 if (ret > __smem->regions[0].size) 729 return -EINVAL; 730 } 731 732 return ret; 733 } 734 EXPORT_SYMBOL_GPL(qcom_smem_get_free_space); 735 736 static bool addr_in_range(void __iomem *base, size_t size, void *addr) 737 { 738 return base && ((void __iomem *)addr >= base && (void __iomem *)addr < base + size); 739 } 740 741 /** 742 * qcom_smem_virt_to_phys() - return the physical address associated 743 * with an smem item pointer (previously returned by qcom_smem_get() 744 * @p: the virtual address to convert 745 * 746 * Returns 0 if the pointer provided is not within any smem region. 747 */ 748 phys_addr_t qcom_smem_virt_to_phys(void *p) 749 { 750 struct smem_partition *part; 751 struct smem_region *area; 752 u64 offset; 753 u32 i; 754 755 for (i = 0; i < SMEM_HOST_COUNT; i++) { 756 part = &__smem->partitions[i]; 757 758 if (addr_in_range(part->virt_base, part->size, p)) { 759 offset = p - part->virt_base; 760 761 return (phys_addr_t)part->phys_base + offset; 762 } 763 } 764 765 part = &__smem->global_partition; 766 767 if (addr_in_range(part->virt_base, part->size, p)) { 768 offset = p - part->virt_base; 769 770 return (phys_addr_t)part->phys_base + offset; 771 } 772 773 for (i = 0; i < __smem->num_regions; i++) { 774 area = &__smem->regions[i]; 775 776 if (addr_in_range(area->virt_base, area->size, p)) { 777 offset = p - area->virt_base; 778 779 return (phys_addr_t)area->aux_base + offset; 780 } 781 } 782 783 return 0; 784 } 785 EXPORT_SYMBOL_GPL(qcom_smem_virt_to_phys); 786 787 /** 788 * qcom_smem_get_soc_id() - return the SoC ID 789 * @id: On success, we return the SoC ID here. 790 * 791 * Look up SoC ID from HW/SW build ID and return it. 792 * 793 * Return: 0 on success, negative errno on failure. 794 */ 795 int qcom_smem_get_soc_id(u32 *id) 796 { 797 struct socinfo *info; 798 799 info = qcom_smem_get(QCOM_SMEM_HOST_ANY, SMEM_HW_SW_BUILD_ID, NULL); 800 if (IS_ERR(info)) 801 return PTR_ERR(info); 802 803 *id = __le32_to_cpu(info->id); 804 805 return 0; 806 } 807 EXPORT_SYMBOL_GPL(qcom_smem_get_soc_id); 808 809 static int qcom_smem_get_sbl_version(struct qcom_smem *smem) 810 { 811 struct smem_header *header; 812 __le32 *versions; 813 814 header = smem->regions[0].virt_base; 815 versions = header->version; 816 817 return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]); 818 } 819 820 static struct smem_ptable *qcom_smem_get_ptable(struct qcom_smem *smem) 821 { 822 struct smem_ptable *ptable; 823 u32 version; 824 825 ptable = smem->ptable; 826 if (memcmp(ptable->magic, SMEM_PTABLE_MAGIC, sizeof(ptable->magic))) 827 return ERR_PTR(-ENOENT); 828 829 version = le32_to_cpu(ptable->version); 830 if (version != 1) { 831 dev_err(smem->dev, 832 "Unsupported partition header version %d\n", version); 833 return ERR_PTR(-EINVAL); 834 } 835 return ptable; 836 } 837 838 static u32 qcom_smem_get_item_count(struct qcom_smem *smem) 839 { 840 struct smem_ptable *ptable; 841 struct smem_info *info; 842 843 ptable = qcom_smem_get_ptable(smem); 844 if (IS_ERR_OR_NULL(ptable)) 845 return SMEM_ITEM_COUNT; 846 847 info = (struct smem_info *)&ptable->entry[ptable->num_entries]; 848 if (memcmp(info->magic, SMEM_INFO_MAGIC, sizeof(info->magic))) 849 return SMEM_ITEM_COUNT; 850 851 return le16_to_cpu(info->num_items); 852 } 853 854 /* 855 * Validate the partition header for a partition whose partition 856 * table entry is supplied. Returns a pointer to its header if 857 * valid, or a null pointer otherwise. 858 */ 859 static struct smem_partition_header * 860 qcom_smem_partition_header(struct qcom_smem *smem, 861 struct smem_ptable_entry *entry, u16 host0, u16 host1) 862 { 863 struct smem_partition_header *header; 864 u32 phys_addr; 865 u32 size; 866 867 phys_addr = smem->regions[0].aux_base + le32_to_cpu(entry->offset); 868 header = devm_ioremap_wc(smem->dev, phys_addr, le32_to_cpu(entry->size)); 869 870 if (!header) 871 return NULL; 872 873 if (memcmp(header->magic, SMEM_PART_MAGIC, sizeof(header->magic))) { 874 dev_err(smem->dev, "bad partition magic %4ph\n", header->magic); 875 return NULL; 876 } 877 878 if (host0 != le16_to_cpu(header->host0)) { 879 dev_err(smem->dev, "bad host0 (%hu != %hu)\n", 880 host0, le16_to_cpu(header->host0)); 881 return NULL; 882 } 883 if (host1 != le16_to_cpu(header->host1)) { 884 dev_err(smem->dev, "bad host1 (%hu != %hu)\n", 885 host1, le16_to_cpu(header->host1)); 886 return NULL; 887 } 888 889 size = le32_to_cpu(header->size); 890 if (size != le32_to_cpu(entry->size)) { 891 dev_err(smem->dev, "bad partition size (%u != %u)\n", 892 size, le32_to_cpu(entry->size)); 893 return NULL; 894 } 895 896 if (le32_to_cpu(header->offset_free_uncached) > size) { 897 dev_err(smem->dev, "bad partition free uncached (%u > %u)\n", 898 le32_to_cpu(header->offset_free_uncached), size); 899 return NULL; 900 } 901 902 return header; 903 } 904 905 static int qcom_smem_set_global_partition(struct qcom_smem *smem) 906 { 907 struct smem_partition_header *header; 908 struct smem_ptable_entry *entry; 909 struct smem_ptable *ptable; 910 bool found = false; 911 int i; 912 913 if (smem->global_partition.virt_base) { 914 dev_err(smem->dev, "Already found the global partition\n"); 915 return -EINVAL; 916 } 917 918 ptable = qcom_smem_get_ptable(smem); 919 if (IS_ERR(ptable)) 920 return PTR_ERR(ptable); 921 922 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) { 923 entry = &ptable->entry[i]; 924 if (!le32_to_cpu(entry->offset)) 925 continue; 926 if (!le32_to_cpu(entry->size)) 927 continue; 928 929 if (le16_to_cpu(entry->host0) != SMEM_GLOBAL_HOST) 930 continue; 931 932 if (le16_to_cpu(entry->host1) == SMEM_GLOBAL_HOST) { 933 found = true; 934 break; 935 } 936 } 937 938 if (!found) { 939 dev_err(smem->dev, "Missing entry for global partition\n"); 940 return -EINVAL; 941 } 942 943 header = qcom_smem_partition_header(smem, entry, 944 SMEM_GLOBAL_HOST, SMEM_GLOBAL_HOST); 945 if (!header) 946 return -EINVAL; 947 948 smem->global_partition.virt_base = (void __iomem *)header; 949 smem->global_partition.phys_base = smem->regions[0].aux_base + 950 le32_to_cpu(entry->offset); 951 smem->global_partition.size = le32_to_cpu(entry->size); 952 smem->global_partition.cacheline = le32_to_cpu(entry->cacheline); 953 954 return 0; 955 } 956 957 static int 958 qcom_smem_enumerate_partitions(struct qcom_smem *smem, u16 local_host) 959 { 960 struct smem_partition_header *header; 961 struct smem_ptable_entry *entry; 962 struct smem_ptable *ptable; 963 u16 remote_host; 964 u16 host0, host1; 965 int i; 966 967 ptable = qcom_smem_get_ptable(smem); 968 if (IS_ERR(ptable)) 969 return PTR_ERR(ptable); 970 971 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) { 972 entry = &ptable->entry[i]; 973 if (!le32_to_cpu(entry->offset)) 974 continue; 975 if (!le32_to_cpu(entry->size)) 976 continue; 977 978 host0 = le16_to_cpu(entry->host0); 979 host1 = le16_to_cpu(entry->host1); 980 if (host0 == local_host) 981 remote_host = host1; 982 else if (host1 == local_host) 983 remote_host = host0; 984 else 985 continue; 986 987 if (remote_host >= SMEM_HOST_COUNT) { 988 dev_err(smem->dev, "bad host %u\n", remote_host); 989 return -EINVAL; 990 } 991 992 if (smem->partitions[remote_host].virt_base) { 993 dev_err(smem->dev, "duplicate host %u\n", remote_host); 994 return -EINVAL; 995 } 996 997 header = qcom_smem_partition_header(smem, entry, host0, host1); 998 if (!header) 999 return -EINVAL; 1000 1001 smem->partitions[remote_host].virt_base = (void __iomem *)header; 1002 smem->partitions[remote_host].phys_base = smem->regions[0].aux_base + 1003 le32_to_cpu(entry->offset); 1004 smem->partitions[remote_host].size = le32_to_cpu(entry->size); 1005 smem->partitions[remote_host].cacheline = le32_to_cpu(entry->cacheline); 1006 } 1007 1008 return 0; 1009 } 1010 1011 static int qcom_smem_map_toc(struct qcom_smem *smem, struct smem_region *region) 1012 { 1013 u32 ptable_start; 1014 1015 /* map starting 4K for smem header */ 1016 region->virt_base = devm_ioremap_wc(smem->dev, region->aux_base, SZ_4K); 1017 ptable_start = region->aux_base + region->size - SZ_4K; 1018 /* map last 4k for toc */ 1019 smem->ptable = devm_ioremap_wc(smem->dev, ptable_start, SZ_4K); 1020 1021 if (!region->virt_base || !smem->ptable) 1022 return -ENOMEM; 1023 1024 return 0; 1025 } 1026 1027 static int qcom_smem_map_global(struct qcom_smem *smem, u32 size) 1028 { 1029 u32 phys_addr; 1030 1031 phys_addr = smem->regions[0].aux_base; 1032 1033 smem->regions[0].size = size; 1034 smem->regions[0].virt_base = devm_ioremap_wc(smem->dev, phys_addr, size); 1035 1036 if (!smem->regions[0].virt_base) 1037 return -ENOMEM; 1038 1039 return 0; 1040 } 1041 1042 static int qcom_smem_resolve_mem(struct qcom_smem *smem, const char *name, 1043 struct smem_region *region) 1044 { 1045 struct device *dev = smem->dev; 1046 struct device_node *np; 1047 struct resource r; 1048 int ret; 1049 1050 np = of_parse_phandle(dev->of_node, name, 0); 1051 if (!np) { 1052 dev_err(dev, "No %s specified\n", name); 1053 return -EINVAL; 1054 } 1055 1056 ret = of_address_to_resource(np, 0, &r); 1057 of_node_put(np); 1058 if (ret) 1059 return ret; 1060 1061 region->aux_base = r.start; 1062 region->size = resource_size(&r); 1063 1064 return 0; 1065 } 1066 1067 static int qcom_smem_probe(struct platform_device *pdev) 1068 { 1069 struct smem_header *header; 1070 struct reserved_mem *rmem; 1071 struct qcom_smem *smem; 1072 unsigned long flags; 1073 int num_regions; 1074 int hwlock_id; 1075 u32 version; 1076 u32 size; 1077 int ret; 1078 int i; 1079 1080 num_regions = 1; 1081 if (of_property_present(pdev->dev.of_node, "qcom,rpm-msg-ram")) 1082 num_regions++; 1083 1084 smem = devm_kzalloc(&pdev->dev, struct_size(smem, regions, num_regions), 1085 GFP_KERNEL); 1086 if (!smem) 1087 return -ENOMEM; 1088 1089 smem->dev = &pdev->dev; 1090 smem->num_regions = num_regions; 1091 1092 rmem = of_reserved_mem_lookup(pdev->dev.of_node); 1093 if (rmem) { 1094 smem->regions[0].aux_base = rmem->base; 1095 smem->regions[0].size = rmem->size; 1096 } else { 1097 /* 1098 * Fall back to the memory-region reference, if we're not a 1099 * reserved-memory node. 1100 */ 1101 ret = qcom_smem_resolve_mem(smem, "memory-region", &smem->regions[0]); 1102 if (ret) 1103 return ret; 1104 } 1105 1106 if (num_regions > 1) { 1107 ret = qcom_smem_resolve_mem(smem, "qcom,rpm-msg-ram", &smem->regions[1]); 1108 if (ret) 1109 return ret; 1110 } 1111 1112 1113 ret = qcom_smem_map_toc(smem, &smem->regions[0]); 1114 if (ret) 1115 return ret; 1116 1117 for (i = 1; i < num_regions; i++) { 1118 smem->regions[i].virt_base = devm_ioremap_wc(&pdev->dev, 1119 smem->regions[i].aux_base, 1120 smem->regions[i].size); 1121 if (!smem->regions[i].virt_base) { 1122 dev_err(&pdev->dev, "failed to remap %pa\n", &smem->regions[i].aux_base); 1123 return -ENOMEM; 1124 } 1125 } 1126 1127 header = smem->regions[0].virt_base; 1128 if (le32_to_cpu(header->initialized) != 1 || 1129 le32_to_cpu(header->reserved)) { 1130 dev_err(&pdev->dev, "SMEM is not initialized by SBL\n"); 1131 return -EINVAL; 1132 } 1133 1134 hwlock_id = of_hwspin_lock_get_id(pdev->dev.of_node, 0); 1135 if (hwlock_id < 0) { 1136 if (hwlock_id != -EPROBE_DEFER) 1137 dev_err(&pdev->dev, "failed to retrieve hwlock\n"); 1138 return hwlock_id; 1139 } 1140 1141 smem->hwlock = hwspin_lock_request_specific(hwlock_id); 1142 if (!smem->hwlock) 1143 return -ENXIO; 1144 1145 ret = hwspin_lock_timeout_irqsave(smem->hwlock, HWSPINLOCK_TIMEOUT, &flags); 1146 if (ret) 1147 return ret; 1148 size = readl_relaxed(&header->available) + readl_relaxed(&header->free_offset); 1149 hwspin_unlock_irqrestore(smem->hwlock, &flags); 1150 1151 version = qcom_smem_get_sbl_version(smem); 1152 /* 1153 * smem header mapping is required only in heap version scheme, so unmap 1154 * it here. It will be remapped in qcom_smem_map_global() when whole 1155 * partition is mapped again. 1156 */ 1157 devm_iounmap(smem->dev, smem->regions[0].virt_base); 1158 switch (version >> 16) { 1159 case SMEM_GLOBAL_PART_VERSION: 1160 ret = qcom_smem_set_global_partition(smem); 1161 if (ret < 0) 1162 return ret; 1163 smem->item_count = qcom_smem_get_item_count(smem); 1164 break; 1165 case SMEM_GLOBAL_HEAP_VERSION: 1166 qcom_smem_map_global(smem, size); 1167 smem->item_count = SMEM_ITEM_COUNT; 1168 break; 1169 default: 1170 dev_err(&pdev->dev, "Unsupported SMEM version 0x%x\n", version); 1171 return -EINVAL; 1172 } 1173 1174 BUILD_BUG_ON(SMEM_HOST_APPS >= SMEM_HOST_COUNT); 1175 ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS); 1176 if (ret < 0 && ret != -ENOENT) 1177 return ret; 1178 1179 __smem = smem; 1180 1181 smem->socinfo = platform_device_register_data(&pdev->dev, "qcom-socinfo", 1182 PLATFORM_DEVID_NONE, NULL, 1183 0); 1184 if (IS_ERR(smem->socinfo)) 1185 dev_dbg(&pdev->dev, "failed to register socinfo device\n"); 1186 1187 return 0; 1188 } 1189 1190 static void qcom_smem_remove(struct platform_device *pdev) 1191 { 1192 platform_device_unregister(__smem->socinfo); 1193 1194 hwspin_lock_free(__smem->hwlock); 1195 __smem = NULL; 1196 } 1197 1198 static const struct of_device_id qcom_smem_of_match[] = { 1199 { .compatible = "qcom,smem" }, 1200 {} 1201 }; 1202 MODULE_DEVICE_TABLE(of, qcom_smem_of_match); 1203 1204 static struct platform_driver qcom_smem_driver = { 1205 .probe = qcom_smem_probe, 1206 .remove_new = qcom_smem_remove, 1207 .driver = { 1208 .name = "qcom-smem", 1209 .of_match_table = qcom_smem_of_match, 1210 .suppress_bind_attrs = true, 1211 }, 1212 }; 1213 1214 static int __init qcom_smem_init(void) 1215 { 1216 return platform_driver_register(&qcom_smem_driver); 1217 } 1218 arch_initcall(qcom_smem_init); 1219 1220 static void __exit qcom_smem_exit(void) 1221 { 1222 platform_driver_unregister(&qcom_smem_driver); 1223 } 1224 module_exit(qcom_smem_exit) 1225 1226 MODULE_AUTHOR("Bjorn Andersson <bjorn.andersson@sonymobile.com>"); 1227 MODULE_DESCRIPTION("Qualcomm Shared Memory Manager"); 1228 MODULE_LICENSE("GPL v2"); 1229