1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2016-2018, The Linux Foundation. All rights reserved. 4 * Copyright (c) 2023-2024, Qualcomm Innovation Center, Inc. All rights reserved. 5 */ 6 7 #define pr_fmt(fmt) "%s " fmt, KBUILD_MODNAME 8 9 #include <linux/atomic.h> 10 #include <linux/cpu_pm.h> 11 #include <linux/delay.h> 12 #include <linux/interrupt.h> 13 #include <linux/io.h> 14 #include <linux/iopoll.h> 15 #include <linux/kernel.h> 16 #include <linux/ktime.h> 17 #include <linux/list.h> 18 #include <linux/module.h> 19 #include <linux/notifier.h> 20 #include <linux/of.h> 21 #include <linux/of_irq.h> 22 #include <linux/of_platform.h> 23 #include <linux/platform_device.h> 24 #include <linux/pm_domain.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/slab.h> 27 #include <linux/spinlock.h> 28 #include <linux/wait.h> 29 30 #include <clocksource/arm_arch_timer.h> 31 #include <soc/qcom/cmd-db.h> 32 #include <soc/qcom/tcs.h> 33 #include <dt-bindings/soc/qcom,rpmh-rsc.h> 34 35 #include "rpmh-internal.h" 36 37 #define CREATE_TRACE_POINTS 38 #include "trace-rpmh.h" 39 40 41 #define RSC_DRV_ID 0 42 43 #define MAJOR_VER_MASK 0xFF 44 #define MAJOR_VER_SHIFT 16 45 #define MINOR_VER_MASK 0xFF 46 #define MINOR_VER_SHIFT 8 47 48 enum { 49 RSC_DRV_TCS_OFFSET, 50 RSC_DRV_CMD_OFFSET, 51 DRV_SOLVER_CONFIG, 52 DRV_PRNT_CHLD_CONFIG, 53 RSC_DRV_IRQ_ENABLE, 54 RSC_DRV_IRQ_STATUS, 55 RSC_DRV_IRQ_CLEAR, 56 RSC_DRV_CMD_WAIT_FOR_CMPL, 57 RSC_DRV_CONTROL, 58 RSC_DRV_STATUS, 59 RSC_DRV_CMD_ENABLE, 60 RSC_DRV_CMD_MSGID, 61 RSC_DRV_CMD_ADDR, 62 RSC_DRV_CMD_DATA, 63 RSC_DRV_CMD_STATUS, 64 RSC_DRV_CMD_RESP_DATA, 65 }; 66 67 /* DRV HW Solver Configuration Information Register */ 68 #define DRV_HW_SOLVER_MASK 1 69 #define DRV_HW_SOLVER_SHIFT 24 70 71 /* DRV TCS Configuration Information Register */ 72 #define DRV_NUM_TCS_MASK 0x3F 73 #define DRV_NUM_TCS_SHIFT 6 74 #define DRV_NCPT_MASK 0x1F 75 #define DRV_NCPT_SHIFT 27 76 77 /* Offsets for CONTROL TCS Registers */ 78 #define RSC_DRV_CTL_TCS_DATA_HI 0x38 79 #define RSC_DRV_CTL_TCS_DATA_HI_MASK 0xFFFFFF 80 #define RSC_DRV_CTL_TCS_DATA_HI_VALID BIT(31) 81 #define RSC_DRV_CTL_TCS_DATA_LO 0x40 82 #define RSC_DRV_CTL_TCS_DATA_LO_MASK 0xFFFFFFFF 83 #define RSC_DRV_CTL_TCS_DATA_SIZE 32 84 85 #define TCS_AMC_MODE_ENABLE BIT(16) 86 #define TCS_AMC_MODE_TRIGGER BIT(24) 87 88 /* TCS CMD register bit mask */ 89 #define CMD_MSGID_LEN 8 90 #define CMD_MSGID_RESP_REQ BIT(8) 91 #define CMD_MSGID_WRITE BIT(16) 92 #define CMD_STATUS_ISSUED BIT(8) 93 #define CMD_STATUS_COMPL BIT(16) 94 95 /* 96 * Here's a high level overview of how all the registers in RPMH work 97 * together: 98 * 99 * - The main rpmh-rsc address is the base of a register space that can 100 * be used to find overall configuration of the hardware 101 * (DRV_PRNT_CHLD_CONFIG). Also found within the rpmh-rsc register 102 * space are all the TCS blocks. The offset of the TCS blocks is 103 * specified in the device tree by "qcom,tcs-offset" and used to 104 * compute tcs_base. 105 * - TCS blocks come one after another. Type, count, and order are 106 * specified by the device tree as "qcom,tcs-config". 107 * - Each TCS block has some registers, then space for up to 16 commands. 108 * Note that though address space is reserved for 16 commands, fewer 109 * might be present. See ncpt (num cmds per TCS). 110 * 111 * Here's a picture: 112 * 113 * +---------------------------------------------------+ 114 * |RSC | 115 * | ctrl | 116 * | | 117 * | Drvs: | 118 * | +-----------------------------------------------+ | 119 * | |DRV0 | | 120 * | | ctrl/config | | 121 * | | IRQ | | 122 * | | | | 123 * | | TCSes: | | 124 * | | +------------------------------------------+ | | 125 * | | |TCS0 | | | | | | | | | | | | | | | 126 * | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15| | | 127 * | | | | | | | | | | | | | | | | | | 128 * | | +------------------------------------------+ | | 129 * | | +------------------------------------------+ | | 130 * | | |TCS1 | | | | | | | | | | | | | | | 131 * | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15| | | 132 * | | | | | | | | | | | | | | | | | | 133 * | | +------------------------------------------+ | | 134 * | | +------------------------------------------+ | | 135 * | | |TCS2 | | | | | | | | | | | | | | | 136 * | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15| | | 137 * | | | | | | | | | | | | | | | | | | 138 * | | +------------------------------------------+ | | 139 * | | ...... | | 140 * | +-----------------------------------------------+ | 141 * | +-----------------------------------------------+ | 142 * | |DRV1 | | 143 * | | (same as DRV0) | | 144 * | +-----------------------------------------------+ | 145 * | ...... | 146 * +---------------------------------------------------+ 147 */ 148 149 #define USECS_TO_CYCLES(time_usecs) \ 150 xloops_to_cycles((time_usecs) * 0x10C7UL) 151 152 static inline unsigned long xloops_to_cycles(u64 xloops) 153 { 154 return (xloops * loops_per_jiffy * HZ) >> 32; 155 } 156 157 static u32 rpmh_rsc_reg_offset_ver_2_7[] = { 158 [RSC_DRV_TCS_OFFSET] = 672, 159 [RSC_DRV_CMD_OFFSET] = 20, 160 [DRV_SOLVER_CONFIG] = 0x04, 161 [DRV_PRNT_CHLD_CONFIG] = 0x0C, 162 [RSC_DRV_IRQ_ENABLE] = 0x00, 163 [RSC_DRV_IRQ_STATUS] = 0x04, 164 [RSC_DRV_IRQ_CLEAR] = 0x08, 165 [RSC_DRV_CMD_WAIT_FOR_CMPL] = 0x10, 166 [RSC_DRV_CONTROL] = 0x14, 167 [RSC_DRV_STATUS] = 0x18, 168 [RSC_DRV_CMD_ENABLE] = 0x1C, 169 [RSC_DRV_CMD_MSGID] = 0x30, 170 [RSC_DRV_CMD_ADDR] = 0x34, 171 [RSC_DRV_CMD_DATA] = 0x38, 172 [RSC_DRV_CMD_STATUS] = 0x3C, 173 [RSC_DRV_CMD_RESP_DATA] = 0x40, 174 }; 175 176 static u32 rpmh_rsc_reg_offset_ver_3_0[] = { 177 [RSC_DRV_TCS_OFFSET] = 672, 178 [RSC_DRV_CMD_OFFSET] = 24, 179 [DRV_SOLVER_CONFIG] = 0x04, 180 [DRV_PRNT_CHLD_CONFIG] = 0x0C, 181 [RSC_DRV_IRQ_ENABLE] = 0x00, 182 [RSC_DRV_IRQ_STATUS] = 0x04, 183 [RSC_DRV_IRQ_CLEAR] = 0x08, 184 [RSC_DRV_CMD_WAIT_FOR_CMPL] = 0x20, 185 [RSC_DRV_CONTROL] = 0x24, 186 [RSC_DRV_STATUS] = 0x28, 187 [RSC_DRV_CMD_ENABLE] = 0x2C, 188 [RSC_DRV_CMD_MSGID] = 0x34, 189 [RSC_DRV_CMD_ADDR] = 0x38, 190 [RSC_DRV_CMD_DATA] = 0x3C, 191 [RSC_DRV_CMD_STATUS] = 0x40, 192 [RSC_DRV_CMD_RESP_DATA] = 0x44, 193 }; 194 195 static inline void __iomem * 196 tcs_reg_addr(const struct rsc_drv *drv, int reg, int tcs_id) 197 { 198 return drv->tcs_base + drv->regs[RSC_DRV_TCS_OFFSET] * tcs_id + reg; 199 } 200 201 static inline void __iomem * 202 tcs_cmd_addr(const struct rsc_drv *drv, int reg, int tcs_id, int cmd_id) 203 { 204 return tcs_reg_addr(drv, reg, tcs_id) + drv->regs[RSC_DRV_CMD_OFFSET] * cmd_id; 205 } 206 207 static u32 read_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id, 208 int cmd_id) 209 { 210 return readl_relaxed(tcs_cmd_addr(drv, reg, tcs_id, cmd_id)); 211 } 212 213 static u32 read_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id) 214 { 215 return readl_relaxed(tcs_reg_addr(drv, reg, tcs_id)); 216 } 217 218 static void write_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id, 219 int cmd_id, u32 data) 220 { 221 writel_relaxed(data, tcs_cmd_addr(drv, reg, tcs_id, cmd_id)); 222 } 223 224 static void write_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id, 225 u32 data) 226 { 227 writel_relaxed(data, tcs_reg_addr(drv, reg, tcs_id)); 228 } 229 230 static void write_tcs_reg_sync(const struct rsc_drv *drv, int reg, int tcs_id, 231 u32 data) 232 { 233 int i; 234 235 writel(data, tcs_reg_addr(drv, reg, tcs_id)); 236 237 /* 238 * Wait until we read back the same value. Use a counter rather than 239 * ktime for timeout since this may be called after timekeeping stops. 240 */ 241 for (i = 0; i < USEC_PER_SEC; i++) { 242 if (readl(tcs_reg_addr(drv, reg, tcs_id)) == data) 243 return; 244 udelay(1); 245 } 246 pr_err("%s: error writing %#x to %d:%#x\n", drv->name, 247 data, tcs_id, reg); 248 } 249 250 /** 251 * tcs_invalidate() - Invalidate all TCSes of the given type (sleep or wake). 252 * @drv: The RSC controller. 253 * @type: SLEEP_TCS or WAKE_TCS 254 * 255 * This will clear the "slots" variable of the given tcs_group and also 256 * tell the hardware to forget about all entries. 257 * 258 * The caller must ensure that no other RPMH actions are happening when this 259 * function is called, since otherwise the device may immediately become 260 * used again even before this function exits. 261 */ 262 static void tcs_invalidate(struct rsc_drv *drv, int type) 263 { 264 int m; 265 struct tcs_group *tcs = &drv->tcs[type]; 266 267 /* Caller ensures nobody else is running so no lock */ 268 if (bitmap_empty(tcs->slots, MAX_TCS_SLOTS)) 269 return; 270 271 for (m = tcs->offset; m < tcs->offset + tcs->num_tcs; m++) 272 write_tcs_reg_sync(drv, drv->regs[RSC_DRV_CMD_ENABLE], m, 0); 273 274 bitmap_zero(tcs->slots, MAX_TCS_SLOTS); 275 } 276 277 /** 278 * rpmh_rsc_invalidate() - Invalidate sleep and wake TCSes. 279 * @drv: The RSC controller. 280 * 281 * The caller must ensure that no other RPMH actions are happening when this 282 * function is called, since otherwise the device may immediately become 283 * used again even before this function exits. 284 */ 285 void rpmh_rsc_invalidate(struct rsc_drv *drv) 286 { 287 tcs_invalidate(drv, SLEEP_TCS); 288 tcs_invalidate(drv, WAKE_TCS); 289 } 290 291 /** 292 * get_tcs_for_msg() - Get the tcs_group used to send the given message. 293 * @drv: The RSC controller. 294 * @msg: The message we want to send. 295 * 296 * This is normally pretty straightforward except if we are trying to send 297 * an ACTIVE_ONLY message but don't have any active_only TCSes. 298 * 299 * Return: A pointer to a tcs_group or an ERR_PTR. 300 */ 301 static struct tcs_group *get_tcs_for_msg(struct rsc_drv *drv, 302 const struct tcs_request *msg) 303 { 304 int type; 305 struct tcs_group *tcs; 306 307 switch (msg->state) { 308 case RPMH_ACTIVE_ONLY_STATE: 309 type = ACTIVE_TCS; 310 break; 311 case RPMH_WAKE_ONLY_STATE: 312 type = WAKE_TCS; 313 break; 314 case RPMH_SLEEP_STATE: 315 type = SLEEP_TCS; 316 break; 317 default: 318 return ERR_PTR(-EINVAL); 319 } 320 321 /* 322 * If we are making an active request on a RSC that does not have a 323 * dedicated TCS for active state use, then re-purpose a wake TCS to 324 * send active votes. This is safe because we ensure any active-only 325 * transfers have finished before we use it (maybe by running from 326 * the last CPU in PM code). 327 */ 328 tcs = &drv->tcs[type]; 329 if (msg->state == RPMH_ACTIVE_ONLY_STATE && !tcs->num_tcs) 330 tcs = &drv->tcs[WAKE_TCS]; 331 332 return tcs; 333 } 334 335 /** 336 * get_req_from_tcs() - Get a stashed request that was xfering on the given TCS. 337 * @drv: The RSC controller. 338 * @tcs_id: The global ID of this TCS. 339 * 340 * For ACTIVE_ONLY transfers we want to call back into the client when the 341 * transfer finishes. To do this we need the "request" that the client 342 * originally provided us. This function grabs the request that we stashed 343 * when we started the transfer. 344 * 345 * This only makes sense for ACTIVE_ONLY transfers since those are the only 346 * ones we track sending (the only ones we enable interrupts for and the only 347 * ones we call back to the client for). 348 * 349 * Return: The stashed request. 350 */ 351 static const struct tcs_request *get_req_from_tcs(struct rsc_drv *drv, 352 int tcs_id) 353 { 354 struct tcs_group *tcs; 355 int i; 356 357 for (i = 0; i < TCS_TYPE_NR; i++) { 358 tcs = &drv->tcs[i]; 359 if (tcs->mask & BIT(tcs_id)) 360 return tcs->req[tcs_id - tcs->offset]; 361 } 362 363 return NULL; 364 } 365 366 /** 367 * __tcs_set_trigger() - Start xfer on a TCS or unset trigger on a borrowed TCS 368 * @drv: The controller. 369 * @tcs_id: The global ID of this TCS. 370 * @trigger: If true then untrigger/retrigger. If false then just untrigger. 371 * 372 * In the normal case we only ever call with "trigger=true" to start a 373 * transfer. That will un-trigger/disable the TCS from the last transfer 374 * then trigger/enable for this transfer. 375 * 376 * If we borrowed a wake TCS for an active-only transfer we'll also call 377 * this function with "trigger=false" to just do the un-trigger/disable 378 * before using the TCS for wake purposes again. 379 * 380 * Note that the AP is only in charge of triggering active-only transfers. 381 * The AP never triggers sleep/wake values using this function. 382 */ 383 static void __tcs_set_trigger(struct rsc_drv *drv, int tcs_id, bool trigger) 384 { 385 u32 enable; 386 u32 reg = drv->regs[RSC_DRV_CONTROL]; 387 388 /* 389 * HW req: Clear the DRV_CONTROL and enable TCS again 390 * While clearing ensure that the AMC mode trigger is cleared 391 * and then the mode enable is cleared. 392 */ 393 enable = read_tcs_reg(drv, reg, tcs_id); 394 enable &= ~TCS_AMC_MODE_TRIGGER; 395 write_tcs_reg_sync(drv, reg, tcs_id, enable); 396 enable &= ~TCS_AMC_MODE_ENABLE; 397 write_tcs_reg_sync(drv, reg, tcs_id, enable); 398 399 if (trigger) { 400 /* Enable the AMC mode on the TCS and then trigger the TCS */ 401 enable = TCS_AMC_MODE_ENABLE; 402 write_tcs_reg_sync(drv, reg, tcs_id, enable); 403 enable |= TCS_AMC_MODE_TRIGGER; 404 write_tcs_reg(drv, reg, tcs_id, enable); 405 } 406 } 407 408 /** 409 * enable_tcs_irq() - Enable or disable interrupts on the given TCS. 410 * @drv: The controller. 411 * @tcs_id: The global ID of this TCS. 412 * @enable: If true then enable; if false then disable 413 * 414 * We only ever call this when we borrow a wake TCS for an active-only 415 * transfer. For active-only TCSes interrupts are always left enabled. 416 */ 417 static void enable_tcs_irq(struct rsc_drv *drv, int tcs_id, bool enable) 418 { 419 u32 data; 420 u32 reg = drv->regs[RSC_DRV_IRQ_ENABLE]; 421 422 data = readl_relaxed(drv->tcs_base + reg); 423 if (enable) 424 data |= BIT(tcs_id); 425 else 426 data &= ~BIT(tcs_id); 427 writel_relaxed(data, drv->tcs_base + reg); 428 } 429 430 /** 431 * tcs_tx_done() - TX Done interrupt handler. 432 * @irq: The IRQ number (ignored). 433 * @p: Pointer to "struct rsc_drv". 434 * 435 * Called for ACTIVE_ONLY transfers (those are the only ones we enable the 436 * IRQ for) when a transfer is done. 437 * 438 * Return: IRQ_HANDLED 439 */ 440 static irqreturn_t tcs_tx_done(int irq, void *p) 441 { 442 struct rsc_drv *drv = p; 443 int i; 444 unsigned long irq_status; 445 const struct tcs_request *req; 446 447 irq_status = readl_relaxed(drv->tcs_base + drv->regs[RSC_DRV_IRQ_STATUS]); 448 449 for_each_set_bit(i, &irq_status, BITS_PER_TYPE(u32)) { 450 req = get_req_from_tcs(drv, i); 451 if (WARN_ON(!req)) 452 goto skip; 453 454 trace_rpmh_tx_done(drv, i, req); 455 456 /* Clear AMC trigger & enable modes and 457 * disable interrupt for this TCS 458 */ 459 __tcs_set_trigger(drv, i, false); 460 skip: 461 /* Reclaim the TCS */ 462 write_tcs_reg(drv, drv->regs[RSC_DRV_CMD_ENABLE], i, 0); 463 writel_relaxed(BIT(i), drv->tcs_base + drv->regs[RSC_DRV_IRQ_CLEAR]); 464 spin_lock(&drv->lock); 465 clear_bit(i, drv->tcs_in_use); 466 /* 467 * Disable interrupt for WAKE TCS to avoid being 468 * spammed with interrupts coming when the solver 469 * sends its wake votes. 470 */ 471 if (!drv->tcs[ACTIVE_TCS].num_tcs) 472 enable_tcs_irq(drv, i, false); 473 spin_unlock(&drv->lock); 474 wake_up(&drv->tcs_wait); 475 if (req) 476 rpmh_tx_done(req); 477 } 478 479 return IRQ_HANDLED; 480 } 481 482 /** 483 * __tcs_buffer_write() - Write to TCS hardware from a request; don't trigger. 484 * @drv: The controller. 485 * @tcs_id: The global ID of this TCS. 486 * @cmd_id: The index within the TCS to start writing. 487 * @msg: The message we want to send, which will contain several addr/data 488 * pairs to program (but few enough that they all fit in one TCS). 489 * 490 * This is used for all types of transfers (active, sleep, and wake). 491 */ 492 static void __tcs_buffer_write(struct rsc_drv *drv, int tcs_id, int cmd_id, 493 const struct tcs_request *msg) 494 { 495 u32 msgid; 496 u32 cmd_msgid = CMD_MSGID_LEN | CMD_MSGID_WRITE; 497 u32 cmd_enable = 0; 498 struct tcs_cmd *cmd; 499 int i, j; 500 501 /* Convert all commands to RR when the request has wait_for_compl set */ 502 cmd_msgid |= msg->wait_for_compl ? CMD_MSGID_RESP_REQ : 0; 503 504 for (i = 0, j = cmd_id; i < msg->num_cmds; i++, j++) { 505 cmd = &msg->cmds[i]; 506 cmd_enable |= BIT(j); 507 msgid = cmd_msgid; 508 /* 509 * Additionally, if the cmd->wait is set, make the command 510 * response reqd even if the overall request was fire-n-forget. 511 */ 512 msgid |= cmd->wait ? CMD_MSGID_RESP_REQ : 0; 513 514 write_tcs_cmd(drv, drv->regs[RSC_DRV_CMD_MSGID], tcs_id, j, msgid); 515 write_tcs_cmd(drv, drv->regs[RSC_DRV_CMD_ADDR], tcs_id, j, cmd->addr); 516 write_tcs_cmd(drv, drv->regs[RSC_DRV_CMD_DATA], tcs_id, j, cmd->data); 517 trace_rpmh_send_msg(drv, tcs_id, msg->state, j, msgid, cmd); 518 } 519 520 cmd_enable |= read_tcs_reg(drv, drv->regs[RSC_DRV_CMD_ENABLE], tcs_id); 521 write_tcs_reg(drv, drv->regs[RSC_DRV_CMD_ENABLE], tcs_id, cmd_enable); 522 } 523 524 /** 525 * check_for_req_inflight() - Look to see if conflicting cmds are in flight. 526 * @drv: The controller. 527 * @tcs: A pointer to the tcs_group used for ACTIVE_ONLY transfers. 528 * @msg: The message we want to send, which will contain several addr/data 529 * pairs to program (but few enough that they all fit in one TCS). 530 * 531 * This will walk through the TCSes in the group and check if any of them 532 * appear to be sending to addresses referenced in the message. If it finds 533 * one it'll return -EBUSY. 534 * 535 * Only for use for active-only transfers. 536 * 537 * Must be called with the drv->lock held since that protects tcs_in_use. 538 * 539 * Return: 0 if nothing in flight or -EBUSY if we should try again later. 540 * The caller must re-enable interrupts between tries since that's 541 * the only way tcs_in_use will ever be updated and the only way 542 * RSC_DRV_CMD_ENABLE will ever be cleared. 543 */ 544 static int check_for_req_inflight(struct rsc_drv *drv, struct tcs_group *tcs, 545 const struct tcs_request *msg) 546 { 547 unsigned long curr_enabled; 548 u32 addr; 549 int j, k; 550 int i = tcs->offset; 551 552 for_each_set_bit_from(i, drv->tcs_in_use, tcs->offset + tcs->num_tcs) { 553 curr_enabled = read_tcs_reg(drv, drv->regs[RSC_DRV_CMD_ENABLE], i); 554 555 for_each_set_bit(j, &curr_enabled, MAX_CMDS_PER_TCS) { 556 addr = read_tcs_cmd(drv, drv->regs[RSC_DRV_CMD_ADDR], i, j); 557 for (k = 0; k < msg->num_cmds; k++) { 558 if (cmd_db_match_resource_addr(msg->cmds[k].addr, addr)) 559 return -EBUSY; 560 } 561 } 562 } 563 564 return 0; 565 } 566 567 /** 568 * find_free_tcs() - Find free tcs in the given tcs_group; only for active. 569 * @tcs: A pointer to the active-only tcs_group (or the wake tcs_group if 570 * we borrowed it because there are zero active-only ones). 571 * 572 * Must be called with the drv->lock held since that protects tcs_in_use. 573 * 574 * Return: The first tcs that's free or -EBUSY if all in use. 575 */ 576 static int find_free_tcs(struct tcs_group *tcs) 577 { 578 const struct rsc_drv *drv = tcs->drv; 579 unsigned long i; 580 unsigned long max = tcs->offset + tcs->num_tcs; 581 582 i = find_next_zero_bit(drv->tcs_in_use, max, tcs->offset); 583 if (i >= max) 584 return -EBUSY; 585 586 return i; 587 } 588 589 /** 590 * claim_tcs_for_req() - Claim a tcs in the given tcs_group; only for active. 591 * @drv: The controller. 592 * @tcs: The tcs_group used for ACTIVE_ONLY transfers. 593 * @msg: The data to be sent. 594 * 595 * Claims a tcs in the given tcs_group while making sure that no existing cmd 596 * is in flight that would conflict with the one in @msg. 597 * 598 * Context: Must be called with the drv->lock held since that protects 599 * tcs_in_use. 600 * 601 * Return: The id of the claimed tcs or -EBUSY if a matching msg is in flight 602 * or the tcs_group is full. 603 */ 604 static int claim_tcs_for_req(struct rsc_drv *drv, struct tcs_group *tcs, 605 const struct tcs_request *msg) 606 { 607 int ret; 608 609 /* 610 * The h/w does not like if we send a request to the same address, 611 * when one is already in-flight or being processed. 612 */ 613 ret = check_for_req_inflight(drv, tcs, msg); 614 if (ret) 615 return ret; 616 617 return find_free_tcs(tcs); 618 } 619 620 /** 621 * rpmh_rsc_send_data() - Write / trigger active-only message. 622 * @drv: The controller. 623 * @msg: The data to be sent. 624 * 625 * NOTES: 626 * - This is only used for "ACTIVE_ONLY" since the limitations of this 627 * function don't make sense for sleep/wake cases. 628 * - To do the transfer, we will grab a whole TCS for ourselves--we don't 629 * try to share. If there are none available we'll wait indefinitely 630 * for a free one. 631 * - This function will not wait for the commands to be finished, only for 632 * data to be programmed into the RPMh. See rpmh_tx_done() which will 633 * be called when the transfer is fully complete. 634 * - This function must be called with interrupts enabled. If the hardware 635 * is busy doing someone else's transfer we need that transfer to fully 636 * finish so that we can have the hardware, and to fully finish it needs 637 * the interrupt handler to run. If the interrupts is set to run on the 638 * active CPU this can never happen if interrupts are disabled. 639 * 640 * Return: 0 on success, -EINVAL on error. 641 */ 642 int rpmh_rsc_send_data(struct rsc_drv *drv, const struct tcs_request *msg) 643 { 644 struct tcs_group *tcs; 645 int tcs_id; 646 647 might_sleep(); 648 649 tcs = get_tcs_for_msg(drv, msg); 650 if (IS_ERR(tcs)) 651 return PTR_ERR(tcs); 652 653 spin_lock_irq(&drv->lock); 654 655 /* Wait forever for a free tcs. It better be there eventually! */ 656 wait_event_lock_irq(drv->tcs_wait, 657 (tcs_id = claim_tcs_for_req(drv, tcs, msg)) >= 0, 658 drv->lock); 659 660 tcs->req[tcs_id - tcs->offset] = msg; 661 set_bit(tcs_id, drv->tcs_in_use); 662 if (msg->state == RPMH_ACTIVE_ONLY_STATE && tcs->type != ACTIVE_TCS) { 663 /* 664 * Clear previously programmed WAKE commands in selected 665 * repurposed TCS to avoid triggering them. tcs->slots will be 666 * cleaned from rpmh_flush() by invoking rpmh_rsc_invalidate() 667 */ 668 write_tcs_reg_sync(drv, drv->regs[RSC_DRV_CMD_ENABLE], tcs_id, 0); 669 enable_tcs_irq(drv, tcs_id, true); 670 } 671 spin_unlock_irq(&drv->lock); 672 673 /* 674 * These two can be done after the lock is released because: 675 * - We marked "tcs_in_use" under lock. 676 * - Once "tcs_in_use" has been marked nobody else could be writing 677 * to these registers until the interrupt goes off. 678 * - The interrupt can't go off until we trigger w/ the last line 679 * of __tcs_set_trigger() below. 680 */ 681 __tcs_buffer_write(drv, tcs_id, 0, msg); 682 __tcs_set_trigger(drv, tcs_id, true); 683 684 return 0; 685 } 686 687 /** 688 * find_slots() - Find a place to write the given message. 689 * @tcs: The tcs group to search. 690 * @msg: The message we want to find room for. 691 * @tcs_id: If we return 0 from the function, we return the global ID of the 692 * TCS to write to here. 693 * @cmd_id: If we return 0 from the function, we return the index of 694 * the command array of the returned TCS where the client should 695 * start writing the message. 696 * 697 * Only for use on sleep/wake TCSes since those are the only ones we maintain 698 * tcs->slots for. 699 * 700 * Return: -ENOMEM if there was no room, else 0. 701 */ 702 static int find_slots(struct tcs_group *tcs, const struct tcs_request *msg, 703 int *tcs_id, int *cmd_id) 704 { 705 int slot, offset; 706 int i = 0; 707 708 /* Do over, until we can fit the full payload in a single TCS */ 709 do { 710 slot = bitmap_find_next_zero_area(tcs->slots, MAX_TCS_SLOTS, 711 i, msg->num_cmds, 0); 712 if (slot >= tcs->num_tcs * tcs->ncpt) 713 return -ENOMEM; 714 i += tcs->ncpt; 715 } while (slot + msg->num_cmds - 1 >= i); 716 717 bitmap_set(tcs->slots, slot, msg->num_cmds); 718 719 offset = slot / tcs->ncpt; 720 *tcs_id = offset + tcs->offset; 721 *cmd_id = slot % tcs->ncpt; 722 723 return 0; 724 } 725 726 /** 727 * rpmh_rsc_write_ctrl_data() - Write request to controller but don't trigger. 728 * @drv: The controller. 729 * @msg: The data to be written to the controller. 730 * 731 * This should only be called for sleep/wake state, never active-only 732 * state. 733 * 734 * The caller must ensure that no other RPMH actions are happening and the 735 * controller is idle when this function is called since it runs lockless. 736 * 737 * Return: 0 if no error; else -error. 738 */ 739 int rpmh_rsc_write_ctrl_data(struct rsc_drv *drv, const struct tcs_request *msg) 740 { 741 struct tcs_group *tcs; 742 int tcs_id = 0, cmd_id = 0; 743 int ret; 744 745 tcs = get_tcs_for_msg(drv, msg); 746 if (IS_ERR(tcs)) 747 return PTR_ERR(tcs); 748 749 /* find the TCS id and the command in the TCS to write to */ 750 ret = find_slots(tcs, msg, &tcs_id, &cmd_id); 751 if (!ret) 752 __tcs_buffer_write(drv, tcs_id, cmd_id, msg); 753 754 return ret; 755 } 756 757 /** 758 * rpmh_rsc_ctrlr_is_busy() - Check if any of the AMCs are busy. 759 * @drv: The controller 760 * 761 * Checks if any of the AMCs are busy in handling ACTIVE sets. 762 * This is called from the last cpu powering down before flushing 763 * SLEEP and WAKE sets. If AMCs are busy, controller can not enter 764 * power collapse, so deny from the last cpu's pm notification. 765 * 766 * Context: Must be called with the drv->lock held. 767 * 768 * Return: 769 * * False - AMCs are idle 770 * * True - AMCs are busy 771 */ 772 static bool rpmh_rsc_ctrlr_is_busy(struct rsc_drv *drv) 773 { 774 unsigned long set; 775 const struct tcs_group *tcs = &drv->tcs[ACTIVE_TCS]; 776 unsigned long max; 777 778 /* 779 * If we made an active request on a RSC that does not have a 780 * dedicated TCS for active state use, then re-purposed wake TCSes 781 * should be checked for not busy, because we used wake TCSes for 782 * active requests in this case. 783 */ 784 if (!tcs->num_tcs) 785 tcs = &drv->tcs[WAKE_TCS]; 786 787 max = tcs->offset + tcs->num_tcs; 788 set = find_next_bit(drv->tcs_in_use, max, tcs->offset); 789 790 return set < max; 791 } 792 793 /** 794 * rpmh_rsc_write_next_wakeup() - Write next wakeup in CONTROL_TCS. 795 * @drv: The controller 796 * 797 * Writes maximum wakeup cycles when called from suspend. 798 * Writes earliest hrtimer wakeup when called from idle. 799 */ 800 void rpmh_rsc_write_next_wakeup(struct rsc_drv *drv) 801 { 802 ktime_t now, wakeup; 803 u64 wakeup_us, wakeup_cycles = ~0; 804 u32 lo, hi; 805 806 if (!drv->tcs[CONTROL_TCS].num_tcs || !drv->genpd_nb.notifier_call) 807 return; 808 809 /* Set highest time when system (timekeeping) is suspended */ 810 if (system_state == SYSTEM_SUSPEND) 811 goto exit; 812 813 /* Find the earliest hrtimer wakeup from online cpus */ 814 wakeup = dev_pm_genpd_get_next_hrtimer(drv->dev); 815 816 /* Find the relative wakeup in kernel time scale */ 817 now = ktime_get(); 818 wakeup = ktime_sub(wakeup, now); 819 wakeup_us = ktime_to_us(wakeup); 820 821 /* Convert the wakeup to arch timer scale */ 822 wakeup_cycles = USECS_TO_CYCLES(wakeup_us); 823 wakeup_cycles += arch_timer_read_counter(); 824 825 exit: 826 lo = wakeup_cycles & RSC_DRV_CTL_TCS_DATA_LO_MASK; 827 hi = wakeup_cycles >> RSC_DRV_CTL_TCS_DATA_SIZE; 828 hi &= RSC_DRV_CTL_TCS_DATA_HI_MASK; 829 hi |= RSC_DRV_CTL_TCS_DATA_HI_VALID; 830 831 writel_relaxed(lo, drv->base + RSC_DRV_CTL_TCS_DATA_LO); 832 writel_relaxed(hi, drv->base + RSC_DRV_CTL_TCS_DATA_HI); 833 } 834 835 /** 836 * rpmh_rsc_cpu_pm_callback() - Check if any of the AMCs are busy. 837 * @nfb: Pointer to the notifier block in struct rsc_drv. 838 * @action: CPU_PM_ENTER, CPU_PM_ENTER_FAILED, or CPU_PM_EXIT. 839 * @v: Unused 840 * 841 * This function is given to cpu_pm_register_notifier so we can be informed 842 * about when CPUs go down. When all CPUs go down we know no more active 843 * transfers will be started so we write sleep/wake sets. This function gets 844 * called from cpuidle code paths and also at system suspend time. 845 * 846 * If its last CPU going down and AMCs are not busy then writes cached sleep 847 * and wake messages to TCSes. The firmware then takes care of triggering 848 * them when entering deepest low power modes. 849 * 850 * Return: See cpu_pm_register_notifier() 851 */ 852 static int rpmh_rsc_cpu_pm_callback(struct notifier_block *nfb, 853 unsigned long action, void *v) 854 { 855 struct rsc_drv *drv = container_of(nfb, struct rsc_drv, rsc_pm); 856 int ret = NOTIFY_OK; 857 int cpus_in_pm; 858 859 switch (action) { 860 case CPU_PM_ENTER: 861 cpus_in_pm = atomic_inc_return(&drv->cpus_in_pm); 862 /* 863 * NOTE: comments for num_online_cpus() point out that it's 864 * only a snapshot so we need to be careful. It should be OK 865 * for us to use, though. It's important for us not to miss 866 * if we're the last CPU going down so it would only be a 867 * problem if a CPU went offline right after we did the check 868 * AND that CPU was not idle AND that CPU was the last non-idle 869 * CPU. That can't happen. CPUs would have to come out of idle 870 * before the CPU could go offline. 871 */ 872 if (cpus_in_pm < num_online_cpus()) 873 return NOTIFY_OK; 874 break; 875 case CPU_PM_ENTER_FAILED: 876 case CPU_PM_EXIT: 877 atomic_dec(&drv->cpus_in_pm); 878 return NOTIFY_OK; 879 default: 880 return NOTIFY_DONE; 881 } 882 883 /* 884 * It's likely we're on the last CPU. Grab the drv->lock and write 885 * out the sleep/wake commands to RPMH hardware. Grabbing the lock 886 * means that if we race with another CPU coming up we are still 887 * guaranteed to be safe. If another CPU came up just after we checked 888 * and has grabbed the lock or started an active transfer then we'll 889 * notice we're busy and abort. If another CPU comes up after we start 890 * flushing it will be blocked from starting an active transfer until 891 * we're done flushing. If another CPU starts an active transfer after 892 * we release the lock we're still OK because we're no longer the last 893 * CPU. 894 */ 895 if (spin_trylock(&drv->lock)) { 896 if (rpmh_rsc_ctrlr_is_busy(drv) || rpmh_flush(&drv->client)) 897 ret = NOTIFY_BAD; 898 spin_unlock(&drv->lock); 899 } else { 900 /* Another CPU must be up */ 901 return NOTIFY_OK; 902 } 903 904 if (ret == NOTIFY_BAD) { 905 /* Double-check if we're here because someone else is up */ 906 if (cpus_in_pm < num_online_cpus()) 907 ret = NOTIFY_OK; 908 else 909 /* We won't be called w/ CPU_PM_ENTER_FAILED */ 910 atomic_dec(&drv->cpus_in_pm); 911 } 912 913 return ret; 914 } 915 916 /** 917 * rpmh_rsc_pd_callback() - Check if any of the AMCs are busy. 918 * @nfb: Pointer to the genpd notifier block in struct rsc_drv. 919 * @action: GENPD_NOTIFY_PRE_OFF, GENPD_NOTIFY_OFF, GENPD_NOTIFY_PRE_ON or GENPD_NOTIFY_ON. 920 * @v: Unused 921 * 922 * This function is given to dev_pm_genpd_add_notifier() so we can be informed 923 * about when cluster-pd is going down. When cluster go down we know no more active 924 * transfers will be started so we write sleep/wake sets. This function gets 925 * called from cpuidle code paths and also at system suspend time. 926 * 927 * If AMCs are not busy then writes cached sleep and wake messages to TCSes. 928 * The firmware then takes care of triggering them when entering deepest low power modes. 929 * 930 * Return: 931 * * NOTIFY_OK - success 932 * * NOTIFY_BAD - failure 933 */ 934 static int rpmh_rsc_pd_callback(struct notifier_block *nfb, 935 unsigned long action, void *v) 936 { 937 struct rsc_drv *drv = container_of(nfb, struct rsc_drv, genpd_nb); 938 939 /* We don't need to lock as genpd on/off are serialized */ 940 if ((action == GENPD_NOTIFY_PRE_OFF) && 941 (rpmh_rsc_ctrlr_is_busy(drv) || rpmh_flush(&drv->client))) 942 return NOTIFY_BAD; 943 944 return NOTIFY_OK; 945 } 946 947 static int rpmh_rsc_pd_attach(struct rsc_drv *drv, struct device *dev) 948 { 949 int ret; 950 951 pm_runtime_enable(dev); 952 drv->genpd_nb.notifier_call = rpmh_rsc_pd_callback; 953 ret = dev_pm_genpd_add_notifier(dev, &drv->genpd_nb); 954 if (ret) 955 pm_runtime_disable(dev); 956 957 return ret; 958 } 959 960 static int rpmh_probe_tcs_config(struct platform_device *pdev, struct rsc_drv *drv) 961 { 962 struct tcs_type_config { 963 u32 type; 964 u32 n; 965 } tcs_cfg[TCS_TYPE_NR] = { { 0 } }; 966 struct device_node *dn = pdev->dev.of_node; 967 u32 config, max_tcs, ncpt, offset; 968 int i, ret, n, st = 0; 969 struct tcs_group *tcs; 970 971 ret = of_property_read_u32(dn, "qcom,tcs-offset", &offset); 972 if (ret) 973 return ret; 974 drv->tcs_base = drv->base + offset; 975 976 config = readl_relaxed(drv->base + drv->regs[DRV_PRNT_CHLD_CONFIG]); 977 978 max_tcs = config; 979 max_tcs &= DRV_NUM_TCS_MASK << (DRV_NUM_TCS_SHIFT * drv->id); 980 max_tcs = max_tcs >> (DRV_NUM_TCS_SHIFT * drv->id); 981 982 ncpt = config & (DRV_NCPT_MASK << DRV_NCPT_SHIFT); 983 ncpt = ncpt >> DRV_NCPT_SHIFT; 984 985 n = of_property_count_u32_elems(dn, "qcom,tcs-config"); 986 if (n != 2 * TCS_TYPE_NR) 987 return -EINVAL; 988 989 for (i = 0; i < TCS_TYPE_NR; i++) { 990 ret = of_property_read_u32_index(dn, "qcom,tcs-config", 991 i * 2, &tcs_cfg[i].type); 992 if (ret) 993 return ret; 994 if (tcs_cfg[i].type >= TCS_TYPE_NR) 995 return -EINVAL; 996 997 ret = of_property_read_u32_index(dn, "qcom,tcs-config", 998 i * 2 + 1, &tcs_cfg[i].n); 999 if (ret) 1000 return ret; 1001 if (tcs_cfg[i].n > MAX_TCS_PER_TYPE) 1002 return -EINVAL; 1003 } 1004 1005 for (i = 0; i < TCS_TYPE_NR; i++) { 1006 tcs = &drv->tcs[tcs_cfg[i].type]; 1007 if (tcs->drv) 1008 return -EINVAL; 1009 tcs->drv = drv; 1010 tcs->type = tcs_cfg[i].type; 1011 tcs->num_tcs = tcs_cfg[i].n; 1012 tcs->ncpt = ncpt; 1013 1014 if (!tcs->num_tcs || tcs->type == CONTROL_TCS) 1015 continue; 1016 1017 if (st + tcs->num_tcs > max_tcs || 1018 st + tcs->num_tcs >= BITS_PER_BYTE * sizeof(tcs->mask)) 1019 return -EINVAL; 1020 1021 tcs->mask = ((1 << tcs->num_tcs) - 1) << st; 1022 tcs->offset = st; 1023 st += tcs->num_tcs; 1024 } 1025 1026 drv->num_tcs = st; 1027 1028 return 0; 1029 } 1030 1031 static int rpmh_rsc_probe(struct platform_device *pdev) 1032 { 1033 struct device_node *dn = pdev->dev.of_node; 1034 struct rsc_drv *drv; 1035 char drv_id[10] = {0}; 1036 int ret, irq; 1037 u32 solver_config; 1038 u32 rsc_id; 1039 1040 /* 1041 * Even though RPMh doesn't directly use cmd-db, all of its children 1042 * do. To avoid adding this check to our children we'll do it now. 1043 */ 1044 ret = cmd_db_ready(); 1045 if (ret) 1046 return dev_err_probe(&pdev->dev, ret, 1047 "Command DB not available\n"); 1048 1049 drv = devm_kzalloc(&pdev->dev, sizeof(*drv), GFP_KERNEL); 1050 if (!drv) 1051 return -ENOMEM; 1052 1053 ret = of_property_read_u32(dn, "qcom,drv-id", &drv->id); 1054 if (ret) 1055 return ret; 1056 1057 drv->name = of_get_property(dn, "label", NULL); 1058 if (!drv->name) 1059 drv->name = dev_name(&pdev->dev); 1060 1061 snprintf(drv_id, ARRAY_SIZE(drv_id), "drv-%d", drv->id); 1062 drv->base = devm_platform_ioremap_resource_byname(pdev, drv_id); 1063 if (IS_ERR(drv->base)) 1064 return PTR_ERR(drv->base); 1065 1066 rsc_id = readl_relaxed(drv->base + RSC_DRV_ID); 1067 drv->ver.major = rsc_id & (MAJOR_VER_MASK << MAJOR_VER_SHIFT); 1068 drv->ver.major >>= MAJOR_VER_SHIFT; 1069 drv->ver.minor = rsc_id & (MINOR_VER_MASK << MINOR_VER_SHIFT); 1070 drv->ver.minor >>= MINOR_VER_SHIFT; 1071 1072 if (drv->ver.major >= 3) 1073 drv->regs = rpmh_rsc_reg_offset_ver_3_0; 1074 else 1075 drv->regs = rpmh_rsc_reg_offset_ver_2_7; 1076 1077 ret = rpmh_probe_tcs_config(pdev, drv); 1078 if (ret) 1079 return ret; 1080 1081 spin_lock_init(&drv->lock); 1082 init_waitqueue_head(&drv->tcs_wait); 1083 bitmap_zero(drv->tcs_in_use, MAX_TCS_NR); 1084 1085 irq = platform_get_irq(pdev, drv->id); 1086 if (irq < 0) 1087 return irq; 1088 1089 ret = devm_request_irq(&pdev->dev, irq, tcs_tx_done, 1090 IRQF_TRIGGER_HIGH | IRQF_NO_SUSPEND, 1091 drv->name, drv); 1092 if (ret) 1093 return ret; 1094 1095 /* 1096 * CPU PM/genpd notification are not required for controllers that support 1097 * 'HW solver' mode where they can be in autonomous mode executing low 1098 * power mode to power down. 1099 */ 1100 solver_config = readl_relaxed(drv->base + drv->regs[DRV_SOLVER_CONFIG]); 1101 solver_config &= DRV_HW_SOLVER_MASK << DRV_HW_SOLVER_SHIFT; 1102 solver_config = solver_config >> DRV_HW_SOLVER_SHIFT; 1103 if (!solver_config) { 1104 if (pdev->dev.pm_domain) { 1105 ret = rpmh_rsc_pd_attach(drv, &pdev->dev); 1106 if (ret) 1107 return ret; 1108 } else { 1109 drv->rsc_pm.notifier_call = rpmh_rsc_cpu_pm_callback; 1110 cpu_pm_register_notifier(&drv->rsc_pm); 1111 } 1112 } 1113 1114 /* Enable the active TCS to send requests immediately */ 1115 writel_relaxed(drv->tcs[ACTIVE_TCS].mask, 1116 drv->tcs_base + drv->regs[RSC_DRV_IRQ_ENABLE]); 1117 1118 spin_lock_init(&drv->client.cache_lock); 1119 INIT_LIST_HEAD(&drv->client.cache); 1120 INIT_LIST_HEAD(&drv->client.batch_cache); 1121 1122 dev_set_drvdata(&pdev->dev, drv); 1123 drv->dev = &pdev->dev; 1124 1125 ret = devm_of_platform_populate(&pdev->dev); 1126 if (ret && pdev->dev.pm_domain) { 1127 dev_pm_genpd_remove_notifier(&pdev->dev); 1128 pm_runtime_disable(&pdev->dev); 1129 } 1130 1131 return ret; 1132 } 1133 1134 static const struct of_device_id rpmh_drv_match[] = { 1135 { .compatible = "qcom,rpmh-rsc", }, 1136 { } 1137 }; 1138 MODULE_DEVICE_TABLE(of, rpmh_drv_match); 1139 1140 static struct platform_driver rpmh_driver = { 1141 .probe = rpmh_rsc_probe, 1142 .driver = { 1143 .name = "rpmh", 1144 .of_match_table = rpmh_drv_match, 1145 .suppress_bind_attrs = true, 1146 }, 1147 }; 1148 1149 static int __init rpmh_driver_init(void) 1150 { 1151 return platform_driver_register(&rpmh_driver); 1152 } 1153 core_initcall(rpmh_driver_init); 1154 1155 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. RPMh Driver"); 1156 MODULE_LICENSE("GPL v2"); 1157