xref: /linux/drivers/soc/qcom/rpmh-rsc.c (revision 45de28e31a6e250cd9e17c8b9f9db5a439fb39b2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016-2018, The Linux Foundation. All rights reserved.
4  */
5 
6 #define pr_fmt(fmt) "%s " fmt, KBUILD_MODNAME
7 
8 #include <linux/atomic.h>
9 #include <linux/cpu_pm.h>
10 #include <linux/delay.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/iopoll.h>
14 #include <linux/kernel.h>
15 #include <linux/list.h>
16 #include <linux/of.h>
17 #include <linux/of_irq.h>
18 #include <linux/of_platform.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/spinlock.h>
22 
23 #include <soc/qcom/cmd-db.h>
24 #include <soc/qcom/tcs.h>
25 #include <dt-bindings/soc/qcom,rpmh-rsc.h>
26 
27 #include "rpmh-internal.h"
28 
29 #define CREATE_TRACE_POINTS
30 #include "trace-rpmh.h"
31 
32 #define RSC_DRV_TCS_OFFSET		672
33 #define RSC_DRV_CMD_OFFSET		20
34 
35 /* DRV HW Solver Configuration Information Register */
36 #define DRV_SOLVER_CONFIG		0x04
37 #define DRV_HW_SOLVER_MASK		1
38 #define DRV_HW_SOLVER_SHIFT		24
39 
40 /* DRV TCS Configuration Information Register */
41 #define DRV_PRNT_CHLD_CONFIG		0x0C
42 #define DRV_NUM_TCS_MASK		0x3F
43 #define DRV_NUM_TCS_SHIFT		6
44 #define DRV_NCPT_MASK			0x1F
45 #define DRV_NCPT_SHIFT			27
46 
47 /* Offsets for common TCS Registers, one bit per TCS */
48 #define RSC_DRV_IRQ_ENABLE		0x00
49 #define RSC_DRV_IRQ_STATUS		0x04
50 #define RSC_DRV_IRQ_CLEAR		0x08	/* w/o; write 1 to clear */
51 
52 /*
53  * Offsets for per TCS Registers.
54  *
55  * TCSes start at 0x10 from tcs_base and are stored one after another.
56  * Multiply tcs_id by RSC_DRV_TCS_OFFSET to find a given TCS and add one
57  * of the below to find a register.
58  */
59 #define RSC_DRV_CMD_WAIT_FOR_CMPL	0x10	/* 1 bit per command */
60 #define RSC_DRV_CONTROL			0x14
61 #define RSC_DRV_STATUS			0x18	/* zero if tcs is busy */
62 #define RSC_DRV_CMD_ENABLE		0x1C	/* 1 bit per command */
63 
64 /*
65  * Offsets for per command in a TCS.
66  *
67  * Commands (up to 16) start at 0x30 in a TCS; multiply command index
68  * by RSC_DRV_CMD_OFFSET and add one of the below to find a register.
69  */
70 #define RSC_DRV_CMD_MSGID		0x30
71 #define RSC_DRV_CMD_ADDR		0x34
72 #define RSC_DRV_CMD_DATA		0x38
73 #define RSC_DRV_CMD_STATUS		0x3C
74 #define RSC_DRV_CMD_RESP_DATA		0x40
75 
76 #define TCS_AMC_MODE_ENABLE		BIT(16)
77 #define TCS_AMC_MODE_TRIGGER		BIT(24)
78 
79 /* TCS CMD register bit mask */
80 #define CMD_MSGID_LEN			8
81 #define CMD_MSGID_RESP_REQ		BIT(8)
82 #define CMD_MSGID_WRITE			BIT(16)
83 #define CMD_STATUS_ISSUED		BIT(8)
84 #define CMD_STATUS_COMPL		BIT(16)
85 
86 /*
87  * Here's a high level overview of how all the registers in RPMH work
88  * together:
89  *
90  * - The main rpmh-rsc address is the base of a register space that can
91  *   be used to find overall configuration of the hardware
92  *   (DRV_PRNT_CHLD_CONFIG). Also found within the rpmh-rsc register
93  *   space are all the TCS blocks. The offset of the TCS blocks is
94  *   specified in the device tree by "qcom,tcs-offset" and used to
95  *   compute tcs_base.
96  * - TCS blocks come one after another. Type, count, and order are
97  *   specified by the device tree as "qcom,tcs-config".
98  * - Each TCS block has some registers, then space for up to 16 commands.
99  *   Note that though address space is reserved for 16 commands, fewer
100  *   might be present. See ncpt (num cmds per TCS).
101  *
102  * Here's a picture:
103  *
104  *  +---------------------------------------------------+
105  *  |RSC                                                |
106  *  | ctrl                                              |
107  *  |                                                   |
108  *  | Drvs:                                             |
109  *  | +-----------------------------------------------+ |
110  *  | |DRV0                                           | |
111  *  | | ctrl/config                                   | |
112  *  | | IRQ                                           | |
113  *  | |                                               | |
114  *  | | TCSes:                                        | |
115  *  | | +------------------------------------------+  | |
116  *  | | |TCS0  |  |  |  |  |  |  |  |  |  |  |  |  |  | |
117  *  | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15|  | |
118  *  | | |      |  |  |  |  |  |  |  |  |  |  |  |  |  | |
119  *  | | +------------------------------------------+  | |
120  *  | | +------------------------------------------+  | |
121  *  | | |TCS1  |  |  |  |  |  |  |  |  |  |  |  |  |  | |
122  *  | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15|  | |
123  *  | | |      |  |  |  |  |  |  |  |  |  |  |  |  |  | |
124  *  | | +------------------------------------------+  | |
125  *  | | +------------------------------------------+  | |
126  *  | | |TCS2  |  |  |  |  |  |  |  |  |  |  |  |  |  | |
127  *  | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15|  | |
128  *  | | |      |  |  |  |  |  |  |  |  |  |  |  |  |  | |
129  *  | | +------------------------------------------+  | |
130  *  | |                    ......                     | |
131  *  | +-----------------------------------------------+ |
132  *  | +-----------------------------------------------+ |
133  *  | |DRV1                                           | |
134  *  | | (same as DRV0)                                | |
135  *  | +-----------------------------------------------+ |
136  *  |                      ......                       |
137  *  +---------------------------------------------------+
138  */
139 
140 static inline void __iomem *
141 tcs_reg_addr(const struct rsc_drv *drv, int reg, int tcs_id)
142 {
143 	return drv->tcs_base + RSC_DRV_TCS_OFFSET * tcs_id + reg;
144 }
145 
146 static inline void __iomem *
147 tcs_cmd_addr(const struct rsc_drv *drv, int reg, int tcs_id, int cmd_id)
148 {
149 	return tcs_reg_addr(drv, reg, tcs_id) + RSC_DRV_CMD_OFFSET * cmd_id;
150 }
151 
152 static u32 read_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id,
153 			int cmd_id)
154 {
155 	return readl_relaxed(tcs_cmd_addr(drv, reg, tcs_id, cmd_id));
156 }
157 
158 static u32 read_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id)
159 {
160 	return readl_relaxed(tcs_reg_addr(drv, reg, tcs_id));
161 }
162 
163 static void write_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id,
164 			  int cmd_id, u32 data)
165 {
166 	writel_relaxed(data, tcs_cmd_addr(drv, reg, tcs_id, cmd_id));
167 }
168 
169 static void write_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id,
170 			  u32 data)
171 {
172 	writel_relaxed(data, tcs_reg_addr(drv, reg, tcs_id));
173 }
174 
175 static void write_tcs_reg_sync(const struct rsc_drv *drv, int reg, int tcs_id,
176 			       u32 data)
177 {
178 	int i;
179 
180 	writel(data, tcs_reg_addr(drv, reg, tcs_id));
181 
182 	/*
183 	 * Wait until we read back the same value.  Use a counter rather than
184 	 * ktime for timeout since this may be called after timekeeping stops.
185 	 */
186 	for (i = 0; i < USEC_PER_SEC; i++) {
187 		if (readl(tcs_reg_addr(drv, reg, tcs_id)) == data)
188 			return;
189 		udelay(1);
190 	}
191 	pr_err("%s: error writing %#x to %d:%#x\n", drv->name,
192 	       data, tcs_id, reg);
193 }
194 
195 /**
196  * tcs_is_free() - Return if a TCS is totally free.
197  * @drv:    The RSC controller.
198  * @tcs_id: The global ID of this TCS.
199  *
200  * Returns true if nobody has claimed this TCS (by setting tcs_in_use).
201  *
202  * Context: Must be called with the drv->lock held.
203  *
204  * Return: true if the given TCS is free.
205  */
206 static bool tcs_is_free(struct rsc_drv *drv, int tcs_id)
207 {
208 	return !test_bit(tcs_id, drv->tcs_in_use);
209 }
210 
211 /**
212  * tcs_invalidate() - Invalidate all TCSes of the given type (sleep or wake).
213  * @drv:  The RSC controller.
214  * @type: SLEEP_TCS or WAKE_TCS
215  *
216  * This will clear the "slots" variable of the given tcs_group and also
217  * tell the hardware to forget about all entries.
218  *
219  * The caller must ensure that no other RPMH actions are happening when this
220  * function is called, since otherwise the device may immediately become
221  * used again even before this function exits.
222  */
223 static void tcs_invalidate(struct rsc_drv *drv, int type)
224 {
225 	int m;
226 	struct tcs_group *tcs = &drv->tcs[type];
227 
228 	/* Caller ensures nobody else is running so no lock */
229 	if (bitmap_empty(tcs->slots, MAX_TCS_SLOTS))
230 		return;
231 
232 	for (m = tcs->offset; m < tcs->offset + tcs->num_tcs; m++) {
233 		write_tcs_reg_sync(drv, RSC_DRV_CMD_ENABLE, m, 0);
234 		write_tcs_reg_sync(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, m, 0);
235 	}
236 	bitmap_zero(tcs->slots, MAX_TCS_SLOTS);
237 }
238 
239 /**
240  * rpmh_rsc_invalidate() - Invalidate sleep and wake TCSes.
241  * @drv: The RSC controller.
242  *
243  * The caller must ensure that no other RPMH actions are happening when this
244  * function is called, since otherwise the device may immediately become
245  * used again even before this function exits.
246  */
247 void rpmh_rsc_invalidate(struct rsc_drv *drv)
248 {
249 	tcs_invalidate(drv, SLEEP_TCS);
250 	tcs_invalidate(drv, WAKE_TCS);
251 }
252 
253 /**
254  * get_tcs_for_msg() - Get the tcs_group used to send the given message.
255  * @drv: The RSC controller.
256  * @msg: The message we want to send.
257  *
258  * This is normally pretty straightforward except if we are trying to send
259  * an ACTIVE_ONLY message but don't have any active_only TCSes.
260  *
261  * Return: A pointer to a tcs_group or an ERR_PTR.
262  */
263 static struct tcs_group *get_tcs_for_msg(struct rsc_drv *drv,
264 					 const struct tcs_request *msg)
265 {
266 	int type;
267 	struct tcs_group *tcs;
268 
269 	switch (msg->state) {
270 	case RPMH_ACTIVE_ONLY_STATE:
271 		type = ACTIVE_TCS;
272 		break;
273 	case RPMH_WAKE_ONLY_STATE:
274 		type = WAKE_TCS;
275 		break;
276 	case RPMH_SLEEP_STATE:
277 		type = SLEEP_TCS;
278 		break;
279 	default:
280 		return ERR_PTR(-EINVAL);
281 	}
282 
283 	/*
284 	 * If we are making an active request on a RSC that does not have a
285 	 * dedicated TCS for active state use, then re-purpose a wake TCS to
286 	 * send active votes. This is safe because we ensure any active-only
287 	 * transfers have finished before we use it (maybe by running from
288 	 * the last CPU in PM code).
289 	 */
290 	tcs = &drv->tcs[type];
291 	if (msg->state == RPMH_ACTIVE_ONLY_STATE && !tcs->num_tcs)
292 		tcs = &drv->tcs[WAKE_TCS];
293 
294 	return tcs;
295 }
296 
297 /**
298  * get_req_from_tcs() - Get a stashed request that was xfering on the given TCS.
299  * @drv:    The RSC controller.
300  * @tcs_id: The global ID of this TCS.
301  *
302  * For ACTIVE_ONLY transfers we want to call back into the client when the
303  * transfer finishes. To do this we need the "request" that the client
304  * originally provided us. This function grabs the request that we stashed
305  * when we started the transfer.
306  *
307  * This only makes sense for ACTIVE_ONLY transfers since those are the only
308  * ones we track sending (the only ones we enable interrupts for and the only
309  * ones we call back to the client for).
310  *
311  * Return: The stashed request.
312  */
313 static const struct tcs_request *get_req_from_tcs(struct rsc_drv *drv,
314 						  int tcs_id)
315 {
316 	struct tcs_group *tcs;
317 	int i;
318 
319 	for (i = 0; i < TCS_TYPE_NR; i++) {
320 		tcs = &drv->tcs[i];
321 		if (tcs->mask & BIT(tcs_id))
322 			return tcs->req[tcs_id - tcs->offset];
323 	}
324 
325 	return NULL;
326 }
327 
328 /**
329  * __tcs_set_trigger() - Start xfer on a TCS or unset trigger on a borrowed TCS
330  * @drv:     The controller.
331  * @tcs_id:  The global ID of this TCS.
332  * @trigger: If true then untrigger/retrigger. If false then just untrigger.
333  *
334  * In the normal case we only ever call with "trigger=true" to start a
335  * transfer. That will un-trigger/disable the TCS from the last transfer
336  * then trigger/enable for this transfer.
337  *
338  * If we borrowed a wake TCS for an active-only transfer we'll also call
339  * this function with "trigger=false" to just do the un-trigger/disable
340  * before using the TCS for wake purposes again.
341  *
342  * Note that the AP is only in charge of triggering active-only transfers.
343  * The AP never triggers sleep/wake values using this function.
344  */
345 static void __tcs_set_trigger(struct rsc_drv *drv, int tcs_id, bool trigger)
346 {
347 	u32 enable;
348 
349 	/*
350 	 * HW req: Clear the DRV_CONTROL and enable TCS again
351 	 * While clearing ensure that the AMC mode trigger is cleared
352 	 * and then the mode enable is cleared.
353 	 */
354 	enable = read_tcs_reg(drv, RSC_DRV_CONTROL, tcs_id);
355 	enable &= ~TCS_AMC_MODE_TRIGGER;
356 	write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
357 	enable &= ~TCS_AMC_MODE_ENABLE;
358 	write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
359 
360 	if (trigger) {
361 		/* Enable the AMC mode on the TCS and then trigger the TCS */
362 		enable = TCS_AMC_MODE_ENABLE;
363 		write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
364 		enable |= TCS_AMC_MODE_TRIGGER;
365 		write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
366 	}
367 }
368 
369 /**
370  * enable_tcs_irq() - Enable or disable interrupts on the given TCS.
371  * @drv:     The controller.
372  * @tcs_id:  The global ID of this TCS.
373  * @enable:  If true then enable; if false then disable
374  *
375  * We only ever call this when we borrow a wake TCS for an active-only
376  * transfer. For active-only TCSes interrupts are always left enabled.
377  */
378 static void enable_tcs_irq(struct rsc_drv *drv, int tcs_id, bool enable)
379 {
380 	u32 data;
381 
382 	data = readl_relaxed(drv->tcs_base + RSC_DRV_IRQ_ENABLE);
383 	if (enable)
384 		data |= BIT(tcs_id);
385 	else
386 		data &= ~BIT(tcs_id);
387 	writel_relaxed(data, drv->tcs_base + RSC_DRV_IRQ_ENABLE);
388 }
389 
390 /**
391  * tcs_tx_done() - TX Done interrupt handler.
392  * @irq: The IRQ number (ignored).
393  * @p:   Pointer to "struct rsc_drv".
394  *
395  * Called for ACTIVE_ONLY transfers (those are the only ones we enable the
396  * IRQ for) when a transfer is done.
397  *
398  * Return: IRQ_HANDLED
399  */
400 static irqreturn_t tcs_tx_done(int irq, void *p)
401 {
402 	struct rsc_drv *drv = p;
403 	int i, j, err = 0;
404 	unsigned long irq_status;
405 	const struct tcs_request *req;
406 	struct tcs_cmd *cmd;
407 
408 	irq_status = readl_relaxed(drv->tcs_base + RSC_DRV_IRQ_STATUS);
409 
410 	for_each_set_bit(i, &irq_status, BITS_PER_LONG) {
411 		req = get_req_from_tcs(drv, i);
412 		if (!req) {
413 			WARN_ON(1);
414 			goto skip;
415 		}
416 
417 		err = 0;
418 		for (j = 0; j < req->num_cmds; j++) {
419 			u32 sts;
420 
421 			cmd = &req->cmds[j];
422 			sts = read_tcs_cmd(drv, RSC_DRV_CMD_STATUS, i, j);
423 			if (!(sts & CMD_STATUS_ISSUED) ||
424 			   ((req->wait_for_compl || cmd->wait) &&
425 			   !(sts & CMD_STATUS_COMPL))) {
426 				pr_err("Incomplete request: %s: addr=%#x data=%#x",
427 				       drv->name, cmd->addr, cmd->data);
428 				err = -EIO;
429 			}
430 		}
431 
432 		trace_rpmh_tx_done(drv, i, req, err);
433 
434 		/*
435 		 * If wake tcs was re-purposed for sending active
436 		 * votes, clear AMC trigger & enable modes and
437 		 * disable interrupt for this TCS
438 		 */
439 		if (!drv->tcs[ACTIVE_TCS].num_tcs)
440 			__tcs_set_trigger(drv, i, false);
441 skip:
442 		/* Reclaim the TCS */
443 		write_tcs_reg(drv, RSC_DRV_CMD_ENABLE, i, 0);
444 		write_tcs_reg(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, i, 0);
445 		writel_relaxed(BIT(i), drv->tcs_base + RSC_DRV_IRQ_CLEAR);
446 		spin_lock(&drv->lock);
447 		clear_bit(i, drv->tcs_in_use);
448 		/*
449 		 * Disable interrupt for WAKE TCS to avoid being
450 		 * spammed with interrupts coming when the solver
451 		 * sends its wake votes.
452 		 */
453 		if (!drv->tcs[ACTIVE_TCS].num_tcs)
454 			enable_tcs_irq(drv, i, false);
455 		spin_unlock(&drv->lock);
456 		if (req)
457 			rpmh_tx_done(req, err);
458 	}
459 
460 	return IRQ_HANDLED;
461 }
462 
463 /**
464  * __tcs_buffer_write() - Write to TCS hardware from a request; don't trigger.
465  * @drv:    The controller.
466  * @tcs_id: The global ID of this TCS.
467  * @cmd_id: The index within the TCS to start writing.
468  * @msg:    The message we want to send, which will contain several addr/data
469  *          pairs to program (but few enough that they all fit in one TCS).
470  *
471  * This is used for all types of transfers (active, sleep, and wake).
472  */
473 static void __tcs_buffer_write(struct rsc_drv *drv, int tcs_id, int cmd_id,
474 			       const struct tcs_request *msg)
475 {
476 	u32 msgid, cmd_msgid;
477 	u32 cmd_enable = 0;
478 	u32 cmd_complete;
479 	struct tcs_cmd *cmd;
480 	int i, j;
481 
482 	cmd_msgid = CMD_MSGID_LEN;
483 	cmd_msgid |= msg->wait_for_compl ? CMD_MSGID_RESP_REQ : 0;
484 	cmd_msgid |= CMD_MSGID_WRITE;
485 
486 	cmd_complete = read_tcs_reg(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, tcs_id);
487 
488 	for (i = 0, j = cmd_id; i < msg->num_cmds; i++, j++) {
489 		cmd = &msg->cmds[i];
490 		cmd_enable |= BIT(j);
491 		cmd_complete |= cmd->wait << j;
492 		msgid = cmd_msgid;
493 		msgid |= cmd->wait ? CMD_MSGID_RESP_REQ : 0;
494 
495 		write_tcs_cmd(drv, RSC_DRV_CMD_MSGID, tcs_id, j, msgid);
496 		write_tcs_cmd(drv, RSC_DRV_CMD_ADDR, tcs_id, j, cmd->addr);
497 		write_tcs_cmd(drv, RSC_DRV_CMD_DATA, tcs_id, j, cmd->data);
498 		trace_rpmh_send_msg_rcuidle(drv, tcs_id, j, msgid, cmd);
499 	}
500 
501 	write_tcs_reg(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, tcs_id, cmd_complete);
502 	cmd_enable |= read_tcs_reg(drv, RSC_DRV_CMD_ENABLE, tcs_id);
503 	write_tcs_reg(drv, RSC_DRV_CMD_ENABLE, tcs_id, cmd_enable);
504 }
505 
506 /**
507  * check_for_req_inflight() - Look to see if conflicting cmds are in flight.
508  * @drv: The controller.
509  * @tcs: A pointer to the tcs_group used for ACTIVE_ONLY transfers.
510  * @msg: The message we want to send, which will contain several addr/data
511  *       pairs to program (but few enough that they all fit in one TCS).
512  *
513  * This will walk through the TCSes in the group and check if any of them
514  * appear to be sending to addresses referenced in the message. If it finds
515  * one it'll return -EBUSY.
516  *
517  * Only for use for active-only transfers.
518  *
519  * Must be called with the drv->lock held since that protects tcs_in_use.
520  *
521  * Return: 0 if nothing in flight or -EBUSY if we should try again later.
522  *         The caller must re-enable interrupts between tries since that's
523  *         the only way tcs_is_free() will ever return true and the only way
524  *         RSC_DRV_CMD_ENABLE will ever be cleared.
525  */
526 static int check_for_req_inflight(struct rsc_drv *drv, struct tcs_group *tcs,
527 				  const struct tcs_request *msg)
528 {
529 	unsigned long curr_enabled;
530 	u32 addr;
531 	int i, j, k;
532 	int tcs_id = tcs->offset;
533 
534 	for (i = 0; i < tcs->num_tcs; i++, tcs_id++) {
535 		if (tcs_is_free(drv, tcs_id))
536 			continue;
537 
538 		curr_enabled = read_tcs_reg(drv, RSC_DRV_CMD_ENABLE, tcs_id);
539 
540 		for_each_set_bit(j, &curr_enabled, MAX_CMDS_PER_TCS) {
541 			addr = read_tcs_cmd(drv, RSC_DRV_CMD_ADDR, tcs_id, j);
542 			for (k = 0; k < msg->num_cmds; k++) {
543 				if (addr == msg->cmds[k].addr)
544 					return -EBUSY;
545 			}
546 		}
547 	}
548 
549 	return 0;
550 }
551 
552 /**
553  * find_free_tcs() - Find free tcs in the given tcs_group; only for active.
554  * @tcs: A pointer to the active-only tcs_group (or the wake tcs_group if
555  *       we borrowed it because there are zero active-only ones).
556  *
557  * Must be called with the drv->lock held since that protects tcs_in_use.
558  *
559  * Return: The first tcs that's free.
560  */
561 static int find_free_tcs(struct tcs_group *tcs)
562 {
563 	int i;
564 
565 	for (i = 0; i < tcs->num_tcs; i++) {
566 		if (tcs_is_free(tcs->drv, tcs->offset + i))
567 			return tcs->offset + i;
568 	}
569 
570 	return -EBUSY;
571 }
572 
573 /**
574  * tcs_write() - Store messages into a TCS right now, or return -EBUSY.
575  * @drv: The controller.
576  * @msg: The data to be sent.
577  *
578  * Grabs a TCS for ACTIVE_ONLY transfers and writes the messages to it.
579  *
580  * If there are no free TCSes for ACTIVE_ONLY transfers or if a command for
581  * the same address is already transferring returns -EBUSY which means the
582  * client should retry shortly.
583  *
584  * Return: 0 on success, -EBUSY if client should retry, or an error.
585  *         Client should have interrupts enabled for a bit before retrying.
586  */
587 static int tcs_write(struct rsc_drv *drv, const struct tcs_request *msg)
588 {
589 	struct tcs_group *tcs;
590 	int tcs_id;
591 	unsigned long flags;
592 	int ret;
593 
594 	tcs = get_tcs_for_msg(drv, msg);
595 	if (IS_ERR(tcs))
596 		return PTR_ERR(tcs);
597 
598 	spin_lock_irqsave(&drv->lock, flags);
599 	/*
600 	 * The h/w does not like if we send a request to the same address,
601 	 * when one is already in-flight or being processed.
602 	 */
603 	ret = check_for_req_inflight(drv, tcs, msg);
604 	if (ret)
605 		goto unlock;
606 
607 	ret = find_free_tcs(tcs);
608 	if (ret < 0)
609 		goto unlock;
610 	tcs_id = ret;
611 
612 	tcs->req[tcs_id - tcs->offset] = msg;
613 	set_bit(tcs_id, drv->tcs_in_use);
614 	if (msg->state == RPMH_ACTIVE_ONLY_STATE && tcs->type != ACTIVE_TCS) {
615 		/*
616 		 * Clear previously programmed WAKE commands in selected
617 		 * repurposed TCS to avoid triggering them. tcs->slots will be
618 		 * cleaned from rpmh_flush() by invoking rpmh_rsc_invalidate()
619 		 */
620 		write_tcs_reg_sync(drv, RSC_DRV_CMD_ENABLE, tcs_id, 0);
621 		write_tcs_reg_sync(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, tcs_id, 0);
622 		enable_tcs_irq(drv, tcs_id, true);
623 	}
624 	spin_unlock_irqrestore(&drv->lock, flags);
625 
626 	/*
627 	 * These two can be done after the lock is released because:
628 	 * - We marked "tcs_in_use" under lock.
629 	 * - Once "tcs_in_use" has been marked nobody else could be writing
630 	 *   to these registers until the interrupt goes off.
631 	 * - The interrupt can't go off until we trigger w/ the last line
632 	 *   of __tcs_set_trigger() below.
633 	 */
634 	__tcs_buffer_write(drv, tcs_id, 0, msg);
635 	__tcs_set_trigger(drv, tcs_id, true);
636 
637 	return 0;
638 unlock:
639 	spin_unlock_irqrestore(&drv->lock, flags);
640 	return ret;
641 }
642 
643 /**
644  * rpmh_rsc_send_data() - Write / trigger active-only message.
645  * @drv: The controller.
646  * @msg: The data to be sent.
647  *
648  * NOTES:
649  * - This is only used for "ACTIVE_ONLY" since the limitations of this
650  *   function don't make sense for sleep/wake cases.
651  * - To do the transfer, we will grab a whole TCS for ourselves--we don't
652  *   try to share. If there are none available we'll wait indefinitely
653  *   for a free one.
654  * - This function will not wait for the commands to be finished, only for
655  *   data to be programmed into the RPMh. See rpmh_tx_done() which will
656  *   be called when the transfer is fully complete.
657  * - This function must be called with interrupts enabled. If the hardware
658  *   is busy doing someone else's transfer we need that transfer to fully
659  *   finish so that we can have the hardware, and to fully finish it needs
660  *   the interrupt handler to run. If the interrupts is set to run on the
661  *   active CPU this can never happen if interrupts are disabled.
662  *
663  * Return: 0 on success, -EINVAL on error.
664  */
665 int rpmh_rsc_send_data(struct rsc_drv *drv, const struct tcs_request *msg)
666 {
667 	int ret;
668 
669 	do {
670 		ret = tcs_write(drv, msg);
671 		if (ret == -EBUSY) {
672 			pr_info_ratelimited("TCS Busy, retrying RPMH message send: addr=%#x\n",
673 					    msg->cmds[0].addr);
674 			udelay(10);
675 		}
676 	} while (ret == -EBUSY);
677 
678 	return ret;
679 }
680 
681 /**
682  * find_slots() - Find a place to write the given message.
683  * @tcs:    The tcs group to search.
684  * @msg:    The message we want to find room for.
685  * @tcs_id: If we return 0 from the function, we return the global ID of the
686  *          TCS to write to here.
687  * @cmd_id: If we return 0 from the function, we return the index of
688  *          the command array of the returned TCS where the client should
689  *          start writing the message.
690  *
691  * Only for use on sleep/wake TCSes since those are the only ones we maintain
692  * tcs->slots for.
693  *
694  * Return: -ENOMEM if there was no room, else 0.
695  */
696 static int find_slots(struct tcs_group *tcs, const struct tcs_request *msg,
697 		      int *tcs_id, int *cmd_id)
698 {
699 	int slot, offset;
700 	int i = 0;
701 
702 	/* Do over, until we can fit the full payload in a single TCS */
703 	do {
704 		slot = bitmap_find_next_zero_area(tcs->slots, MAX_TCS_SLOTS,
705 						  i, msg->num_cmds, 0);
706 		if (slot >= tcs->num_tcs * tcs->ncpt)
707 			return -ENOMEM;
708 		i += tcs->ncpt;
709 	} while (slot + msg->num_cmds - 1 >= i);
710 
711 	bitmap_set(tcs->slots, slot, msg->num_cmds);
712 
713 	offset = slot / tcs->ncpt;
714 	*tcs_id = offset + tcs->offset;
715 	*cmd_id = slot % tcs->ncpt;
716 
717 	return 0;
718 }
719 
720 /**
721  * rpmh_rsc_write_ctrl_data() - Write request to controller but don't trigger.
722  * @drv: The controller.
723  * @msg: The data to be written to the controller.
724  *
725  * This should only be called for for sleep/wake state, never active-only
726  * state.
727  *
728  * The caller must ensure that no other RPMH actions are happening and the
729  * controller is idle when this function is called since it runs lockless.
730  *
731  * Return: 0 if no error; else -error.
732  */
733 int rpmh_rsc_write_ctrl_data(struct rsc_drv *drv, const struct tcs_request *msg)
734 {
735 	struct tcs_group *tcs;
736 	int tcs_id = 0, cmd_id = 0;
737 	int ret;
738 
739 	tcs = get_tcs_for_msg(drv, msg);
740 	if (IS_ERR(tcs))
741 		return PTR_ERR(tcs);
742 
743 	/* find the TCS id and the command in the TCS to write to */
744 	ret = find_slots(tcs, msg, &tcs_id, &cmd_id);
745 	if (!ret)
746 		__tcs_buffer_write(drv, tcs_id, cmd_id, msg);
747 
748 	return ret;
749 }
750 
751 /**
752  * rpmh_rsc_ctrlr_is_busy() - Check if any of the AMCs are busy.
753  * @drv: The controller
754  *
755  * Checks if any of the AMCs are busy in handling ACTIVE sets.
756  * This is called from the last cpu powering down before flushing
757  * SLEEP and WAKE sets. If AMCs are busy, controller can not enter
758  * power collapse, so deny from the last cpu's pm notification.
759  *
760  * Context: Must be called with the drv->lock held.
761  *
762  * Return:
763  * * False		- AMCs are idle
764  * * True		- AMCs are busy
765  */
766 static bool rpmh_rsc_ctrlr_is_busy(struct rsc_drv *drv)
767 {
768 	int m;
769 	struct tcs_group *tcs = &drv->tcs[ACTIVE_TCS];
770 
771 	/*
772 	 * If we made an active request on a RSC that does not have a
773 	 * dedicated TCS for active state use, then re-purposed wake TCSes
774 	 * should be checked for not busy, because we used wake TCSes for
775 	 * active requests in this case.
776 	 */
777 	if (!tcs->num_tcs)
778 		tcs = &drv->tcs[WAKE_TCS];
779 
780 	for (m = tcs->offset; m < tcs->offset + tcs->num_tcs; m++) {
781 		if (!tcs_is_free(drv, m))
782 			return true;
783 	}
784 
785 	return false;
786 }
787 
788 /**
789  * rpmh_rsc_cpu_pm_callback() - Check if any of the AMCs are busy.
790  * @nfb:    Pointer to the notifier block in struct rsc_drv.
791  * @action: CPU_PM_ENTER, CPU_PM_ENTER_FAILED, or CPU_PM_EXIT.
792  * @v:      Unused
793  *
794  * This function is given to cpu_pm_register_notifier so we can be informed
795  * about when CPUs go down. When all CPUs go down we know no more active
796  * transfers will be started so we write sleep/wake sets. This function gets
797  * called from cpuidle code paths and also at system suspend time.
798  *
799  * If its last CPU going down and AMCs are not busy then writes cached sleep
800  * and wake messages to TCSes. The firmware then takes care of triggering
801  * them when entering deepest low power modes.
802  *
803  * Return: See cpu_pm_register_notifier()
804  */
805 static int rpmh_rsc_cpu_pm_callback(struct notifier_block *nfb,
806 				    unsigned long action, void *v)
807 {
808 	struct rsc_drv *drv = container_of(nfb, struct rsc_drv, rsc_pm);
809 	int ret = NOTIFY_OK;
810 	int cpus_in_pm;
811 
812 	switch (action) {
813 	case CPU_PM_ENTER:
814 		cpus_in_pm = atomic_inc_return(&drv->cpus_in_pm);
815 		/*
816 		 * NOTE: comments for num_online_cpus() point out that it's
817 		 * only a snapshot so we need to be careful. It should be OK
818 		 * for us to use, though.  It's important for us not to miss
819 		 * if we're the last CPU going down so it would only be a
820 		 * problem if a CPU went offline right after we did the check
821 		 * AND that CPU was not idle AND that CPU was the last non-idle
822 		 * CPU. That can't happen. CPUs would have to come out of idle
823 		 * before the CPU could go offline.
824 		 */
825 		if (cpus_in_pm < num_online_cpus())
826 			return NOTIFY_OK;
827 		break;
828 	case CPU_PM_ENTER_FAILED:
829 	case CPU_PM_EXIT:
830 		atomic_dec(&drv->cpus_in_pm);
831 		return NOTIFY_OK;
832 	default:
833 		return NOTIFY_DONE;
834 	}
835 
836 	/*
837 	 * It's likely we're on the last CPU. Grab the drv->lock and write
838 	 * out the sleep/wake commands to RPMH hardware. Grabbing the lock
839 	 * means that if we race with another CPU coming up we are still
840 	 * guaranteed to be safe. If another CPU came up just after we checked
841 	 * and has grabbed the lock or started an active transfer then we'll
842 	 * notice we're busy and abort. If another CPU comes up after we start
843 	 * flushing it will be blocked from starting an active transfer until
844 	 * we're done flushing. If another CPU starts an active transfer after
845 	 * we release the lock we're still OK because we're no longer the last
846 	 * CPU.
847 	 */
848 	if (spin_trylock(&drv->lock)) {
849 		if (rpmh_rsc_ctrlr_is_busy(drv) || rpmh_flush(&drv->client))
850 			ret = NOTIFY_BAD;
851 		spin_unlock(&drv->lock);
852 	} else {
853 		/* Another CPU must be up */
854 		return NOTIFY_OK;
855 	}
856 
857 	if (ret == NOTIFY_BAD) {
858 		/* Double-check if we're here because someone else is up */
859 		if (cpus_in_pm < num_online_cpus())
860 			ret = NOTIFY_OK;
861 		else
862 			/* We won't be called w/ CPU_PM_ENTER_FAILED */
863 			atomic_dec(&drv->cpus_in_pm);
864 	}
865 
866 	return ret;
867 }
868 
869 static int rpmh_probe_tcs_config(struct platform_device *pdev,
870 				 struct rsc_drv *drv, void __iomem *base)
871 {
872 	struct tcs_type_config {
873 		u32 type;
874 		u32 n;
875 	} tcs_cfg[TCS_TYPE_NR] = { { 0 } };
876 	struct device_node *dn = pdev->dev.of_node;
877 	u32 config, max_tcs, ncpt, offset;
878 	int i, ret, n, st = 0;
879 	struct tcs_group *tcs;
880 
881 	ret = of_property_read_u32(dn, "qcom,tcs-offset", &offset);
882 	if (ret)
883 		return ret;
884 	drv->tcs_base = base + offset;
885 
886 	config = readl_relaxed(base + DRV_PRNT_CHLD_CONFIG);
887 
888 	max_tcs = config;
889 	max_tcs &= DRV_NUM_TCS_MASK << (DRV_NUM_TCS_SHIFT * drv->id);
890 	max_tcs = max_tcs >> (DRV_NUM_TCS_SHIFT * drv->id);
891 
892 	ncpt = config & (DRV_NCPT_MASK << DRV_NCPT_SHIFT);
893 	ncpt = ncpt >> DRV_NCPT_SHIFT;
894 
895 	n = of_property_count_u32_elems(dn, "qcom,tcs-config");
896 	if (n != 2 * TCS_TYPE_NR)
897 		return -EINVAL;
898 
899 	for (i = 0; i < TCS_TYPE_NR; i++) {
900 		ret = of_property_read_u32_index(dn, "qcom,tcs-config",
901 						 i * 2, &tcs_cfg[i].type);
902 		if (ret)
903 			return ret;
904 		if (tcs_cfg[i].type >= TCS_TYPE_NR)
905 			return -EINVAL;
906 
907 		ret = of_property_read_u32_index(dn, "qcom,tcs-config",
908 						 i * 2 + 1, &tcs_cfg[i].n);
909 		if (ret)
910 			return ret;
911 		if (tcs_cfg[i].n > MAX_TCS_PER_TYPE)
912 			return -EINVAL;
913 	}
914 
915 	for (i = 0; i < TCS_TYPE_NR; i++) {
916 		tcs = &drv->tcs[tcs_cfg[i].type];
917 		if (tcs->drv)
918 			return -EINVAL;
919 		tcs->drv = drv;
920 		tcs->type = tcs_cfg[i].type;
921 		tcs->num_tcs = tcs_cfg[i].n;
922 		tcs->ncpt = ncpt;
923 
924 		if (!tcs->num_tcs || tcs->type == CONTROL_TCS)
925 			continue;
926 
927 		if (st + tcs->num_tcs > max_tcs ||
928 		    st + tcs->num_tcs >= BITS_PER_BYTE * sizeof(tcs->mask))
929 			return -EINVAL;
930 
931 		tcs->mask = ((1 << tcs->num_tcs) - 1) << st;
932 		tcs->offset = st;
933 		st += tcs->num_tcs;
934 	}
935 
936 	drv->num_tcs = st;
937 
938 	return 0;
939 }
940 
941 static int rpmh_rsc_probe(struct platform_device *pdev)
942 {
943 	struct device_node *dn = pdev->dev.of_node;
944 	struct rsc_drv *drv;
945 	struct resource *res;
946 	char drv_id[10] = {0};
947 	int ret, irq;
948 	u32 solver_config;
949 	void __iomem *base;
950 
951 	/*
952 	 * Even though RPMh doesn't directly use cmd-db, all of its children
953 	 * do. To avoid adding this check to our children we'll do it now.
954 	 */
955 	ret = cmd_db_ready();
956 	if (ret) {
957 		if (ret != -EPROBE_DEFER)
958 			dev_err(&pdev->dev, "Command DB not available (%d)\n",
959 									ret);
960 		return ret;
961 	}
962 
963 	drv = devm_kzalloc(&pdev->dev, sizeof(*drv), GFP_KERNEL);
964 	if (!drv)
965 		return -ENOMEM;
966 
967 	ret = of_property_read_u32(dn, "qcom,drv-id", &drv->id);
968 	if (ret)
969 		return ret;
970 
971 	drv->name = of_get_property(dn, "label", NULL);
972 	if (!drv->name)
973 		drv->name = dev_name(&pdev->dev);
974 
975 	snprintf(drv_id, ARRAY_SIZE(drv_id), "drv-%d", drv->id);
976 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, drv_id);
977 	base = devm_ioremap_resource(&pdev->dev, res);
978 	if (IS_ERR(base))
979 		return PTR_ERR(base);
980 
981 	ret = rpmh_probe_tcs_config(pdev, drv, base);
982 	if (ret)
983 		return ret;
984 
985 	spin_lock_init(&drv->lock);
986 	bitmap_zero(drv->tcs_in_use, MAX_TCS_NR);
987 
988 	irq = platform_get_irq(pdev, drv->id);
989 	if (irq < 0)
990 		return irq;
991 
992 	ret = devm_request_irq(&pdev->dev, irq, tcs_tx_done,
993 			       IRQF_TRIGGER_HIGH | IRQF_NO_SUSPEND,
994 			       drv->name, drv);
995 	if (ret)
996 		return ret;
997 
998 	/*
999 	 * CPU PM notification are not required for controllers that support
1000 	 * 'HW solver' mode where they can be in autonomous mode executing low
1001 	 * power mode to power down.
1002 	 */
1003 	solver_config = readl_relaxed(base + DRV_SOLVER_CONFIG);
1004 	solver_config &= DRV_HW_SOLVER_MASK << DRV_HW_SOLVER_SHIFT;
1005 	solver_config = solver_config >> DRV_HW_SOLVER_SHIFT;
1006 	if (!solver_config) {
1007 		drv->rsc_pm.notifier_call = rpmh_rsc_cpu_pm_callback;
1008 		cpu_pm_register_notifier(&drv->rsc_pm);
1009 	}
1010 
1011 	/* Enable the active TCS to send requests immediately */
1012 	writel_relaxed(drv->tcs[ACTIVE_TCS].mask,
1013 		       drv->tcs_base + RSC_DRV_IRQ_ENABLE);
1014 
1015 	spin_lock_init(&drv->client.cache_lock);
1016 	INIT_LIST_HEAD(&drv->client.cache);
1017 	INIT_LIST_HEAD(&drv->client.batch_cache);
1018 
1019 	dev_set_drvdata(&pdev->dev, drv);
1020 
1021 	return devm_of_platform_populate(&pdev->dev);
1022 }
1023 
1024 static const struct of_device_id rpmh_drv_match[] = {
1025 	{ .compatible = "qcom,rpmh-rsc", },
1026 	{ }
1027 };
1028 
1029 static struct platform_driver rpmh_driver = {
1030 	.probe = rpmh_rsc_probe,
1031 	.driver = {
1032 		  .name = "rpmh",
1033 		  .of_match_table = rpmh_drv_match,
1034 		  .suppress_bind_attrs = true,
1035 	},
1036 };
1037 
1038 static int __init rpmh_driver_init(void)
1039 {
1040 	return platform_driver_register(&rpmh_driver);
1041 }
1042 arch_initcall(rpmh_driver_init);
1043