xref: /linux/drivers/soc/fsl/qbman/qman_test_stash.c (revision e3610441d1fb47b1f00e4c38bdf333176e824729)
1 /* Copyright 2009 - 2016 Freescale Semiconductor, Inc.
2  *
3  * Redistribution and use in source and binary forms, with or without
4  * modification, are permitted provided that the following conditions are met:
5  *     * Redistributions of source code must retain the above copyright
6  *	 notice, this list of conditions and the following disclaimer.
7  *     * Redistributions in binary form must reproduce the above copyright
8  *	 notice, this list of conditions and the following disclaimer in the
9  *	 documentation and/or other materials provided with the distribution.
10  *     * Neither the name of Freescale Semiconductor nor the
11  *	 names of its contributors may be used to endorse or promote products
12  *	 derived from this software without specific prior written permission.
13  *
14  * ALTERNATIVELY, this software may be distributed under the terms of the
15  * GNU General Public License ("GPL") as published by the Free Software
16  * Foundation, either version 2 of that License or (at your option) any
17  * later version.
18  *
19  * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
20  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
23  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include "qman_test.h"
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/delay.h>
35 
36 /*
37  * Algorithm:
38  *
39  * Each cpu will have HP_PER_CPU "handlers" set up, each of which incorporates
40  * an rx/tx pair of FQ objects (both of which are stashed on dequeue). The
41  * organisation of FQIDs is such that the HP_PER_CPU*NUM_CPUS handlers will
42  * shuttle a "hot potato" frame around them such that every forwarding action
43  * moves it from one cpu to another. (The use of more than one handler per cpu
44  * is to allow enough handlers/FQs to truly test the significance of caching -
45  * ie. when cache-expiries are occurring.)
46  *
47  * The "hot potato" frame content will be HP_NUM_WORDS*4 bytes in size, and the
48  * first and last words of the frame data will undergo a transformation step on
49  * each forwarding action. To achieve this, each handler will be assigned a
50  * 32-bit "mixer", that is produced using a 32-bit LFSR. When a frame is
51  * received by a handler, the mixer of the expected sender is XOR'd into all
52  * words of the entire frame, which is then validated against the original
53  * values. Then, before forwarding, the entire frame is XOR'd with the mixer of
54  * the current handler. Apart from validating that the frame is taking the
55  * expected path, this also provides some quasi-realistic overheads to each
56  * forwarding action - dereferencing *all* the frame data, computation, and
57  * conditional branching. There is a "special" handler designated to act as the
58  * instigator of the test by creating an enqueuing the "hot potato" frame, and
59  * to determine when the test has completed by counting HP_LOOPS iterations.
60  *
61  * Init phases:
62  *
63  * 1. prepare each cpu's 'hp_cpu' struct using on_each_cpu(,,1) and link them
64  *    into 'hp_cpu_list'. Specifically, set processor_id, allocate HP_PER_CPU
65  *    handlers and link-list them (but do no other handler setup).
66  *
67  * 2. scan over 'hp_cpu_list' HP_PER_CPU times, the first time sets each
68  *    hp_cpu's 'iterator' to point to its first handler. With each loop,
69  *    allocate rx/tx FQIDs and mixer values to the hp_cpu's iterator handler
70  *    and advance the iterator for the next loop. This includes a final fixup,
71  *    which connects the last handler to the first (and which is why phase 2
72  *    and 3 are separate).
73  *
74  * 3. scan over 'hp_cpu_list' HP_PER_CPU times, the first time sets each
75  *    hp_cpu's 'iterator' to point to its first handler. With each loop,
76  *    initialise FQ objects and advance the iterator for the next loop.
77  *    Moreover, do this initialisation on the cpu it applies to so that Rx FQ
78  *    initialisation targets the correct cpu.
79  */
80 
81 /*
82  * helper to run something on all cpus (can't use on_each_cpu(), as that invokes
83  * the fn from irq context, which is too restrictive).
84  */
85 struct bstrap {
86 	int (*fn)(void);
87 	atomic_t started;
88 };
89 static int bstrap_fn(void *bs)
90 {
91 	struct bstrap *bstrap = bs;
92 	int err;
93 
94 	atomic_inc(&bstrap->started);
95 	err = bstrap->fn();
96 	if (err)
97 		return err;
98 	while (!kthread_should_stop())
99 		msleep(20);
100 	return 0;
101 }
102 static int on_all_cpus(int (*fn)(void))
103 {
104 	int cpu;
105 
106 	for_each_cpu(cpu, cpu_online_mask) {
107 		struct bstrap bstrap = {
108 			.fn = fn,
109 			.started = ATOMIC_INIT(0)
110 		};
111 		struct task_struct *k = kthread_run_on_cpu(bstrap_fn, &bstrap,
112 							   cpu, "hotpotato%d");
113 		int ret;
114 
115 		if (IS_ERR(k))
116 			return -ENOMEM;
117 		/*
118 		 * If we call kthread_stop() before the "wake up" has had an
119 		 * effect, then the thread may exit with -EINTR without ever
120 		 * running the function. So poll until it's started before
121 		 * requesting it to stop.
122 		 */
123 		while (!atomic_read(&bstrap.started))
124 			msleep(20);
125 		ret = kthread_stop(k);
126 		if (ret)
127 			return ret;
128 	}
129 	return 0;
130 }
131 
132 struct hp_handler {
133 
134 	/* The following data is stashed when 'rx' is dequeued; */
135 	/* -------------- */
136 	/* The Rx FQ, dequeues of which will stash the entire hp_handler */
137 	struct qman_fq rx;
138 	/* The Tx FQ we should forward to */
139 	struct qman_fq tx;
140 	/* The value we XOR post-dequeue, prior to validating */
141 	u32 rx_mixer;
142 	/* The value we XOR pre-enqueue, after validating */
143 	u32 tx_mixer;
144 	/* what the hotpotato address should be on dequeue */
145 	dma_addr_t addr;
146 	u32 *frame_ptr;
147 
148 	/* The following data isn't (necessarily) stashed on dequeue; */
149 	/* -------------- */
150 	u32 fqid_rx, fqid_tx;
151 	/* list node for linking us into 'hp_cpu' */
152 	struct list_head node;
153 	/* Just to check ... */
154 	unsigned int processor_id;
155 } ____cacheline_aligned;
156 
157 struct hp_cpu {
158 	/* identify the cpu we run on; */
159 	unsigned int processor_id;
160 	/* root node for the per-cpu list of handlers */
161 	struct list_head handlers;
162 	/* list node for linking us into 'hp_cpu_list' */
163 	struct list_head node;
164 	/*
165 	 * when repeatedly scanning 'hp_list', each time linking the n'th
166 	 * handlers together, this is used as per-cpu iterator state
167 	 */
168 	struct hp_handler *iterator;
169 };
170 
171 /* Each cpu has one of these */
172 static DEFINE_PER_CPU(struct hp_cpu, hp_cpus);
173 
174 /* links together the hp_cpu structs, in first-come first-serve order. */
175 static LIST_HEAD(hp_cpu_list);
176 static DEFINE_SPINLOCK(hp_lock);
177 
178 static unsigned int hp_cpu_list_length;
179 
180 /* the "special" handler, that starts and terminates the test. */
181 static struct hp_handler *special_handler;
182 static int loop_counter;
183 
184 /* handlers are allocated out of this, so they're properly aligned. */
185 static struct kmem_cache *hp_handler_slab;
186 
187 /* this is the frame data */
188 static void *__frame_ptr;
189 static u32 *frame_ptr;
190 static dma_addr_t frame_dma;
191 
192 /* needed for dma_map*() */
193 static const struct qm_portal_config *pcfg;
194 
195 /* the main function waits on this */
196 static DECLARE_WAIT_QUEUE_HEAD(queue);
197 
198 #define HP_PER_CPU	2
199 #define HP_LOOPS	8
200 /* 80 bytes, like a small ethernet frame, and bleeds into a second cacheline */
201 #define HP_NUM_WORDS	80
202 /* First word of the LFSR-based frame data */
203 #define HP_FIRST_WORD	0xabbaf00d
204 
205 static inline u32 do_lfsr(u32 prev)
206 {
207 	return (prev >> 1) ^ (-(prev & 1u) & 0xd0000001u);
208 }
209 
210 static int allocate_frame_data(void)
211 {
212 	u32 lfsr = HP_FIRST_WORD;
213 	int loop;
214 
215 	if (!qman_dma_portal) {
216 		pr_crit("portal not available\n");
217 		return -EIO;
218 	}
219 
220 	pcfg = qman_get_qm_portal_config(qman_dma_portal);
221 
222 	__frame_ptr = kmalloc(4 * HP_NUM_WORDS, GFP_KERNEL);
223 	if (!__frame_ptr)
224 		return -ENOMEM;
225 
226 	frame_ptr = PTR_ALIGN(__frame_ptr, 64);
227 	for (loop = 0; loop < HP_NUM_WORDS; loop++) {
228 		frame_ptr[loop] = lfsr;
229 		lfsr = do_lfsr(lfsr);
230 	}
231 
232 	frame_dma = dma_map_single(pcfg->dev, frame_ptr, 4 * HP_NUM_WORDS,
233 				   DMA_BIDIRECTIONAL);
234 	if (dma_mapping_error(pcfg->dev, frame_dma)) {
235 		pr_crit("dma mapping failure\n");
236 		kfree(__frame_ptr);
237 		return -EIO;
238 	}
239 
240 	return 0;
241 }
242 
243 static void deallocate_frame_data(void)
244 {
245 	dma_unmap_single(pcfg->dev, frame_dma, 4 * HP_NUM_WORDS,
246 			 DMA_BIDIRECTIONAL);
247 	kfree(__frame_ptr);
248 }
249 
250 static inline int process_frame_data(struct hp_handler *handler,
251 				     const struct qm_fd *fd)
252 {
253 	u32 *p = handler->frame_ptr;
254 	u32 lfsr = HP_FIRST_WORD;
255 	int loop;
256 
257 	if (qm_fd_addr_get64(fd) != handler->addr) {
258 		pr_crit("bad frame address, [%llX != %llX]\n",
259 			qm_fd_addr_get64(fd), handler->addr);
260 		return -EIO;
261 	}
262 	for (loop = 0; loop < HP_NUM_WORDS; loop++, p++) {
263 		*p ^= handler->rx_mixer;
264 		if (*p != lfsr) {
265 			pr_crit("corrupt frame data");
266 			return -EIO;
267 		}
268 		*p ^= handler->tx_mixer;
269 		lfsr = do_lfsr(lfsr);
270 	}
271 	return 0;
272 }
273 
274 static enum qman_cb_dqrr_result normal_dqrr(struct qman_portal *portal,
275 					    struct qman_fq *fq,
276 					    const struct qm_dqrr_entry *dqrr,
277 					    bool sched_napi)
278 {
279 	struct hp_handler *handler = (struct hp_handler *)fq;
280 
281 	if (process_frame_data(handler, &dqrr->fd)) {
282 		WARN_ON(1);
283 		goto skip;
284 	}
285 	if (qman_enqueue(&handler->tx, &dqrr->fd)) {
286 		pr_crit("qman_enqueue() failed");
287 		WARN_ON(1);
288 	}
289 skip:
290 	return qman_cb_dqrr_consume;
291 }
292 
293 static enum qman_cb_dqrr_result special_dqrr(struct qman_portal *portal,
294 					     struct qman_fq *fq,
295 					     const struct qm_dqrr_entry *dqrr,
296 					     bool sched_napi)
297 {
298 	struct hp_handler *handler = (struct hp_handler *)fq;
299 
300 	process_frame_data(handler, &dqrr->fd);
301 	if (++loop_counter < HP_LOOPS) {
302 		if (qman_enqueue(&handler->tx, &dqrr->fd)) {
303 			pr_crit("qman_enqueue() failed");
304 			WARN_ON(1);
305 			goto skip;
306 		}
307 	} else {
308 		pr_info("Received final (%dth) frame\n", loop_counter);
309 		wake_up(&queue);
310 	}
311 skip:
312 	return qman_cb_dqrr_consume;
313 }
314 
315 static int create_per_cpu_handlers(void)
316 {
317 	struct hp_handler *handler;
318 	int loop;
319 	struct hp_cpu *hp_cpu = this_cpu_ptr(&hp_cpus);
320 
321 	hp_cpu->processor_id = smp_processor_id();
322 	spin_lock(&hp_lock);
323 	list_add_tail(&hp_cpu->node, &hp_cpu_list);
324 	hp_cpu_list_length++;
325 	spin_unlock(&hp_lock);
326 	INIT_LIST_HEAD(&hp_cpu->handlers);
327 	for (loop = 0; loop < HP_PER_CPU; loop++) {
328 		handler = kmem_cache_alloc(hp_handler_slab, GFP_KERNEL);
329 		if (!handler) {
330 			pr_crit("kmem_cache_alloc() failed");
331 			WARN_ON(1);
332 			return -EIO;
333 		}
334 		handler->processor_id = hp_cpu->processor_id;
335 		handler->addr = frame_dma;
336 		handler->frame_ptr = frame_ptr;
337 		list_add_tail(&handler->node, &hp_cpu->handlers);
338 	}
339 	return 0;
340 }
341 
342 static int destroy_per_cpu_handlers(void)
343 {
344 	struct list_head *loop, *tmp;
345 	struct hp_cpu *hp_cpu = this_cpu_ptr(&hp_cpus);
346 
347 	spin_lock(&hp_lock);
348 	list_del(&hp_cpu->node);
349 	spin_unlock(&hp_lock);
350 	list_for_each_safe(loop, tmp, &hp_cpu->handlers) {
351 		u32 flags = 0;
352 		struct hp_handler *handler = list_entry(loop, struct hp_handler,
353 							node);
354 		if (qman_retire_fq(&handler->rx, &flags) ||
355 		    (flags & QMAN_FQ_STATE_BLOCKOOS)) {
356 			pr_crit("qman_retire_fq(rx) failed, flags: %x", flags);
357 			WARN_ON(1);
358 			return -EIO;
359 		}
360 		if (qman_oos_fq(&handler->rx)) {
361 			pr_crit("qman_oos_fq(rx) failed");
362 			WARN_ON(1);
363 			return -EIO;
364 		}
365 		qman_destroy_fq(&handler->rx);
366 		qman_destroy_fq(&handler->tx);
367 		qman_release_fqid(handler->fqid_rx);
368 		list_del(&handler->node);
369 		kmem_cache_free(hp_handler_slab, handler);
370 	}
371 	return 0;
372 }
373 
374 static inline u8 num_cachelines(u32 offset)
375 {
376 	u8 res = (offset + (L1_CACHE_BYTES - 1))
377 			 / (L1_CACHE_BYTES);
378 	if (res > 3)
379 		return 3;
380 	return res;
381 }
382 #define STASH_DATA_CL \
383 	num_cachelines(HP_NUM_WORDS * 4)
384 #define STASH_CTX_CL \
385 	num_cachelines(offsetof(struct hp_handler, fqid_rx))
386 
387 static int init_handler(void *h)
388 {
389 	struct qm_mcc_initfq opts;
390 	struct hp_handler *handler = h;
391 	int err;
392 
393 	if (handler->processor_id != smp_processor_id()) {
394 		err = -EIO;
395 		goto failed;
396 	}
397 	/* Set up rx */
398 	memset(&handler->rx, 0, sizeof(handler->rx));
399 	if (handler == special_handler)
400 		handler->rx.cb.dqrr = special_dqrr;
401 	else
402 		handler->rx.cb.dqrr = normal_dqrr;
403 	err = qman_create_fq(handler->fqid_rx, 0, &handler->rx);
404 	if (err) {
405 		pr_crit("qman_create_fq(rx) failed");
406 		goto failed;
407 	}
408 	memset(&opts, 0, sizeof(opts));
409 	opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL |
410 				   QM_INITFQ_WE_CONTEXTA);
411 	opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING);
412 	qm_fqd_set_stashing(&opts.fqd, 0, STASH_DATA_CL, STASH_CTX_CL);
413 	err = qman_init_fq(&handler->rx, QMAN_INITFQ_FLAG_SCHED |
414 			   QMAN_INITFQ_FLAG_LOCAL, &opts);
415 	if (err) {
416 		pr_crit("qman_init_fq(rx) failed");
417 		goto failed;
418 	}
419 	/* Set up tx */
420 	memset(&handler->tx, 0, sizeof(handler->tx));
421 	err = qman_create_fq(handler->fqid_tx, QMAN_FQ_FLAG_NO_MODIFY,
422 			     &handler->tx);
423 	if (err) {
424 		pr_crit("qman_create_fq(tx) failed");
425 		goto failed;
426 	}
427 
428 	return 0;
429 failed:
430 	return err;
431 }
432 
433 static void init_handler_cb(void *h)
434 {
435 	if (init_handler(h))
436 		WARN_ON(1);
437 }
438 
439 static int init_phase2(void)
440 {
441 	int loop;
442 	u32 fqid = 0;
443 	u32 lfsr = 0xdeadbeef;
444 	struct hp_cpu *hp_cpu;
445 	struct hp_handler *handler;
446 
447 	for (loop = 0; loop < HP_PER_CPU; loop++) {
448 		list_for_each_entry(hp_cpu, &hp_cpu_list, node) {
449 			int err;
450 
451 			if (!loop)
452 				hp_cpu->iterator = list_first_entry(
453 						&hp_cpu->handlers,
454 						struct hp_handler, node);
455 			else
456 				hp_cpu->iterator = list_entry(
457 						hp_cpu->iterator->node.next,
458 						struct hp_handler, node);
459 			/* Rx FQID is the previous handler's Tx FQID */
460 			hp_cpu->iterator->fqid_rx = fqid;
461 			/* Allocate new FQID for Tx */
462 			err = qman_alloc_fqid(&fqid);
463 			if (err) {
464 				pr_crit("qman_alloc_fqid() failed");
465 				return err;
466 			}
467 			hp_cpu->iterator->fqid_tx = fqid;
468 			/* Rx mixer is the previous handler's Tx mixer */
469 			hp_cpu->iterator->rx_mixer = lfsr;
470 			/* Get new mixer for Tx */
471 			lfsr = do_lfsr(lfsr);
472 			hp_cpu->iterator->tx_mixer = lfsr;
473 		}
474 	}
475 	/* Fix up the first handler (fqid_rx==0, rx_mixer=0xdeadbeef) */
476 	hp_cpu = list_first_entry(&hp_cpu_list, struct hp_cpu, node);
477 	handler = list_first_entry(&hp_cpu->handlers, struct hp_handler, node);
478 	if (handler->fqid_rx != 0 || handler->rx_mixer != 0xdeadbeef)
479 		return 1;
480 	handler->fqid_rx = fqid;
481 	handler->rx_mixer = lfsr;
482 	/* and tag it as our "special" handler */
483 	special_handler = handler;
484 	return 0;
485 }
486 
487 static int init_phase3(void)
488 {
489 	int loop, err;
490 	struct hp_cpu *hp_cpu;
491 
492 	for (loop = 0; loop < HP_PER_CPU; loop++) {
493 		list_for_each_entry(hp_cpu, &hp_cpu_list, node) {
494 			if (!loop)
495 				hp_cpu->iterator = list_first_entry(
496 						&hp_cpu->handlers,
497 						struct hp_handler, node);
498 			else
499 				hp_cpu->iterator = list_entry(
500 						hp_cpu->iterator->node.next,
501 						struct hp_handler, node);
502 			preempt_disable();
503 			if (hp_cpu->processor_id == smp_processor_id()) {
504 				err = init_handler(hp_cpu->iterator);
505 				if (err)
506 					return err;
507 			} else {
508 				smp_call_function_single(hp_cpu->processor_id,
509 					init_handler_cb, hp_cpu->iterator, 1);
510 			}
511 			preempt_enable();
512 		}
513 	}
514 	return 0;
515 }
516 
517 static int send_first_frame(void *ignore)
518 {
519 	u32 *p = special_handler->frame_ptr;
520 	u32 lfsr = HP_FIRST_WORD;
521 	int loop, err;
522 	struct qm_fd fd;
523 
524 	if (special_handler->processor_id != smp_processor_id()) {
525 		err = -EIO;
526 		goto failed;
527 	}
528 	memset(&fd, 0, sizeof(fd));
529 	qm_fd_addr_set64(&fd, special_handler->addr);
530 	qm_fd_set_contig_big(&fd, HP_NUM_WORDS * 4);
531 	for (loop = 0; loop < HP_NUM_WORDS; loop++, p++) {
532 		if (*p != lfsr) {
533 			err = -EIO;
534 			pr_crit("corrupt frame data");
535 			goto failed;
536 		}
537 		*p ^= special_handler->tx_mixer;
538 		lfsr = do_lfsr(lfsr);
539 	}
540 	pr_info("Sending first frame\n");
541 	err = qman_enqueue(&special_handler->tx, &fd);
542 	if (err) {
543 		pr_crit("qman_enqueue() failed");
544 		goto failed;
545 	}
546 
547 	return 0;
548 failed:
549 	return err;
550 }
551 
552 static void send_first_frame_cb(void *ignore)
553 {
554 	if (send_first_frame(NULL))
555 		WARN_ON(1);
556 }
557 
558 int qman_test_stash(void)
559 {
560 	int err;
561 
562 	if (cpumask_weight(cpu_online_mask) < 2) {
563 		pr_info("%s(): skip - only 1 CPU\n", __func__);
564 		return 0;
565 	}
566 
567 	pr_info("%s(): Starting\n", __func__);
568 
569 	hp_cpu_list_length = 0;
570 	loop_counter = 0;
571 	hp_handler_slab = kmem_cache_create("hp_handler_slab",
572 			sizeof(struct hp_handler), L1_CACHE_BYTES,
573 			SLAB_HWCACHE_ALIGN, NULL);
574 	if (!hp_handler_slab) {
575 		err = -EIO;
576 		pr_crit("kmem_cache_create() failed");
577 		goto failed;
578 	}
579 
580 	err = allocate_frame_data();
581 	if (err)
582 		goto failed;
583 
584 	/* Init phase 1 */
585 	pr_info("Creating %d handlers per cpu...\n", HP_PER_CPU);
586 	if (on_all_cpus(create_per_cpu_handlers)) {
587 		err = -EIO;
588 		pr_crit("on_each_cpu() failed");
589 		goto failed;
590 	}
591 	pr_info("Number of cpus: %d, total of %d handlers\n",
592 		hp_cpu_list_length, hp_cpu_list_length * HP_PER_CPU);
593 
594 	err = init_phase2();
595 	if (err)
596 		goto failed;
597 
598 	err = init_phase3();
599 	if (err)
600 		goto failed;
601 
602 	preempt_disable();
603 	if (special_handler->processor_id == smp_processor_id()) {
604 		err = send_first_frame(NULL);
605 		if (err)
606 			goto failed;
607 	} else {
608 		smp_call_function_single(special_handler->processor_id,
609 					 send_first_frame_cb, NULL, 1);
610 	}
611 	preempt_enable();
612 
613 	wait_event(queue, loop_counter == HP_LOOPS);
614 	deallocate_frame_data();
615 	if (on_all_cpus(destroy_per_cpu_handlers)) {
616 		err = -EIO;
617 		pr_crit("on_each_cpu() failed");
618 		goto failed;
619 	}
620 	kmem_cache_destroy(hp_handler_slab);
621 	pr_info("%s(): Finished\n", __func__);
622 
623 	return 0;
624 failed:
625 	WARN_ON(1);
626 	return err;
627 }
628