xref: /linux/drivers/soc/fsl/qbman/qman.c (revision ec63e2a4897075e427c121d863bd89c44578094f)
1 /* Copyright 2008 - 2016 Freescale Semiconductor, Inc.
2  *
3  * Redistribution and use in source and binary forms, with or without
4  * modification, are permitted provided that the following conditions are met:
5  *     * Redistributions of source code must retain the above copyright
6  *	 notice, this list of conditions and the following disclaimer.
7  *     * Redistributions in binary form must reproduce the above copyright
8  *	 notice, this list of conditions and the following disclaimer in the
9  *	 documentation and/or other materials provided with the distribution.
10  *     * Neither the name of Freescale Semiconductor nor the
11  *	 names of its contributors may be used to endorse or promote products
12  *	 derived from this software without specific prior written permission.
13  *
14  * ALTERNATIVELY, this software may be distributed under the terms of the
15  * GNU General Public License ("GPL") as published by the Free Software
16  * Foundation, either version 2 of that License or (at your option) any
17  * later version.
18  *
19  * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
20  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
23  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include "qman_priv.h"
32 
33 #define DQRR_MAXFILL	15
34 #define EQCR_ITHRESH	4	/* if EQCR congests, interrupt threshold */
35 #define IRQNAME		"QMan portal %d"
36 #define MAX_IRQNAME	16	/* big enough for "QMan portal %d" */
37 #define QMAN_POLL_LIMIT 32
38 #define QMAN_PIRQ_DQRR_ITHRESH 12
39 #define QMAN_DQRR_IT_MAX 15
40 #define QMAN_ITP_MAX 0xFFF
41 #define QMAN_PIRQ_MR_ITHRESH 4
42 #define QMAN_PIRQ_IPERIOD 100
43 
44 /* Portal register assists */
45 
46 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
47 /* Cache-inhibited register offsets */
48 #define QM_REG_EQCR_PI_CINH	0x3000
49 #define QM_REG_EQCR_CI_CINH	0x3040
50 #define QM_REG_EQCR_ITR		0x3080
51 #define QM_REG_DQRR_PI_CINH	0x3100
52 #define QM_REG_DQRR_CI_CINH	0x3140
53 #define QM_REG_DQRR_ITR		0x3180
54 #define QM_REG_DQRR_DCAP	0x31C0
55 #define QM_REG_DQRR_SDQCR	0x3200
56 #define QM_REG_DQRR_VDQCR	0x3240
57 #define QM_REG_DQRR_PDQCR	0x3280
58 #define QM_REG_MR_PI_CINH	0x3300
59 #define QM_REG_MR_CI_CINH	0x3340
60 #define QM_REG_MR_ITR		0x3380
61 #define QM_REG_CFG		0x3500
62 #define QM_REG_ISR		0x3600
63 #define QM_REG_IER		0x3640
64 #define QM_REG_ISDR		0x3680
65 #define QM_REG_IIR		0x36C0
66 #define QM_REG_ITPR		0x3740
67 
68 /* Cache-enabled register offsets */
69 #define QM_CL_EQCR		0x0000
70 #define QM_CL_DQRR		0x1000
71 #define QM_CL_MR		0x2000
72 #define QM_CL_EQCR_PI_CENA	0x3000
73 #define QM_CL_EQCR_CI_CENA	0x3040
74 #define QM_CL_DQRR_PI_CENA	0x3100
75 #define QM_CL_DQRR_CI_CENA	0x3140
76 #define QM_CL_MR_PI_CENA	0x3300
77 #define QM_CL_MR_CI_CENA	0x3340
78 #define QM_CL_CR		0x3800
79 #define QM_CL_RR0		0x3900
80 #define QM_CL_RR1		0x3940
81 
82 #else
83 /* Cache-inhibited register offsets */
84 #define QM_REG_EQCR_PI_CINH	0x0000
85 #define QM_REG_EQCR_CI_CINH	0x0004
86 #define QM_REG_EQCR_ITR		0x0008
87 #define QM_REG_DQRR_PI_CINH	0x0040
88 #define QM_REG_DQRR_CI_CINH	0x0044
89 #define QM_REG_DQRR_ITR		0x0048
90 #define QM_REG_DQRR_DCAP	0x0050
91 #define QM_REG_DQRR_SDQCR	0x0054
92 #define QM_REG_DQRR_VDQCR	0x0058
93 #define QM_REG_DQRR_PDQCR	0x005c
94 #define QM_REG_MR_PI_CINH	0x0080
95 #define QM_REG_MR_CI_CINH	0x0084
96 #define QM_REG_MR_ITR		0x0088
97 #define QM_REG_CFG		0x0100
98 #define QM_REG_ISR		0x0e00
99 #define QM_REG_IER		0x0e04
100 #define QM_REG_ISDR		0x0e08
101 #define QM_REG_IIR		0x0e0c
102 #define QM_REG_ITPR		0x0e14
103 
104 /* Cache-enabled register offsets */
105 #define QM_CL_EQCR		0x0000
106 #define QM_CL_DQRR		0x1000
107 #define QM_CL_MR		0x2000
108 #define QM_CL_EQCR_PI_CENA	0x3000
109 #define QM_CL_EQCR_CI_CENA	0x3100
110 #define QM_CL_DQRR_PI_CENA	0x3200
111 #define QM_CL_DQRR_CI_CENA	0x3300
112 #define QM_CL_MR_PI_CENA	0x3400
113 #define QM_CL_MR_CI_CENA	0x3500
114 #define QM_CL_CR		0x3800
115 #define QM_CL_RR0		0x3900
116 #define QM_CL_RR1		0x3940
117 #endif
118 
119 /*
120  * BTW, the drivers (and h/w programming model) already obtain the required
121  * synchronisation for portal accesses and data-dependencies. Use of barrier()s
122  * or other order-preserving primitives simply degrade performance. Hence the
123  * use of the __raw_*() interfaces, which simply ensure that the compiler treats
124  * the portal registers as volatile
125  */
126 
127 /* Cache-enabled ring access */
128 #define qm_cl(base, idx)	((void *)base + ((idx) << 6))
129 
130 /*
131  * Portal modes.
132  *   Enum types;
133  *     pmode == production mode
134  *     cmode == consumption mode,
135  *     dmode == h/w dequeue mode.
136  *   Enum values use 3 letter codes. First letter matches the portal mode,
137  *   remaining two letters indicate;
138  *     ci == cache-inhibited portal register
139  *     ce == cache-enabled portal register
140  *     vb == in-band valid-bit (cache-enabled)
141  *     dc == DCA (Discrete Consumption Acknowledgment), DQRR-only
142  *   As for "enum qm_dqrr_dmode", it should be self-explanatory.
143  */
144 enum qm_eqcr_pmode {		/* matches QCSP_CFG::EPM */
145 	qm_eqcr_pci = 0,	/* PI index, cache-inhibited */
146 	qm_eqcr_pce = 1,	/* PI index, cache-enabled */
147 	qm_eqcr_pvb = 2		/* valid-bit */
148 };
149 enum qm_dqrr_dmode {		/* matches QCSP_CFG::DP */
150 	qm_dqrr_dpush = 0,	/* SDQCR  + VDQCR */
151 	qm_dqrr_dpull = 1	/* PDQCR */
152 };
153 enum qm_dqrr_pmode {		/* s/w-only */
154 	qm_dqrr_pci,		/* reads DQRR_PI_CINH */
155 	qm_dqrr_pce,		/* reads DQRR_PI_CENA */
156 	qm_dqrr_pvb		/* reads valid-bit */
157 };
158 enum qm_dqrr_cmode {		/* matches QCSP_CFG::DCM */
159 	qm_dqrr_cci = 0,	/* CI index, cache-inhibited */
160 	qm_dqrr_cce = 1,	/* CI index, cache-enabled */
161 	qm_dqrr_cdc = 2		/* Discrete Consumption Acknowledgment */
162 };
163 enum qm_mr_pmode {		/* s/w-only */
164 	qm_mr_pci,		/* reads MR_PI_CINH */
165 	qm_mr_pce,		/* reads MR_PI_CENA */
166 	qm_mr_pvb		/* reads valid-bit */
167 };
168 enum qm_mr_cmode {		/* matches QCSP_CFG::MM */
169 	qm_mr_cci = 0,		/* CI index, cache-inhibited */
170 	qm_mr_cce = 1		/* CI index, cache-enabled */
171 };
172 
173 /* --- Portal structures --- */
174 
175 #define QM_EQCR_SIZE		8
176 #define QM_DQRR_SIZE		16
177 #define QM_MR_SIZE		8
178 
179 /* "Enqueue Command" */
180 struct qm_eqcr_entry {
181 	u8 _ncw_verb; /* writes to this are non-coherent */
182 	u8 dca;
183 	__be16 seqnum;
184 	u8 __reserved[4];
185 	__be32 fqid;	/* 24-bit */
186 	__be32 tag;
187 	struct qm_fd fd;
188 	u8 __reserved3[32];
189 } __packed;
190 #define QM_EQCR_VERB_VBIT		0x80
191 #define QM_EQCR_VERB_CMD_MASK		0x61	/* but only one value; */
192 #define QM_EQCR_VERB_CMD_ENQUEUE	0x01
193 #define QM_EQCR_SEQNUM_NESN		0x8000	/* Advance NESN */
194 #define QM_EQCR_SEQNUM_NLIS		0x4000	/* More fragments to come */
195 #define QM_EQCR_SEQNUM_SEQMASK		0x3fff	/* sequence number goes here */
196 
197 struct qm_eqcr {
198 	struct qm_eqcr_entry *ring, *cursor;
199 	u8 ci, available, ithresh, vbit;
200 #ifdef CONFIG_FSL_DPAA_CHECKING
201 	u32 busy;
202 	enum qm_eqcr_pmode pmode;
203 #endif
204 };
205 
206 struct qm_dqrr {
207 	const struct qm_dqrr_entry *ring, *cursor;
208 	u8 pi, ci, fill, ithresh, vbit;
209 #ifdef CONFIG_FSL_DPAA_CHECKING
210 	enum qm_dqrr_dmode dmode;
211 	enum qm_dqrr_pmode pmode;
212 	enum qm_dqrr_cmode cmode;
213 #endif
214 };
215 
216 struct qm_mr {
217 	union qm_mr_entry *ring, *cursor;
218 	u8 pi, ci, fill, ithresh, vbit;
219 #ifdef CONFIG_FSL_DPAA_CHECKING
220 	enum qm_mr_pmode pmode;
221 	enum qm_mr_cmode cmode;
222 #endif
223 };
224 
225 /* MC (Management Command) command */
226 /* "FQ" command layout */
227 struct qm_mcc_fq {
228 	u8 _ncw_verb;
229 	u8 __reserved1[3];
230 	__be32 fqid;	/* 24-bit */
231 	u8 __reserved2[56];
232 } __packed;
233 
234 /* "CGR" command layout */
235 struct qm_mcc_cgr {
236 	u8 _ncw_verb;
237 	u8 __reserved1[30];
238 	u8 cgid;
239 	u8 __reserved2[32];
240 };
241 
242 #define QM_MCC_VERB_VBIT		0x80
243 #define QM_MCC_VERB_MASK		0x7f	/* where the verb contains; */
244 #define QM_MCC_VERB_INITFQ_PARKED	0x40
245 #define QM_MCC_VERB_INITFQ_SCHED	0x41
246 #define QM_MCC_VERB_QUERYFQ		0x44
247 #define QM_MCC_VERB_QUERYFQ_NP		0x45	/* "non-programmable" fields */
248 #define QM_MCC_VERB_QUERYWQ		0x46
249 #define QM_MCC_VERB_QUERYWQ_DEDICATED	0x47
250 #define QM_MCC_VERB_ALTER_SCHED		0x48	/* Schedule FQ */
251 #define QM_MCC_VERB_ALTER_FE		0x49	/* Force Eligible FQ */
252 #define QM_MCC_VERB_ALTER_RETIRE	0x4a	/* Retire FQ */
253 #define QM_MCC_VERB_ALTER_OOS		0x4b	/* Take FQ out of service */
254 #define QM_MCC_VERB_ALTER_FQXON		0x4d	/* FQ XON */
255 #define QM_MCC_VERB_ALTER_FQXOFF	0x4e	/* FQ XOFF */
256 #define QM_MCC_VERB_INITCGR		0x50
257 #define QM_MCC_VERB_MODIFYCGR		0x51
258 #define QM_MCC_VERB_CGRTESTWRITE	0x52
259 #define QM_MCC_VERB_QUERYCGR		0x58
260 #define QM_MCC_VERB_QUERYCONGESTION	0x59
261 union qm_mc_command {
262 	struct {
263 		u8 _ncw_verb; /* writes to this are non-coherent */
264 		u8 __reserved[63];
265 	};
266 	struct qm_mcc_initfq initfq;
267 	struct qm_mcc_initcgr initcgr;
268 	struct qm_mcc_fq fq;
269 	struct qm_mcc_cgr cgr;
270 };
271 
272 /* MC (Management Command) result */
273 /* "Query FQ" */
274 struct qm_mcr_queryfq {
275 	u8 verb;
276 	u8 result;
277 	u8 __reserved1[8];
278 	struct qm_fqd fqd;	/* the FQD fields are here */
279 	u8 __reserved2[30];
280 } __packed;
281 
282 /* "Alter FQ State Commands" */
283 struct qm_mcr_alterfq {
284 	u8 verb;
285 	u8 result;
286 	u8 fqs;		/* Frame Queue Status */
287 	u8 __reserved1[61];
288 };
289 #define QM_MCR_VERB_RRID		0x80
290 #define QM_MCR_VERB_MASK		QM_MCC_VERB_MASK
291 #define QM_MCR_VERB_INITFQ_PARKED	QM_MCC_VERB_INITFQ_PARKED
292 #define QM_MCR_VERB_INITFQ_SCHED	QM_MCC_VERB_INITFQ_SCHED
293 #define QM_MCR_VERB_QUERYFQ		QM_MCC_VERB_QUERYFQ
294 #define QM_MCR_VERB_QUERYFQ_NP		QM_MCC_VERB_QUERYFQ_NP
295 #define QM_MCR_VERB_QUERYWQ		QM_MCC_VERB_QUERYWQ
296 #define QM_MCR_VERB_QUERYWQ_DEDICATED	QM_MCC_VERB_QUERYWQ_DEDICATED
297 #define QM_MCR_VERB_ALTER_SCHED		QM_MCC_VERB_ALTER_SCHED
298 #define QM_MCR_VERB_ALTER_FE		QM_MCC_VERB_ALTER_FE
299 #define QM_MCR_VERB_ALTER_RETIRE	QM_MCC_VERB_ALTER_RETIRE
300 #define QM_MCR_VERB_ALTER_OOS		QM_MCC_VERB_ALTER_OOS
301 #define QM_MCR_RESULT_NULL		0x00
302 #define QM_MCR_RESULT_OK		0xf0
303 #define QM_MCR_RESULT_ERR_FQID		0xf1
304 #define QM_MCR_RESULT_ERR_FQSTATE	0xf2
305 #define QM_MCR_RESULT_ERR_NOTEMPTY	0xf3	/* OOS fails if FQ is !empty */
306 #define QM_MCR_RESULT_ERR_BADCHANNEL	0xf4
307 #define QM_MCR_RESULT_PENDING		0xf8
308 #define QM_MCR_RESULT_ERR_BADCOMMAND	0xff
309 #define QM_MCR_FQS_ORLPRESENT		0x02	/* ORL fragments to come */
310 #define QM_MCR_FQS_NOTEMPTY		0x01	/* FQ has enqueued frames */
311 #define QM_MCR_TIMEOUT			10000	/* us */
312 union qm_mc_result {
313 	struct {
314 		u8 verb;
315 		u8 result;
316 		u8 __reserved1[62];
317 	};
318 	struct qm_mcr_queryfq queryfq;
319 	struct qm_mcr_alterfq alterfq;
320 	struct qm_mcr_querycgr querycgr;
321 	struct qm_mcr_querycongestion querycongestion;
322 	struct qm_mcr_querywq querywq;
323 	struct qm_mcr_queryfq_np queryfq_np;
324 };
325 
326 struct qm_mc {
327 	union qm_mc_command *cr;
328 	union qm_mc_result *rr;
329 	u8 rridx, vbit;
330 #ifdef CONFIG_FSL_DPAA_CHECKING
331 	enum {
332 		/* Can be _mc_start()ed */
333 		qman_mc_idle,
334 		/* Can be _mc_commit()ed or _mc_abort()ed */
335 		qman_mc_user,
336 		/* Can only be _mc_retry()ed */
337 		qman_mc_hw
338 	} state;
339 #endif
340 };
341 
342 struct qm_addr {
343 	void *ce;		/* cache-enabled */
344 	__be32 *ce_be;		/* same value as above but for direct access */
345 	void __iomem *ci;	/* cache-inhibited */
346 };
347 
348 struct qm_portal {
349 	/*
350 	 * In the non-CONFIG_FSL_DPAA_CHECKING case, the following stuff up to
351 	 * and including 'mc' fits within a cacheline (yay!). The 'config' part
352 	 * is setup-only, so isn't a cause for a concern. In other words, don't
353 	 * rearrange this structure on a whim, there be dragons ...
354 	 */
355 	struct qm_addr addr;
356 	struct qm_eqcr eqcr;
357 	struct qm_dqrr dqrr;
358 	struct qm_mr mr;
359 	struct qm_mc mc;
360 } ____cacheline_aligned;
361 
362 /* Cache-inhibited register access. */
363 static inline u32 qm_in(struct qm_portal *p, u32 offset)
364 {
365 	return ioread32be(p->addr.ci + offset);
366 }
367 
368 static inline void qm_out(struct qm_portal *p, u32 offset, u32 val)
369 {
370 	iowrite32be(val, p->addr.ci + offset);
371 }
372 
373 /* Cache Enabled Portal Access */
374 static inline void qm_cl_invalidate(struct qm_portal *p, u32 offset)
375 {
376 	dpaa_invalidate(p->addr.ce + offset);
377 }
378 
379 static inline void qm_cl_touch_ro(struct qm_portal *p, u32 offset)
380 {
381 	dpaa_touch_ro(p->addr.ce + offset);
382 }
383 
384 static inline u32 qm_ce_in(struct qm_portal *p, u32 offset)
385 {
386 	return be32_to_cpu(*(p->addr.ce_be + (offset/4)));
387 }
388 
389 /* --- EQCR API --- */
390 
391 #define EQCR_SHIFT	ilog2(sizeof(struct qm_eqcr_entry))
392 #define EQCR_CARRY	(uintptr_t)(QM_EQCR_SIZE << EQCR_SHIFT)
393 
394 /* Bit-wise logic to wrap a ring pointer by clearing the "carry bit" */
395 static struct qm_eqcr_entry *eqcr_carryclear(struct qm_eqcr_entry *p)
396 {
397 	uintptr_t addr = (uintptr_t)p;
398 
399 	addr &= ~EQCR_CARRY;
400 
401 	return (struct qm_eqcr_entry *)addr;
402 }
403 
404 /* Bit-wise logic to convert a ring pointer to a ring index */
405 static int eqcr_ptr2idx(struct qm_eqcr_entry *e)
406 {
407 	return ((uintptr_t)e >> EQCR_SHIFT) & (QM_EQCR_SIZE - 1);
408 }
409 
410 /* Increment the 'cursor' ring pointer, taking 'vbit' into account */
411 static inline void eqcr_inc(struct qm_eqcr *eqcr)
412 {
413 	/* increment to the next EQCR pointer and handle overflow and 'vbit' */
414 	struct qm_eqcr_entry *partial = eqcr->cursor + 1;
415 
416 	eqcr->cursor = eqcr_carryclear(partial);
417 	if (partial != eqcr->cursor)
418 		eqcr->vbit ^= QM_EQCR_VERB_VBIT;
419 }
420 
421 static inline int qm_eqcr_init(struct qm_portal *portal,
422 				enum qm_eqcr_pmode pmode,
423 				unsigned int eq_stash_thresh,
424 				int eq_stash_prio)
425 {
426 	struct qm_eqcr *eqcr = &portal->eqcr;
427 	u32 cfg;
428 	u8 pi;
429 
430 	eqcr->ring = portal->addr.ce + QM_CL_EQCR;
431 	eqcr->ci = qm_in(portal, QM_REG_EQCR_CI_CINH) & (QM_EQCR_SIZE - 1);
432 	qm_cl_invalidate(portal, QM_CL_EQCR_CI_CENA);
433 	pi = qm_in(portal, QM_REG_EQCR_PI_CINH) & (QM_EQCR_SIZE - 1);
434 	eqcr->cursor = eqcr->ring + pi;
435 	eqcr->vbit = (qm_in(portal, QM_REG_EQCR_PI_CINH) & QM_EQCR_SIZE) ?
436 		     QM_EQCR_VERB_VBIT : 0;
437 	eqcr->available = QM_EQCR_SIZE - 1 -
438 			  dpaa_cyc_diff(QM_EQCR_SIZE, eqcr->ci, pi);
439 	eqcr->ithresh = qm_in(portal, QM_REG_EQCR_ITR);
440 #ifdef CONFIG_FSL_DPAA_CHECKING
441 	eqcr->busy = 0;
442 	eqcr->pmode = pmode;
443 #endif
444 	cfg = (qm_in(portal, QM_REG_CFG) & 0x00ffffff) |
445 	      (eq_stash_thresh << 28) | /* QCSP_CFG: EST */
446 	      (eq_stash_prio << 26) | /* QCSP_CFG: EP */
447 	      ((pmode & 0x3) << 24); /* QCSP_CFG::EPM */
448 	qm_out(portal, QM_REG_CFG, cfg);
449 	return 0;
450 }
451 
452 static inline unsigned int qm_eqcr_get_ci_stashing(struct qm_portal *portal)
453 {
454 	return (qm_in(portal, QM_REG_CFG) >> 28) & 0x7;
455 }
456 
457 static inline void qm_eqcr_finish(struct qm_portal *portal)
458 {
459 	struct qm_eqcr *eqcr = &portal->eqcr;
460 	u8 pi = qm_in(portal, QM_REG_EQCR_PI_CINH) & (QM_EQCR_SIZE - 1);
461 	u8 ci = qm_in(portal, QM_REG_EQCR_CI_CINH) & (QM_EQCR_SIZE - 1);
462 
463 	DPAA_ASSERT(!eqcr->busy);
464 	if (pi != eqcr_ptr2idx(eqcr->cursor))
465 		pr_crit("losing uncommitted EQCR entries\n");
466 	if (ci != eqcr->ci)
467 		pr_crit("missing existing EQCR completions\n");
468 	if (eqcr->ci != eqcr_ptr2idx(eqcr->cursor))
469 		pr_crit("EQCR destroyed unquiesced\n");
470 }
471 
472 static inline struct qm_eqcr_entry *qm_eqcr_start_no_stash(struct qm_portal
473 								 *portal)
474 {
475 	struct qm_eqcr *eqcr = &portal->eqcr;
476 
477 	DPAA_ASSERT(!eqcr->busy);
478 	if (!eqcr->available)
479 		return NULL;
480 
481 #ifdef CONFIG_FSL_DPAA_CHECKING
482 	eqcr->busy = 1;
483 #endif
484 	dpaa_zero(eqcr->cursor);
485 	return eqcr->cursor;
486 }
487 
488 static inline struct qm_eqcr_entry *qm_eqcr_start_stash(struct qm_portal
489 								*portal)
490 {
491 	struct qm_eqcr *eqcr = &portal->eqcr;
492 	u8 diff, old_ci;
493 
494 	DPAA_ASSERT(!eqcr->busy);
495 	if (!eqcr->available) {
496 		old_ci = eqcr->ci;
497 		eqcr->ci = qm_ce_in(portal, QM_CL_EQCR_CI_CENA) &
498 			   (QM_EQCR_SIZE - 1);
499 		diff = dpaa_cyc_diff(QM_EQCR_SIZE, old_ci, eqcr->ci);
500 		eqcr->available += diff;
501 		if (!diff)
502 			return NULL;
503 	}
504 #ifdef CONFIG_FSL_DPAA_CHECKING
505 	eqcr->busy = 1;
506 #endif
507 	dpaa_zero(eqcr->cursor);
508 	return eqcr->cursor;
509 }
510 
511 static inline void eqcr_commit_checks(struct qm_eqcr *eqcr)
512 {
513 	DPAA_ASSERT(eqcr->busy);
514 	DPAA_ASSERT(!(be32_to_cpu(eqcr->cursor->fqid) & ~QM_FQID_MASK));
515 	DPAA_ASSERT(eqcr->available >= 1);
516 }
517 
518 static inline void qm_eqcr_pvb_commit(struct qm_portal *portal, u8 myverb)
519 {
520 	struct qm_eqcr *eqcr = &portal->eqcr;
521 	struct qm_eqcr_entry *eqcursor;
522 
523 	eqcr_commit_checks(eqcr);
524 	DPAA_ASSERT(eqcr->pmode == qm_eqcr_pvb);
525 	dma_wmb();
526 	eqcursor = eqcr->cursor;
527 	eqcursor->_ncw_verb = myverb | eqcr->vbit;
528 	dpaa_flush(eqcursor);
529 	eqcr_inc(eqcr);
530 	eqcr->available--;
531 #ifdef CONFIG_FSL_DPAA_CHECKING
532 	eqcr->busy = 0;
533 #endif
534 }
535 
536 static inline void qm_eqcr_cce_prefetch(struct qm_portal *portal)
537 {
538 	qm_cl_touch_ro(portal, QM_CL_EQCR_CI_CENA);
539 }
540 
541 static inline u8 qm_eqcr_cce_update(struct qm_portal *portal)
542 {
543 	struct qm_eqcr *eqcr = &portal->eqcr;
544 	u8 diff, old_ci = eqcr->ci;
545 
546 	eqcr->ci = qm_ce_in(portal, QM_CL_EQCR_CI_CENA) & (QM_EQCR_SIZE - 1);
547 	qm_cl_invalidate(portal, QM_CL_EQCR_CI_CENA);
548 	diff = dpaa_cyc_diff(QM_EQCR_SIZE, old_ci, eqcr->ci);
549 	eqcr->available += diff;
550 	return diff;
551 }
552 
553 static inline void qm_eqcr_set_ithresh(struct qm_portal *portal, u8 ithresh)
554 {
555 	struct qm_eqcr *eqcr = &portal->eqcr;
556 
557 	eqcr->ithresh = ithresh;
558 	qm_out(portal, QM_REG_EQCR_ITR, ithresh);
559 }
560 
561 static inline u8 qm_eqcr_get_avail(struct qm_portal *portal)
562 {
563 	struct qm_eqcr *eqcr = &portal->eqcr;
564 
565 	return eqcr->available;
566 }
567 
568 static inline u8 qm_eqcr_get_fill(struct qm_portal *portal)
569 {
570 	struct qm_eqcr *eqcr = &portal->eqcr;
571 
572 	return QM_EQCR_SIZE - 1 - eqcr->available;
573 }
574 
575 /* --- DQRR API --- */
576 
577 #define DQRR_SHIFT	ilog2(sizeof(struct qm_dqrr_entry))
578 #define DQRR_CARRY	(uintptr_t)(QM_DQRR_SIZE << DQRR_SHIFT)
579 
580 static const struct qm_dqrr_entry *dqrr_carryclear(
581 					const struct qm_dqrr_entry *p)
582 {
583 	uintptr_t addr = (uintptr_t)p;
584 
585 	addr &= ~DQRR_CARRY;
586 
587 	return (const struct qm_dqrr_entry *)addr;
588 }
589 
590 static inline int dqrr_ptr2idx(const struct qm_dqrr_entry *e)
591 {
592 	return ((uintptr_t)e >> DQRR_SHIFT) & (QM_DQRR_SIZE - 1);
593 }
594 
595 static const struct qm_dqrr_entry *dqrr_inc(const struct qm_dqrr_entry *e)
596 {
597 	return dqrr_carryclear(e + 1);
598 }
599 
600 static inline void qm_dqrr_set_maxfill(struct qm_portal *portal, u8 mf)
601 {
602 	qm_out(portal, QM_REG_CFG, (qm_in(portal, QM_REG_CFG) & 0xff0fffff) |
603 				   ((mf & (QM_DQRR_SIZE - 1)) << 20));
604 }
605 
606 static inline int qm_dqrr_init(struct qm_portal *portal,
607 			       const struct qm_portal_config *config,
608 			       enum qm_dqrr_dmode dmode,
609 			       enum qm_dqrr_pmode pmode,
610 			       enum qm_dqrr_cmode cmode, u8 max_fill)
611 {
612 	struct qm_dqrr *dqrr = &portal->dqrr;
613 	u32 cfg;
614 
615 	/* Make sure the DQRR will be idle when we enable */
616 	qm_out(portal, QM_REG_DQRR_SDQCR, 0);
617 	qm_out(portal, QM_REG_DQRR_VDQCR, 0);
618 	qm_out(portal, QM_REG_DQRR_PDQCR, 0);
619 	dqrr->ring = portal->addr.ce + QM_CL_DQRR;
620 	dqrr->pi = qm_in(portal, QM_REG_DQRR_PI_CINH) & (QM_DQRR_SIZE - 1);
621 	dqrr->ci = qm_in(portal, QM_REG_DQRR_CI_CINH) & (QM_DQRR_SIZE - 1);
622 	dqrr->cursor = dqrr->ring + dqrr->ci;
623 	dqrr->fill = dpaa_cyc_diff(QM_DQRR_SIZE, dqrr->ci, dqrr->pi);
624 	dqrr->vbit = (qm_in(portal, QM_REG_DQRR_PI_CINH) & QM_DQRR_SIZE) ?
625 			QM_DQRR_VERB_VBIT : 0;
626 	dqrr->ithresh = qm_in(portal, QM_REG_DQRR_ITR);
627 #ifdef CONFIG_FSL_DPAA_CHECKING
628 	dqrr->dmode = dmode;
629 	dqrr->pmode = pmode;
630 	dqrr->cmode = cmode;
631 #endif
632 	/* Invalidate every ring entry before beginning */
633 	for (cfg = 0; cfg < QM_DQRR_SIZE; cfg++)
634 		dpaa_invalidate(qm_cl(dqrr->ring, cfg));
635 	cfg = (qm_in(portal, QM_REG_CFG) & 0xff000f00) |
636 		((max_fill & (QM_DQRR_SIZE - 1)) << 20) | /* DQRR_MF */
637 		((dmode & 1) << 18) |			/* DP */
638 		((cmode & 3) << 16) |			/* DCM */
639 		0xa0 |					/* RE+SE */
640 		(0 ? 0x40 : 0) |			/* Ignore RP */
641 		(0 ? 0x10 : 0);				/* Ignore SP */
642 	qm_out(portal, QM_REG_CFG, cfg);
643 	qm_dqrr_set_maxfill(portal, max_fill);
644 	return 0;
645 }
646 
647 static inline void qm_dqrr_finish(struct qm_portal *portal)
648 {
649 #ifdef CONFIG_FSL_DPAA_CHECKING
650 	struct qm_dqrr *dqrr = &portal->dqrr;
651 
652 	if (dqrr->cmode != qm_dqrr_cdc &&
653 	    dqrr->ci != dqrr_ptr2idx(dqrr->cursor))
654 		pr_crit("Ignoring completed DQRR entries\n");
655 #endif
656 }
657 
658 static inline const struct qm_dqrr_entry *qm_dqrr_current(
659 						struct qm_portal *portal)
660 {
661 	struct qm_dqrr *dqrr = &portal->dqrr;
662 
663 	if (!dqrr->fill)
664 		return NULL;
665 	return dqrr->cursor;
666 }
667 
668 static inline u8 qm_dqrr_next(struct qm_portal *portal)
669 {
670 	struct qm_dqrr *dqrr = &portal->dqrr;
671 
672 	DPAA_ASSERT(dqrr->fill);
673 	dqrr->cursor = dqrr_inc(dqrr->cursor);
674 	return --dqrr->fill;
675 }
676 
677 static inline void qm_dqrr_pvb_update(struct qm_portal *portal)
678 {
679 	struct qm_dqrr *dqrr = &portal->dqrr;
680 	struct qm_dqrr_entry *res = qm_cl(dqrr->ring, dqrr->pi);
681 
682 	DPAA_ASSERT(dqrr->pmode == qm_dqrr_pvb);
683 #ifndef CONFIG_FSL_PAMU
684 	/*
685 	 * If PAMU is not available we need to invalidate the cache.
686 	 * When PAMU is available the cache is updated by stash
687 	 */
688 	dpaa_invalidate_touch_ro(res);
689 #endif
690 	if ((res->verb & QM_DQRR_VERB_VBIT) == dqrr->vbit) {
691 		dqrr->pi = (dqrr->pi + 1) & (QM_DQRR_SIZE - 1);
692 		if (!dqrr->pi)
693 			dqrr->vbit ^= QM_DQRR_VERB_VBIT;
694 		dqrr->fill++;
695 	}
696 }
697 
698 static inline void qm_dqrr_cdc_consume_1ptr(struct qm_portal *portal,
699 					const struct qm_dqrr_entry *dq,
700 					int park)
701 {
702 	__maybe_unused struct qm_dqrr *dqrr = &portal->dqrr;
703 	int idx = dqrr_ptr2idx(dq);
704 
705 	DPAA_ASSERT(dqrr->cmode == qm_dqrr_cdc);
706 	DPAA_ASSERT((dqrr->ring + idx) == dq);
707 	DPAA_ASSERT(idx < QM_DQRR_SIZE);
708 	qm_out(portal, QM_REG_DQRR_DCAP, (0 << 8) | /* DQRR_DCAP::S */
709 	       ((park ? 1 : 0) << 6) |		    /* DQRR_DCAP::PK */
710 	       idx);				    /* DQRR_DCAP::DCAP_CI */
711 }
712 
713 static inline void qm_dqrr_cdc_consume_n(struct qm_portal *portal, u32 bitmask)
714 {
715 	__maybe_unused struct qm_dqrr *dqrr = &portal->dqrr;
716 
717 	DPAA_ASSERT(dqrr->cmode == qm_dqrr_cdc);
718 	qm_out(portal, QM_REG_DQRR_DCAP, (1 << 8) | /* DQRR_DCAP::S */
719 	       (bitmask << 16));		    /* DQRR_DCAP::DCAP_CI */
720 }
721 
722 static inline void qm_dqrr_sdqcr_set(struct qm_portal *portal, u32 sdqcr)
723 {
724 	qm_out(portal, QM_REG_DQRR_SDQCR, sdqcr);
725 }
726 
727 static inline void qm_dqrr_vdqcr_set(struct qm_portal *portal, u32 vdqcr)
728 {
729 	qm_out(portal, QM_REG_DQRR_VDQCR, vdqcr);
730 }
731 
732 static inline int qm_dqrr_set_ithresh(struct qm_portal *portal, u8 ithresh)
733 {
734 
735 	if (ithresh > QMAN_DQRR_IT_MAX)
736 		return -EINVAL;
737 
738 	qm_out(portal, QM_REG_DQRR_ITR, ithresh);
739 
740 	return 0;
741 }
742 
743 /* --- MR API --- */
744 
745 #define MR_SHIFT	ilog2(sizeof(union qm_mr_entry))
746 #define MR_CARRY	(uintptr_t)(QM_MR_SIZE << MR_SHIFT)
747 
748 static union qm_mr_entry *mr_carryclear(union qm_mr_entry *p)
749 {
750 	uintptr_t addr = (uintptr_t)p;
751 
752 	addr &= ~MR_CARRY;
753 
754 	return (union qm_mr_entry *)addr;
755 }
756 
757 static inline int mr_ptr2idx(const union qm_mr_entry *e)
758 {
759 	return ((uintptr_t)e >> MR_SHIFT) & (QM_MR_SIZE - 1);
760 }
761 
762 static inline union qm_mr_entry *mr_inc(union qm_mr_entry *e)
763 {
764 	return mr_carryclear(e + 1);
765 }
766 
767 static inline int qm_mr_init(struct qm_portal *portal, enum qm_mr_pmode pmode,
768 			     enum qm_mr_cmode cmode)
769 {
770 	struct qm_mr *mr = &portal->mr;
771 	u32 cfg;
772 
773 	mr->ring = portal->addr.ce + QM_CL_MR;
774 	mr->pi = qm_in(portal, QM_REG_MR_PI_CINH) & (QM_MR_SIZE - 1);
775 	mr->ci = qm_in(portal, QM_REG_MR_CI_CINH) & (QM_MR_SIZE - 1);
776 	mr->cursor = mr->ring + mr->ci;
777 	mr->fill = dpaa_cyc_diff(QM_MR_SIZE, mr->ci, mr->pi);
778 	mr->vbit = (qm_in(portal, QM_REG_MR_PI_CINH) & QM_MR_SIZE)
779 		? QM_MR_VERB_VBIT : 0;
780 	mr->ithresh = qm_in(portal, QM_REG_MR_ITR);
781 #ifdef CONFIG_FSL_DPAA_CHECKING
782 	mr->pmode = pmode;
783 	mr->cmode = cmode;
784 #endif
785 	cfg = (qm_in(portal, QM_REG_CFG) & 0xfffff0ff) |
786 	      ((cmode & 1) << 8);	/* QCSP_CFG:MM */
787 	qm_out(portal, QM_REG_CFG, cfg);
788 	return 0;
789 }
790 
791 static inline void qm_mr_finish(struct qm_portal *portal)
792 {
793 	struct qm_mr *mr = &portal->mr;
794 
795 	if (mr->ci != mr_ptr2idx(mr->cursor))
796 		pr_crit("Ignoring completed MR entries\n");
797 }
798 
799 static inline const union qm_mr_entry *qm_mr_current(struct qm_portal *portal)
800 {
801 	struct qm_mr *mr = &portal->mr;
802 
803 	if (!mr->fill)
804 		return NULL;
805 	return mr->cursor;
806 }
807 
808 static inline int qm_mr_next(struct qm_portal *portal)
809 {
810 	struct qm_mr *mr = &portal->mr;
811 
812 	DPAA_ASSERT(mr->fill);
813 	mr->cursor = mr_inc(mr->cursor);
814 	return --mr->fill;
815 }
816 
817 static inline void qm_mr_pvb_update(struct qm_portal *portal)
818 {
819 	struct qm_mr *mr = &portal->mr;
820 	union qm_mr_entry *res = qm_cl(mr->ring, mr->pi);
821 
822 	DPAA_ASSERT(mr->pmode == qm_mr_pvb);
823 
824 	if ((res->verb & QM_MR_VERB_VBIT) == mr->vbit) {
825 		mr->pi = (mr->pi + 1) & (QM_MR_SIZE - 1);
826 		if (!mr->pi)
827 			mr->vbit ^= QM_MR_VERB_VBIT;
828 		mr->fill++;
829 		res = mr_inc(res);
830 	}
831 	dpaa_invalidate_touch_ro(res);
832 }
833 
834 static inline void qm_mr_cci_consume(struct qm_portal *portal, u8 num)
835 {
836 	struct qm_mr *mr = &portal->mr;
837 
838 	DPAA_ASSERT(mr->cmode == qm_mr_cci);
839 	mr->ci = (mr->ci + num) & (QM_MR_SIZE - 1);
840 	qm_out(portal, QM_REG_MR_CI_CINH, mr->ci);
841 }
842 
843 static inline void qm_mr_cci_consume_to_current(struct qm_portal *portal)
844 {
845 	struct qm_mr *mr = &portal->mr;
846 
847 	DPAA_ASSERT(mr->cmode == qm_mr_cci);
848 	mr->ci = mr_ptr2idx(mr->cursor);
849 	qm_out(portal, QM_REG_MR_CI_CINH, mr->ci);
850 }
851 
852 static inline void qm_mr_set_ithresh(struct qm_portal *portal, u8 ithresh)
853 {
854 	qm_out(portal, QM_REG_MR_ITR, ithresh);
855 }
856 
857 /* --- Management command API --- */
858 
859 static inline int qm_mc_init(struct qm_portal *portal)
860 {
861 	u8 rr0, rr1;
862 	struct qm_mc *mc = &portal->mc;
863 
864 	mc->cr = portal->addr.ce + QM_CL_CR;
865 	mc->rr = portal->addr.ce + QM_CL_RR0;
866 	/*
867 	 * The expected valid bit polarity for the next CR command is 0
868 	 * if RR1 contains a valid response, and is 1 if RR0 contains a
869 	 * valid response. If both RR contain all 0, this indicates either
870 	 * that no command has been executed since reset (in which case the
871 	 * expected valid bit polarity is 1)
872 	 */
873 	rr0 = mc->rr->verb;
874 	rr1 = (mc->rr+1)->verb;
875 	if ((rr0 == 0 && rr1 == 0) || rr0 != 0)
876 		mc->rridx = 1;
877 	else
878 		mc->rridx = 0;
879 	mc->vbit = mc->rridx ? QM_MCC_VERB_VBIT : 0;
880 #ifdef CONFIG_FSL_DPAA_CHECKING
881 	mc->state = qman_mc_idle;
882 #endif
883 	return 0;
884 }
885 
886 static inline void qm_mc_finish(struct qm_portal *portal)
887 {
888 #ifdef CONFIG_FSL_DPAA_CHECKING
889 	struct qm_mc *mc = &portal->mc;
890 
891 	DPAA_ASSERT(mc->state == qman_mc_idle);
892 	if (mc->state != qman_mc_idle)
893 		pr_crit("Losing incomplete MC command\n");
894 #endif
895 }
896 
897 static inline union qm_mc_command *qm_mc_start(struct qm_portal *portal)
898 {
899 	struct qm_mc *mc = &portal->mc;
900 
901 	DPAA_ASSERT(mc->state == qman_mc_idle);
902 #ifdef CONFIG_FSL_DPAA_CHECKING
903 	mc->state = qman_mc_user;
904 #endif
905 	dpaa_zero(mc->cr);
906 	return mc->cr;
907 }
908 
909 static inline void qm_mc_commit(struct qm_portal *portal, u8 myverb)
910 {
911 	struct qm_mc *mc = &portal->mc;
912 	union qm_mc_result *rr = mc->rr + mc->rridx;
913 
914 	DPAA_ASSERT(mc->state == qman_mc_user);
915 	dma_wmb();
916 	mc->cr->_ncw_verb = myverb | mc->vbit;
917 	dpaa_flush(mc->cr);
918 	dpaa_invalidate_touch_ro(rr);
919 #ifdef CONFIG_FSL_DPAA_CHECKING
920 	mc->state = qman_mc_hw;
921 #endif
922 }
923 
924 static inline union qm_mc_result *qm_mc_result(struct qm_portal *portal)
925 {
926 	struct qm_mc *mc = &portal->mc;
927 	union qm_mc_result *rr = mc->rr + mc->rridx;
928 
929 	DPAA_ASSERT(mc->state == qman_mc_hw);
930 	/*
931 	 *  The inactive response register's verb byte always returns zero until
932 	 * its command is submitted and completed. This includes the valid-bit,
933 	 * in case you were wondering...
934 	 */
935 	if (!rr->verb) {
936 		dpaa_invalidate_touch_ro(rr);
937 		return NULL;
938 	}
939 	mc->rridx ^= 1;
940 	mc->vbit ^= QM_MCC_VERB_VBIT;
941 #ifdef CONFIG_FSL_DPAA_CHECKING
942 	mc->state = qman_mc_idle;
943 #endif
944 	return rr;
945 }
946 
947 static inline int qm_mc_result_timeout(struct qm_portal *portal,
948 				       union qm_mc_result **mcr)
949 {
950 	int timeout = QM_MCR_TIMEOUT;
951 
952 	do {
953 		*mcr = qm_mc_result(portal);
954 		if (*mcr)
955 			break;
956 		udelay(1);
957 	} while (--timeout);
958 
959 	return timeout;
960 }
961 
962 static inline void fq_set(struct qman_fq *fq, u32 mask)
963 {
964 	fq->flags |= mask;
965 }
966 
967 static inline void fq_clear(struct qman_fq *fq, u32 mask)
968 {
969 	fq->flags &= ~mask;
970 }
971 
972 static inline int fq_isset(struct qman_fq *fq, u32 mask)
973 {
974 	return fq->flags & mask;
975 }
976 
977 static inline int fq_isclear(struct qman_fq *fq, u32 mask)
978 {
979 	return !(fq->flags & mask);
980 }
981 
982 struct qman_portal {
983 	struct qm_portal p;
984 	/* PORTAL_BITS_*** - dynamic, strictly internal */
985 	unsigned long bits;
986 	/* interrupt sources processed by portal_isr(), configurable */
987 	unsigned long irq_sources;
988 	u32 use_eqcr_ci_stashing;
989 	/* only 1 volatile dequeue at a time */
990 	struct qman_fq *vdqcr_owned;
991 	u32 sdqcr;
992 	/* probing time config params for cpu-affine portals */
993 	const struct qm_portal_config *config;
994 	/* 2-element array. cgrs[0] is mask, cgrs[1] is snapshot. */
995 	struct qman_cgrs *cgrs;
996 	/* linked-list of CSCN handlers. */
997 	struct list_head cgr_cbs;
998 	/* list lock */
999 	spinlock_t cgr_lock;
1000 	struct work_struct congestion_work;
1001 	struct work_struct mr_work;
1002 	char irqname[MAX_IRQNAME];
1003 };
1004 
1005 static cpumask_t affine_mask;
1006 static DEFINE_SPINLOCK(affine_mask_lock);
1007 static u16 affine_channels[NR_CPUS];
1008 static DEFINE_PER_CPU(struct qman_portal, qman_affine_portal);
1009 struct qman_portal *affine_portals[NR_CPUS];
1010 
1011 static inline struct qman_portal *get_affine_portal(void)
1012 {
1013 	return &get_cpu_var(qman_affine_portal);
1014 }
1015 
1016 static inline void put_affine_portal(void)
1017 {
1018 	put_cpu_var(qman_affine_portal);
1019 }
1020 
1021 static struct workqueue_struct *qm_portal_wq;
1022 
1023 int qman_dqrr_set_ithresh(struct qman_portal *portal, u8 ithresh)
1024 {
1025 	int res;
1026 
1027 	if (!portal)
1028 		return -EINVAL;
1029 
1030 	res = qm_dqrr_set_ithresh(&portal->p, ithresh);
1031 	if (res)
1032 		return res;
1033 
1034 	portal->p.dqrr.ithresh = ithresh;
1035 
1036 	return 0;
1037 }
1038 EXPORT_SYMBOL(qman_dqrr_set_ithresh);
1039 
1040 void qman_dqrr_get_ithresh(struct qman_portal *portal, u8 *ithresh)
1041 {
1042 	if (portal && ithresh)
1043 		*ithresh = qm_in(&portal->p, QM_REG_DQRR_ITR);
1044 }
1045 EXPORT_SYMBOL(qman_dqrr_get_ithresh);
1046 
1047 void qman_portal_get_iperiod(struct qman_portal *portal, u32 *iperiod)
1048 {
1049 	if (portal && iperiod)
1050 		*iperiod = qm_in(&portal->p, QM_REG_ITPR);
1051 }
1052 EXPORT_SYMBOL(qman_portal_get_iperiod);
1053 
1054 int qman_portal_set_iperiod(struct qman_portal *portal, u32 iperiod)
1055 {
1056 	if (!portal || iperiod > QMAN_ITP_MAX)
1057 		return -EINVAL;
1058 
1059 	qm_out(&portal->p, QM_REG_ITPR, iperiod);
1060 
1061 	return 0;
1062 }
1063 EXPORT_SYMBOL(qman_portal_set_iperiod);
1064 
1065 int qman_wq_alloc(void)
1066 {
1067 	qm_portal_wq = alloc_workqueue("qman_portal_wq", 0, 1);
1068 	if (!qm_portal_wq)
1069 		return -ENOMEM;
1070 	return 0;
1071 }
1072 
1073 /*
1074  * This is what everything can wait on, even if it migrates to a different cpu
1075  * to the one whose affine portal it is waiting on.
1076  */
1077 static DECLARE_WAIT_QUEUE_HEAD(affine_queue);
1078 
1079 static struct qman_fq **fq_table;
1080 static u32 num_fqids;
1081 
1082 int qman_alloc_fq_table(u32 _num_fqids)
1083 {
1084 	num_fqids = _num_fqids;
1085 
1086 	fq_table = vzalloc(array3_size(sizeof(struct qman_fq *),
1087 				       num_fqids, 2));
1088 	if (!fq_table)
1089 		return -ENOMEM;
1090 
1091 	pr_debug("Allocated fq lookup table at %p, entry count %u\n",
1092 		 fq_table, num_fqids * 2);
1093 	return 0;
1094 }
1095 
1096 static struct qman_fq *idx_to_fq(u32 idx)
1097 {
1098 	struct qman_fq *fq;
1099 
1100 #ifdef CONFIG_FSL_DPAA_CHECKING
1101 	if (WARN_ON(idx >= num_fqids * 2))
1102 		return NULL;
1103 #endif
1104 	fq = fq_table[idx];
1105 	DPAA_ASSERT(!fq || idx == fq->idx);
1106 
1107 	return fq;
1108 }
1109 
1110 /*
1111  * Only returns full-service fq objects, not enqueue-only
1112  * references (QMAN_FQ_FLAG_NO_MODIFY).
1113  */
1114 static struct qman_fq *fqid_to_fq(u32 fqid)
1115 {
1116 	return idx_to_fq(fqid * 2);
1117 }
1118 
1119 static struct qman_fq *tag_to_fq(u32 tag)
1120 {
1121 #if BITS_PER_LONG == 64
1122 	return idx_to_fq(tag);
1123 #else
1124 	return (struct qman_fq *)tag;
1125 #endif
1126 }
1127 
1128 static u32 fq_to_tag(struct qman_fq *fq)
1129 {
1130 #if BITS_PER_LONG == 64
1131 	return fq->idx;
1132 #else
1133 	return (u32)fq;
1134 #endif
1135 }
1136 
1137 static u32 __poll_portal_slow(struct qman_portal *p, u32 is);
1138 static inline unsigned int __poll_portal_fast(struct qman_portal *p,
1139 					unsigned int poll_limit);
1140 static void qm_congestion_task(struct work_struct *work);
1141 static void qm_mr_process_task(struct work_struct *work);
1142 
1143 static irqreturn_t portal_isr(int irq, void *ptr)
1144 {
1145 	struct qman_portal *p = ptr;
1146 	u32 is = qm_in(&p->p, QM_REG_ISR) & p->irq_sources;
1147 	u32 clear = 0;
1148 
1149 	if (unlikely(!is))
1150 		return IRQ_NONE;
1151 
1152 	/* DQRR-handling if it's interrupt-driven */
1153 	if (is & QM_PIRQ_DQRI) {
1154 		__poll_portal_fast(p, QMAN_POLL_LIMIT);
1155 		clear = QM_DQAVAIL_MASK | QM_PIRQ_DQRI;
1156 	}
1157 	/* Handling of anything else that's interrupt-driven */
1158 	clear |= __poll_portal_slow(p, is) & QM_PIRQ_SLOW;
1159 	qm_out(&p->p, QM_REG_ISR, clear);
1160 	return IRQ_HANDLED;
1161 }
1162 
1163 static int drain_mr_fqrni(struct qm_portal *p)
1164 {
1165 	const union qm_mr_entry *msg;
1166 loop:
1167 	msg = qm_mr_current(p);
1168 	if (!msg) {
1169 		/*
1170 		 * if MR was full and h/w had other FQRNI entries to produce, we
1171 		 * need to allow it time to produce those entries once the
1172 		 * existing entries are consumed. A worst-case situation
1173 		 * (fully-loaded system) means h/w sequencers may have to do 3-4
1174 		 * other things before servicing the portal's MR pump, each of
1175 		 * which (if slow) may take ~50 qman cycles (which is ~200
1176 		 * processor cycles). So rounding up and then multiplying this
1177 		 * worst-case estimate by a factor of 10, just to be
1178 		 * ultra-paranoid, goes as high as 10,000 cycles. NB, we consume
1179 		 * one entry at a time, so h/w has an opportunity to produce new
1180 		 * entries well before the ring has been fully consumed, so
1181 		 * we're being *really* paranoid here.
1182 		 */
1183 		msleep(1);
1184 		msg = qm_mr_current(p);
1185 		if (!msg)
1186 			return 0;
1187 	}
1188 	if ((msg->verb & QM_MR_VERB_TYPE_MASK) != QM_MR_VERB_FQRNI) {
1189 		/* We aren't draining anything but FQRNIs */
1190 		pr_err("Found verb 0x%x in MR\n", msg->verb);
1191 		return -1;
1192 	}
1193 	qm_mr_next(p);
1194 	qm_mr_cci_consume(p, 1);
1195 	goto loop;
1196 }
1197 
1198 static int qman_create_portal(struct qman_portal *portal,
1199 			      const struct qm_portal_config *c,
1200 			      const struct qman_cgrs *cgrs)
1201 {
1202 	struct qm_portal *p;
1203 	int ret;
1204 	u32 isdr;
1205 
1206 	p = &portal->p;
1207 
1208 #ifdef CONFIG_FSL_PAMU
1209 	/* PAMU is required for stashing */
1210 	portal->use_eqcr_ci_stashing = ((qman_ip_rev >= QMAN_REV30) ? 1 : 0);
1211 #else
1212 	portal->use_eqcr_ci_stashing = 0;
1213 #endif
1214 	/*
1215 	 * prep the low-level portal struct with the mapped addresses from the
1216 	 * config, everything that follows depends on it and "config" is more
1217 	 * for (de)reference
1218 	 */
1219 	p->addr.ce = c->addr_virt_ce;
1220 	p->addr.ce_be = c->addr_virt_ce;
1221 	p->addr.ci = c->addr_virt_ci;
1222 	/*
1223 	 * If CI-stashing is used, the current defaults use a threshold of 3,
1224 	 * and stash with high-than-DQRR priority.
1225 	 */
1226 	if (qm_eqcr_init(p, qm_eqcr_pvb,
1227 			portal->use_eqcr_ci_stashing ? 3 : 0, 1)) {
1228 		dev_err(c->dev, "EQCR initialisation failed\n");
1229 		goto fail_eqcr;
1230 	}
1231 	if (qm_dqrr_init(p, c, qm_dqrr_dpush, qm_dqrr_pvb,
1232 			qm_dqrr_cdc, DQRR_MAXFILL)) {
1233 		dev_err(c->dev, "DQRR initialisation failed\n");
1234 		goto fail_dqrr;
1235 	}
1236 	if (qm_mr_init(p, qm_mr_pvb, qm_mr_cci)) {
1237 		dev_err(c->dev, "MR initialisation failed\n");
1238 		goto fail_mr;
1239 	}
1240 	if (qm_mc_init(p)) {
1241 		dev_err(c->dev, "MC initialisation failed\n");
1242 		goto fail_mc;
1243 	}
1244 	/* static interrupt-gating controls */
1245 	qm_dqrr_set_ithresh(p, QMAN_PIRQ_DQRR_ITHRESH);
1246 	qm_mr_set_ithresh(p, QMAN_PIRQ_MR_ITHRESH);
1247 	qm_out(p, QM_REG_ITPR, QMAN_PIRQ_IPERIOD);
1248 	portal->cgrs = kmalloc_array(2, sizeof(*cgrs), GFP_KERNEL);
1249 	if (!portal->cgrs)
1250 		goto fail_cgrs;
1251 	/* initial snapshot is no-depletion */
1252 	qman_cgrs_init(&portal->cgrs[1]);
1253 	if (cgrs)
1254 		portal->cgrs[0] = *cgrs;
1255 	else
1256 		/* if the given mask is NULL, assume all CGRs can be seen */
1257 		qman_cgrs_fill(&portal->cgrs[0]);
1258 	INIT_LIST_HEAD(&portal->cgr_cbs);
1259 	spin_lock_init(&portal->cgr_lock);
1260 	INIT_WORK(&portal->congestion_work, qm_congestion_task);
1261 	INIT_WORK(&portal->mr_work, qm_mr_process_task);
1262 	portal->bits = 0;
1263 	portal->sdqcr = QM_SDQCR_SOURCE_CHANNELS | QM_SDQCR_COUNT_UPTO3 |
1264 			QM_SDQCR_DEDICATED_PRECEDENCE | QM_SDQCR_TYPE_PRIO_QOS |
1265 			QM_SDQCR_TOKEN_SET(0xab) | QM_SDQCR_CHANNELS_DEDICATED;
1266 	isdr = 0xffffffff;
1267 	qm_out(p, QM_REG_ISDR, isdr);
1268 	portal->irq_sources = 0;
1269 	qm_out(p, QM_REG_IER, 0);
1270 	qm_out(p, QM_REG_ISR, 0xffffffff);
1271 	snprintf(portal->irqname, MAX_IRQNAME, IRQNAME, c->cpu);
1272 	if (request_irq(c->irq, portal_isr, 0, portal->irqname,	portal)) {
1273 		dev_err(c->dev, "request_irq() failed\n");
1274 		goto fail_irq;
1275 	}
1276 
1277 	if (dpaa_set_portal_irq_affinity(c->dev, c->irq, c->cpu))
1278 		goto fail_affinity;
1279 
1280 	/* Need EQCR to be empty before continuing */
1281 	isdr &= ~QM_PIRQ_EQCI;
1282 	qm_out(p, QM_REG_ISDR, isdr);
1283 	ret = qm_eqcr_get_fill(p);
1284 	if (ret) {
1285 		dev_err(c->dev, "EQCR unclean\n");
1286 		goto fail_eqcr_empty;
1287 	}
1288 	isdr &= ~(QM_PIRQ_DQRI | QM_PIRQ_MRI);
1289 	qm_out(p, QM_REG_ISDR, isdr);
1290 	if (qm_dqrr_current(p)) {
1291 		dev_err(c->dev, "DQRR unclean\n");
1292 		qm_dqrr_cdc_consume_n(p, 0xffff);
1293 	}
1294 	if (qm_mr_current(p) && drain_mr_fqrni(p)) {
1295 		/* special handling, drain just in case it's a few FQRNIs */
1296 		const union qm_mr_entry *e = qm_mr_current(p);
1297 
1298 		dev_err(c->dev, "MR dirty, VB 0x%x, rc 0x%x, addr 0x%llx\n",
1299 			e->verb, e->ern.rc, qm_fd_addr_get64(&e->ern.fd));
1300 		goto fail_dqrr_mr_empty;
1301 	}
1302 	/* Success */
1303 	portal->config = c;
1304 	qm_out(p, QM_REG_ISDR, 0);
1305 	qm_out(p, QM_REG_IIR, 0);
1306 	/* Write a sane SDQCR */
1307 	qm_dqrr_sdqcr_set(p, portal->sdqcr);
1308 	return 0;
1309 
1310 fail_dqrr_mr_empty:
1311 fail_eqcr_empty:
1312 fail_affinity:
1313 	free_irq(c->irq, portal);
1314 fail_irq:
1315 	kfree(portal->cgrs);
1316 fail_cgrs:
1317 	qm_mc_finish(p);
1318 fail_mc:
1319 	qm_mr_finish(p);
1320 fail_mr:
1321 	qm_dqrr_finish(p);
1322 fail_dqrr:
1323 	qm_eqcr_finish(p);
1324 fail_eqcr:
1325 	return -EIO;
1326 }
1327 
1328 struct qman_portal *qman_create_affine_portal(const struct qm_portal_config *c,
1329 					      const struct qman_cgrs *cgrs)
1330 {
1331 	struct qman_portal *portal;
1332 	int err;
1333 
1334 	portal = &per_cpu(qman_affine_portal, c->cpu);
1335 	err = qman_create_portal(portal, c, cgrs);
1336 	if (err)
1337 		return NULL;
1338 
1339 	spin_lock(&affine_mask_lock);
1340 	cpumask_set_cpu(c->cpu, &affine_mask);
1341 	affine_channels[c->cpu] = c->channel;
1342 	affine_portals[c->cpu] = portal;
1343 	spin_unlock(&affine_mask_lock);
1344 
1345 	return portal;
1346 }
1347 
1348 static void qman_destroy_portal(struct qman_portal *qm)
1349 {
1350 	const struct qm_portal_config *pcfg;
1351 
1352 	/* Stop dequeues on the portal */
1353 	qm_dqrr_sdqcr_set(&qm->p, 0);
1354 
1355 	/*
1356 	 * NB we do this to "quiesce" EQCR. If we add enqueue-completions or
1357 	 * something related to QM_PIRQ_EQCI, this may need fixing.
1358 	 * Also, due to the prefetching model used for CI updates in the enqueue
1359 	 * path, this update will only invalidate the CI cacheline *after*
1360 	 * working on it, so we need to call this twice to ensure a full update
1361 	 * irrespective of where the enqueue processing was at when the teardown
1362 	 * began.
1363 	 */
1364 	qm_eqcr_cce_update(&qm->p);
1365 	qm_eqcr_cce_update(&qm->p);
1366 	pcfg = qm->config;
1367 
1368 	free_irq(pcfg->irq, qm);
1369 
1370 	kfree(qm->cgrs);
1371 	qm_mc_finish(&qm->p);
1372 	qm_mr_finish(&qm->p);
1373 	qm_dqrr_finish(&qm->p);
1374 	qm_eqcr_finish(&qm->p);
1375 
1376 	qm->config = NULL;
1377 }
1378 
1379 const struct qm_portal_config *qman_destroy_affine_portal(void)
1380 {
1381 	struct qman_portal *qm = get_affine_portal();
1382 	const struct qm_portal_config *pcfg;
1383 	int cpu;
1384 
1385 	pcfg = qm->config;
1386 	cpu = pcfg->cpu;
1387 
1388 	qman_destroy_portal(qm);
1389 
1390 	spin_lock(&affine_mask_lock);
1391 	cpumask_clear_cpu(cpu, &affine_mask);
1392 	spin_unlock(&affine_mask_lock);
1393 	put_affine_portal();
1394 	return pcfg;
1395 }
1396 
1397 /* Inline helper to reduce nesting in __poll_portal_slow() */
1398 static inline void fq_state_change(struct qman_portal *p, struct qman_fq *fq,
1399 				   const union qm_mr_entry *msg, u8 verb)
1400 {
1401 	switch (verb) {
1402 	case QM_MR_VERB_FQRL:
1403 		DPAA_ASSERT(fq_isset(fq, QMAN_FQ_STATE_ORL));
1404 		fq_clear(fq, QMAN_FQ_STATE_ORL);
1405 		break;
1406 	case QM_MR_VERB_FQRN:
1407 		DPAA_ASSERT(fq->state == qman_fq_state_parked ||
1408 			    fq->state == qman_fq_state_sched);
1409 		DPAA_ASSERT(fq_isset(fq, QMAN_FQ_STATE_CHANGING));
1410 		fq_clear(fq, QMAN_FQ_STATE_CHANGING);
1411 		if (msg->fq.fqs & QM_MR_FQS_NOTEMPTY)
1412 			fq_set(fq, QMAN_FQ_STATE_NE);
1413 		if (msg->fq.fqs & QM_MR_FQS_ORLPRESENT)
1414 			fq_set(fq, QMAN_FQ_STATE_ORL);
1415 		fq->state = qman_fq_state_retired;
1416 		break;
1417 	case QM_MR_VERB_FQPN:
1418 		DPAA_ASSERT(fq->state == qman_fq_state_sched);
1419 		DPAA_ASSERT(fq_isclear(fq, QMAN_FQ_STATE_CHANGING));
1420 		fq->state = qman_fq_state_parked;
1421 	}
1422 }
1423 
1424 static void qm_congestion_task(struct work_struct *work)
1425 {
1426 	struct qman_portal *p = container_of(work, struct qman_portal,
1427 					     congestion_work);
1428 	struct qman_cgrs rr, c;
1429 	union qm_mc_result *mcr;
1430 	struct qman_cgr *cgr;
1431 
1432 	spin_lock(&p->cgr_lock);
1433 	qm_mc_start(&p->p);
1434 	qm_mc_commit(&p->p, QM_MCC_VERB_QUERYCONGESTION);
1435 	if (!qm_mc_result_timeout(&p->p, &mcr)) {
1436 		spin_unlock(&p->cgr_lock);
1437 		dev_crit(p->config->dev, "QUERYCONGESTION timeout\n");
1438 		qman_p_irqsource_add(p, QM_PIRQ_CSCI);
1439 		return;
1440 	}
1441 	/* mask out the ones I'm not interested in */
1442 	qman_cgrs_and(&rr, (struct qman_cgrs *)&mcr->querycongestion.state,
1443 		      &p->cgrs[0]);
1444 	/* check previous snapshot for delta, enter/exit congestion */
1445 	qman_cgrs_xor(&c, &rr, &p->cgrs[1]);
1446 	/* update snapshot */
1447 	qman_cgrs_cp(&p->cgrs[1], &rr);
1448 	/* Invoke callback */
1449 	list_for_each_entry(cgr, &p->cgr_cbs, node)
1450 		if (cgr->cb && qman_cgrs_get(&c, cgr->cgrid))
1451 			cgr->cb(p, cgr, qman_cgrs_get(&rr, cgr->cgrid));
1452 	spin_unlock(&p->cgr_lock);
1453 	qman_p_irqsource_add(p, QM_PIRQ_CSCI);
1454 }
1455 
1456 static void qm_mr_process_task(struct work_struct *work)
1457 {
1458 	struct qman_portal *p = container_of(work, struct qman_portal,
1459 					     mr_work);
1460 	const union qm_mr_entry *msg;
1461 	struct qman_fq *fq;
1462 	u8 verb, num = 0;
1463 
1464 	preempt_disable();
1465 
1466 	while (1) {
1467 		qm_mr_pvb_update(&p->p);
1468 		msg = qm_mr_current(&p->p);
1469 		if (!msg)
1470 			break;
1471 
1472 		verb = msg->verb & QM_MR_VERB_TYPE_MASK;
1473 		/* The message is a software ERN iff the 0x20 bit is clear */
1474 		if (verb & 0x20) {
1475 			switch (verb) {
1476 			case QM_MR_VERB_FQRNI:
1477 				/* nada, we drop FQRNIs on the floor */
1478 				break;
1479 			case QM_MR_VERB_FQRN:
1480 			case QM_MR_VERB_FQRL:
1481 				/* Lookup in the retirement table */
1482 				fq = fqid_to_fq(qm_fqid_get(&msg->fq));
1483 				if (WARN_ON(!fq))
1484 					break;
1485 				fq_state_change(p, fq, msg, verb);
1486 				if (fq->cb.fqs)
1487 					fq->cb.fqs(p, fq, msg);
1488 				break;
1489 			case QM_MR_VERB_FQPN:
1490 				/* Parked */
1491 				fq = tag_to_fq(be32_to_cpu(msg->fq.context_b));
1492 				fq_state_change(p, fq, msg, verb);
1493 				if (fq->cb.fqs)
1494 					fq->cb.fqs(p, fq, msg);
1495 				break;
1496 			case QM_MR_VERB_DC_ERN:
1497 				/* DCP ERN */
1498 				pr_crit_once("Leaking DCP ERNs!\n");
1499 				break;
1500 			default:
1501 				pr_crit("Invalid MR verb 0x%02x\n", verb);
1502 			}
1503 		} else {
1504 			/* Its a software ERN */
1505 			fq = tag_to_fq(be32_to_cpu(msg->ern.tag));
1506 			fq->cb.ern(p, fq, msg);
1507 		}
1508 		num++;
1509 		qm_mr_next(&p->p);
1510 	}
1511 
1512 	qm_mr_cci_consume(&p->p, num);
1513 	qman_p_irqsource_add(p, QM_PIRQ_MRI);
1514 	preempt_enable();
1515 }
1516 
1517 static u32 __poll_portal_slow(struct qman_portal *p, u32 is)
1518 {
1519 	if (is & QM_PIRQ_CSCI) {
1520 		qman_p_irqsource_remove(p, QM_PIRQ_CSCI);
1521 		queue_work_on(smp_processor_id(), qm_portal_wq,
1522 			      &p->congestion_work);
1523 	}
1524 
1525 	if (is & QM_PIRQ_EQRI) {
1526 		qm_eqcr_cce_update(&p->p);
1527 		qm_eqcr_set_ithresh(&p->p, 0);
1528 		wake_up(&affine_queue);
1529 	}
1530 
1531 	if (is & QM_PIRQ_MRI) {
1532 		qman_p_irqsource_remove(p, QM_PIRQ_MRI);
1533 		queue_work_on(smp_processor_id(), qm_portal_wq,
1534 			      &p->mr_work);
1535 	}
1536 
1537 	return is;
1538 }
1539 
1540 /*
1541  * remove some slowish-path stuff from the "fast path" and make sure it isn't
1542  * inlined.
1543  */
1544 static noinline void clear_vdqcr(struct qman_portal *p, struct qman_fq *fq)
1545 {
1546 	p->vdqcr_owned = NULL;
1547 	fq_clear(fq, QMAN_FQ_STATE_VDQCR);
1548 	wake_up(&affine_queue);
1549 }
1550 
1551 /*
1552  * The only states that would conflict with other things if they ran at the
1553  * same time on the same cpu are:
1554  *
1555  *   (i) setting/clearing vdqcr_owned, and
1556  *  (ii) clearing the NE (Not Empty) flag.
1557  *
1558  * Both are safe. Because;
1559  *
1560  *   (i) this clearing can only occur after qman_volatile_dequeue() has set the
1561  *	 vdqcr_owned field (which it does before setting VDQCR), and
1562  *	 qman_volatile_dequeue() blocks interrupts and preemption while this is
1563  *	 done so that we can't interfere.
1564  *  (ii) the NE flag is only cleared after qman_retire_fq() has set it, and as
1565  *	 with (i) that API prevents us from interfering until it's safe.
1566  *
1567  * The good thing is that qman_volatile_dequeue() and qman_retire_fq() run far
1568  * less frequently (ie. per-FQ) than __poll_portal_fast() does, so the nett
1569  * advantage comes from this function not having to "lock" anything at all.
1570  *
1571  * Note also that the callbacks are invoked at points which are safe against the
1572  * above potential conflicts, but that this function itself is not re-entrant
1573  * (this is because the function tracks one end of each FIFO in the portal and
1574  * we do *not* want to lock that). So the consequence is that it is safe for
1575  * user callbacks to call into any QMan API.
1576  */
1577 static inline unsigned int __poll_portal_fast(struct qman_portal *p,
1578 					unsigned int poll_limit)
1579 {
1580 	const struct qm_dqrr_entry *dq;
1581 	struct qman_fq *fq;
1582 	enum qman_cb_dqrr_result res;
1583 	unsigned int limit = 0;
1584 
1585 	do {
1586 		qm_dqrr_pvb_update(&p->p);
1587 		dq = qm_dqrr_current(&p->p);
1588 		if (!dq)
1589 			break;
1590 
1591 		if (dq->stat & QM_DQRR_STAT_UNSCHEDULED) {
1592 			/*
1593 			 * VDQCR: don't trust context_b as the FQ may have
1594 			 * been configured for h/w consumption and we're
1595 			 * draining it post-retirement.
1596 			 */
1597 			fq = p->vdqcr_owned;
1598 			/*
1599 			 * We only set QMAN_FQ_STATE_NE when retiring, so we
1600 			 * only need to check for clearing it when doing
1601 			 * volatile dequeues.  It's one less thing to check
1602 			 * in the critical path (SDQCR).
1603 			 */
1604 			if (dq->stat & QM_DQRR_STAT_FQ_EMPTY)
1605 				fq_clear(fq, QMAN_FQ_STATE_NE);
1606 			/*
1607 			 * This is duplicated from the SDQCR code, but we
1608 			 * have stuff to do before *and* after this callback,
1609 			 * and we don't want multiple if()s in the critical
1610 			 * path (SDQCR).
1611 			 */
1612 			res = fq->cb.dqrr(p, fq, dq);
1613 			if (res == qman_cb_dqrr_stop)
1614 				break;
1615 			/* Check for VDQCR completion */
1616 			if (dq->stat & QM_DQRR_STAT_DQCR_EXPIRED)
1617 				clear_vdqcr(p, fq);
1618 		} else {
1619 			/* SDQCR: context_b points to the FQ */
1620 			fq = tag_to_fq(be32_to_cpu(dq->context_b));
1621 			/* Now let the callback do its stuff */
1622 			res = fq->cb.dqrr(p, fq, dq);
1623 			/*
1624 			 * The callback can request that we exit without
1625 			 * consuming this entry nor advancing;
1626 			 */
1627 			if (res == qman_cb_dqrr_stop)
1628 				break;
1629 		}
1630 		/* Interpret 'dq' from a driver perspective. */
1631 		/*
1632 		 * Parking isn't possible unless HELDACTIVE was set. NB,
1633 		 * FORCEELIGIBLE implies HELDACTIVE, so we only need to
1634 		 * check for HELDACTIVE to cover both.
1635 		 */
1636 		DPAA_ASSERT((dq->stat & QM_DQRR_STAT_FQ_HELDACTIVE) ||
1637 			    (res != qman_cb_dqrr_park));
1638 		/* just means "skip it, I'll consume it myself later on" */
1639 		if (res != qman_cb_dqrr_defer)
1640 			qm_dqrr_cdc_consume_1ptr(&p->p, dq,
1641 						 res == qman_cb_dqrr_park);
1642 		/* Move forward */
1643 		qm_dqrr_next(&p->p);
1644 		/*
1645 		 * Entry processed and consumed, increment our counter.  The
1646 		 * callback can request that we exit after consuming the
1647 		 * entry, and we also exit if we reach our processing limit,
1648 		 * so loop back only if neither of these conditions is met.
1649 		 */
1650 	} while (++limit < poll_limit && res != qman_cb_dqrr_consume_stop);
1651 
1652 	return limit;
1653 }
1654 
1655 void qman_p_irqsource_add(struct qman_portal *p, u32 bits)
1656 {
1657 	unsigned long irqflags;
1658 
1659 	local_irq_save(irqflags);
1660 	p->irq_sources |= bits & QM_PIRQ_VISIBLE;
1661 	qm_out(&p->p, QM_REG_IER, p->irq_sources);
1662 	local_irq_restore(irqflags);
1663 }
1664 EXPORT_SYMBOL(qman_p_irqsource_add);
1665 
1666 void qman_p_irqsource_remove(struct qman_portal *p, u32 bits)
1667 {
1668 	unsigned long irqflags;
1669 	u32 ier;
1670 
1671 	/*
1672 	 * Our interrupt handler only processes+clears status register bits that
1673 	 * are in p->irq_sources. As we're trimming that mask, if one of them
1674 	 * were to assert in the status register just before we remove it from
1675 	 * the enable register, there would be an interrupt-storm when we
1676 	 * release the IRQ lock. So we wait for the enable register update to
1677 	 * take effect in h/w (by reading it back) and then clear all other bits
1678 	 * in the status register. Ie. we clear them from ISR once it's certain
1679 	 * IER won't allow them to reassert.
1680 	 */
1681 	local_irq_save(irqflags);
1682 	bits &= QM_PIRQ_VISIBLE;
1683 	p->irq_sources &= ~bits;
1684 	qm_out(&p->p, QM_REG_IER, p->irq_sources);
1685 	ier = qm_in(&p->p, QM_REG_IER);
1686 	/*
1687 	 * Using "~ier" (rather than "bits" or "~p->irq_sources") creates a
1688 	 * data-dependency, ie. to protect against re-ordering.
1689 	 */
1690 	qm_out(&p->p, QM_REG_ISR, ~ier);
1691 	local_irq_restore(irqflags);
1692 }
1693 EXPORT_SYMBOL(qman_p_irqsource_remove);
1694 
1695 const cpumask_t *qman_affine_cpus(void)
1696 {
1697 	return &affine_mask;
1698 }
1699 EXPORT_SYMBOL(qman_affine_cpus);
1700 
1701 u16 qman_affine_channel(int cpu)
1702 {
1703 	if (cpu < 0) {
1704 		struct qman_portal *portal = get_affine_portal();
1705 
1706 		cpu = portal->config->cpu;
1707 		put_affine_portal();
1708 	}
1709 	WARN_ON(!cpumask_test_cpu(cpu, &affine_mask));
1710 	return affine_channels[cpu];
1711 }
1712 EXPORT_SYMBOL(qman_affine_channel);
1713 
1714 struct qman_portal *qman_get_affine_portal(int cpu)
1715 {
1716 	return affine_portals[cpu];
1717 }
1718 EXPORT_SYMBOL(qman_get_affine_portal);
1719 
1720 int qman_p_poll_dqrr(struct qman_portal *p, unsigned int limit)
1721 {
1722 	return __poll_portal_fast(p, limit);
1723 }
1724 EXPORT_SYMBOL(qman_p_poll_dqrr);
1725 
1726 void qman_p_static_dequeue_add(struct qman_portal *p, u32 pools)
1727 {
1728 	unsigned long irqflags;
1729 
1730 	local_irq_save(irqflags);
1731 	pools &= p->config->pools;
1732 	p->sdqcr |= pools;
1733 	qm_dqrr_sdqcr_set(&p->p, p->sdqcr);
1734 	local_irq_restore(irqflags);
1735 }
1736 EXPORT_SYMBOL(qman_p_static_dequeue_add);
1737 
1738 /* Frame queue API */
1739 
1740 static const char *mcr_result_str(u8 result)
1741 {
1742 	switch (result) {
1743 	case QM_MCR_RESULT_NULL:
1744 		return "QM_MCR_RESULT_NULL";
1745 	case QM_MCR_RESULT_OK:
1746 		return "QM_MCR_RESULT_OK";
1747 	case QM_MCR_RESULT_ERR_FQID:
1748 		return "QM_MCR_RESULT_ERR_FQID";
1749 	case QM_MCR_RESULT_ERR_FQSTATE:
1750 		return "QM_MCR_RESULT_ERR_FQSTATE";
1751 	case QM_MCR_RESULT_ERR_NOTEMPTY:
1752 		return "QM_MCR_RESULT_ERR_NOTEMPTY";
1753 	case QM_MCR_RESULT_PENDING:
1754 		return "QM_MCR_RESULT_PENDING";
1755 	case QM_MCR_RESULT_ERR_BADCOMMAND:
1756 		return "QM_MCR_RESULT_ERR_BADCOMMAND";
1757 	}
1758 	return "<unknown MCR result>";
1759 }
1760 
1761 int qman_create_fq(u32 fqid, u32 flags, struct qman_fq *fq)
1762 {
1763 	if (flags & QMAN_FQ_FLAG_DYNAMIC_FQID) {
1764 		int ret = qman_alloc_fqid(&fqid);
1765 
1766 		if (ret)
1767 			return ret;
1768 	}
1769 	fq->fqid = fqid;
1770 	fq->flags = flags;
1771 	fq->state = qman_fq_state_oos;
1772 	fq->cgr_groupid = 0;
1773 
1774 	/* A context_b of 0 is allegedly special, so don't use that fqid */
1775 	if (fqid == 0 || fqid >= num_fqids) {
1776 		WARN(1, "bad fqid %d\n", fqid);
1777 		return -EINVAL;
1778 	}
1779 
1780 	fq->idx = fqid * 2;
1781 	if (flags & QMAN_FQ_FLAG_NO_MODIFY)
1782 		fq->idx++;
1783 
1784 	WARN_ON(fq_table[fq->idx]);
1785 	fq_table[fq->idx] = fq;
1786 
1787 	return 0;
1788 }
1789 EXPORT_SYMBOL(qman_create_fq);
1790 
1791 void qman_destroy_fq(struct qman_fq *fq)
1792 {
1793 	/*
1794 	 * We don't need to lock the FQ as it is a pre-condition that the FQ be
1795 	 * quiesced. Instead, run some checks.
1796 	 */
1797 	switch (fq->state) {
1798 	case qman_fq_state_parked:
1799 	case qman_fq_state_oos:
1800 		if (fq_isset(fq, QMAN_FQ_FLAG_DYNAMIC_FQID))
1801 			qman_release_fqid(fq->fqid);
1802 
1803 		DPAA_ASSERT(fq_table[fq->idx]);
1804 		fq_table[fq->idx] = NULL;
1805 		return;
1806 	default:
1807 		break;
1808 	}
1809 	DPAA_ASSERT(NULL == "qman_free_fq() on unquiesced FQ!");
1810 }
1811 EXPORT_SYMBOL(qman_destroy_fq);
1812 
1813 u32 qman_fq_fqid(struct qman_fq *fq)
1814 {
1815 	return fq->fqid;
1816 }
1817 EXPORT_SYMBOL(qman_fq_fqid);
1818 
1819 int qman_init_fq(struct qman_fq *fq, u32 flags, struct qm_mcc_initfq *opts)
1820 {
1821 	union qm_mc_command *mcc;
1822 	union qm_mc_result *mcr;
1823 	struct qman_portal *p;
1824 	u8 res, myverb;
1825 	int ret = 0;
1826 
1827 	myverb = (flags & QMAN_INITFQ_FLAG_SCHED)
1828 		? QM_MCC_VERB_INITFQ_SCHED : QM_MCC_VERB_INITFQ_PARKED;
1829 
1830 	if (fq->state != qman_fq_state_oos &&
1831 	    fq->state != qman_fq_state_parked)
1832 		return -EINVAL;
1833 #ifdef CONFIG_FSL_DPAA_CHECKING
1834 	if (fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY))
1835 		return -EINVAL;
1836 #endif
1837 	if (opts && (be16_to_cpu(opts->we_mask) & QM_INITFQ_WE_OAC)) {
1838 		/* And can't be set at the same time as TDTHRESH */
1839 		if (be16_to_cpu(opts->we_mask) & QM_INITFQ_WE_TDTHRESH)
1840 			return -EINVAL;
1841 	}
1842 	/* Issue an INITFQ_[PARKED|SCHED] management command */
1843 	p = get_affine_portal();
1844 	if (fq_isset(fq, QMAN_FQ_STATE_CHANGING) ||
1845 	    (fq->state != qman_fq_state_oos &&
1846 	     fq->state != qman_fq_state_parked)) {
1847 		ret = -EBUSY;
1848 		goto out;
1849 	}
1850 	mcc = qm_mc_start(&p->p);
1851 	if (opts)
1852 		mcc->initfq = *opts;
1853 	qm_fqid_set(&mcc->fq, fq->fqid);
1854 	mcc->initfq.count = 0;
1855 	/*
1856 	 * If the FQ does *not* have the TO_DCPORTAL flag, context_b is set as a
1857 	 * demux pointer. Otherwise, the caller-provided value is allowed to
1858 	 * stand, don't overwrite it.
1859 	 */
1860 	if (fq_isclear(fq, QMAN_FQ_FLAG_TO_DCPORTAL)) {
1861 		dma_addr_t phys_fq;
1862 
1863 		mcc->initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTB);
1864 		mcc->initfq.fqd.context_b = cpu_to_be32(fq_to_tag(fq));
1865 		/*
1866 		 *  and the physical address - NB, if the user wasn't trying to
1867 		 * set CONTEXTA, clear the stashing settings.
1868 		 */
1869 		if (!(be16_to_cpu(mcc->initfq.we_mask) &
1870 				  QM_INITFQ_WE_CONTEXTA)) {
1871 			mcc->initfq.we_mask |=
1872 				cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1873 			memset(&mcc->initfq.fqd.context_a, 0,
1874 				sizeof(mcc->initfq.fqd.context_a));
1875 		} else {
1876 			struct qman_portal *p = qman_dma_portal;
1877 
1878 			phys_fq = dma_map_single(p->config->dev, fq,
1879 						 sizeof(*fq), DMA_TO_DEVICE);
1880 			if (dma_mapping_error(p->config->dev, phys_fq)) {
1881 				dev_err(p->config->dev, "dma_mapping failed\n");
1882 				ret = -EIO;
1883 				goto out;
1884 			}
1885 
1886 			qm_fqd_stashing_set64(&mcc->initfq.fqd, phys_fq);
1887 		}
1888 	}
1889 	if (flags & QMAN_INITFQ_FLAG_LOCAL) {
1890 		int wq = 0;
1891 
1892 		if (!(be16_to_cpu(mcc->initfq.we_mask) &
1893 				  QM_INITFQ_WE_DESTWQ)) {
1894 			mcc->initfq.we_mask |=
1895 				cpu_to_be16(QM_INITFQ_WE_DESTWQ);
1896 			wq = 4;
1897 		}
1898 		qm_fqd_set_destwq(&mcc->initfq.fqd, p->config->channel, wq);
1899 	}
1900 	qm_mc_commit(&p->p, myverb);
1901 	if (!qm_mc_result_timeout(&p->p, &mcr)) {
1902 		dev_err(p->config->dev, "MCR timeout\n");
1903 		ret = -ETIMEDOUT;
1904 		goto out;
1905 	}
1906 
1907 	DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == myverb);
1908 	res = mcr->result;
1909 	if (res != QM_MCR_RESULT_OK) {
1910 		ret = -EIO;
1911 		goto out;
1912 	}
1913 	if (opts) {
1914 		if (be16_to_cpu(opts->we_mask) & QM_INITFQ_WE_FQCTRL) {
1915 			if (be16_to_cpu(opts->fqd.fq_ctrl) & QM_FQCTRL_CGE)
1916 				fq_set(fq, QMAN_FQ_STATE_CGR_EN);
1917 			else
1918 				fq_clear(fq, QMAN_FQ_STATE_CGR_EN);
1919 		}
1920 		if (be16_to_cpu(opts->we_mask) & QM_INITFQ_WE_CGID)
1921 			fq->cgr_groupid = opts->fqd.cgid;
1922 	}
1923 	fq->state = (flags & QMAN_INITFQ_FLAG_SCHED) ?
1924 		qman_fq_state_sched : qman_fq_state_parked;
1925 
1926 out:
1927 	put_affine_portal();
1928 	return ret;
1929 }
1930 EXPORT_SYMBOL(qman_init_fq);
1931 
1932 int qman_schedule_fq(struct qman_fq *fq)
1933 {
1934 	union qm_mc_command *mcc;
1935 	union qm_mc_result *mcr;
1936 	struct qman_portal *p;
1937 	int ret = 0;
1938 
1939 	if (fq->state != qman_fq_state_parked)
1940 		return -EINVAL;
1941 #ifdef CONFIG_FSL_DPAA_CHECKING
1942 	if (fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY))
1943 		return -EINVAL;
1944 #endif
1945 	/* Issue a ALTERFQ_SCHED management command */
1946 	p = get_affine_portal();
1947 	if (fq_isset(fq, QMAN_FQ_STATE_CHANGING) ||
1948 	    fq->state != qman_fq_state_parked) {
1949 		ret = -EBUSY;
1950 		goto out;
1951 	}
1952 	mcc = qm_mc_start(&p->p);
1953 	qm_fqid_set(&mcc->fq, fq->fqid);
1954 	qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_SCHED);
1955 	if (!qm_mc_result_timeout(&p->p, &mcr)) {
1956 		dev_err(p->config->dev, "ALTER_SCHED timeout\n");
1957 		ret = -ETIMEDOUT;
1958 		goto out;
1959 	}
1960 
1961 	DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_ALTER_SCHED);
1962 	if (mcr->result != QM_MCR_RESULT_OK) {
1963 		ret = -EIO;
1964 		goto out;
1965 	}
1966 	fq->state = qman_fq_state_sched;
1967 out:
1968 	put_affine_portal();
1969 	return ret;
1970 }
1971 EXPORT_SYMBOL(qman_schedule_fq);
1972 
1973 int qman_retire_fq(struct qman_fq *fq, u32 *flags)
1974 {
1975 	union qm_mc_command *mcc;
1976 	union qm_mc_result *mcr;
1977 	struct qman_portal *p;
1978 	int ret;
1979 	u8 res;
1980 
1981 	if (fq->state != qman_fq_state_parked &&
1982 	    fq->state != qman_fq_state_sched)
1983 		return -EINVAL;
1984 #ifdef CONFIG_FSL_DPAA_CHECKING
1985 	if (fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY))
1986 		return -EINVAL;
1987 #endif
1988 	p = get_affine_portal();
1989 	if (fq_isset(fq, QMAN_FQ_STATE_CHANGING) ||
1990 	    fq->state == qman_fq_state_retired ||
1991 	    fq->state == qman_fq_state_oos) {
1992 		ret = -EBUSY;
1993 		goto out;
1994 	}
1995 	mcc = qm_mc_start(&p->p);
1996 	qm_fqid_set(&mcc->fq, fq->fqid);
1997 	qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_RETIRE);
1998 	if (!qm_mc_result_timeout(&p->p, &mcr)) {
1999 		dev_crit(p->config->dev, "ALTER_RETIRE timeout\n");
2000 		ret = -ETIMEDOUT;
2001 		goto out;
2002 	}
2003 
2004 	DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_ALTER_RETIRE);
2005 	res = mcr->result;
2006 	/*
2007 	 * "Elegant" would be to treat OK/PENDING the same way; set CHANGING,
2008 	 * and defer the flags until FQRNI or FQRN (respectively) show up. But
2009 	 * "Friendly" is to process OK immediately, and not set CHANGING. We do
2010 	 * friendly, otherwise the caller doesn't necessarily have a fully
2011 	 * "retired" FQ on return even if the retirement was immediate. However
2012 	 * this does mean some code duplication between here and
2013 	 * fq_state_change().
2014 	 */
2015 	if (res == QM_MCR_RESULT_OK) {
2016 		ret = 0;
2017 		/* Process 'fq' right away, we'll ignore FQRNI */
2018 		if (mcr->alterfq.fqs & QM_MCR_FQS_NOTEMPTY)
2019 			fq_set(fq, QMAN_FQ_STATE_NE);
2020 		if (mcr->alterfq.fqs & QM_MCR_FQS_ORLPRESENT)
2021 			fq_set(fq, QMAN_FQ_STATE_ORL);
2022 		if (flags)
2023 			*flags = fq->flags;
2024 		fq->state = qman_fq_state_retired;
2025 		if (fq->cb.fqs) {
2026 			/*
2027 			 * Another issue with supporting "immediate" retirement
2028 			 * is that we're forced to drop FQRNIs, because by the
2029 			 * time they're seen it may already be "too late" (the
2030 			 * fq may have been OOS'd and free()'d already). But if
2031 			 * the upper layer wants a callback whether it's
2032 			 * immediate or not, we have to fake a "MR" entry to
2033 			 * look like an FQRNI...
2034 			 */
2035 			union qm_mr_entry msg;
2036 
2037 			msg.verb = QM_MR_VERB_FQRNI;
2038 			msg.fq.fqs = mcr->alterfq.fqs;
2039 			qm_fqid_set(&msg.fq, fq->fqid);
2040 			msg.fq.context_b = cpu_to_be32(fq_to_tag(fq));
2041 			fq->cb.fqs(p, fq, &msg);
2042 		}
2043 	} else if (res == QM_MCR_RESULT_PENDING) {
2044 		ret = 1;
2045 		fq_set(fq, QMAN_FQ_STATE_CHANGING);
2046 	} else {
2047 		ret = -EIO;
2048 	}
2049 out:
2050 	put_affine_portal();
2051 	return ret;
2052 }
2053 EXPORT_SYMBOL(qman_retire_fq);
2054 
2055 int qman_oos_fq(struct qman_fq *fq)
2056 {
2057 	union qm_mc_command *mcc;
2058 	union qm_mc_result *mcr;
2059 	struct qman_portal *p;
2060 	int ret = 0;
2061 
2062 	if (fq->state != qman_fq_state_retired)
2063 		return -EINVAL;
2064 #ifdef CONFIG_FSL_DPAA_CHECKING
2065 	if (fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY))
2066 		return -EINVAL;
2067 #endif
2068 	p = get_affine_portal();
2069 	if (fq_isset(fq, QMAN_FQ_STATE_BLOCKOOS) ||
2070 	    fq->state != qman_fq_state_retired) {
2071 		ret = -EBUSY;
2072 		goto out;
2073 	}
2074 	mcc = qm_mc_start(&p->p);
2075 	qm_fqid_set(&mcc->fq, fq->fqid);
2076 	qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_OOS);
2077 	if (!qm_mc_result_timeout(&p->p, &mcr)) {
2078 		ret = -ETIMEDOUT;
2079 		goto out;
2080 	}
2081 	DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_ALTER_OOS);
2082 	if (mcr->result != QM_MCR_RESULT_OK) {
2083 		ret = -EIO;
2084 		goto out;
2085 	}
2086 	fq->state = qman_fq_state_oos;
2087 out:
2088 	put_affine_portal();
2089 	return ret;
2090 }
2091 EXPORT_SYMBOL(qman_oos_fq);
2092 
2093 int qman_query_fq(struct qman_fq *fq, struct qm_fqd *fqd)
2094 {
2095 	union qm_mc_command *mcc;
2096 	union qm_mc_result *mcr;
2097 	struct qman_portal *p = get_affine_portal();
2098 	int ret = 0;
2099 
2100 	mcc = qm_mc_start(&p->p);
2101 	qm_fqid_set(&mcc->fq, fq->fqid);
2102 	qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ);
2103 	if (!qm_mc_result_timeout(&p->p, &mcr)) {
2104 		ret = -ETIMEDOUT;
2105 		goto out;
2106 	}
2107 
2108 	DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ);
2109 	if (mcr->result == QM_MCR_RESULT_OK)
2110 		*fqd = mcr->queryfq.fqd;
2111 	else
2112 		ret = -EIO;
2113 out:
2114 	put_affine_portal();
2115 	return ret;
2116 }
2117 
2118 int qman_query_fq_np(struct qman_fq *fq, struct qm_mcr_queryfq_np *np)
2119 {
2120 	union qm_mc_command *mcc;
2121 	union qm_mc_result *mcr;
2122 	struct qman_portal *p = get_affine_portal();
2123 	int ret = 0;
2124 
2125 	mcc = qm_mc_start(&p->p);
2126 	qm_fqid_set(&mcc->fq, fq->fqid);
2127 	qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ_NP);
2128 	if (!qm_mc_result_timeout(&p->p, &mcr)) {
2129 		ret = -ETIMEDOUT;
2130 		goto out;
2131 	}
2132 
2133 	DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ_NP);
2134 	if (mcr->result == QM_MCR_RESULT_OK)
2135 		*np = mcr->queryfq_np;
2136 	else if (mcr->result == QM_MCR_RESULT_ERR_FQID)
2137 		ret = -ERANGE;
2138 	else
2139 		ret = -EIO;
2140 out:
2141 	put_affine_portal();
2142 	return ret;
2143 }
2144 EXPORT_SYMBOL(qman_query_fq_np);
2145 
2146 static int qman_query_cgr(struct qman_cgr *cgr,
2147 			  struct qm_mcr_querycgr *cgrd)
2148 {
2149 	union qm_mc_command *mcc;
2150 	union qm_mc_result *mcr;
2151 	struct qman_portal *p = get_affine_portal();
2152 	int ret = 0;
2153 
2154 	mcc = qm_mc_start(&p->p);
2155 	mcc->cgr.cgid = cgr->cgrid;
2156 	qm_mc_commit(&p->p, QM_MCC_VERB_QUERYCGR);
2157 	if (!qm_mc_result_timeout(&p->p, &mcr)) {
2158 		ret = -ETIMEDOUT;
2159 		goto out;
2160 	}
2161 	DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCC_VERB_QUERYCGR);
2162 	if (mcr->result == QM_MCR_RESULT_OK)
2163 		*cgrd = mcr->querycgr;
2164 	else {
2165 		dev_err(p->config->dev, "QUERY_CGR failed: %s\n",
2166 			mcr_result_str(mcr->result));
2167 		ret = -EIO;
2168 	}
2169 out:
2170 	put_affine_portal();
2171 	return ret;
2172 }
2173 
2174 int qman_query_cgr_congested(struct qman_cgr *cgr, bool *result)
2175 {
2176 	struct qm_mcr_querycgr query_cgr;
2177 	int err;
2178 
2179 	err = qman_query_cgr(cgr, &query_cgr);
2180 	if (err)
2181 		return err;
2182 
2183 	*result = !!query_cgr.cgr.cs;
2184 	return 0;
2185 }
2186 EXPORT_SYMBOL(qman_query_cgr_congested);
2187 
2188 /* internal function used as a wait_event() expression */
2189 static int set_p_vdqcr(struct qman_portal *p, struct qman_fq *fq, u32 vdqcr)
2190 {
2191 	unsigned long irqflags;
2192 	int ret = -EBUSY;
2193 
2194 	local_irq_save(irqflags);
2195 	if (p->vdqcr_owned)
2196 		goto out;
2197 	if (fq_isset(fq, QMAN_FQ_STATE_VDQCR))
2198 		goto out;
2199 
2200 	fq_set(fq, QMAN_FQ_STATE_VDQCR);
2201 	p->vdqcr_owned = fq;
2202 	qm_dqrr_vdqcr_set(&p->p, vdqcr);
2203 	ret = 0;
2204 out:
2205 	local_irq_restore(irqflags);
2206 	return ret;
2207 }
2208 
2209 static int set_vdqcr(struct qman_portal **p, struct qman_fq *fq, u32 vdqcr)
2210 {
2211 	int ret;
2212 
2213 	*p = get_affine_portal();
2214 	ret = set_p_vdqcr(*p, fq, vdqcr);
2215 	put_affine_portal();
2216 	return ret;
2217 }
2218 
2219 static int wait_vdqcr_start(struct qman_portal **p, struct qman_fq *fq,
2220 				u32 vdqcr, u32 flags)
2221 {
2222 	int ret = 0;
2223 
2224 	if (flags & QMAN_VOLATILE_FLAG_WAIT_INT)
2225 		ret = wait_event_interruptible(affine_queue,
2226 				!set_vdqcr(p, fq, vdqcr));
2227 	else
2228 		wait_event(affine_queue, !set_vdqcr(p, fq, vdqcr));
2229 	return ret;
2230 }
2231 
2232 int qman_volatile_dequeue(struct qman_fq *fq, u32 flags, u32 vdqcr)
2233 {
2234 	struct qman_portal *p;
2235 	int ret;
2236 
2237 	if (fq->state != qman_fq_state_parked &&
2238 	    fq->state != qman_fq_state_retired)
2239 		return -EINVAL;
2240 	if (vdqcr & QM_VDQCR_FQID_MASK)
2241 		return -EINVAL;
2242 	if (fq_isset(fq, QMAN_FQ_STATE_VDQCR))
2243 		return -EBUSY;
2244 	vdqcr = (vdqcr & ~QM_VDQCR_FQID_MASK) | fq->fqid;
2245 	if (flags & QMAN_VOLATILE_FLAG_WAIT)
2246 		ret = wait_vdqcr_start(&p, fq, vdqcr, flags);
2247 	else
2248 		ret = set_vdqcr(&p, fq, vdqcr);
2249 	if (ret)
2250 		return ret;
2251 	/* VDQCR is set */
2252 	if (flags & QMAN_VOLATILE_FLAG_FINISH) {
2253 		if (flags & QMAN_VOLATILE_FLAG_WAIT_INT)
2254 			/*
2255 			 * NB: don't propagate any error - the caller wouldn't
2256 			 * know whether the VDQCR was issued or not. A signal
2257 			 * could arrive after returning anyway, so the caller
2258 			 * can check signal_pending() if that's an issue.
2259 			 */
2260 			wait_event_interruptible(affine_queue,
2261 				!fq_isset(fq, QMAN_FQ_STATE_VDQCR));
2262 		else
2263 			wait_event(affine_queue,
2264 				!fq_isset(fq, QMAN_FQ_STATE_VDQCR));
2265 	}
2266 	return 0;
2267 }
2268 EXPORT_SYMBOL(qman_volatile_dequeue);
2269 
2270 static void update_eqcr_ci(struct qman_portal *p, u8 avail)
2271 {
2272 	if (avail)
2273 		qm_eqcr_cce_prefetch(&p->p);
2274 	else
2275 		qm_eqcr_cce_update(&p->p);
2276 }
2277 
2278 int qman_enqueue(struct qman_fq *fq, const struct qm_fd *fd)
2279 {
2280 	struct qman_portal *p;
2281 	struct qm_eqcr_entry *eq;
2282 	unsigned long irqflags;
2283 	u8 avail;
2284 
2285 	p = get_affine_portal();
2286 	local_irq_save(irqflags);
2287 
2288 	if (p->use_eqcr_ci_stashing) {
2289 		/*
2290 		 * The stashing case is easy, only update if we need to in
2291 		 * order to try and liberate ring entries.
2292 		 */
2293 		eq = qm_eqcr_start_stash(&p->p);
2294 	} else {
2295 		/*
2296 		 * The non-stashing case is harder, need to prefetch ahead of
2297 		 * time.
2298 		 */
2299 		avail = qm_eqcr_get_avail(&p->p);
2300 		if (avail < 2)
2301 			update_eqcr_ci(p, avail);
2302 		eq = qm_eqcr_start_no_stash(&p->p);
2303 	}
2304 
2305 	if (unlikely(!eq))
2306 		goto out;
2307 
2308 	qm_fqid_set(eq, fq->fqid);
2309 	eq->tag = cpu_to_be32(fq_to_tag(fq));
2310 	eq->fd = *fd;
2311 
2312 	qm_eqcr_pvb_commit(&p->p, QM_EQCR_VERB_CMD_ENQUEUE);
2313 out:
2314 	local_irq_restore(irqflags);
2315 	put_affine_portal();
2316 	return 0;
2317 }
2318 EXPORT_SYMBOL(qman_enqueue);
2319 
2320 static int qm_modify_cgr(struct qman_cgr *cgr, u32 flags,
2321 			 struct qm_mcc_initcgr *opts)
2322 {
2323 	union qm_mc_command *mcc;
2324 	union qm_mc_result *mcr;
2325 	struct qman_portal *p = get_affine_portal();
2326 	u8 verb = QM_MCC_VERB_MODIFYCGR;
2327 	int ret = 0;
2328 
2329 	mcc = qm_mc_start(&p->p);
2330 	if (opts)
2331 		mcc->initcgr = *opts;
2332 	mcc->initcgr.cgid = cgr->cgrid;
2333 	if (flags & QMAN_CGR_FLAG_USE_INIT)
2334 		verb = QM_MCC_VERB_INITCGR;
2335 	qm_mc_commit(&p->p, verb);
2336 	if (!qm_mc_result_timeout(&p->p, &mcr)) {
2337 		ret = -ETIMEDOUT;
2338 		goto out;
2339 	}
2340 
2341 	DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == verb);
2342 	if (mcr->result != QM_MCR_RESULT_OK)
2343 		ret = -EIO;
2344 
2345 out:
2346 	put_affine_portal();
2347 	return ret;
2348 }
2349 
2350 #define PORTAL_IDX(n)	(n->config->channel - QM_CHANNEL_SWPORTAL0)
2351 
2352 /* congestion state change notification target update control */
2353 static void qm_cgr_cscn_targ_set(struct __qm_mc_cgr *cgr, int pi, u32 val)
2354 {
2355 	if (qman_ip_rev >= QMAN_REV30)
2356 		cgr->cscn_targ_upd_ctrl = cpu_to_be16(pi |
2357 					QM_CGR_TARG_UDP_CTRL_WRITE_BIT);
2358 	else
2359 		cgr->cscn_targ = cpu_to_be32(val | QM_CGR_TARG_PORTAL(pi));
2360 }
2361 
2362 static void qm_cgr_cscn_targ_clear(struct __qm_mc_cgr *cgr, int pi, u32 val)
2363 {
2364 	if (qman_ip_rev >= QMAN_REV30)
2365 		cgr->cscn_targ_upd_ctrl = cpu_to_be16(pi);
2366 	else
2367 		cgr->cscn_targ = cpu_to_be32(val & ~QM_CGR_TARG_PORTAL(pi));
2368 }
2369 
2370 static u8 qman_cgr_cpus[CGR_NUM];
2371 
2372 void qman_init_cgr_all(void)
2373 {
2374 	struct qman_cgr cgr;
2375 	int err_cnt = 0;
2376 
2377 	for (cgr.cgrid = 0; cgr.cgrid < CGR_NUM; cgr.cgrid++) {
2378 		if (qm_modify_cgr(&cgr, QMAN_CGR_FLAG_USE_INIT, NULL))
2379 			err_cnt++;
2380 	}
2381 
2382 	if (err_cnt)
2383 		pr_err("Warning: %d error%s while initialising CGR h/w\n",
2384 		       err_cnt, (err_cnt > 1) ? "s" : "");
2385 }
2386 
2387 int qman_create_cgr(struct qman_cgr *cgr, u32 flags,
2388 		    struct qm_mcc_initcgr *opts)
2389 {
2390 	struct qm_mcr_querycgr cgr_state;
2391 	int ret;
2392 	struct qman_portal *p;
2393 
2394 	/*
2395 	 * We have to check that the provided CGRID is within the limits of the
2396 	 * data-structures, for obvious reasons. However we'll let h/w take
2397 	 * care of determining whether it's within the limits of what exists on
2398 	 * the SoC.
2399 	 */
2400 	if (cgr->cgrid >= CGR_NUM)
2401 		return -EINVAL;
2402 
2403 	preempt_disable();
2404 	p = get_affine_portal();
2405 	qman_cgr_cpus[cgr->cgrid] = smp_processor_id();
2406 	preempt_enable();
2407 
2408 	cgr->chan = p->config->channel;
2409 	spin_lock(&p->cgr_lock);
2410 
2411 	if (opts) {
2412 		struct qm_mcc_initcgr local_opts = *opts;
2413 
2414 		ret = qman_query_cgr(cgr, &cgr_state);
2415 		if (ret)
2416 			goto out;
2417 
2418 		qm_cgr_cscn_targ_set(&local_opts.cgr, PORTAL_IDX(p),
2419 				     be32_to_cpu(cgr_state.cgr.cscn_targ));
2420 		local_opts.we_mask |= cpu_to_be16(QM_CGR_WE_CSCN_TARG);
2421 
2422 		/* send init if flags indicate so */
2423 		if (flags & QMAN_CGR_FLAG_USE_INIT)
2424 			ret = qm_modify_cgr(cgr, QMAN_CGR_FLAG_USE_INIT,
2425 					    &local_opts);
2426 		else
2427 			ret = qm_modify_cgr(cgr, 0, &local_opts);
2428 		if (ret)
2429 			goto out;
2430 	}
2431 
2432 	list_add(&cgr->node, &p->cgr_cbs);
2433 
2434 	/* Determine if newly added object requires its callback to be called */
2435 	ret = qman_query_cgr(cgr, &cgr_state);
2436 	if (ret) {
2437 		/* we can't go back, so proceed and return success */
2438 		dev_err(p->config->dev, "CGR HW state partially modified\n");
2439 		ret = 0;
2440 		goto out;
2441 	}
2442 	if (cgr->cb && cgr_state.cgr.cscn_en &&
2443 	    qman_cgrs_get(&p->cgrs[1], cgr->cgrid))
2444 		cgr->cb(p, cgr, 1);
2445 out:
2446 	spin_unlock(&p->cgr_lock);
2447 	put_affine_portal();
2448 	return ret;
2449 }
2450 EXPORT_SYMBOL(qman_create_cgr);
2451 
2452 int qman_delete_cgr(struct qman_cgr *cgr)
2453 {
2454 	unsigned long irqflags;
2455 	struct qm_mcr_querycgr cgr_state;
2456 	struct qm_mcc_initcgr local_opts;
2457 	int ret = 0;
2458 	struct qman_cgr *i;
2459 	struct qman_portal *p = get_affine_portal();
2460 
2461 	if (cgr->chan != p->config->channel) {
2462 		/* attempt to delete from other portal than creator */
2463 		dev_err(p->config->dev, "CGR not owned by current portal");
2464 		dev_dbg(p->config->dev, " create 0x%x, delete 0x%x\n",
2465 			cgr->chan, p->config->channel);
2466 
2467 		ret = -EINVAL;
2468 		goto put_portal;
2469 	}
2470 	memset(&local_opts, 0, sizeof(struct qm_mcc_initcgr));
2471 	spin_lock_irqsave(&p->cgr_lock, irqflags);
2472 	list_del(&cgr->node);
2473 	/*
2474 	 * If there are no other CGR objects for this CGRID in the list,
2475 	 * update CSCN_TARG accordingly
2476 	 */
2477 	list_for_each_entry(i, &p->cgr_cbs, node)
2478 		if (i->cgrid == cgr->cgrid && i->cb)
2479 			goto release_lock;
2480 	ret = qman_query_cgr(cgr, &cgr_state);
2481 	if (ret)  {
2482 		/* add back to the list */
2483 		list_add(&cgr->node, &p->cgr_cbs);
2484 		goto release_lock;
2485 	}
2486 
2487 	local_opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_TARG);
2488 	qm_cgr_cscn_targ_clear(&local_opts.cgr, PORTAL_IDX(p),
2489 			       be32_to_cpu(cgr_state.cgr.cscn_targ));
2490 
2491 	ret = qm_modify_cgr(cgr, 0, &local_opts);
2492 	if (ret)
2493 		/* add back to the list */
2494 		list_add(&cgr->node, &p->cgr_cbs);
2495 release_lock:
2496 	spin_unlock_irqrestore(&p->cgr_lock, irqflags);
2497 put_portal:
2498 	put_affine_portal();
2499 	return ret;
2500 }
2501 EXPORT_SYMBOL(qman_delete_cgr);
2502 
2503 struct cgr_comp {
2504 	struct qman_cgr *cgr;
2505 	struct completion completion;
2506 };
2507 
2508 static void qman_delete_cgr_smp_call(void *p)
2509 {
2510 	qman_delete_cgr((struct qman_cgr *)p);
2511 }
2512 
2513 void qman_delete_cgr_safe(struct qman_cgr *cgr)
2514 {
2515 	preempt_disable();
2516 	if (qman_cgr_cpus[cgr->cgrid] != smp_processor_id()) {
2517 		smp_call_function_single(qman_cgr_cpus[cgr->cgrid],
2518 					 qman_delete_cgr_smp_call, cgr, true);
2519 		preempt_enable();
2520 		return;
2521 	}
2522 
2523 	qman_delete_cgr(cgr);
2524 	preempt_enable();
2525 }
2526 EXPORT_SYMBOL(qman_delete_cgr_safe);
2527 
2528 /* Cleanup FQs */
2529 
2530 static int _qm_mr_consume_and_match_verb(struct qm_portal *p, int v)
2531 {
2532 	const union qm_mr_entry *msg;
2533 	int found = 0;
2534 
2535 	qm_mr_pvb_update(p);
2536 	msg = qm_mr_current(p);
2537 	while (msg) {
2538 		if ((msg->verb & QM_MR_VERB_TYPE_MASK) == v)
2539 			found = 1;
2540 		qm_mr_next(p);
2541 		qm_mr_cci_consume_to_current(p);
2542 		qm_mr_pvb_update(p);
2543 		msg = qm_mr_current(p);
2544 	}
2545 	return found;
2546 }
2547 
2548 static int _qm_dqrr_consume_and_match(struct qm_portal *p, u32 fqid, int s,
2549 				      bool wait)
2550 {
2551 	const struct qm_dqrr_entry *dqrr;
2552 	int found = 0;
2553 
2554 	do {
2555 		qm_dqrr_pvb_update(p);
2556 		dqrr = qm_dqrr_current(p);
2557 		if (!dqrr)
2558 			cpu_relax();
2559 	} while (wait && !dqrr);
2560 
2561 	while (dqrr) {
2562 		if (qm_fqid_get(dqrr) == fqid && (dqrr->stat & s))
2563 			found = 1;
2564 		qm_dqrr_cdc_consume_1ptr(p, dqrr, 0);
2565 		qm_dqrr_pvb_update(p);
2566 		qm_dqrr_next(p);
2567 		dqrr = qm_dqrr_current(p);
2568 	}
2569 	return found;
2570 }
2571 
2572 #define qm_mr_drain(p, V) \
2573 	_qm_mr_consume_and_match_verb(p, QM_MR_VERB_##V)
2574 
2575 #define qm_dqrr_drain(p, f, S) \
2576 	_qm_dqrr_consume_and_match(p, f, QM_DQRR_STAT_##S, false)
2577 
2578 #define qm_dqrr_drain_wait(p, f, S) \
2579 	_qm_dqrr_consume_and_match(p, f, QM_DQRR_STAT_##S, true)
2580 
2581 #define qm_dqrr_drain_nomatch(p) \
2582 	_qm_dqrr_consume_and_match(p, 0, 0, false)
2583 
2584 static int qman_shutdown_fq(u32 fqid)
2585 {
2586 	struct qman_portal *p;
2587 	struct device *dev;
2588 	union qm_mc_command *mcc;
2589 	union qm_mc_result *mcr;
2590 	int orl_empty, drain = 0, ret = 0;
2591 	u32 channel, wq, res;
2592 	u8 state;
2593 
2594 	p = get_affine_portal();
2595 	dev = p->config->dev;
2596 	/* Determine the state of the FQID */
2597 	mcc = qm_mc_start(&p->p);
2598 	qm_fqid_set(&mcc->fq, fqid);
2599 	qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ_NP);
2600 	if (!qm_mc_result_timeout(&p->p, &mcr)) {
2601 		dev_err(dev, "QUERYFQ_NP timeout\n");
2602 		ret = -ETIMEDOUT;
2603 		goto out;
2604 	}
2605 
2606 	DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ_NP);
2607 	state = mcr->queryfq_np.state & QM_MCR_NP_STATE_MASK;
2608 	if (state == QM_MCR_NP_STATE_OOS)
2609 		goto out; /* Already OOS, no need to do anymore checks */
2610 
2611 	/* Query which channel the FQ is using */
2612 	mcc = qm_mc_start(&p->p);
2613 	qm_fqid_set(&mcc->fq, fqid);
2614 	qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ);
2615 	if (!qm_mc_result_timeout(&p->p, &mcr)) {
2616 		dev_err(dev, "QUERYFQ timeout\n");
2617 		ret = -ETIMEDOUT;
2618 		goto out;
2619 	}
2620 
2621 	DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ);
2622 	/* Need to store these since the MCR gets reused */
2623 	channel = qm_fqd_get_chan(&mcr->queryfq.fqd);
2624 	wq = qm_fqd_get_wq(&mcr->queryfq.fqd);
2625 
2626 	switch (state) {
2627 	case QM_MCR_NP_STATE_TEN_SCHED:
2628 	case QM_MCR_NP_STATE_TRU_SCHED:
2629 	case QM_MCR_NP_STATE_ACTIVE:
2630 	case QM_MCR_NP_STATE_PARKED:
2631 		orl_empty = 0;
2632 		mcc = qm_mc_start(&p->p);
2633 		qm_fqid_set(&mcc->fq, fqid);
2634 		qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_RETIRE);
2635 		if (!qm_mc_result_timeout(&p->p, &mcr)) {
2636 			dev_err(dev, "QUERYFQ_NP timeout\n");
2637 			ret = -ETIMEDOUT;
2638 			goto out;
2639 		}
2640 		DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) ==
2641 			    QM_MCR_VERB_ALTER_RETIRE);
2642 		res = mcr->result; /* Make a copy as we reuse MCR below */
2643 
2644 		if (res == QM_MCR_RESULT_PENDING) {
2645 			/*
2646 			 * Need to wait for the FQRN in the message ring, which
2647 			 * will only occur once the FQ has been drained.  In
2648 			 * order for the FQ to drain the portal needs to be set
2649 			 * to dequeue from the channel the FQ is scheduled on
2650 			 */
2651 			int found_fqrn = 0;
2652 			u16 dequeue_wq = 0;
2653 
2654 			/* Flag that we need to drain FQ */
2655 			drain = 1;
2656 
2657 			if (channel >= qm_channel_pool1 &&
2658 			    channel < qm_channel_pool1 + 15) {
2659 				/* Pool channel, enable the bit in the portal */
2660 				dequeue_wq = (channel -
2661 					      qm_channel_pool1 + 1)<<4 | wq;
2662 			} else if (channel < qm_channel_pool1) {
2663 				/* Dedicated channel */
2664 				dequeue_wq = wq;
2665 			} else {
2666 				dev_err(dev, "Can't recover FQ 0x%x, ch: 0x%x",
2667 					fqid, channel);
2668 				ret = -EBUSY;
2669 				goto out;
2670 			}
2671 			/* Set the sdqcr to drain this channel */
2672 			if (channel < qm_channel_pool1)
2673 				qm_dqrr_sdqcr_set(&p->p,
2674 						  QM_SDQCR_TYPE_ACTIVE |
2675 						  QM_SDQCR_CHANNELS_DEDICATED);
2676 			else
2677 				qm_dqrr_sdqcr_set(&p->p,
2678 						  QM_SDQCR_TYPE_ACTIVE |
2679 						  QM_SDQCR_CHANNELS_POOL_CONV
2680 						  (channel));
2681 			do {
2682 				/* Keep draining DQRR while checking the MR*/
2683 				qm_dqrr_drain_nomatch(&p->p);
2684 				/* Process message ring too */
2685 				found_fqrn = qm_mr_drain(&p->p, FQRN);
2686 				cpu_relax();
2687 			} while (!found_fqrn);
2688 
2689 		}
2690 		if (res != QM_MCR_RESULT_OK &&
2691 		    res != QM_MCR_RESULT_PENDING) {
2692 			dev_err(dev, "retire_fq failed: FQ 0x%x, res=0x%x\n",
2693 				fqid, res);
2694 			ret = -EIO;
2695 			goto out;
2696 		}
2697 		if (!(mcr->alterfq.fqs & QM_MCR_FQS_ORLPRESENT)) {
2698 			/*
2699 			 * ORL had no entries, no need to wait until the
2700 			 * ERNs come in
2701 			 */
2702 			orl_empty = 1;
2703 		}
2704 		/*
2705 		 * Retirement succeeded, check to see if FQ needs
2706 		 * to be drained
2707 		 */
2708 		if (drain || mcr->alterfq.fqs & QM_MCR_FQS_NOTEMPTY) {
2709 			/* FQ is Not Empty, drain using volatile DQ commands */
2710 			do {
2711 				u32 vdqcr = fqid | QM_VDQCR_NUMFRAMES_SET(3);
2712 
2713 				qm_dqrr_vdqcr_set(&p->p, vdqcr);
2714 				/*
2715 				 * Wait for a dequeue and process the dequeues,
2716 				 * making sure to empty the ring completely
2717 				 */
2718 			} while (qm_dqrr_drain_wait(&p->p, fqid, FQ_EMPTY));
2719 		}
2720 		qm_dqrr_sdqcr_set(&p->p, 0);
2721 
2722 		while (!orl_empty) {
2723 			/* Wait for the ORL to have been completely drained */
2724 			orl_empty = qm_mr_drain(&p->p, FQRL);
2725 			cpu_relax();
2726 		}
2727 		mcc = qm_mc_start(&p->p);
2728 		qm_fqid_set(&mcc->fq, fqid);
2729 		qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_OOS);
2730 		if (!qm_mc_result_timeout(&p->p, &mcr)) {
2731 			ret = -ETIMEDOUT;
2732 			goto out;
2733 		}
2734 
2735 		DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) ==
2736 			    QM_MCR_VERB_ALTER_OOS);
2737 		if (mcr->result != QM_MCR_RESULT_OK) {
2738 			dev_err(dev, "OOS after drain fail: FQ 0x%x (0x%x)\n",
2739 				fqid, mcr->result);
2740 			ret = -EIO;
2741 			goto out;
2742 		}
2743 		break;
2744 
2745 	case QM_MCR_NP_STATE_RETIRED:
2746 		/* Send OOS Command */
2747 		mcc = qm_mc_start(&p->p);
2748 		qm_fqid_set(&mcc->fq, fqid);
2749 		qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_OOS);
2750 		if (!qm_mc_result_timeout(&p->p, &mcr)) {
2751 			ret = -ETIMEDOUT;
2752 			goto out;
2753 		}
2754 
2755 		DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) ==
2756 			    QM_MCR_VERB_ALTER_OOS);
2757 		if (mcr->result) {
2758 			dev_err(dev, "OOS fail: FQ 0x%x (0x%x)\n",
2759 				fqid, mcr->result);
2760 			ret = -EIO;
2761 			goto out;
2762 		}
2763 		break;
2764 
2765 	case QM_MCR_NP_STATE_OOS:
2766 		/*  Done */
2767 		break;
2768 
2769 	default:
2770 		ret = -EIO;
2771 	}
2772 
2773 out:
2774 	put_affine_portal();
2775 	return ret;
2776 }
2777 
2778 const struct qm_portal_config *qman_get_qm_portal_config(
2779 						struct qman_portal *portal)
2780 {
2781 	return portal->config;
2782 }
2783 EXPORT_SYMBOL(qman_get_qm_portal_config);
2784 
2785 struct gen_pool *qm_fqalloc; /* FQID allocator */
2786 struct gen_pool *qm_qpalloc; /* pool-channel allocator */
2787 struct gen_pool *qm_cgralloc; /* CGR ID allocator */
2788 
2789 static int qman_alloc_range(struct gen_pool *p, u32 *result, u32 cnt)
2790 {
2791 	unsigned long addr;
2792 
2793 	if (!p)
2794 		return -ENODEV;
2795 
2796 	addr = gen_pool_alloc(p, cnt);
2797 	if (!addr)
2798 		return -ENOMEM;
2799 
2800 	*result = addr & ~DPAA_GENALLOC_OFF;
2801 
2802 	return 0;
2803 }
2804 
2805 int qman_alloc_fqid_range(u32 *result, u32 count)
2806 {
2807 	return qman_alloc_range(qm_fqalloc, result, count);
2808 }
2809 EXPORT_SYMBOL(qman_alloc_fqid_range);
2810 
2811 int qman_alloc_pool_range(u32 *result, u32 count)
2812 {
2813 	return qman_alloc_range(qm_qpalloc, result, count);
2814 }
2815 EXPORT_SYMBOL(qman_alloc_pool_range);
2816 
2817 int qman_alloc_cgrid_range(u32 *result, u32 count)
2818 {
2819 	return qman_alloc_range(qm_cgralloc, result, count);
2820 }
2821 EXPORT_SYMBOL(qman_alloc_cgrid_range);
2822 
2823 int qman_release_fqid(u32 fqid)
2824 {
2825 	int ret = qman_shutdown_fq(fqid);
2826 
2827 	if (ret) {
2828 		pr_debug("FQID %d leaked\n", fqid);
2829 		return ret;
2830 	}
2831 
2832 	gen_pool_free(qm_fqalloc, fqid | DPAA_GENALLOC_OFF, 1);
2833 	return 0;
2834 }
2835 EXPORT_SYMBOL(qman_release_fqid);
2836 
2837 static int qpool_cleanup(u32 qp)
2838 {
2839 	/*
2840 	 * We query all FQDs starting from
2841 	 * FQID 1 until we get an "invalid FQID" error, looking for non-OOS FQDs
2842 	 * whose destination channel is the pool-channel being released.
2843 	 * When a non-OOS FQD is found we attempt to clean it up
2844 	 */
2845 	struct qman_fq fq = {
2846 		.fqid = QM_FQID_RANGE_START
2847 	};
2848 	int err;
2849 
2850 	do {
2851 		struct qm_mcr_queryfq_np np;
2852 
2853 		err = qman_query_fq_np(&fq, &np);
2854 		if (err == -ERANGE)
2855 			/* FQID range exceeded, found no problems */
2856 			return 0;
2857 		else if (WARN_ON(err))
2858 			return err;
2859 
2860 		if ((np.state & QM_MCR_NP_STATE_MASK) != QM_MCR_NP_STATE_OOS) {
2861 			struct qm_fqd fqd;
2862 
2863 			err = qman_query_fq(&fq, &fqd);
2864 			if (WARN_ON(err))
2865 				return err;
2866 			if (qm_fqd_get_chan(&fqd) == qp) {
2867 				/* The channel is the FQ's target, clean it */
2868 				err = qman_shutdown_fq(fq.fqid);
2869 				if (err)
2870 					/*
2871 					 * Couldn't shut down the FQ
2872 					 * so the pool must be leaked
2873 					 */
2874 					return err;
2875 			}
2876 		}
2877 		/* Move to the next FQID */
2878 		fq.fqid++;
2879 	} while (1);
2880 }
2881 
2882 int qman_release_pool(u32 qp)
2883 {
2884 	int ret;
2885 
2886 	ret = qpool_cleanup(qp);
2887 	if (ret) {
2888 		pr_debug("CHID %d leaked\n", qp);
2889 		return ret;
2890 	}
2891 
2892 	gen_pool_free(qm_qpalloc, qp | DPAA_GENALLOC_OFF, 1);
2893 	return 0;
2894 }
2895 EXPORT_SYMBOL(qman_release_pool);
2896 
2897 static int cgr_cleanup(u32 cgrid)
2898 {
2899 	/*
2900 	 * query all FQDs starting from FQID 1 until we get an "invalid FQID"
2901 	 * error, looking for non-OOS FQDs whose CGR is the CGR being released
2902 	 */
2903 	struct qman_fq fq = {
2904 		.fqid = QM_FQID_RANGE_START
2905 	};
2906 	int err;
2907 
2908 	do {
2909 		struct qm_mcr_queryfq_np np;
2910 
2911 		err = qman_query_fq_np(&fq, &np);
2912 		if (err == -ERANGE)
2913 			/* FQID range exceeded, found no problems */
2914 			return 0;
2915 		else if (WARN_ON(err))
2916 			return err;
2917 
2918 		if ((np.state & QM_MCR_NP_STATE_MASK) != QM_MCR_NP_STATE_OOS) {
2919 			struct qm_fqd fqd;
2920 
2921 			err = qman_query_fq(&fq, &fqd);
2922 			if (WARN_ON(err))
2923 				return err;
2924 			if (be16_to_cpu(fqd.fq_ctrl) & QM_FQCTRL_CGE &&
2925 			    fqd.cgid == cgrid) {
2926 				pr_err("CRGID 0x%x is being used by FQID 0x%x, CGR will be leaked\n",
2927 				       cgrid, fq.fqid);
2928 				return -EIO;
2929 			}
2930 		}
2931 		/* Move to the next FQID */
2932 		fq.fqid++;
2933 	} while (1);
2934 }
2935 
2936 int qman_release_cgrid(u32 cgrid)
2937 {
2938 	int ret;
2939 
2940 	ret = cgr_cleanup(cgrid);
2941 	if (ret) {
2942 		pr_debug("CGRID %d leaked\n", cgrid);
2943 		return ret;
2944 	}
2945 
2946 	gen_pool_free(qm_cgralloc, cgrid | DPAA_GENALLOC_OFF, 1);
2947 	return 0;
2948 }
2949 EXPORT_SYMBOL(qman_release_cgrid);
2950