xref: /linux/drivers/soc/fsl/dpio/qbman-portal.c (revision b8d312aa075f33282565467662c4628dae0a2aff)
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * Copyright (C) 2014-2016 Freescale Semiconductor, Inc.
4  * Copyright 2016 NXP
5  *
6  */
7 
8 #include <asm/cacheflush.h>
9 #include <linux/io.h>
10 #include <linux/slab.h>
11 #include <soc/fsl/dpaa2-global.h>
12 
13 #include "qbman-portal.h"
14 
15 #define QMAN_REV_4000   0x04000000
16 #define QMAN_REV_4100   0x04010000
17 #define QMAN_REV_4101   0x04010001
18 #define QMAN_REV_5000   0x05000000
19 
20 #define QMAN_REV_MASK   0xffff0000
21 
22 /* All QBMan command and result structures use this "valid bit" encoding */
23 #define QB_VALID_BIT ((u32)0x80)
24 
25 /* QBMan portal management command codes */
26 #define QBMAN_MC_ACQUIRE       0x30
27 #define QBMAN_WQCHAN_CONFIGURE 0x46
28 
29 /* CINH register offsets */
30 #define QBMAN_CINH_SWP_EQCR_PI      0x800
31 #define QBMAN_CINH_SWP_EQAR    0x8c0
32 #define QBMAN_CINH_SWP_CR_RT        0x900
33 #define QBMAN_CINH_SWP_VDQCR_RT     0x940
34 #define QBMAN_CINH_SWP_EQCR_AM_RT   0x980
35 #define QBMAN_CINH_SWP_RCR_AM_RT    0x9c0
36 #define QBMAN_CINH_SWP_DQPI    0xa00
37 #define QBMAN_CINH_SWP_DCAP    0xac0
38 #define QBMAN_CINH_SWP_SDQCR   0xb00
39 #define QBMAN_CINH_SWP_EQCR_AM_RT2  0xb40
40 #define QBMAN_CINH_SWP_RCR_PI       0xc00
41 #define QBMAN_CINH_SWP_RAR     0xcc0
42 #define QBMAN_CINH_SWP_ISR     0xe00
43 #define QBMAN_CINH_SWP_IER     0xe40
44 #define QBMAN_CINH_SWP_ISDR    0xe80
45 #define QBMAN_CINH_SWP_IIR     0xec0
46 
47 /* CENA register offsets */
48 #define QBMAN_CENA_SWP_EQCR(n) (0x000 + ((u32)(n) << 6))
49 #define QBMAN_CENA_SWP_DQRR(n) (0x200 + ((u32)(n) << 6))
50 #define QBMAN_CENA_SWP_RCR(n)  (0x400 + ((u32)(n) << 6))
51 #define QBMAN_CENA_SWP_CR      0x600
52 #define QBMAN_CENA_SWP_RR(vb)  (0x700 + ((u32)(vb) >> 1))
53 #define QBMAN_CENA_SWP_VDQCR   0x780
54 
55 /* CENA register offsets in memory-backed mode */
56 #define QBMAN_CENA_SWP_DQRR_MEM(n)  (0x800 + ((u32)(n) << 6))
57 #define QBMAN_CENA_SWP_RCR_MEM(n)   (0x1400 + ((u32)(n) << 6))
58 #define QBMAN_CENA_SWP_CR_MEM       0x1600
59 #define QBMAN_CENA_SWP_RR_MEM       0x1680
60 #define QBMAN_CENA_SWP_VDQCR_MEM    0x1780
61 
62 /* Reverse mapping of QBMAN_CENA_SWP_DQRR() */
63 #define QBMAN_IDX_FROM_DQRR(p) (((unsigned long)(p) & 0x1ff) >> 6)
64 
65 /* Define token used to determine if response written to memory is valid */
66 #define QMAN_DQ_TOKEN_VALID 1
67 
68 /* SDQCR attribute codes */
69 #define QB_SDQCR_FC_SHIFT   29
70 #define QB_SDQCR_FC_MASK    0x1
71 #define QB_SDQCR_DCT_SHIFT  24
72 #define QB_SDQCR_DCT_MASK   0x3
73 #define QB_SDQCR_TOK_SHIFT  16
74 #define QB_SDQCR_TOK_MASK   0xff
75 #define QB_SDQCR_SRC_SHIFT  0
76 #define QB_SDQCR_SRC_MASK   0xffff
77 
78 /* opaque token for static dequeues */
79 #define QMAN_SDQCR_TOKEN    0xbb
80 
81 enum qbman_sdqcr_dct {
82 	qbman_sdqcr_dct_null = 0,
83 	qbman_sdqcr_dct_prio_ics,
84 	qbman_sdqcr_dct_active_ics,
85 	qbman_sdqcr_dct_active
86 };
87 
88 enum qbman_sdqcr_fc {
89 	qbman_sdqcr_fc_one = 0,
90 	qbman_sdqcr_fc_up_to_3 = 1
91 };
92 
93 /* Portal Access */
94 
95 static inline u32 qbman_read_register(struct qbman_swp *p, u32 offset)
96 {
97 	return readl_relaxed(p->addr_cinh + offset);
98 }
99 
100 static inline void qbman_write_register(struct qbman_swp *p, u32 offset,
101 					u32 value)
102 {
103 	writel_relaxed(value, p->addr_cinh + offset);
104 }
105 
106 static inline void *qbman_get_cmd(struct qbman_swp *p, u32 offset)
107 {
108 	return p->addr_cena + offset;
109 }
110 
111 #define QBMAN_CINH_SWP_CFG   0xd00
112 
113 #define SWP_CFG_DQRR_MF_SHIFT 20
114 #define SWP_CFG_EST_SHIFT     16
115 #define SWP_CFG_CPBS_SHIFT    15
116 #define SWP_CFG_WN_SHIFT      14
117 #define SWP_CFG_RPM_SHIFT     12
118 #define SWP_CFG_DCM_SHIFT     10
119 #define SWP_CFG_EPM_SHIFT     8
120 #define SWP_CFG_VPM_SHIFT     7
121 #define SWP_CFG_CPM_SHIFT     6
122 #define SWP_CFG_SD_SHIFT      5
123 #define SWP_CFG_SP_SHIFT      4
124 #define SWP_CFG_SE_SHIFT      3
125 #define SWP_CFG_DP_SHIFT      2
126 #define SWP_CFG_DE_SHIFT      1
127 #define SWP_CFG_EP_SHIFT      0
128 
129 static inline u32 qbman_set_swp_cfg(u8 max_fill, u8 wn,	u8 est, u8 rpm, u8 dcm,
130 				    u8 epm, int sd, int sp, int se,
131 				    int dp, int de, int ep)
132 {
133 	return (max_fill << SWP_CFG_DQRR_MF_SHIFT |
134 		est << SWP_CFG_EST_SHIFT |
135 		wn << SWP_CFG_WN_SHIFT |
136 		rpm << SWP_CFG_RPM_SHIFT |
137 		dcm << SWP_CFG_DCM_SHIFT |
138 		epm << SWP_CFG_EPM_SHIFT |
139 		sd << SWP_CFG_SD_SHIFT |
140 		sp << SWP_CFG_SP_SHIFT |
141 		se << SWP_CFG_SE_SHIFT |
142 		dp << SWP_CFG_DP_SHIFT |
143 		de << SWP_CFG_DE_SHIFT |
144 		ep << SWP_CFG_EP_SHIFT);
145 }
146 
147 #define QMAN_RT_MODE	   0x00000100
148 
149 /**
150  * qbman_swp_init() - Create a functional object representing the given
151  *                    QBMan portal descriptor.
152  * @d: the given qbman swp descriptor
153  *
154  * Return qbman_swp portal for success, NULL if the object cannot
155  * be created.
156  */
157 struct qbman_swp *qbman_swp_init(const struct qbman_swp_desc *d)
158 {
159 	struct qbman_swp *p = kmalloc(sizeof(*p), GFP_KERNEL);
160 	u32 reg;
161 
162 	if (!p)
163 		return NULL;
164 	p->desc = d;
165 	p->mc.valid_bit = QB_VALID_BIT;
166 	p->sdq = 0;
167 	p->sdq |= qbman_sdqcr_dct_prio_ics << QB_SDQCR_DCT_SHIFT;
168 	p->sdq |= qbman_sdqcr_fc_up_to_3 << QB_SDQCR_FC_SHIFT;
169 	p->sdq |= QMAN_SDQCR_TOKEN << QB_SDQCR_TOK_SHIFT;
170 	if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000)
171 		p->mr.valid_bit = QB_VALID_BIT;
172 
173 	atomic_set(&p->vdq.available, 1);
174 	p->vdq.valid_bit = QB_VALID_BIT;
175 	p->dqrr.next_idx = 0;
176 	p->dqrr.valid_bit = QB_VALID_BIT;
177 
178 	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_4100) {
179 		p->dqrr.dqrr_size = 4;
180 		p->dqrr.reset_bug = 1;
181 	} else {
182 		p->dqrr.dqrr_size = 8;
183 		p->dqrr.reset_bug = 0;
184 	}
185 
186 	p->addr_cena = d->cena_bar;
187 	p->addr_cinh = d->cinh_bar;
188 
189 	if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000)
190 		memset(p->addr_cena, 0, 64 * 1024);
191 
192 	reg = qbman_set_swp_cfg(p->dqrr.dqrr_size,
193 				1, /* Writes Non-cacheable */
194 				0, /* EQCR_CI stashing threshold */
195 				3, /* RPM: Valid bit mode, RCR in array mode */
196 				2, /* DCM: Discrete consumption ack mode */
197 				3, /* EPM: Valid bit mode, EQCR in array mode */
198 				1, /* mem stashing drop enable == TRUE */
199 				1, /* mem stashing priority == TRUE */
200 				1, /* mem stashing enable == TRUE */
201 				1, /* dequeue stashing priority == TRUE */
202 				0, /* dequeue stashing enable == FALSE */
203 				0); /* EQCR_CI stashing priority == FALSE */
204 	if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000)
205 		reg |= 1 << SWP_CFG_CPBS_SHIFT | /* memory-backed mode */
206 		       1 << SWP_CFG_VPM_SHIFT |  /* VDQCR read triggered mode */
207 		       1 << SWP_CFG_CPM_SHIFT;   /* CR read triggered mode */
208 
209 	qbman_write_register(p, QBMAN_CINH_SWP_CFG, reg);
210 	reg = qbman_read_register(p, QBMAN_CINH_SWP_CFG);
211 	if (!reg) {
212 		pr_err("qbman: the portal is not enabled!\n");
213 		kfree(p);
214 		return NULL;
215 	}
216 
217 	if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) {
218 		qbman_write_register(p, QBMAN_CINH_SWP_EQCR_PI, QMAN_RT_MODE);
219 		qbman_write_register(p, QBMAN_CINH_SWP_RCR_PI, QMAN_RT_MODE);
220 	}
221 	/*
222 	 * SDQCR needs to be initialized to 0 when no channels are
223 	 * being dequeued from or else the QMan HW will indicate an
224 	 * error.  The values that were calculated above will be
225 	 * applied when dequeues from a specific channel are enabled.
226 	 */
227 	qbman_write_register(p, QBMAN_CINH_SWP_SDQCR, 0);
228 	return p;
229 }
230 
231 /**
232  * qbman_swp_finish() - Create and destroy a functional object representing
233  *                      the given QBMan portal descriptor.
234  * @p: the qbman_swp object to be destroyed
235  */
236 void qbman_swp_finish(struct qbman_swp *p)
237 {
238 	kfree(p);
239 }
240 
241 /**
242  * qbman_swp_interrupt_read_status()
243  * @p: the given software portal
244  *
245  * Return the value in the SWP_ISR register.
246  */
247 u32 qbman_swp_interrupt_read_status(struct qbman_swp *p)
248 {
249 	return qbman_read_register(p, QBMAN_CINH_SWP_ISR);
250 }
251 
252 /**
253  * qbman_swp_interrupt_clear_status()
254  * @p: the given software portal
255  * @mask: The mask to clear in SWP_ISR register
256  */
257 void qbman_swp_interrupt_clear_status(struct qbman_swp *p, u32 mask)
258 {
259 	qbman_write_register(p, QBMAN_CINH_SWP_ISR, mask);
260 }
261 
262 /**
263  * qbman_swp_interrupt_get_trigger() - read interrupt enable register
264  * @p: the given software portal
265  *
266  * Return the value in the SWP_IER register.
267  */
268 u32 qbman_swp_interrupt_get_trigger(struct qbman_swp *p)
269 {
270 	return qbman_read_register(p, QBMAN_CINH_SWP_IER);
271 }
272 
273 /**
274  * qbman_swp_interrupt_set_trigger() - enable interrupts for a swp
275  * @p: the given software portal
276  * @mask: The mask of bits to enable in SWP_IER
277  */
278 void qbman_swp_interrupt_set_trigger(struct qbman_swp *p, u32 mask)
279 {
280 	qbman_write_register(p, QBMAN_CINH_SWP_IER, mask);
281 }
282 
283 /**
284  * qbman_swp_interrupt_get_inhibit() - read interrupt mask register
285  * @p: the given software portal object
286  *
287  * Return the value in the SWP_IIR register.
288  */
289 int qbman_swp_interrupt_get_inhibit(struct qbman_swp *p)
290 {
291 	return qbman_read_register(p, QBMAN_CINH_SWP_IIR);
292 }
293 
294 /**
295  * qbman_swp_interrupt_set_inhibit() - write interrupt mask register
296  * @p: the given software portal object
297  * @mask: The mask to set in SWP_IIR register
298  */
299 void qbman_swp_interrupt_set_inhibit(struct qbman_swp *p, int inhibit)
300 {
301 	qbman_write_register(p, QBMAN_CINH_SWP_IIR, inhibit ? 0xffffffff : 0);
302 }
303 
304 /*
305  * Different management commands all use this common base layer of code to issue
306  * commands and poll for results.
307  */
308 
309 /*
310  * Returns a pointer to where the caller should fill in their management command
311  * (caller should ignore the verb byte)
312  */
313 void *qbman_swp_mc_start(struct qbman_swp *p)
314 {
315 	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
316 		return qbman_get_cmd(p, QBMAN_CENA_SWP_CR);
317 	else
318 		return qbman_get_cmd(p, QBMAN_CENA_SWP_CR_MEM);
319 }
320 
321 /*
322  * Commits merges in the caller-supplied command verb (which should not include
323  * the valid-bit) and submits the command to hardware
324  */
325 void qbman_swp_mc_submit(struct qbman_swp *p, void *cmd, u8 cmd_verb)
326 {
327 	u8 *v = cmd;
328 
329 	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
330 		dma_wmb();
331 		*v = cmd_verb | p->mc.valid_bit;
332 	} else {
333 		*v = cmd_verb | p->mc.valid_bit;
334 		dma_wmb();
335 		qbman_write_register(p, QBMAN_CINH_SWP_CR_RT, QMAN_RT_MODE);
336 	}
337 }
338 
339 /*
340  * Checks for a completed response (returns non-NULL if only if the response
341  * is complete).
342  */
343 void *qbman_swp_mc_result(struct qbman_swp *p)
344 {
345 	u32 *ret, verb;
346 
347 	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
348 		ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR(p->mc.valid_bit));
349 		/* Remove the valid-bit - command completed if the rest
350 		 * is non-zero.
351 		 */
352 		verb = ret[0] & ~QB_VALID_BIT;
353 		if (!verb)
354 			return NULL;
355 		p->mc.valid_bit ^= QB_VALID_BIT;
356 	} else {
357 		ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR_MEM);
358 		/* Command completed if the valid bit is toggled */
359 		if (p->mr.valid_bit != (ret[0] & QB_VALID_BIT))
360 			return NULL;
361 		/* Command completed if the rest is non-zero */
362 		verb = ret[0] & ~QB_VALID_BIT;
363 		if (!verb)
364 			return NULL;
365 		p->mr.valid_bit ^= QB_VALID_BIT;
366 	}
367 
368 	return ret;
369 }
370 
371 #define QB_ENQUEUE_CMD_OPTIONS_SHIFT    0
372 enum qb_enqueue_commands {
373 	enqueue_empty = 0,
374 	enqueue_response_always = 1,
375 	enqueue_rejects_to_fq = 2
376 };
377 
378 #define QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT      2
379 #define QB_ENQUEUE_CMD_IRQ_ON_DISPATCH_SHIFT 3
380 #define QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT     4
381 
382 /**
383  * qbman_eq_desc_clear() - Clear the contents of a descriptor to
384  *                         default/starting state.
385  */
386 void qbman_eq_desc_clear(struct qbman_eq_desc *d)
387 {
388 	memset(d, 0, sizeof(*d));
389 }
390 
391 /**
392  * qbman_eq_desc_set_no_orp() - Set enqueue descriptor without orp
393  * @d:                the enqueue descriptor.
394  * @response_success: 1 = enqueue with response always; 0 = enqueue with
395  *                    rejections returned on a FQ.
396  */
397 void qbman_eq_desc_set_no_orp(struct qbman_eq_desc *d, int respond_success)
398 {
399 	d->verb &= ~(1 << QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT);
400 	if (respond_success)
401 		d->verb |= enqueue_response_always;
402 	else
403 		d->verb |= enqueue_rejects_to_fq;
404 }
405 
406 /*
407  * Exactly one of the following descriptor "targets" should be set. (Calling any
408  * one of these will replace the effect of any prior call to one of these.)
409  *   -enqueue to a frame queue
410  *   -enqueue to a queuing destination
411  */
412 
413 /**
414  * qbman_eq_desc_set_fq() - set the FQ for the enqueue command
415  * @d:    the enqueue descriptor
416  * @fqid: the id of the frame queue to be enqueued
417  */
418 void qbman_eq_desc_set_fq(struct qbman_eq_desc *d, u32 fqid)
419 {
420 	d->verb &= ~(1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT);
421 	d->tgtid = cpu_to_le32(fqid);
422 }
423 
424 /**
425  * qbman_eq_desc_set_qd() - Set Queuing Destination for the enqueue command
426  * @d:       the enqueue descriptor
427  * @qdid:    the id of the queuing destination to be enqueued
428  * @qd_bin:  the queuing destination bin
429  * @qd_prio: the queuing destination priority
430  */
431 void qbman_eq_desc_set_qd(struct qbman_eq_desc *d, u32 qdid,
432 			  u32 qd_bin, u32 qd_prio)
433 {
434 	d->verb |= 1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT;
435 	d->tgtid = cpu_to_le32(qdid);
436 	d->qdbin = cpu_to_le16(qd_bin);
437 	d->qpri = qd_prio;
438 }
439 
440 #define EQAR_IDX(eqar)     ((eqar) & 0x7)
441 #define EQAR_VB(eqar)      ((eqar) & 0x80)
442 #define EQAR_SUCCESS(eqar) ((eqar) & 0x100)
443 
444 static inline void qbman_write_eqcr_am_rt_register(struct qbman_swp *p,
445 						   u8 idx)
446 {
447 	if (idx < 16)
448 		qbman_write_register(p, QBMAN_CINH_SWP_EQCR_AM_RT + idx * 4,
449 				     QMAN_RT_MODE);
450 	else
451 		qbman_write_register(p, QBMAN_CINH_SWP_EQCR_AM_RT2 +
452 				     (idx - 16) * 4,
453 				     QMAN_RT_MODE);
454 }
455 
456 /**
457  * qbman_swp_enqueue() - Issue an enqueue command
458  * @s:  the software portal used for enqueue
459  * @d:  the enqueue descriptor
460  * @fd: the frame descriptor to be enqueued
461  *
462  * Please note that 'fd' should only be NULL if the "action" of the
463  * descriptor is "orp_hole" or "orp_nesn".
464  *
465  * Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.
466  */
467 int qbman_swp_enqueue(struct qbman_swp *s, const struct qbman_eq_desc *d,
468 		      const struct dpaa2_fd *fd)
469 {
470 	struct qbman_eq_desc *p;
471 	u32 eqar = qbman_read_register(s, QBMAN_CINH_SWP_EQAR);
472 
473 	if (!EQAR_SUCCESS(eqar))
474 		return -EBUSY;
475 
476 	p = qbman_get_cmd(s, QBMAN_CENA_SWP_EQCR(EQAR_IDX(eqar)));
477 	memcpy(&p->dca, &d->dca, 31);
478 	memcpy(&p->fd, fd, sizeof(*fd));
479 
480 	if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
481 		/* Set the verb byte, have to substitute in the valid-bit */
482 		dma_wmb();
483 		p->verb = d->verb | EQAR_VB(eqar);
484 	} else {
485 		p->verb = d->verb | EQAR_VB(eqar);
486 		dma_wmb();
487 		qbman_write_eqcr_am_rt_register(s, EQAR_IDX(eqar));
488 	}
489 
490 	return 0;
491 }
492 
493 /* Static (push) dequeue */
494 
495 /**
496  * qbman_swp_push_get() - Get the push dequeue setup
497  * @p:           the software portal object
498  * @channel_idx: the channel index to query
499  * @enabled:     returned boolean to show whether the push dequeue is enabled
500  *               for the given channel
501  */
502 void qbman_swp_push_get(struct qbman_swp *s, u8 channel_idx, int *enabled)
503 {
504 	u16 src = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
505 
506 	WARN_ON(channel_idx > 15);
507 	*enabled = src | (1 << channel_idx);
508 }
509 
510 /**
511  * qbman_swp_push_set() - Enable or disable push dequeue
512  * @p:           the software portal object
513  * @channel_idx: the channel index (0 to 15)
514  * @enable:      enable or disable push dequeue
515  */
516 void qbman_swp_push_set(struct qbman_swp *s, u8 channel_idx, int enable)
517 {
518 	u16 dqsrc;
519 
520 	WARN_ON(channel_idx > 15);
521 	if (enable)
522 		s->sdq |= 1 << channel_idx;
523 	else
524 		s->sdq &= ~(1 << channel_idx);
525 
526 	/* Read make the complete src map.  If no channels are enabled
527 	 * the SDQCR must be 0 or else QMan will assert errors
528 	 */
529 	dqsrc = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
530 	if (dqsrc != 0)
531 		qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, s->sdq);
532 	else
533 		qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, 0);
534 }
535 
536 #define QB_VDQCR_VERB_DCT_SHIFT    0
537 #define QB_VDQCR_VERB_DT_SHIFT     2
538 #define QB_VDQCR_VERB_RLS_SHIFT    4
539 #define QB_VDQCR_VERB_WAE_SHIFT    5
540 
541 enum qb_pull_dt_e {
542 	qb_pull_dt_channel,
543 	qb_pull_dt_workqueue,
544 	qb_pull_dt_framequeue
545 };
546 
547 /**
548  * qbman_pull_desc_clear() - Clear the contents of a descriptor to
549  *                           default/starting state
550  * @d: the pull dequeue descriptor to be cleared
551  */
552 void qbman_pull_desc_clear(struct qbman_pull_desc *d)
553 {
554 	memset(d, 0, sizeof(*d));
555 }
556 
557 /**
558  * qbman_pull_desc_set_storage()- Set the pull dequeue storage
559  * @d:            the pull dequeue descriptor to be set
560  * @storage:      the pointer of the memory to store the dequeue result
561  * @storage_phys: the physical address of the storage memory
562  * @stash:        to indicate whether write allocate is enabled
563  *
564  * If not called, or if called with 'storage' as NULL, the result pull dequeues
565  * will produce results to DQRR. If 'storage' is non-NULL, then results are
566  * produced to the given memory location (using the DMA address which
567  * the caller provides in 'storage_phys'), and 'stash' controls whether or not
568  * those writes to main-memory express a cache-warming attribute.
569  */
570 void qbman_pull_desc_set_storage(struct qbman_pull_desc *d,
571 				 struct dpaa2_dq *storage,
572 				 dma_addr_t storage_phys,
573 				 int stash)
574 {
575 	/* save the virtual address */
576 	d->rsp_addr_virt = (u64)(uintptr_t)storage;
577 
578 	if (!storage) {
579 		d->verb &= ~(1 << QB_VDQCR_VERB_RLS_SHIFT);
580 		return;
581 	}
582 	d->verb |= 1 << QB_VDQCR_VERB_RLS_SHIFT;
583 	if (stash)
584 		d->verb |= 1 << QB_VDQCR_VERB_WAE_SHIFT;
585 	else
586 		d->verb &= ~(1 << QB_VDQCR_VERB_WAE_SHIFT);
587 
588 	d->rsp_addr = cpu_to_le64(storage_phys);
589 }
590 
591 /**
592  * qbman_pull_desc_set_numframes() - Set the number of frames to be dequeued
593  * @d:         the pull dequeue descriptor to be set
594  * @numframes: number of frames to be set, must be between 1 and 16, inclusive
595  */
596 void qbman_pull_desc_set_numframes(struct qbman_pull_desc *d, u8 numframes)
597 {
598 	d->numf = numframes - 1;
599 }
600 
601 /*
602  * Exactly one of the following descriptor "actions" should be set. (Calling any
603  * one of these will replace the effect of any prior call to one of these.)
604  * - pull dequeue from the given frame queue (FQ)
605  * - pull dequeue from any FQ in the given work queue (WQ)
606  * - pull dequeue from any FQ in any WQ in the given channel
607  */
608 
609 /**
610  * qbman_pull_desc_set_fq() - Set fqid from which the dequeue command dequeues
611  * @fqid: the frame queue index of the given FQ
612  */
613 void qbman_pull_desc_set_fq(struct qbman_pull_desc *d, u32 fqid)
614 {
615 	d->verb |= 1 << QB_VDQCR_VERB_DCT_SHIFT;
616 	d->verb |= qb_pull_dt_framequeue << QB_VDQCR_VERB_DT_SHIFT;
617 	d->dq_src = cpu_to_le32(fqid);
618 }
619 
620 /**
621  * qbman_pull_desc_set_wq() - Set wqid from which the dequeue command dequeues
622  * @wqid: composed of channel id and wqid within the channel
623  * @dct:  the dequeue command type
624  */
625 void qbman_pull_desc_set_wq(struct qbman_pull_desc *d, u32 wqid,
626 			    enum qbman_pull_type_e dct)
627 {
628 	d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
629 	d->verb |= qb_pull_dt_workqueue << QB_VDQCR_VERB_DT_SHIFT;
630 	d->dq_src = cpu_to_le32(wqid);
631 }
632 
633 /**
634  * qbman_pull_desc_set_channel() - Set channelid from which the dequeue command
635  *                                 dequeues
636  * @chid: the channel id to be dequeued
637  * @dct:  the dequeue command type
638  */
639 void qbman_pull_desc_set_channel(struct qbman_pull_desc *d, u32 chid,
640 				 enum qbman_pull_type_e dct)
641 {
642 	d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
643 	d->verb |= qb_pull_dt_channel << QB_VDQCR_VERB_DT_SHIFT;
644 	d->dq_src = cpu_to_le32(chid);
645 }
646 
647 /**
648  * qbman_swp_pull() - Issue the pull dequeue command
649  * @s: the software portal object
650  * @d: the software portal descriptor which has been configured with
651  *     the set of qbman_pull_desc_set_*() calls
652  *
653  * Return 0 for success, and -EBUSY if the software portal is not ready
654  * to do pull dequeue.
655  */
656 int qbman_swp_pull(struct qbman_swp *s, struct qbman_pull_desc *d)
657 {
658 	struct qbman_pull_desc *p;
659 
660 	if (!atomic_dec_and_test(&s->vdq.available)) {
661 		atomic_inc(&s->vdq.available);
662 		return -EBUSY;
663 	}
664 	s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt;
665 	if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
666 		p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR);
667 	else
668 		p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM);
669 	p->numf = d->numf;
670 	p->tok = QMAN_DQ_TOKEN_VALID;
671 	p->dq_src = d->dq_src;
672 	p->rsp_addr = d->rsp_addr;
673 	p->rsp_addr_virt = d->rsp_addr_virt;
674 
675 	if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
676 		dma_wmb();
677 		/* Set the verb byte, have to substitute in the valid-bit */
678 		p->verb = d->verb | s->vdq.valid_bit;
679 		s->vdq.valid_bit ^= QB_VALID_BIT;
680 	} else {
681 		p->verb = d->verb | s->vdq.valid_bit;
682 		s->vdq.valid_bit ^= QB_VALID_BIT;
683 		dma_wmb();
684 		qbman_write_register(s, QBMAN_CINH_SWP_VDQCR_RT, QMAN_RT_MODE);
685 	}
686 
687 	return 0;
688 }
689 
690 #define QMAN_DQRR_PI_MASK   0xf
691 
692 /**
693  * qbman_swp_dqrr_next() - Get an valid DQRR entry
694  * @s: the software portal object
695  *
696  * Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry
697  * only once, so repeated calls can return a sequence of DQRR entries, without
698  * requiring they be consumed immediately or in any particular order.
699  */
700 const struct dpaa2_dq *qbman_swp_dqrr_next(struct qbman_swp *s)
701 {
702 	u32 verb;
703 	u32 response_verb;
704 	u32 flags;
705 	struct dpaa2_dq *p;
706 
707 	/* Before using valid-bit to detect if something is there, we have to
708 	 * handle the case of the DQRR reset bug...
709 	 */
710 	if (unlikely(s->dqrr.reset_bug)) {
711 		/*
712 		 * We pick up new entries by cache-inhibited producer index,
713 		 * which means that a non-coherent mapping would require us to
714 		 * invalidate and read *only* once that PI has indicated that
715 		 * there's an entry here. The first trip around the DQRR ring
716 		 * will be much less efficient than all subsequent trips around
717 		 * it...
718 		 */
719 		u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) &
720 			QMAN_DQRR_PI_MASK;
721 
722 		/* there are new entries if pi != next_idx */
723 		if (pi == s->dqrr.next_idx)
724 			return NULL;
725 
726 		/*
727 		 * if next_idx is/was the last ring index, and 'pi' is
728 		 * different, we can disable the workaround as all the ring
729 		 * entries have now been DMA'd to so valid-bit checking is
730 		 * repaired. Note: this logic needs to be based on next_idx
731 		 * (which increments one at a time), rather than on pi (which
732 		 * can burst and wrap-around between our snapshots of it).
733 		 */
734 		if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) {
735 			pr_debug("next_idx=%d, pi=%d, clear reset bug\n",
736 				 s->dqrr.next_idx, pi);
737 			s->dqrr.reset_bug = 0;
738 		}
739 		prefetch(qbman_get_cmd(s,
740 				       QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
741 	}
742 
743 	if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
744 		p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx));
745 	else
746 		p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR_MEM(s->dqrr.next_idx));
747 	verb = p->dq.verb;
748 
749 	/*
750 	 * If the valid-bit isn't of the expected polarity, nothing there. Note,
751 	 * in the DQRR reset bug workaround, we shouldn't need to skip these
752 	 * check, because we've already determined that a new entry is available
753 	 * and we've invalidated the cacheline before reading it, so the
754 	 * valid-bit behaviour is repaired and should tell us what we already
755 	 * knew from reading PI.
756 	 */
757 	if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
758 		prefetch(qbman_get_cmd(s,
759 				       QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
760 		return NULL;
761 	}
762 	/*
763 	 * There's something there. Move "next_idx" attention to the next ring
764 	 * entry (and prefetch it) before returning what we found.
765 	 */
766 	s->dqrr.next_idx++;
767 	s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */
768 	if (!s->dqrr.next_idx)
769 		s->dqrr.valid_bit ^= QB_VALID_BIT;
770 
771 	/*
772 	 * If this is the final response to a volatile dequeue command
773 	 * indicate that the vdq is available
774 	 */
775 	flags = p->dq.stat;
776 	response_verb = verb & QBMAN_RESULT_MASK;
777 	if ((response_verb == QBMAN_RESULT_DQ) &&
778 	    (flags & DPAA2_DQ_STAT_VOLATILE) &&
779 	    (flags & DPAA2_DQ_STAT_EXPIRED))
780 		atomic_inc(&s->vdq.available);
781 
782 	prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
783 
784 	return p;
785 }
786 
787 /**
788  * qbman_swp_dqrr_consume() -  Consume DQRR entries previously returned from
789  *                             qbman_swp_dqrr_next().
790  * @s: the software portal object
791  * @dq: the DQRR entry to be consumed
792  */
793 void qbman_swp_dqrr_consume(struct qbman_swp *s, const struct dpaa2_dq *dq)
794 {
795 	qbman_write_register(s, QBMAN_CINH_SWP_DCAP, QBMAN_IDX_FROM_DQRR(dq));
796 }
797 
798 /**
799  * qbman_result_has_new_result() - Check and get the dequeue response from the
800  *                                 dq storage memory set in pull dequeue command
801  * @s: the software portal object
802  * @dq: the dequeue result read from the memory
803  *
804  * Return 1 for getting a valid dequeue result, or 0 for not getting a valid
805  * dequeue result.
806  *
807  * Only used for user-provided storage of dequeue results, not DQRR. For
808  * efficiency purposes, the driver will perform any required endianness
809  * conversion to ensure that the user's dequeue result storage is in host-endian
810  * format. As such, once the user has called qbman_result_has_new_result() and
811  * been returned a valid dequeue result, they should not call it again on
812  * the same memory location (except of course if another dequeue command has
813  * been executed to produce a new result to that location).
814  */
815 int qbman_result_has_new_result(struct qbman_swp *s, const struct dpaa2_dq *dq)
816 {
817 	if (dq->dq.tok != QMAN_DQ_TOKEN_VALID)
818 		return 0;
819 
820 	/*
821 	 * Set token to be 0 so we will detect change back to 1
822 	 * next time the looping is traversed. Const is cast away here
823 	 * as we want users to treat the dequeue responses as read only.
824 	 */
825 	((struct dpaa2_dq *)dq)->dq.tok = 0;
826 
827 	/*
828 	 * Determine whether VDQCR is available based on whether the
829 	 * current result is sitting in the first storage location of
830 	 * the busy command.
831 	 */
832 	if (s->vdq.storage == dq) {
833 		s->vdq.storage = NULL;
834 		atomic_inc(&s->vdq.available);
835 	}
836 
837 	return 1;
838 }
839 
840 /**
841  * qbman_release_desc_clear() - Clear the contents of a descriptor to
842  *                              default/starting state.
843  */
844 void qbman_release_desc_clear(struct qbman_release_desc *d)
845 {
846 	memset(d, 0, sizeof(*d));
847 	d->verb = 1 << 5; /* Release Command Valid */
848 }
849 
850 /**
851  * qbman_release_desc_set_bpid() - Set the ID of the buffer pool to release to
852  */
853 void qbman_release_desc_set_bpid(struct qbman_release_desc *d, u16 bpid)
854 {
855 	d->bpid = cpu_to_le16(bpid);
856 }
857 
858 /**
859  * qbman_release_desc_set_rcdi() - Determines whether or not the portal's RCDI
860  * interrupt source should be asserted after the release command is completed.
861  */
862 void qbman_release_desc_set_rcdi(struct qbman_release_desc *d, int enable)
863 {
864 	if (enable)
865 		d->verb |= 1 << 6;
866 	else
867 		d->verb &= ~(1 << 6);
868 }
869 
870 #define RAR_IDX(rar)     ((rar) & 0x7)
871 #define RAR_VB(rar)      ((rar) & 0x80)
872 #define RAR_SUCCESS(rar) ((rar) & 0x100)
873 
874 /**
875  * qbman_swp_release() - Issue a buffer release command
876  * @s:           the software portal object
877  * @d:           the release descriptor
878  * @buffers:     a pointer pointing to the buffer address to be released
879  * @num_buffers: number of buffers to be released,  must be less than 8
880  *
881  * Return 0 for success, -EBUSY if the release command ring is not ready.
882  */
883 int qbman_swp_release(struct qbman_swp *s, const struct qbman_release_desc *d,
884 		      const u64 *buffers, unsigned int num_buffers)
885 {
886 	int i;
887 	struct qbman_release_desc *p;
888 	u32 rar;
889 
890 	if (!num_buffers || (num_buffers > 7))
891 		return -EINVAL;
892 
893 	rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR);
894 	if (!RAR_SUCCESS(rar))
895 		return -EBUSY;
896 
897 	/* Start the release command */
898 	if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
899 		p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR(RAR_IDX(rar)));
900 	else
901 		p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR_MEM(RAR_IDX(rar)));
902 	/* Copy the caller's buffer pointers to the command */
903 	for (i = 0; i < num_buffers; i++)
904 		p->buf[i] = cpu_to_le64(buffers[i]);
905 	p->bpid = d->bpid;
906 
907 	if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
908 		/*
909 		 * Set the verb byte, have to substitute in the valid-bit
910 		 * and the number of buffers.
911 		 */
912 		dma_wmb();
913 		p->verb = d->verb | RAR_VB(rar) | num_buffers;
914 	} else {
915 		p->verb = d->verb | RAR_VB(rar) | num_buffers;
916 		dma_wmb();
917 		qbman_write_register(s, QBMAN_CINH_SWP_RCR_AM_RT +
918 				     RAR_IDX(rar)  * 4, QMAN_RT_MODE);
919 	}
920 
921 	return 0;
922 }
923 
924 struct qbman_acquire_desc {
925 	u8 verb;
926 	u8 reserved;
927 	__le16 bpid;
928 	u8 num;
929 	u8 reserved2[59];
930 };
931 
932 struct qbman_acquire_rslt {
933 	u8 verb;
934 	u8 rslt;
935 	__le16 reserved;
936 	u8 num;
937 	u8 reserved2[3];
938 	__le64 buf[7];
939 };
940 
941 /**
942  * qbman_swp_acquire() - Issue a buffer acquire command
943  * @s:           the software portal object
944  * @bpid:        the buffer pool index
945  * @buffers:     a pointer pointing to the acquired buffer addresses
946  * @num_buffers: number of buffers to be acquired, must be less than 8
947  *
948  * Return 0 for success, or negative error code if the acquire command
949  * fails.
950  */
951 int qbman_swp_acquire(struct qbman_swp *s, u16 bpid, u64 *buffers,
952 		      unsigned int num_buffers)
953 {
954 	struct qbman_acquire_desc *p;
955 	struct qbman_acquire_rslt *r;
956 	int i;
957 
958 	if (!num_buffers || (num_buffers > 7))
959 		return -EINVAL;
960 
961 	/* Start the management command */
962 	p = qbman_swp_mc_start(s);
963 
964 	if (!p)
965 		return -EBUSY;
966 
967 	/* Encode the caller-provided attributes */
968 	p->bpid = cpu_to_le16(bpid);
969 	p->num = num_buffers;
970 
971 	/* Complete the management command */
972 	r = qbman_swp_mc_complete(s, p, QBMAN_MC_ACQUIRE);
973 	if (unlikely(!r)) {
974 		pr_err("qbman: acquire from BPID %d failed, no response\n",
975 		       bpid);
976 		return -EIO;
977 	}
978 
979 	/* Decode the outcome */
980 	WARN_ON((r->verb & 0x7f) != QBMAN_MC_ACQUIRE);
981 
982 	/* Determine success or failure */
983 	if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
984 		pr_err("qbman: acquire from BPID 0x%x failed, code=0x%02x\n",
985 		       bpid, r->rslt);
986 		return -EIO;
987 	}
988 
989 	WARN_ON(r->num > num_buffers);
990 
991 	/* Copy the acquired buffers to the caller's array */
992 	for (i = 0; i < r->num; i++)
993 		buffers[i] = le64_to_cpu(r->buf[i]);
994 
995 	return (int)r->num;
996 }
997 
998 struct qbman_alt_fq_state_desc {
999 	u8 verb;
1000 	u8 reserved[3];
1001 	__le32 fqid;
1002 	u8 reserved2[56];
1003 };
1004 
1005 struct qbman_alt_fq_state_rslt {
1006 	u8 verb;
1007 	u8 rslt;
1008 	u8 reserved[62];
1009 };
1010 
1011 #define ALT_FQ_FQID_MASK 0x00FFFFFF
1012 
1013 int qbman_swp_alt_fq_state(struct qbman_swp *s, u32 fqid,
1014 			   u8 alt_fq_verb)
1015 {
1016 	struct qbman_alt_fq_state_desc *p;
1017 	struct qbman_alt_fq_state_rslt *r;
1018 
1019 	/* Start the management command */
1020 	p = qbman_swp_mc_start(s);
1021 	if (!p)
1022 		return -EBUSY;
1023 
1024 	p->fqid = cpu_to_le32(fqid & ALT_FQ_FQID_MASK);
1025 
1026 	/* Complete the management command */
1027 	r = qbman_swp_mc_complete(s, p, alt_fq_verb);
1028 	if (unlikely(!r)) {
1029 		pr_err("qbman: mgmt cmd failed, no response (verb=0x%x)\n",
1030 		       alt_fq_verb);
1031 		return -EIO;
1032 	}
1033 
1034 	/* Decode the outcome */
1035 	WARN_ON((r->verb & QBMAN_RESULT_MASK) != alt_fq_verb);
1036 
1037 	/* Determine success or failure */
1038 	if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1039 		pr_err("qbman: ALT FQID %d failed: verb = 0x%08x code = 0x%02x\n",
1040 		       fqid, r->verb, r->rslt);
1041 		return -EIO;
1042 	}
1043 
1044 	return 0;
1045 }
1046 
1047 struct qbman_cdan_ctrl_desc {
1048 	u8 verb;
1049 	u8 reserved;
1050 	__le16 ch;
1051 	u8 we;
1052 	u8 ctrl;
1053 	__le16 reserved2;
1054 	__le64 cdan_ctx;
1055 	u8 reserved3[48];
1056 
1057 };
1058 
1059 struct qbman_cdan_ctrl_rslt {
1060 	u8 verb;
1061 	u8 rslt;
1062 	__le16 ch;
1063 	u8 reserved[60];
1064 };
1065 
1066 int qbman_swp_CDAN_set(struct qbman_swp *s, u16 channelid,
1067 		       u8 we_mask, u8 cdan_en,
1068 		       u64 ctx)
1069 {
1070 	struct qbman_cdan_ctrl_desc *p = NULL;
1071 	struct qbman_cdan_ctrl_rslt *r = NULL;
1072 
1073 	/* Start the management command */
1074 	p = qbman_swp_mc_start(s);
1075 	if (!p)
1076 		return -EBUSY;
1077 
1078 	/* Encode the caller-provided attributes */
1079 	p->ch = cpu_to_le16(channelid);
1080 	p->we = we_mask;
1081 	if (cdan_en)
1082 		p->ctrl = 1;
1083 	else
1084 		p->ctrl = 0;
1085 	p->cdan_ctx = cpu_to_le64(ctx);
1086 
1087 	/* Complete the management command */
1088 	r = qbman_swp_mc_complete(s, p, QBMAN_WQCHAN_CONFIGURE);
1089 	if (unlikely(!r)) {
1090 		pr_err("qbman: wqchan config failed, no response\n");
1091 		return -EIO;
1092 	}
1093 
1094 	WARN_ON((r->verb & 0x7f) != QBMAN_WQCHAN_CONFIGURE);
1095 
1096 	/* Determine success or failure */
1097 	if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1098 		pr_err("qbman: CDAN cQID %d failed: code = 0x%02x\n",
1099 		       channelid, r->rslt);
1100 		return -EIO;
1101 	}
1102 
1103 	return 0;
1104 }
1105 
1106 #define QBMAN_RESPONSE_VERB_MASK	0x7f
1107 #define QBMAN_FQ_QUERY_NP		0x45
1108 #define QBMAN_BP_QUERY			0x32
1109 
1110 struct qbman_fq_query_desc {
1111 	u8 verb;
1112 	u8 reserved[3];
1113 	__le32 fqid;
1114 	u8 reserved2[56];
1115 };
1116 
1117 int qbman_fq_query_state(struct qbman_swp *s, u32 fqid,
1118 			 struct qbman_fq_query_np_rslt *r)
1119 {
1120 	struct qbman_fq_query_desc *p;
1121 	void *resp;
1122 
1123 	p = (struct qbman_fq_query_desc *)qbman_swp_mc_start(s);
1124 	if (!p)
1125 		return -EBUSY;
1126 
1127 	/* FQID is a 24 bit value */
1128 	p->fqid = cpu_to_le32(fqid & 0x00FFFFFF);
1129 	resp = qbman_swp_mc_complete(s, p, QBMAN_FQ_QUERY_NP);
1130 	if (!resp) {
1131 		pr_err("qbman: Query FQID %d NP fields failed, no response\n",
1132 		       fqid);
1133 		return -EIO;
1134 	}
1135 	*r = *(struct qbman_fq_query_np_rslt *)resp;
1136 	/* Decode the outcome */
1137 	WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_FQ_QUERY_NP);
1138 
1139 	/* Determine success or failure */
1140 	if (r->rslt != QBMAN_MC_RSLT_OK) {
1141 		pr_err("Query NP fields of FQID 0x%x failed, code=0x%02x\n",
1142 		       p->fqid, r->rslt);
1143 		return -EIO;
1144 	}
1145 
1146 	return 0;
1147 }
1148 
1149 u32 qbman_fq_state_frame_count(const struct qbman_fq_query_np_rslt *r)
1150 {
1151 	return (le32_to_cpu(r->frm_cnt) & 0x00FFFFFF);
1152 }
1153 
1154 u32 qbman_fq_state_byte_count(const struct qbman_fq_query_np_rslt *r)
1155 {
1156 	return le32_to_cpu(r->byte_cnt);
1157 }
1158 
1159 struct qbman_bp_query_desc {
1160 	u8 verb;
1161 	u8 reserved;
1162 	__le16 bpid;
1163 	u8 reserved2[60];
1164 };
1165 
1166 int qbman_bp_query(struct qbman_swp *s, u16 bpid,
1167 		   struct qbman_bp_query_rslt *r)
1168 {
1169 	struct qbman_bp_query_desc *p;
1170 	void *resp;
1171 
1172 	p = (struct qbman_bp_query_desc *)qbman_swp_mc_start(s);
1173 	if (!p)
1174 		return -EBUSY;
1175 
1176 	p->bpid = cpu_to_le16(bpid);
1177 	resp = qbman_swp_mc_complete(s, p, QBMAN_BP_QUERY);
1178 	if (!resp) {
1179 		pr_err("qbman: Query BPID %d fields failed, no response\n",
1180 		       bpid);
1181 		return -EIO;
1182 	}
1183 	*r = *(struct qbman_bp_query_rslt *)resp;
1184 	/* Decode the outcome */
1185 	WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_BP_QUERY);
1186 
1187 	/* Determine success or failure */
1188 	if (r->rslt != QBMAN_MC_RSLT_OK) {
1189 		pr_err("Query fields of BPID 0x%x failed, code=0x%02x\n",
1190 		       bpid, r->rslt);
1191 		return -EIO;
1192 	}
1193 
1194 	return 0;
1195 }
1196 
1197 u32 qbman_bp_info_num_free_bufs(struct qbman_bp_query_rslt *a)
1198 {
1199 	return le32_to_cpu(a->fill);
1200 }
1201