xref: /linux/drivers/soc/dove/pmu.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Marvell Dove PMU support
4  */
5 #include <linux/io.h>
6 #include <linux/irq.h>
7 #include <linux/irqdomain.h>
8 #include <linux/of.h>
9 #include <linux/of_irq.h>
10 #include <linux/of_address.h>
11 #include <linux/platform_device.h>
12 #include <linux/pm_domain.h>
13 #include <linux/reset.h>
14 #include <linux/reset-controller.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/soc/dove/pmu.h>
18 #include <linux/spinlock.h>
19 
20 #define NR_PMU_IRQS		7
21 
22 #define PMC_SW_RST		0x30
23 #define PMC_IRQ_CAUSE		0x50
24 #define PMC_IRQ_MASK		0x54
25 
26 #define PMU_PWR			0x10
27 #define PMU_ISO			0x58
28 
29 struct pmu_data {
30 	spinlock_t lock;
31 	struct device_node *of_node;
32 	void __iomem *pmc_base;
33 	void __iomem *pmu_base;
34 	struct irq_chip_generic *irq_gc;
35 	struct irq_domain *irq_domain;
36 #ifdef CONFIG_RESET_CONTROLLER
37 	struct reset_controller_dev reset;
38 #endif
39 };
40 
41 /*
42  * The PMU contains a register to reset various subsystems within the
43  * SoC.  Export this as a reset controller.
44  */
45 #ifdef CONFIG_RESET_CONTROLLER
46 #define rcdev_to_pmu(rcdev) container_of(rcdev, struct pmu_data, reset)
47 
48 static int pmu_reset_reset(struct reset_controller_dev *rc, unsigned long id)
49 {
50 	struct pmu_data *pmu = rcdev_to_pmu(rc);
51 	unsigned long flags;
52 	u32 val;
53 
54 	spin_lock_irqsave(&pmu->lock, flags);
55 	val = readl_relaxed(pmu->pmc_base + PMC_SW_RST);
56 	writel_relaxed(val & ~BIT(id), pmu->pmc_base + PMC_SW_RST);
57 	writel_relaxed(val | BIT(id), pmu->pmc_base + PMC_SW_RST);
58 	spin_unlock_irqrestore(&pmu->lock, flags);
59 
60 	return 0;
61 }
62 
63 static int pmu_reset_assert(struct reset_controller_dev *rc, unsigned long id)
64 {
65 	struct pmu_data *pmu = rcdev_to_pmu(rc);
66 	unsigned long flags;
67 	u32 val = ~BIT(id);
68 
69 	spin_lock_irqsave(&pmu->lock, flags);
70 	val &= readl_relaxed(pmu->pmc_base + PMC_SW_RST);
71 	writel_relaxed(val, pmu->pmc_base + PMC_SW_RST);
72 	spin_unlock_irqrestore(&pmu->lock, flags);
73 
74 	return 0;
75 }
76 
77 static int pmu_reset_deassert(struct reset_controller_dev *rc, unsigned long id)
78 {
79 	struct pmu_data *pmu = rcdev_to_pmu(rc);
80 	unsigned long flags;
81 	u32 val = BIT(id);
82 
83 	spin_lock_irqsave(&pmu->lock, flags);
84 	val |= readl_relaxed(pmu->pmc_base + PMC_SW_RST);
85 	writel_relaxed(val, pmu->pmc_base + PMC_SW_RST);
86 	spin_unlock_irqrestore(&pmu->lock, flags);
87 
88 	return 0;
89 }
90 
91 static const struct reset_control_ops pmu_reset_ops = {
92 	.reset = pmu_reset_reset,
93 	.assert = pmu_reset_assert,
94 	.deassert = pmu_reset_deassert,
95 };
96 
97 static struct reset_controller_dev pmu_reset __initdata = {
98 	.ops = &pmu_reset_ops,
99 	.owner = THIS_MODULE,
100 	.nr_resets = 32,
101 };
102 
103 static void __init pmu_reset_init(struct pmu_data *pmu)
104 {
105 	int ret;
106 
107 	pmu->reset = pmu_reset;
108 	pmu->reset.of_node = pmu->of_node;
109 
110 	ret = reset_controller_register(&pmu->reset);
111 	if (ret)
112 		pr_err("pmu: %s failed: %d\n", "reset_controller_register", ret);
113 }
114 #else
115 static void __init pmu_reset_init(struct pmu_data *pmu)
116 {
117 }
118 #endif
119 
120 struct pmu_domain {
121 	struct pmu_data *pmu;
122 	u32 pwr_mask;
123 	u32 rst_mask;
124 	u32 iso_mask;
125 	struct generic_pm_domain base;
126 };
127 
128 #define to_pmu_domain(dom) container_of(dom, struct pmu_domain, base)
129 
130 /*
131  * This deals with the "old" Marvell sequence of bringing a power domain
132  * down/up, which is: apply power, release reset, disable isolators.
133  *
134  * Later devices apparantly use a different sequence: power up, disable
135  * isolators, assert repair signal, enable SRMA clock, enable AXI clock,
136  * enable module clock, deassert reset.
137  *
138  * Note: reading the assembly, it seems that the IO accessors have an
139  * unfortunate side-effect - they cause memory already read into registers
140  * for the if () to be re-read for the bit-set or bit-clear operation.
141  * The code is written to avoid this.
142  */
143 static int pmu_domain_power_off(struct generic_pm_domain *domain)
144 {
145 	struct pmu_domain *pmu_dom = to_pmu_domain(domain);
146 	struct pmu_data *pmu = pmu_dom->pmu;
147 	unsigned long flags;
148 	unsigned int val;
149 	void __iomem *pmu_base = pmu->pmu_base;
150 	void __iomem *pmc_base = pmu->pmc_base;
151 
152 	spin_lock_irqsave(&pmu->lock, flags);
153 
154 	/* Enable isolators */
155 	if (pmu_dom->iso_mask) {
156 		val = ~pmu_dom->iso_mask;
157 		val &= readl_relaxed(pmu_base + PMU_ISO);
158 		writel_relaxed(val, pmu_base + PMU_ISO);
159 	}
160 
161 	/* Reset unit */
162 	if (pmu_dom->rst_mask) {
163 		val = ~pmu_dom->rst_mask;
164 		val &= readl_relaxed(pmc_base + PMC_SW_RST);
165 		writel_relaxed(val, pmc_base + PMC_SW_RST);
166 	}
167 
168 	/* Power down */
169 	val = readl_relaxed(pmu_base + PMU_PWR) | pmu_dom->pwr_mask;
170 	writel_relaxed(val, pmu_base + PMU_PWR);
171 
172 	spin_unlock_irqrestore(&pmu->lock, flags);
173 
174 	return 0;
175 }
176 
177 static int pmu_domain_power_on(struct generic_pm_domain *domain)
178 {
179 	struct pmu_domain *pmu_dom = to_pmu_domain(domain);
180 	struct pmu_data *pmu = pmu_dom->pmu;
181 	unsigned long flags;
182 	unsigned int val;
183 	void __iomem *pmu_base = pmu->pmu_base;
184 	void __iomem *pmc_base = pmu->pmc_base;
185 
186 	spin_lock_irqsave(&pmu->lock, flags);
187 
188 	/* Power on */
189 	val = ~pmu_dom->pwr_mask & readl_relaxed(pmu_base + PMU_PWR);
190 	writel_relaxed(val, pmu_base + PMU_PWR);
191 
192 	/* Release reset */
193 	if (pmu_dom->rst_mask) {
194 		val = pmu_dom->rst_mask;
195 		val |= readl_relaxed(pmc_base + PMC_SW_RST);
196 		writel_relaxed(val, pmc_base + PMC_SW_RST);
197 	}
198 
199 	/* Disable isolators */
200 	if (pmu_dom->iso_mask) {
201 		val = pmu_dom->iso_mask;
202 		val |= readl_relaxed(pmu_base + PMU_ISO);
203 		writel_relaxed(val, pmu_base + PMU_ISO);
204 	}
205 
206 	spin_unlock_irqrestore(&pmu->lock, flags);
207 
208 	return 0;
209 }
210 
211 static void __pmu_domain_register(struct pmu_domain *domain,
212 	struct device_node *np)
213 {
214 	unsigned int val = readl_relaxed(domain->pmu->pmu_base + PMU_PWR);
215 
216 	domain->base.power_off = pmu_domain_power_off;
217 	domain->base.power_on = pmu_domain_power_on;
218 
219 	pm_genpd_init(&domain->base, NULL, !(val & domain->pwr_mask));
220 
221 	if (np)
222 		of_genpd_add_provider_simple(np, &domain->base);
223 }
224 
225 /* PMU IRQ controller */
226 static void pmu_irq_handler(struct irq_desc *desc)
227 {
228 	struct pmu_data *pmu = irq_desc_get_handler_data(desc);
229 	struct irq_chip_generic *gc = pmu->irq_gc;
230 	struct irq_domain *domain = pmu->irq_domain;
231 	void __iomem *base = gc->reg_base;
232 	u32 stat = readl_relaxed(base + PMC_IRQ_CAUSE) & gc->mask_cache;
233 	u32 done = ~0;
234 
235 	if (stat == 0) {
236 		handle_bad_irq(desc);
237 		return;
238 	}
239 
240 	while (stat) {
241 		u32 hwirq = fls(stat) - 1;
242 
243 		stat &= ~(1 << hwirq);
244 		done &= ~(1 << hwirq);
245 
246 		generic_handle_irq(irq_find_mapping(domain, hwirq));
247 	}
248 
249 	/*
250 	 * The PMU mask register is not RW0C: it is RW.  This means that
251 	 * the bits take whatever value is written to them; if you write
252 	 * a '1', you will set the interrupt.
253 	 *
254 	 * Unfortunately this means there is NO race free way to clear
255 	 * these interrupts.
256 	 *
257 	 * So, let's structure the code so that the window is as small as
258 	 * possible.
259 	 */
260 	irq_gc_lock(gc);
261 	done &= readl_relaxed(base + PMC_IRQ_CAUSE);
262 	writel_relaxed(done, base + PMC_IRQ_CAUSE);
263 	irq_gc_unlock(gc);
264 }
265 
266 static int __init dove_init_pmu_irq(struct pmu_data *pmu, int irq)
267 {
268 	const char *name = "pmu_irq";
269 	struct irq_chip_generic *gc;
270 	struct irq_domain *domain;
271 	int ret;
272 
273 	/* mask and clear all interrupts */
274 	writel(0, pmu->pmc_base + PMC_IRQ_MASK);
275 	writel(0, pmu->pmc_base + PMC_IRQ_CAUSE);
276 
277 	domain = irq_domain_add_linear(pmu->of_node, NR_PMU_IRQS,
278 				       &irq_generic_chip_ops, NULL);
279 	if (!domain) {
280 		pr_err("%s: unable to add irq domain\n", name);
281 		return -ENOMEM;
282 	}
283 
284 	ret = irq_alloc_domain_generic_chips(domain, NR_PMU_IRQS, 1, name,
285 					     handle_level_irq,
286 					     IRQ_NOREQUEST | IRQ_NOPROBE, 0,
287 					     IRQ_GC_INIT_MASK_CACHE);
288 	if (ret) {
289 		pr_err("%s: unable to alloc irq domain gc: %d\n", name, ret);
290 		irq_domain_remove(domain);
291 		return ret;
292 	}
293 
294 	gc = irq_get_domain_generic_chip(domain, 0);
295 	gc->reg_base = pmu->pmc_base;
296 	gc->chip_types[0].regs.mask = PMC_IRQ_MASK;
297 	gc->chip_types[0].chip.irq_mask = irq_gc_mask_clr_bit;
298 	gc->chip_types[0].chip.irq_unmask = irq_gc_mask_set_bit;
299 
300 	pmu->irq_domain = domain;
301 	pmu->irq_gc = gc;
302 
303 	irq_set_handler_data(irq, pmu);
304 	irq_set_chained_handler(irq, pmu_irq_handler);
305 
306 	return 0;
307 }
308 
309 int __init dove_init_pmu_legacy(const struct dove_pmu_initdata *initdata)
310 {
311 	const struct dove_pmu_domain_initdata *domain_initdata;
312 	struct pmu_data *pmu;
313 	int ret;
314 
315 	pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
316 	if (!pmu)
317 		return -ENOMEM;
318 
319 	spin_lock_init(&pmu->lock);
320 	pmu->pmc_base = initdata->pmc_base;
321 	pmu->pmu_base = initdata->pmu_base;
322 
323 	pmu_reset_init(pmu);
324 	for (domain_initdata = initdata->domains; domain_initdata->name;
325 	     domain_initdata++) {
326 		struct pmu_domain *domain;
327 
328 		domain = kzalloc(sizeof(*domain), GFP_KERNEL);
329 		if (domain) {
330 			domain->pmu = pmu;
331 			domain->pwr_mask = domain_initdata->pwr_mask;
332 			domain->rst_mask = domain_initdata->rst_mask;
333 			domain->iso_mask = domain_initdata->iso_mask;
334 			domain->base.name = domain_initdata->name;
335 
336 			__pmu_domain_register(domain, NULL);
337 		}
338 	}
339 
340 	ret = dove_init_pmu_irq(pmu, initdata->irq);
341 	if (ret)
342 		pr_err("dove_init_pmu_irq() failed: %d\n", ret);
343 
344 	if (pmu->irq_domain)
345 		irq_domain_associate_many(pmu->irq_domain,
346 					  initdata->irq_domain_start,
347 					  0, NR_PMU_IRQS);
348 
349 	return 0;
350 }
351 
352 /*
353  * pmu: power-manager@d0000 {
354  *	compatible = "marvell,dove-pmu";
355  *	reg = <0xd0000 0x8000> <0xd8000 0x8000>;
356  *	interrupts = <33>;
357  *	interrupt-controller;
358  *	#reset-cells = 1;
359  *	vpu_domain: vpu-domain {
360  *		#power-domain-cells = <0>;
361  *		marvell,pmu_pwr_mask = <0x00000008>;
362  *		marvell,pmu_iso_mask = <0x00000001>;
363  *		resets = <&pmu 16>;
364  *	};
365  *	gpu_domain: gpu-domain {
366  *		#power-domain-cells = <0>;
367  *		marvell,pmu_pwr_mask = <0x00000004>;
368  *		marvell,pmu_iso_mask = <0x00000002>;
369  *		resets = <&pmu 18>;
370  *	};
371  * };
372  */
373 int __init dove_init_pmu(void)
374 {
375 	struct device_node *np_pmu, *domains_node, *np;
376 	struct pmu_data *pmu;
377 	int ret, parent_irq;
378 
379 	/* Lookup the PMU node */
380 	np_pmu = of_find_compatible_node(NULL, NULL, "marvell,dove-pmu");
381 	if (!np_pmu)
382 		return 0;
383 
384 	domains_node = of_get_child_by_name(np_pmu, "domains");
385 	if (!domains_node) {
386 		pr_err("%pOFn: failed to find domains sub-node\n", np_pmu);
387 		return 0;
388 	}
389 
390 	pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
391 	if (!pmu)
392 		return -ENOMEM;
393 
394 	spin_lock_init(&pmu->lock);
395 	pmu->of_node = np_pmu;
396 	pmu->pmc_base = of_iomap(pmu->of_node, 0);
397 	pmu->pmu_base = of_iomap(pmu->of_node, 1);
398 	if (!pmu->pmc_base || !pmu->pmu_base) {
399 		pr_err("%pOFn: failed to map PMU\n", np_pmu);
400 		iounmap(pmu->pmu_base);
401 		iounmap(pmu->pmc_base);
402 		kfree(pmu);
403 		return -ENOMEM;
404 	}
405 
406 	pmu_reset_init(pmu);
407 
408 	for_each_available_child_of_node(domains_node, np) {
409 		struct of_phandle_args args;
410 		struct pmu_domain *domain;
411 
412 		domain = kzalloc(sizeof(*domain), GFP_KERNEL);
413 		if (!domain)
414 			break;
415 
416 		domain->pmu = pmu;
417 		domain->base.name = kasprintf(GFP_KERNEL, "%pOFn", np);
418 		if (!domain->base.name) {
419 			kfree(domain);
420 			break;
421 		}
422 
423 		of_property_read_u32(np, "marvell,pmu_pwr_mask",
424 				     &domain->pwr_mask);
425 		of_property_read_u32(np, "marvell,pmu_iso_mask",
426 				     &domain->iso_mask);
427 
428 		/*
429 		 * We parse the reset controller property directly here
430 		 * to ensure that we can operate when the reset controller
431 		 * support is not configured into the kernel.
432 		 */
433 		ret = of_parse_phandle_with_args(np, "resets", "#reset-cells",
434 						 0, &args);
435 		if (ret == 0) {
436 			if (args.np == pmu->of_node)
437 				domain->rst_mask = BIT(args.args[0]);
438 			of_node_put(args.np);
439 		}
440 
441 		__pmu_domain_register(domain, np);
442 	}
443 
444 	/* Loss of the interrupt controller is not a fatal error. */
445 	parent_irq = irq_of_parse_and_map(pmu->of_node, 0);
446 	if (!parent_irq) {
447 		pr_err("%pOFn: no interrupt specified\n", np_pmu);
448 	} else {
449 		ret = dove_init_pmu_irq(pmu, parent_irq);
450 		if (ret)
451 			pr_err("dove_init_pmu_irq() failed: %d\n", ret);
452 	}
453 
454 	return 0;
455 }
456