1 /* 2 * Copyright (c) 1996 John Shifflett, GeoLog Consulting 3 * john@geolog.com 4 * jshiffle@netcom.com 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2, or (at your option) 9 * any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 */ 16 17 /* 18 * Drew Eckhardt's excellent 'Generic NCR5380' sources from Linux-PC 19 * provided much of the inspiration and some of the code for this 20 * driver. Everything I know about Amiga DMA was gleaned from careful 21 * reading of Hamish Mcdonald's original wd33c93 driver; in fact, I 22 * borrowed shamelessly from all over that source. Thanks Hamish! 23 * 24 * _This_ driver is (I feel) an improvement over the old one in 25 * several respects: 26 * 27 * - Target Disconnection/Reconnection is now supported. Any 28 * system with more than one device active on the SCSI bus 29 * will benefit from this. The driver defaults to what I 30 * call 'adaptive disconnect' - meaning that each command 31 * is evaluated individually as to whether or not it should 32 * be run with the option to disconnect/reselect (if the 33 * device chooses), or as a "SCSI-bus-hog". 34 * 35 * - Synchronous data transfers are now supported. Because of 36 * a few devices that choke after telling the driver that 37 * they can do sync transfers, we don't automatically use 38 * this faster protocol - it can be enabled via the command- 39 * line on a device-by-device basis. 40 * 41 * - Runtime operating parameters can now be specified through 42 * the 'amiboot' or the 'insmod' command line. For amiboot do: 43 * "amiboot [usual stuff] wd33c93=blah,blah,blah" 44 * The defaults should be good for most people. See the comment 45 * for 'setup_strings' below for more details. 46 * 47 * - The old driver relied exclusively on what the Western Digital 48 * docs call "Combination Level 2 Commands", which are a great 49 * idea in that the CPU is relieved of a lot of interrupt 50 * overhead. However, by accepting a certain (user-settable) 51 * amount of additional interrupts, this driver achieves 52 * better control over the SCSI bus, and data transfers are 53 * almost as fast while being much easier to define, track, 54 * and debug. 55 * 56 * 57 * TODO: 58 * more speed. linked commands. 59 * 60 * 61 * People with bug reports, wish-lists, complaints, comments, 62 * or improvements are asked to pah-leeez email me (John Shifflett) 63 * at john@geolog.com or jshiffle@netcom.com! I'm anxious to get 64 * this thing into as good a shape as possible, and I'm positive 65 * there are lots of lurking bugs and "Stupid Places". 66 * 67 * Updates: 68 * 69 * Added support for pre -A chips, which don't have advanced features 70 * and will generate CSR_RESEL rather than CSR_RESEL_AM. 71 * Richard Hirst <richard@sleepie.demon.co.uk> August 2000 72 * 73 * Added support for Burst Mode DMA and Fast SCSI. Enabled the use of 74 * default_sx_per for asynchronous data transfers. Added adjustment 75 * of transfer periods in sx_table to the actual input-clock. 76 * peter fuerst <post@pfrst.de> February 2007 77 */ 78 79 #include <linux/module.h> 80 81 #include <linux/string.h> 82 #include <linux/delay.h> 83 #include <linux/init.h> 84 #include <linux/interrupt.h> 85 #include <linux/blkdev.h> 86 87 #include <scsi/scsi.h> 88 #include <scsi/scsi_cmnd.h> 89 #include <scsi/scsi_device.h> 90 #include <scsi/scsi_host.h> 91 92 #include <asm/irq.h> 93 94 #include "wd33c93.h" 95 96 #define optimum_sx_per(hostdata) (hostdata)->sx_table[1].period_ns 97 98 99 #define WD33C93_VERSION "1.26++" 100 #define WD33C93_DATE "10/Feb/2007" 101 102 MODULE_AUTHOR("John Shifflett"); 103 MODULE_DESCRIPTION("Generic WD33C93 SCSI driver"); 104 MODULE_LICENSE("GPL"); 105 106 /* 107 * 'setup_strings' is a single string used to pass operating parameters and 108 * settings from the kernel/module command-line to the driver. 'setup_args[]' 109 * is an array of strings that define the compile-time default values for 110 * these settings. If Linux boots with an amiboot or insmod command-line, 111 * those settings are combined with 'setup_args[]'. Note that amiboot 112 * command-lines are prefixed with "wd33c93=" while insmod uses a 113 * "setup_strings=" prefix. The driver recognizes the following keywords 114 * (lower case required) and arguments: 115 * 116 * - nosync:bitmask -bitmask is a byte where the 1st 7 bits correspond with 117 * the 7 possible SCSI devices. Set a bit to negotiate for 118 * asynchronous transfers on that device. To maintain 119 * backwards compatibility, a command-line such as 120 * "wd33c93=255" will be automatically translated to 121 * "wd33c93=nosync:0xff". 122 * - nodma:x -x = 1 to disable DMA, x = 0 to enable it. Argument is 123 * optional - if not present, same as "nodma:1". 124 * - period:ns -ns is the minimum # of nanoseconds in a SCSI data transfer 125 * period. Default is 500; acceptable values are 250 - 1000. 126 * - disconnect:x -x = 0 to never allow disconnects, 2 to always allow them. 127 * x = 1 does 'adaptive' disconnects, which is the default 128 * and generally the best choice. 129 * - debug:x -If 'DEBUGGING_ON' is defined, x is a bit mask that causes 130 * various types of debug output to printed - see the DB_xxx 131 * defines in wd33c93.h 132 * - clock:x -x = clock input in MHz for WD33c93 chip. Normal values 133 * would be from 8 through 20. Default is 8. 134 * - burst:x -x = 1 to use Burst Mode (or Demand-Mode) DMA, x = 0 to use 135 * Single Byte DMA, which is the default. Argument is 136 * optional - if not present, same as "burst:1". 137 * - fast:x -x = 1 to enable Fast SCSI, which is only effective with 138 * input-clock divisor 4 (WD33C93_FS_16_20), x = 0 to disable 139 * it, which is the default. Argument is optional - if not 140 * present, same as "fast:1". 141 * - next -No argument. Used to separate blocks of keywords when 142 * there's more than one host adapter in the system. 143 * 144 * Syntax Notes: 145 * - Numeric arguments can be decimal or the '0x' form of hex notation. There 146 * _must_ be a colon between a keyword and its numeric argument, with no 147 * spaces. 148 * - Keywords are separated by commas, no spaces, in the standard kernel 149 * command-line manner. 150 * - A keyword in the 'nth' comma-separated command-line member will overwrite 151 * the 'nth' element of setup_args[]. A blank command-line member (in 152 * other words, a comma with no preceding keyword) will _not_ overwrite 153 * the corresponding setup_args[] element. 154 * - If a keyword is used more than once, the first one applies to the first 155 * SCSI host found, the second to the second card, etc, unless the 'next' 156 * keyword is used to change the order. 157 * 158 * Some amiboot examples (for insmod, use 'setup_strings' instead of 'wd33c93'): 159 * - wd33c93=nosync:255 160 * - wd33c93=nodma 161 * - wd33c93=nodma:1 162 * - wd33c93=disconnect:2,nosync:0x08,period:250 163 * - wd33c93=debug:0x1c 164 */ 165 166 /* Normally, no defaults are specified */ 167 static char *setup_args[] = { "", "", "", "", "", "", "", "", "", "" }; 168 169 static char *setup_strings; 170 module_param(setup_strings, charp, 0); 171 172 static void wd33c93_execute(struct Scsi_Host *instance); 173 174 #ifdef CONFIG_WD33C93_PIO 175 static inline uchar 176 read_wd33c93(const wd33c93_regs regs, uchar reg_num) 177 { 178 uchar data; 179 180 outb(reg_num, regs.SASR); 181 data = inb(regs.SCMD); 182 return data; 183 } 184 185 static inline unsigned long 186 read_wd33c93_count(const wd33c93_regs regs) 187 { 188 unsigned long value; 189 190 outb(WD_TRANSFER_COUNT_MSB, regs.SASR); 191 value = inb(regs.SCMD) << 16; 192 value |= inb(regs.SCMD) << 8; 193 value |= inb(regs.SCMD); 194 return value; 195 } 196 197 static inline uchar 198 read_aux_stat(const wd33c93_regs regs) 199 { 200 return inb(regs.SASR); 201 } 202 203 static inline void 204 write_wd33c93(const wd33c93_regs regs, uchar reg_num, uchar value) 205 { 206 outb(reg_num, regs.SASR); 207 outb(value, regs.SCMD); 208 } 209 210 static inline void 211 write_wd33c93_count(const wd33c93_regs regs, unsigned long value) 212 { 213 outb(WD_TRANSFER_COUNT_MSB, regs.SASR); 214 outb((value >> 16) & 0xff, regs.SCMD); 215 outb((value >> 8) & 0xff, regs.SCMD); 216 outb( value & 0xff, regs.SCMD); 217 } 218 219 #define write_wd33c93_cmd(regs, cmd) \ 220 write_wd33c93((regs), WD_COMMAND, (cmd)) 221 222 static inline void 223 write_wd33c93_cdb(const wd33c93_regs regs, uint len, uchar cmnd[]) 224 { 225 int i; 226 227 outb(WD_CDB_1, regs.SASR); 228 for (i=0; i<len; i++) 229 outb(cmnd[i], regs.SCMD); 230 } 231 232 #else /* CONFIG_WD33C93_PIO */ 233 static inline uchar 234 read_wd33c93(const wd33c93_regs regs, uchar reg_num) 235 { 236 *regs.SASR = reg_num; 237 mb(); 238 return (*regs.SCMD); 239 } 240 241 static unsigned long 242 read_wd33c93_count(const wd33c93_regs regs) 243 { 244 unsigned long value; 245 246 *regs.SASR = WD_TRANSFER_COUNT_MSB; 247 mb(); 248 value = *regs.SCMD << 16; 249 value |= *regs.SCMD << 8; 250 value |= *regs.SCMD; 251 mb(); 252 return value; 253 } 254 255 static inline uchar 256 read_aux_stat(const wd33c93_regs regs) 257 { 258 return *regs.SASR; 259 } 260 261 static inline void 262 write_wd33c93(const wd33c93_regs regs, uchar reg_num, uchar value) 263 { 264 *regs.SASR = reg_num; 265 mb(); 266 *regs.SCMD = value; 267 mb(); 268 } 269 270 static void 271 write_wd33c93_count(const wd33c93_regs regs, unsigned long value) 272 { 273 *regs.SASR = WD_TRANSFER_COUNT_MSB; 274 mb(); 275 *regs.SCMD = value >> 16; 276 *regs.SCMD = value >> 8; 277 *regs.SCMD = value; 278 mb(); 279 } 280 281 static inline void 282 write_wd33c93_cmd(const wd33c93_regs regs, uchar cmd) 283 { 284 *regs.SASR = WD_COMMAND; 285 mb(); 286 *regs.SCMD = cmd; 287 mb(); 288 } 289 290 static inline void 291 write_wd33c93_cdb(const wd33c93_regs regs, uint len, uchar cmnd[]) 292 { 293 int i; 294 295 *regs.SASR = WD_CDB_1; 296 for (i = 0; i < len; i++) 297 *regs.SCMD = cmnd[i]; 298 } 299 #endif /* CONFIG_WD33C93_PIO */ 300 301 static inline uchar 302 read_1_byte(const wd33c93_regs regs) 303 { 304 uchar asr; 305 uchar x = 0; 306 307 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); 308 write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO | 0x80); 309 do { 310 asr = read_aux_stat(regs); 311 if (asr & ASR_DBR) 312 x = read_wd33c93(regs, WD_DATA); 313 } while (!(asr & ASR_INT)); 314 return x; 315 } 316 317 static int 318 round_period(unsigned int period, const struct sx_period *sx_table) 319 { 320 int x; 321 322 for (x = 1; sx_table[x].period_ns; x++) { 323 if ((period <= sx_table[x - 0].period_ns) && 324 (period > sx_table[x - 1].period_ns)) { 325 return x; 326 } 327 } 328 return 7; 329 } 330 331 /* 332 * Calculate Synchronous Transfer Register value from SDTR code. 333 */ 334 static uchar 335 calc_sync_xfer(unsigned int period, unsigned int offset, unsigned int fast, 336 const struct sx_period *sx_table) 337 { 338 /* When doing Fast SCSI synchronous data transfers, the corresponding 339 * value in 'sx_table' is two times the actually used transfer period. 340 */ 341 uchar result; 342 343 if (offset && fast) { 344 fast = STR_FSS; 345 period *= 2; 346 } else { 347 fast = 0; 348 } 349 period *= 4; /* convert SDTR code to ns */ 350 result = sx_table[round_period(period,sx_table)].reg_value; 351 result |= (offset < OPTIMUM_SX_OFF) ? offset : OPTIMUM_SX_OFF; 352 result |= fast; 353 return result; 354 } 355 356 /* 357 * Calculate SDTR code bytes [3],[4] from period and offset. 358 */ 359 static inline void 360 calc_sync_msg(unsigned int period, unsigned int offset, unsigned int fast, 361 uchar msg[2]) 362 { 363 /* 'period' is a "normal"-mode value, like the ones in 'sx_table'. The 364 * actually used transfer period for Fast SCSI synchronous data 365 * transfers is half that value. 366 */ 367 period /= 4; 368 if (offset && fast) 369 period /= 2; 370 msg[0] = period; 371 msg[1] = offset; 372 } 373 374 static int 375 wd33c93_queuecommand_lck(struct scsi_cmnd *cmd, 376 void (*done)(struct scsi_cmnd *)) 377 { 378 struct WD33C93_hostdata *hostdata; 379 struct scsi_cmnd *tmp; 380 381 hostdata = (struct WD33C93_hostdata *) cmd->device->host->hostdata; 382 383 DB(DB_QUEUE_COMMAND, 384 printk("Q-%d-%02x( ", cmd->device->id, cmd->cmnd[0])) 385 386 /* Set up a few fields in the scsi_cmnd structure for our own use: 387 * - host_scribble is the pointer to the next cmd in the input queue 388 * - scsi_done points to the routine we call when a cmd is finished 389 * - result is what you'd expect 390 */ 391 cmd->host_scribble = NULL; 392 cmd->scsi_done = done; 393 cmd->result = 0; 394 395 /* We use the Scsi_Pointer structure that's included with each command 396 * as a scratchpad (as it's intended to be used!). The handy thing about 397 * the SCp.xxx fields is that they're always associated with a given 398 * cmd, and are preserved across disconnect-reselect. This means we 399 * can pretty much ignore SAVE_POINTERS and RESTORE_POINTERS messages 400 * if we keep all the critical pointers and counters in SCp: 401 * - SCp.ptr is the pointer into the RAM buffer 402 * - SCp.this_residual is the size of that buffer 403 * - SCp.buffer points to the current scatter-gather buffer 404 * - SCp.buffers_residual tells us how many S.G. buffers there are 405 * - SCp.have_data_in is not used 406 * - SCp.sent_command is not used 407 * - SCp.phase records this command's SRCID_ER bit setting 408 */ 409 410 if (scsi_bufflen(cmd)) { 411 cmd->SCp.buffer = scsi_sglist(cmd); 412 cmd->SCp.buffers_residual = scsi_sg_count(cmd) - 1; 413 cmd->SCp.ptr = sg_virt(cmd->SCp.buffer); 414 cmd->SCp.this_residual = cmd->SCp.buffer->length; 415 } else { 416 cmd->SCp.buffer = NULL; 417 cmd->SCp.buffers_residual = 0; 418 cmd->SCp.ptr = NULL; 419 cmd->SCp.this_residual = 0; 420 } 421 422 /* WD docs state that at the conclusion of a "LEVEL2" command, the 423 * status byte can be retrieved from the LUN register. Apparently, 424 * this is the case only for *uninterrupted* LEVEL2 commands! If 425 * there are any unexpected phases entered, even if they are 100% 426 * legal (different devices may choose to do things differently), 427 * the LEVEL2 command sequence is exited. This often occurs prior 428 * to receiving the status byte, in which case the driver does a 429 * status phase interrupt and gets the status byte on its own. 430 * While such a command can then be "resumed" (ie restarted to 431 * finish up as a LEVEL2 command), the LUN register will NOT be 432 * a valid status byte at the command's conclusion, and we must 433 * use the byte obtained during the earlier interrupt. Here, we 434 * preset SCp.Status to an illegal value (0xff) so that when 435 * this command finally completes, we can tell where the actual 436 * status byte is stored. 437 */ 438 439 cmd->SCp.Status = ILLEGAL_STATUS_BYTE; 440 441 /* 442 * Add the cmd to the end of 'input_Q'. Note that REQUEST SENSE 443 * commands are added to the head of the queue so that the desired 444 * sense data is not lost before REQUEST_SENSE executes. 445 */ 446 447 spin_lock_irq(&hostdata->lock); 448 449 if (!(hostdata->input_Q) || (cmd->cmnd[0] == REQUEST_SENSE)) { 450 cmd->host_scribble = (uchar *) hostdata->input_Q; 451 hostdata->input_Q = cmd; 452 } else { /* find the end of the queue */ 453 for (tmp = (struct scsi_cmnd *) hostdata->input_Q; 454 tmp->host_scribble; 455 tmp = (struct scsi_cmnd *) tmp->host_scribble) ; 456 tmp->host_scribble = (uchar *) cmd; 457 } 458 459 /* We know that there's at least one command in 'input_Q' now. 460 * Go see if any of them are runnable! 461 */ 462 463 wd33c93_execute(cmd->device->host); 464 465 DB(DB_QUEUE_COMMAND, printk(")Q ")) 466 467 spin_unlock_irq(&hostdata->lock); 468 return 0; 469 } 470 471 DEF_SCSI_QCMD(wd33c93_queuecommand) 472 473 /* 474 * This routine attempts to start a scsi command. If the host_card is 475 * already connected, we give up immediately. Otherwise, look through 476 * the input_Q, using the first command we find that's intended 477 * for a currently non-busy target/lun. 478 * 479 * wd33c93_execute() is always called with interrupts disabled or from 480 * the wd33c93_intr itself, which means that a wd33c93 interrupt 481 * cannot occur while we are in here. 482 */ 483 static void 484 wd33c93_execute(struct Scsi_Host *instance) 485 { 486 struct WD33C93_hostdata *hostdata = 487 (struct WD33C93_hostdata *) instance->hostdata; 488 const wd33c93_regs regs = hostdata->regs; 489 struct scsi_cmnd *cmd, *prev; 490 491 DB(DB_EXECUTE, printk("EX(")) 492 if (hostdata->selecting || hostdata->connected) { 493 DB(DB_EXECUTE, printk(")EX-0 ")) 494 return; 495 } 496 497 /* 498 * Search through the input_Q for a command destined 499 * for an idle target/lun. 500 */ 501 502 cmd = (struct scsi_cmnd *) hostdata->input_Q; 503 prev = NULL; 504 while (cmd) { 505 if (!(hostdata->busy[cmd->device->id] & (1 << cmd->device->lun))) 506 break; 507 prev = cmd; 508 cmd = (struct scsi_cmnd *) cmd->host_scribble; 509 } 510 511 /* quit if queue empty or all possible targets are busy */ 512 513 if (!cmd) { 514 DB(DB_EXECUTE, printk(")EX-1 ")) 515 return; 516 } 517 518 /* remove command from queue */ 519 520 if (prev) 521 prev->host_scribble = cmd->host_scribble; 522 else 523 hostdata->input_Q = (struct scsi_cmnd *) cmd->host_scribble; 524 525 #ifdef PROC_STATISTICS 526 hostdata->cmd_cnt[cmd->device->id]++; 527 #endif 528 529 /* 530 * Start the selection process 531 */ 532 533 if (cmd->sc_data_direction == DMA_TO_DEVICE) 534 write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id); 535 else 536 write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD); 537 538 /* Now we need to figure out whether or not this command is a good 539 * candidate for disconnect/reselect. We guess to the best of our 540 * ability, based on a set of hierarchical rules. When several 541 * devices are operating simultaneously, disconnects are usually 542 * an advantage. In a single device system, or if only 1 device 543 * is being accessed, transfers usually go faster if disconnects 544 * are not allowed: 545 * 546 * + Commands should NEVER disconnect if hostdata->disconnect = 547 * DIS_NEVER (this holds for tape drives also), and ALWAYS 548 * disconnect if hostdata->disconnect = DIS_ALWAYS. 549 * + Tape drive commands should always be allowed to disconnect. 550 * + Disconnect should be allowed if disconnected_Q isn't empty. 551 * + Commands should NOT disconnect if input_Q is empty. 552 * + Disconnect should be allowed if there are commands in input_Q 553 * for a different target/lun. In this case, the other commands 554 * should be made disconnect-able, if not already. 555 * 556 * I know, I know - this code would flunk me out of any 557 * "C Programming 101" class ever offered. But it's easy 558 * to change around and experiment with for now. 559 */ 560 561 cmd->SCp.phase = 0; /* assume no disconnect */ 562 if (hostdata->disconnect == DIS_NEVER) 563 goto no; 564 if (hostdata->disconnect == DIS_ALWAYS) 565 goto yes; 566 if (cmd->device->type == 1) /* tape drive? */ 567 goto yes; 568 if (hostdata->disconnected_Q) /* other commands disconnected? */ 569 goto yes; 570 if (!(hostdata->input_Q)) /* input_Q empty? */ 571 goto no; 572 for (prev = (struct scsi_cmnd *) hostdata->input_Q; prev; 573 prev = (struct scsi_cmnd *) prev->host_scribble) { 574 if ((prev->device->id != cmd->device->id) || 575 (prev->device->lun != cmd->device->lun)) { 576 for (prev = (struct scsi_cmnd *) hostdata->input_Q; prev; 577 prev = (struct scsi_cmnd *) prev->host_scribble) 578 prev->SCp.phase = 1; 579 goto yes; 580 } 581 } 582 583 goto no; 584 585 yes: 586 cmd->SCp.phase = 1; 587 588 #ifdef PROC_STATISTICS 589 hostdata->disc_allowed_cnt[cmd->device->id]++; 590 #endif 591 592 no: 593 594 write_wd33c93(regs, WD_SOURCE_ID, ((cmd->SCp.phase) ? SRCID_ER : 0)); 595 596 write_wd33c93(regs, WD_TARGET_LUN, cmd->device->lun); 597 write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER, 598 hostdata->sync_xfer[cmd->device->id]); 599 hostdata->busy[cmd->device->id] |= (1 << cmd->device->lun); 600 601 if ((hostdata->level2 == L2_NONE) || 602 (hostdata->sync_stat[cmd->device->id] == SS_UNSET)) { 603 604 /* 605 * Do a 'Select-With-ATN' command. This will end with 606 * one of the following interrupts: 607 * CSR_RESEL_AM: failure - can try again later. 608 * CSR_TIMEOUT: failure - give up. 609 * CSR_SELECT: success - proceed. 610 */ 611 612 hostdata->selecting = cmd; 613 614 /* Every target has its own synchronous transfer setting, kept in the 615 * sync_xfer array, and a corresponding status byte in sync_stat[]. 616 * Each target's sync_stat[] entry is initialized to SX_UNSET, and its 617 * sync_xfer[] entry is initialized to the default/safe value. SS_UNSET 618 * means that the parameters are undetermined as yet, and that we 619 * need to send an SDTR message to this device after selection is 620 * complete: We set SS_FIRST to tell the interrupt routine to do so. 621 * If we've been asked not to try synchronous transfers on this 622 * target (and _all_ luns within it), we'll still send the SDTR message 623 * later, but at that time we'll negotiate for async by specifying a 624 * sync fifo depth of 0. 625 */ 626 if (hostdata->sync_stat[cmd->device->id] == SS_UNSET) 627 hostdata->sync_stat[cmd->device->id] = SS_FIRST; 628 hostdata->state = S_SELECTING; 629 write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */ 630 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN); 631 } else { 632 633 /* 634 * Do a 'Select-With-ATN-Xfer' command. This will end with 635 * one of the following interrupts: 636 * CSR_RESEL_AM: failure - can try again later. 637 * CSR_TIMEOUT: failure - give up. 638 * anything else: success - proceed. 639 */ 640 641 hostdata->connected = cmd; 642 write_wd33c93(regs, WD_COMMAND_PHASE, 0); 643 644 /* copy command_descriptor_block into WD chip 645 * (take advantage of auto-incrementing) 646 */ 647 648 write_wd33c93_cdb(regs, cmd->cmd_len, cmd->cmnd); 649 650 /* The wd33c93 only knows about Group 0, 1, and 5 commands when 651 * it's doing a 'select-and-transfer'. To be safe, we write the 652 * size of the CDB into the OWN_ID register for every case. This 653 * way there won't be problems with vendor-unique, audio, etc. 654 */ 655 656 write_wd33c93(regs, WD_OWN_ID, cmd->cmd_len); 657 658 /* When doing a non-disconnect command with DMA, we can save 659 * ourselves a DATA phase interrupt later by setting everything 660 * up ahead of time. 661 */ 662 663 if ((cmd->SCp.phase == 0) && (hostdata->no_dma == 0)) { 664 if (hostdata->dma_setup(cmd, 665 (cmd->sc_data_direction == DMA_TO_DEVICE) ? 666 DATA_OUT_DIR : DATA_IN_DIR)) 667 write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */ 668 else { 669 write_wd33c93_count(regs, 670 cmd->SCp.this_residual); 671 write_wd33c93(regs, WD_CONTROL, 672 CTRL_IDI | CTRL_EDI | hostdata->dma_mode); 673 hostdata->dma = D_DMA_RUNNING; 674 } 675 } else 676 write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */ 677 678 hostdata->state = S_RUNNING_LEVEL2; 679 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); 680 } 681 682 /* 683 * Since the SCSI bus can handle only 1 connection at a time, 684 * we get out of here now. If the selection fails, or when 685 * the command disconnects, we'll come back to this routine 686 * to search the input_Q again... 687 */ 688 689 DB(DB_EXECUTE, 690 printk("%s)EX-2 ", (cmd->SCp.phase) ? "d:" : "")) 691 } 692 693 static void 694 transfer_pio(const wd33c93_regs regs, uchar * buf, int cnt, 695 int data_in_dir, struct WD33C93_hostdata *hostdata) 696 { 697 uchar asr; 698 699 DB(DB_TRANSFER, 700 printk("(%p,%d,%s:", buf, cnt, data_in_dir ? "in" : "out")) 701 702 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); 703 write_wd33c93_count(regs, cnt); 704 write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO); 705 if (data_in_dir) { 706 do { 707 asr = read_aux_stat(regs); 708 if (asr & ASR_DBR) 709 *buf++ = read_wd33c93(regs, WD_DATA); 710 } while (!(asr & ASR_INT)); 711 } else { 712 do { 713 asr = read_aux_stat(regs); 714 if (asr & ASR_DBR) 715 write_wd33c93(regs, WD_DATA, *buf++); 716 } while (!(asr & ASR_INT)); 717 } 718 719 /* Note: we are returning with the interrupt UN-cleared. 720 * Since (presumably) an entire I/O operation has 721 * completed, the bus phase is probably different, and 722 * the interrupt routine will discover this when it 723 * responds to the uncleared int. 724 */ 725 726 } 727 728 static void 729 transfer_bytes(const wd33c93_regs regs, struct scsi_cmnd *cmd, 730 int data_in_dir) 731 { 732 struct WD33C93_hostdata *hostdata; 733 unsigned long length; 734 735 hostdata = (struct WD33C93_hostdata *) cmd->device->host->hostdata; 736 737 /* Normally, you'd expect 'this_residual' to be non-zero here. 738 * In a series of scatter-gather transfers, however, this 739 * routine will usually be called with 'this_residual' equal 740 * to 0 and 'buffers_residual' non-zero. This means that a 741 * previous transfer completed, clearing 'this_residual', and 742 * now we need to setup the next scatter-gather buffer as the 743 * source or destination for THIS transfer. 744 */ 745 if (!cmd->SCp.this_residual && cmd->SCp.buffers_residual) { 746 ++cmd->SCp.buffer; 747 --cmd->SCp.buffers_residual; 748 cmd->SCp.this_residual = cmd->SCp.buffer->length; 749 cmd->SCp.ptr = sg_virt(cmd->SCp.buffer); 750 } 751 if (!cmd->SCp.this_residual) /* avoid bogus setups */ 752 return; 753 754 write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER, 755 hostdata->sync_xfer[cmd->device->id]); 756 757 /* 'hostdata->no_dma' is TRUE if we don't even want to try DMA. 758 * Update 'this_residual' and 'ptr' after 'transfer_pio()' returns. 759 */ 760 761 if (hostdata->no_dma || hostdata->dma_setup(cmd, data_in_dir)) { 762 #ifdef PROC_STATISTICS 763 hostdata->pio_cnt++; 764 #endif 765 transfer_pio(regs, (uchar *) cmd->SCp.ptr, 766 cmd->SCp.this_residual, data_in_dir, hostdata); 767 length = cmd->SCp.this_residual; 768 cmd->SCp.this_residual = read_wd33c93_count(regs); 769 cmd->SCp.ptr += (length - cmd->SCp.this_residual); 770 } 771 772 /* We are able to do DMA (in fact, the Amiga hardware is 773 * already going!), so start up the wd33c93 in DMA mode. 774 * We set 'hostdata->dma' = D_DMA_RUNNING so that when the 775 * transfer completes and causes an interrupt, we're 776 * reminded to tell the Amiga to shut down its end. We'll 777 * postpone the updating of 'this_residual' and 'ptr' 778 * until then. 779 */ 780 781 else { 782 #ifdef PROC_STATISTICS 783 hostdata->dma_cnt++; 784 #endif 785 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | hostdata->dma_mode); 786 write_wd33c93_count(regs, cmd->SCp.this_residual); 787 788 if ((hostdata->level2 >= L2_DATA) || 789 (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) { 790 write_wd33c93(regs, WD_COMMAND_PHASE, 0x45); 791 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); 792 hostdata->state = S_RUNNING_LEVEL2; 793 } else 794 write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO); 795 796 hostdata->dma = D_DMA_RUNNING; 797 } 798 } 799 800 void 801 wd33c93_intr(struct Scsi_Host *instance) 802 { 803 struct WD33C93_hostdata *hostdata = 804 (struct WD33C93_hostdata *) instance->hostdata; 805 const wd33c93_regs regs = hostdata->regs; 806 struct scsi_cmnd *patch, *cmd; 807 uchar asr, sr, phs, id, lun, *ucp, msg; 808 unsigned long length, flags; 809 810 asr = read_aux_stat(regs); 811 if (!(asr & ASR_INT) || (asr & ASR_BSY)) 812 return; 813 814 spin_lock_irqsave(&hostdata->lock, flags); 815 816 #ifdef PROC_STATISTICS 817 hostdata->int_cnt++; 818 #endif 819 820 cmd = (struct scsi_cmnd *) hostdata->connected; /* assume we're connected */ 821 sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear the interrupt */ 822 phs = read_wd33c93(regs, WD_COMMAND_PHASE); 823 824 DB(DB_INTR, printk("{%02x:%02x-", asr, sr)) 825 826 /* After starting a DMA transfer, the next interrupt 827 * is guaranteed to be in response to completion of 828 * the transfer. Since the Amiga DMA hardware runs in 829 * in an open-ended fashion, it needs to be told when 830 * to stop; do that here if D_DMA_RUNNING is true. 831 * Also, we have to update 'this_residual' and 'ptr' 832 * based on the contents of the TRANSFER_COUNT register, 833 * in case the device decided to do an intermediate 834 * disconnect (a device may do this if it has to do a 835 * seek, or just to be nice and let other devices have 836 * some bus time during long transfers). After doing 837 * whatever is needed, we go on and service the WD3393 838 * interrupt normally. 839 */ 840 if (hostdata->dma == D_DMA_RUNNING) { 841 DB(DB_TRANSFER, 842 printk("[%p/%d:", cmd->SCp.ptr, cmd->SCp.this_residual)) 843 hostdata->dma_stop(cmd->device->host, cmd, 1); 844 hostdata->dma = D_DMA_OFF; 845 length = cmd->SCp.this_residual; 846 cmd->SCp.this_residual = read_wd33c93_count(regs); 847 cmd->SCp.ptr += (length - cmd->SCp.this_residual); 848 DB(DB_TRANSFER, 849 printk("%p/%d]", cmd->SCp.ptr, cmd->SCp.this_residual)) 850 } 851 852 /* Respond to the specific WD3393 interrupt - there are quite a few! */ 853 switch (sr) { 854 case CSR_TIMEOUT: 855 DB(DB_INTR, printk("TIMEOUT")) 856 857 if (hostdata->state == S_RUNNING_LEVEL2) 858 hostdata->connected = NULL; 859 else { 860 cmd = (struct scsi_cmnd *) hostdata->selecting; /* get a valid cmd */ 861 hostdata->selecting = NULL; 862 } 863 864 cmd->result = DID_NO_CONNECT << 16; 865 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); 866 hostdata->state = S_UNCONNECTED; 867 cmd->scsi_done(cmd); 868 869 /* From esp.c: 870 * There is a window of time within the scsi_done() path 871 * of execution where interrupts are turned back on full 872 * blast and left that way. During that time we could 873 * reconnect to a disconnected command, then we'd bomb 874 * out below. We could also end up executing two commands 875 * at _once_. ...just so you know why the restore_flags() 876 * is here... 877 */ 878 879 spin_unlock_irqrestore(&hostdata->lock, flags); 880 881 /* We are not connected to a target - check to see if there 882 * are commands waiting to be executed. 883 */ 884 885 wd33c93_execute(instance); 886 break; 887 888 /* Note: this interrupt should not occur in a LEVEL2 command */ 889 890 case CSR_SELECT: 891 DB(DB_INTR, printk("SELECT")) 892 hostdata->connected = cmd = 893 (struct scsi_cmnd *) hostdata->selecting; 894 hostdata->selecting = NULL; 895 896 /* construct an IDENTIFY message with correct disconnect bit */ 897 898 hostdata->outgoing_msg[0] = (0x80 | 0x00 | cmd->device->lun); 899 if (cmd->SCp.phase) 900 hostdata->outgoing_msg[0] |= 0x40; 901 902 if (hostdata->sync_stat[cmd->device->id] == SS_FIRST) { 903 904 hostdata->sync_stat[cmd->device->id] = SS_WAITING; 905 906 /* Tack on a 2nd message to ask about synchronous transfers. If we've 907 * been asked to do only asynchronous transfers on this device, we 908 * request a fifo depth of 0, which is equivalent to async - should 909 * solve the problems some people have had with GVP's Guru ROM. 910 */ 911 912 hostdata->outgoing_msg[1] = EXTENDED_MESSAGE; 913 hostdata->outgoing_msg[2] = 3; 914 hostdata->outgoing_msg[3] = EXTENDED_SDTR; 915 if (hostdata->no_sync & (1 << cmd->device->id)) { 916 calc_sync_msg(hostdata->default_sx_per, 0, 917 0, hostdata->outgoing_msg + 4); 918 } else { 919 calc_sync_msg(optimum_sx_per(hostdata), 920 OPTIMUM_SX_OFF, 921 hostdata->fast, 922 hostdata->outgoing_msg + 4); 923 } 924 hostdata->outgoing_len = 6; 925 #ifdef SYNC_DEBUG 926 ucp = hostdata->outgoing_msg + 1; 927 printk(" sending SDTR %02x03%02x%02x%02x ", 928 ucp[0], ucp[2], ucp[3], ucp[4]); 929 #endif 930 } else 931 hostdata->outgoing_len = 1; 932 933 hostdata->state = S_CONNECTED; 934 spin_unlock_irqrestore(&hostdata->lock, flags); 935 break; 936 937 case CSR_XFER_DONE | PHS_DATA_IN: 938 case CSR_UNEXP | PHS_DATA_IN: 939 case CSR_SRV_REQ | PHS_DATA_IN: 940 DB(DB_INTR, 941 printk("IN-%d.%d", cmd->SCp.this_residual, 942 cmd->SCp.buffers_residual)) 943 transfer_bytes(regs, cmd, DATA_IN_DIR); 944 if (hostdata->state != S_RUNNING_LEVEL2) 945 hostdata->state = S_CONNECTED; 946 spin_unlock_irqrestore(&hostdata->lock, flags); 947 break; 948 949 case CSR_XFER_DONE | PHS_DATA_OUT: 950 case CSR_UNEXP | PHS_DATA_OUT: 951 case CSR_SRV_REQ | PHS_DATA_OUT: 952 DB(DB_INTR, 953 printk("OUT-%d.%d", cmd->SCp.this_residual, 954 cmd->SCp.buffers_residual)) 955 transfer_bytes(regs, cmd, DATA_OUT_DIR); 956 if (hostdata->state != S_RUNNING_LEVEL2) 957 hostdata->state = S_CONNECTED; 958 spin_unlock_irqrestore(&hostdata->lock, flags); 959 break; 960 961 /* Note: this interrupt should not occur in a LEVEL2 command */ 962 963 case CSR_XFER_DONE | PHS_COMMAND: 964 case CSR_UNEXP | PHS_COMMAND: 965 case CSR_SRV_REQ | PHS_COMMAND: 966 DB(DB_INTR, printk("CMND-%02x", cmd->cmnd[0])) 967 transfer_pio(regs, cmd->cmnd, cmd->cmd_len, DATA_OUT_DIR, 968 hostdata); 969 hostdata->state = S_CONNECTED; 970 spin_unlock_irqrestore(&hostdata->lock, flags); 971 break; 972 973 case CSR_XFER_DONE | PHS_STATUS: 974 case CSR_UNEXP | PHS_STATUS: 975 case CSR_SRV_REQ | PHS_STATUS: 976 DB(DB_INTR, printk("STATUS=")) 977 cmd->SCp.Status = read_1_byte(regs); 978 DB(DB_INTR, printk("%02x", cmd->SCp.Status)) 979 if (hostdata->level2 >= L2_BASIC) { 980 sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear interrupt */ 981 udelay(7); 982 hostdata->state = S_RUNNING_LEVEL2; 983 write_wd33c93(regs, WD_COMMAND_PHASE, 0x50); 984 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); 985 } else { 986 hostdata->state = S_CONNECTED; 987 } 988 spin_unlock_irqrestore(&hostdata->lock, flags); 989 break; 990 991 case CSR_XFER_DONE | PHS_MESS_IN: 992 case CSR_UNEXP | PHS_MESS_IN: 993 case CSR_SRV_REQ | PHS_MESS_IN: 994 DB(DB_INTR, printk("MSG_IN=")) 995 996 msg = read_1_byte(regs); 997 sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear interrupt */ 998 udelay(7); 999 1000 hostdata->incoming_msg[hostdata->incoming_ptr] = msg; 1001 if (hostdata->incoming_msg[0] == EXTENDED_MESSAGE) 1002 msg = EXTENDED_MESSAGE; 1003 else 1004 hostdata->incoming_ptr = 0; 1005 1006 cmd->SCp.Message = msg; 1007 switch (msg) { 1008 1009 case COMMAND_COMPLETE: 1010 DB(DB_INTR, printk("CCMP")) 1011 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1012 hostdata->state = S_PRE_CMP_DISC; 1013 break; 1014 1015 case SAVE_POINTERS: 1016 DB(DB_INTR, printk("SDP")) 1017 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1018 hostdata->state = S_CONNECTED; 1019 break; 1020 1021 case RESTORE_POINTERS: 1022 DB(DB_INTR, printk("RDP")) 1023 if (hostdata->level2 >= L2_BASIC) { 1024 write_wd33c93(regs, WD_COMMAND_PHASE, 0x45); 1025 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); 1026 hostdata->state = S_RUNNING_LEVEL2; 1027 } else { 1028 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1029 hostdata->state = S_CONNECTED; 1030 } 1031 break; 1032 1033 case DISCONNECT: 1034 DB(DB_INTR, printk("DIS")) 1035 cmd->device->disconnect = 1; 1036 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1037 hostdata->state = S_PRE_TMP_DISC; 1038 break; 1039 1040 case MESSAGE_REJECT: 1041 DB(DB_INTR, printk("REJ")) 1042 #ifdef SYNC_DEBUG 1043 printk("-REJ-"); 1044 #endif 1045 if (hostdata->sync_stat[cmd->device->id] == SS_WAITING) { 1046 hostdata->sync_stat[cmd->device->id] = SS_SET; 1047 /* we want default_sx_per, not DEFAULT_SX_PER */ 1048 hostdata->sync_xfer[cmd->device->id] = 1049 calc_sync_xfer(hostdata->default_sx_per 1050 / 4, 0, 0, hostdata->sx_table); 1051 } 1052 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1053 hostdata->state = S_CONNECTED; 1054 break; 1055 1056 case EXTENDED_MESSAGE: 1057 DB(DB_INTR, printk("EXT")) 1058 1059 ucp = hostdata->incoming_msg; 1060 1061 #ifdef SYNC_DEBUG 1062 printk("%02x", ucp[hostdata->incoming_ptr]); 1063 #endif 1064 /* Is this the last byte of the extended message? */ 1065 1066 if ((hostdata->incoming_ptr >= 2) && 1067 (hostdata->incoming_ptr == (ucp[1] + 1))) { 1068 1069 switch (ucp[2]) { /* what's the EXTENDED code? */ 1070 case EXTENDED_SDTR: 1071 /* default to default async period */ 1072 id = calc_sync_xfer(hostdata-> 1073 default_sx_per / 4, 0, 1074 0, hostdata->sx_table); 1075 if (hostdata->sync_stat[cmd->device->id] != 1076 SS_WAITING) { 1077 1078 /* A device has sent an unsolicited SDTR message; rather than go 1079 * through the effort of decoding it and then figuring out what 1080 * our reply should be, we're just gonna say that we have a 1081 * synchronous fifo depth of 0. This will result in asynchronous 1082 * transfers - not ideal but so much easier. 1083 * Actually, this is OK because it assures us that if we don't 1084 * specifically ask for sync transfers, we won't do any. 1085 */ 1086 1087 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */ 1088 hostdata->outgoing_msg[0] = 1089 EXTENDED_MESSAGE; 1090 hostdata->outgoing_msg[1] = 3; 1091 hostdata->outgoing_msg[2] = 1092 EXTENDED_SDTR; 1093 calc_sync_msg(hostdata-> 1094 default_sx_per, 0, 1095 0, hostdata->outgoing_msg + 3); 1096 hostdata->outgoing_len = 5; 1097 } else { 1098 if (ucp[4]) /* well, sync transfer */ 1099 id = calc_sync_xfer(ucp[3], ucp[4], 1100 hostdata->fast, 1101 hostdata->sx_table); 1102 else if (ucp[3]) /* very unlikely... */ 1103 id = calc_sync_xfer(ucp[3], ucp[4], 1104 0, hostdata->sx_table); 1105 } 1106 hostdata->sync_xfer[cmd->device->id] = id; 1107 #ifdef SYNC_DEBUG 1108 printk(" sync_xfer=%02x\n", 1109 hostdata->sync_xfer[cmd->device->id]); 1110 #endif 1111 hostdata->sync_stat[cmd->device->id] = 1112 SS_SET; 1113 write_wd33c93_cmd(regs, 1114 WD_CMD_NEGATE_ACK); 1115 hostdata->state = S_CONNECTED; 1116 break; 1117 case EXTENDED_WDTR: 1118 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */ 1119 printk("sending WDTR "); 1120 hostdata->outgoing_msg[0] = 1121 EXTENDED_MESSAGE; 1122 hostdata->outgoing_msg[1] = 2; 1123 hostdata->outgoing_msg[2] = 1124 EXTENDED_WDTR; 1125 hostdata->outgoing_msg[3] = 0; /* 8 bit transfer width */ 1126 hostdata->outgoing_len = 4; 1127 write_wd33c93_cmd(regs, 1128 WD_CMD_NEGATE_ACK); 1129 hostdata->state = S_CONNECTED; 1130 break; 1131 default: 1132 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */ 1133 printk 1134 ("Rejecting Unknown Extended Message(%02x). ", 1135 ucp[2]); 1136 hostdata->outgoing_msg[0] = 1137 MESSAGE_REJECT; 1138 hostdata->outgoing_len = 1; 1139 write_wd33c93_cmd(regs, 1140 WD_CMD_NEGATE_ACK); 1141 hostdata->state = S_CONNECTED; 1142 break; 1143 } 1144 hostdata->incoming_ptr = 0; 1145 } 1146 1147 /* We need to read more MESS_IN bytes for the extended message */ 1148 1149 else { 1150 hostdata->incoming_ptr++; 1151 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1152 hostdata->state = S_CONNECTED; 1153 } 1154 break; 1155 1156 default: 1157 printk("Rejecting Unknown Message(%02x) ", msg); 1158 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */ 1159 hostdata->outgoing_msg[0] = MESSAGE_REJECT; 1160 hostdata->outgoing_len = 1; 1161 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1162 hostdata->state = S_CONNECTED; 1163 } 1164 spin_unlock_irqrestore(&hostdata->lock, flags); 1165 break; 1166 1167 /* Note: this interrupt will occur only after a LEVEL2 command */ 1168 1169 case CSR_SEL_XFER_DONE: 1170 1171 /* Make sure that reselection is enabled at this point - it may 1172 * have been turned off for the command that just completed. 1173 */ 1174 1175 write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER); 1176 if (phs == 0x60) { 1177 DB(DB_INTR, printk("SX-DONE")) 1178 cmd->SCp.Message = COMMAND_COMPLETE; 1179 lun = read_wd33c93(regs, WD_TARGET_LUN); 1180 DB(DB_INTR, printk(":%d.%d", cmd->SCp.Status, lun)) 1181 hostdata->connected = NULL; 1182 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); 1183 hostdata->state = S_UNCONNECTED; 1184 if (cmd->SCp.Status == ILLEGAL_STATUS_BYTE) 1185 cmd->SCp.Status = lun; 1186 if (cmd->cmnd[0] == REQUEST_SENSE 1187 && cmd->SCp.Status != GOOD) 1188 cmd->result = 1189 (cmd-> 1190 result & 0x00ffff) | (DID_ERROR << 16); 1191 else 1192 cmd->result = 1193 cmd->SCp.Status | (cmd->SCp.Message << 8); 1194 cmd->scsi_done(cmd); 1195 1196 /* We are no longer connected to a target - check to see if 1197 * there are commands waiting to be executed. 1198 */ 1199 spin_unlock_irqrestore(&hostdata->lock, flags); 1200 wd33c93_execute(instance); 1201 } else { 1202 printk 1203 ("%02x:%02x:%02x: Unknown SEL_XFER_DONE phase!!---", 1204 asr, sr, phs); 1205 spin_unlock_irqrestore(&hostdata->lock, flags); 1206 } 1207 break; 1208 1209 /* Note: this interrupt will occur only after a LEVEL2 command */ 1210 1211 case CSR_SDP: 1212 DB(DB_INTR, printk("SDP")) 1213 hostdata->state = S_RUNNING_LEVEL2; 1214 write_wd33c93(regs, WD_COMMAND_PHASE, 0x41); 1215 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); 1216 spin_unlock_irqrestore(&hostdata->lock, flags); 1217 break; 1218 1219 case CSR_XFER_DONE | PHS_MESS_OUT: 1220 case CSR_UNEXP | PHS_MESS_OUT: 1221 case CSR_SRV_REQ | PHS_MESS_OUT: 1222 DB(DB_INTR, printk("MSG_OUT=")) 1223 1224 /* To get here, we've probably requested MESSAGE_OUT and have 1225 * already put the correct bytes in outgoing_msg[] and filled 1226 * in outgoing_len. We simply send them out to the SCSI bus. 1227 * Sometimes we get MESSAGE_OUT phase when we're not expecting 1228 * it - like when our SDTR message is rejected by a target. Some 1229 * targets send the REJECT before receiving all of the extended 1230 * message, and then seem to go back to MESSAGE_OUT for a byte 1231 * or two. Not sure why, or if I'm doing something wrong to 1232 * cause this to happen. Regardless, it seems that sending 1233 * NOP messages in these situations results in no harm and 1234 * makes everyone happy. 1235 */ 1236 if (hostdata->outgoing_len == 0) { 1237 hostdata->outgoing_len = 1; 1238 hostdata->outgoing_msg[0] = NOP; 1239 } 1240 transfer_pio(regs, hostdata->outgoing_msg, 1241 hostdata->outgoing_len, DATA_OUT_DIR, hostdata); 1242 DB(DB_INTR, printk("%02x", hostdata->outgoing_msg[0])) 1243 hostdata->outgoing_len = 0; 1244 hostdata->state = S_CONNECTED; 1245 spin_unlock_irqrestore(&hostdata->lock, flags); 1246 break; 1247 1248 case CSR_UNEXP_DISC: 1249 1250 /* I think I've seen this after a request-sense that was in response 1251 * to an error condition, but not sure. We certainly need to do 1252 * something when we get this interrupt - the question is 'what?'. 1253 * Let's think positively, and assume some command has finished 1254 * in a legal manner (like a command that provokes a request-sense), 1255 * so we treat it as a normal command-complete-disconnect. 1256 */ 1257 1258 /* Make sure that reselection is enabled at this point - it may 1259 * have been turned off for the command that just completed. 1260 */ 1261 1262 write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER); 1263 if (cmd == NULL) { 1264 printk(" - Already disconnected! "); 1265 hostdata->state = S_UNCONNECTED; 1266 spin_unlock_irqrestore(&hostdata->lock, flags); 1267 return; 1268 } 1269 DB(DB_INTR, printk("UNEXP_DISC")) 1270 hostdata->connected = NULL; 1271 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); 1272 hostdata->state = S_UNCONNECTED; 1273 if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD) 1274 cmd->result = 1275 (cmd->result & 0x00ffff) | (DID_ERROR << 16); 1276 else 1277 cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8); 1278 cmd->scsi_done(cmd); 1279 1280 /* We are no longer connected to a target - check to see if 1281 * there are commands waiting to be executed. 1282 */ 1283 /* look above for comments on scsi_done() */ 1284 spin_unlock_irqrestore(&hostdata->lock, flags); 1285 wd33c93_execute(instance); 1286 break; 1287 1288 case CSR_DISC: 1289 1290 /* Make sure that reselection is enabled at this point - it may 1291 * have been turned off for the command that just completed. 1292 */ 1293 1294 write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER); 1295 DB(DB_INTR, printk("DISC")) 1296 if (cmd == NULL) { 1297 printk(" - Already disconnected! "); 1298 hostdata->state = S_UNCONNECTED; 1299 } 1300 switch (hostdata->state) { 1301 case S_PRE_CMP_DISC: 1302 hostdata->connected = NULL; 1303 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); 1304 hostdata->state = S_UNCONNECTED; 1305 DB(DB_INTR, printk(":%d", cmd->SCp.Status)) 1306 if (cmd->cmnd[0] == REQUEST_SENSE 1307 && cmd->SCp.Status != GOOD) 1308 cmd->result = 1309 (cmd-> 1310 result & 0x00ffff) | (DID_ERROR << 16); 1311 else 1312 cmd->result = 1313 cmd->SCp.Status | (cmd->SCp.Message << 8); 1314 cmd->scsi_done(cmd); 1315 break; 1316 case S_PRE_TMP_DISC: 1317 case S_RUNNING_LEVEL2: 1318 cmd->host_scribble = (uchar *) hostdata->disconnected_Q; 1319 hostdata->disconnected_Q = cmd; 1320 hostdata->connected = NULL; 1321 hostdata->state = S_UNCONNECTED; 1322 1323 #ifdef PROC_STATISTICS 1324 hostdata->disc_done_cnt[cmd->device->id]++; 1325 #endif 1326 1327 break; 1328 default: 1329 printk("*** Unexpected DISCONNECT interrupt! ***"); 1330 hostdata->state = S_UNCONNECTED; 1331 } 1332 1333 /* We are no longer connected to a target - check to see if 1334 * there are commands waiting to be executed. 1335 */ 1336 spin_unlock_irqrestore(&hostdata->lock, flags); 1337 wd33c93_execute(instance); 1338 break; 1339 1340 case CSR_RESEL_AM: 1341 case CSR_RESEL: 1342 DB(DB_INTR, printk("RESEL%s", sr == CSR_RESEL_AM ? "_AM" : "")) 1343 1344 /* Old chips (pre -A ???) don't have advanced features and will 1345 * generate CSR_RESEL. In that case we have to extract the LUN the 1346 * hard way (see below). 1347 * First we have to make sure this reselection didn't 1348 * happen during Arbitration/Selection of some other device. 1349 * If yes, put losing command back on top of input_Q. 1350 */ 1351 if (hostdata->level2 <= L2_NONE) { 1352 1353 if (hostdata->selecting) { 1354 cmd = (struct scsi_cmnd *) hostdata->selecting; 1355 hostdata->selecting = NULL; 1356 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); 1357 cmd->host_scribble = 1358 (uchar *) hostdata->input_Q; 1359 hostdata->input_Q = cmd; 1360 } 1361 } 1362 1363 else { 1364 1365 if (cmd) { 1366 if (phs == 0x00) { 1367 hostdata->busy[cmd->device->id] &= 1368 ~(1 << cmd->device->lun); 1369 cmd->host_scribble = 1370 (uchar *) hostdata->input_Q; 1371 hostdata->input_Q = cmd; 1372 } else { 1373 printk 1374 ("---%02x:%02x:%02x-TROUBLE: Intrusive ReSelect!---", 1375 asr, sr, phs); 1376 while (1) 1377 printk("\r"); 1378 } 1379 } 1380 1381 } 1382 1383 /* OK - find out which device reselected us. */ 1384 1385 id = read_wd33c93(regs, WD_SOURCE_ID); 1386 id &= SRCID_MASK; 1387 1388 /* and extract the lun from the ID message. (Note that we don't 1389 * bother to check for a valid message here - I guess this is 1390 * not the right way to go, but...) 1391 */ 1392 1393 if (sr == CSR_RESEL_AM) { 1394 lun = read_wd33c93(regs, WD_DATA); 1395 if (hostdata->level2 < L2_RESELECT) 1396 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1397 lun &= 7; 1398 } else { 1399 /* Old chip; wait for msgin phase to pick up the LUN. */ 1400 for (lun = 255; lun; lun--) { 1401 if ((asr = read_aux_stat(regs)) & ASR_INT) 1402 break; 1403 udelay(10); 1404 } 1405 if (!(asr & ASR_INT)) { 1406 printk 1407 ("wd33c93: Reselected without IDENTIFY\n"); 1408 lun = 0; 1409 } else { 1410 /* Verify this is a change to MSG_IN and read the message */ 1411 sr = read_wd33c93(regs, WD_SCSI_STATUS); 1412 udelay(7); 1413 if (sr == (CSR_ABORT | PHS_MESS_IN) || 1414 sr == (CSR_UNEXP | PHS_MESS_IN) || 1415 sr == (CSR_SRV_REQ | PHS_MESS_IN)) { 1416 /* Got MSG_IN, grab target LUN */ 1417 lun = read_1_byte(regs); 1418 /* Now we expect a 'paused with ACK asserted' int.. */ 1419 asr = read_aux_stat(regs); 1420 if (!(asr & ASR_INT)) { 1421 udelay(10); 1422 asr = read_aux_stat(regs); 1423 if (!(asr & ASR_INT)) 1424 printk 1425 ("wd33c93: No int after LUN on RESEL (%02x)\n", 1426 asr); 1427 } 1428 sr = read_wd33c93(regs, WD_SCSI_STATUS); 1429 udelay(7); 1430 if (sr != CSR_MSGIN) 1431 printk 1432 ("wd33c93: Not paused with ACK on RESEL (%02x)\n", 1433 sr); 1434 lun &= 7; 1435 write_wd33c93_cmd(regs, 1436 WD_CMD_NEGATE_ACK); 1437 } else { 1438 printk 1439 ("wd33c93: Not MSG_IN on reselect (%02x)\n", 1440 sr); 1441 lun = 0; 1442 } 1443 } 1444 } 1445 1446 /* Now we look for the command that's reconnecting. */ 1447 1448 cmd = (struct scsi_cmnd *) hostdata->disconnected_Q; 1449 patch = NULL; 1450 while (cmd) { 1451 if (id == cmd->device->id && lun == cmd->device->lun) 1452 break; 1453 patch = cmd; 1454 cmd = (struct scsi_cmnd *) cmd->host_scribble; 1455 } 1456 1457 /* Hmm. Couldn't find a valid command.... What to do? */ 1458 1459 if (!cmd) { 1460 printk 1461 ("---TROUBLE: target %d.%d not in disconnect queue---", 1462 id, lun); 1463 spin_unlock_irqrestore(&hostdata->lock, flags); 1464 return; 1465 } 1466 1467 /* Ok, found the command - now start it up again. */ 1468 1469 if (patch) 1470 patch->host_scribble = cmd->host_scribble; 1471 else 1472 hostdata->disconnected_Q = 1473 (struct scsi_cmnd *) cmd->host_scribble; 1474 hostdata->connected = cmd; 1475 1476 /* We don't need to worry about 'initialize_SCp()' or 'hostdata->busy[]' 1477 * because these things are preserved over a disconnect. 1478 * But we DO need to fix the DPD bit so it's correct for this command. 1479 */ 1480 1481 if (cmd->sc_data_direction == DMA_TO_DEVICE) 1482 write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id); 1483 else 1484 write_wd33c93(regs, WD_DESTINATION_ID, 1485 cmd->device->id | DSTID_DPD); 1486 if (hostdata->level2 >= L2_RESELECT) { 1487 write_wd33c93_count(regs, 0); /* we want a DATA_PHASE interrupt */ 1488 write_wd33c93(regs, WD_COMMAND_PHASE, 0x45); 1489 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); 1490 hostdata->state = S_RUNNING_LEVEL2; 1491 } else 1492 hostdata->state = S_CONNECTED; 1493 1494 spin_unlock_irqrestore(&hostdata->lock, flags); 1495 break; 1496 1497 default: 1498 printk("--UNKNOWN INTERRUPT:%02x:%02x:%02x--", asr, sr, phs); 1499 spin_unlock_irqrestore(&hostdata->lock, flags); 1500 } 1501 1502 DB(DB_INTR, printk("} ")) 1503 1504 } 1505 1506 static void 1507 reset_wd33c93(struct Scsi_Host *instance) 1508 { 1509 struct WD33C93_hostdata *hostdata = 1510 (struct WD33C93_hostdata *) instance->hostdata; 1511 const wd33c93_regs regs = hostdata->regs; 1512 uchar sr; 1513 1514 #ifdef CONFIG_SGI_IP22 1515 { 1516 int busycount = 0; 1517 extern void sgiwd93_reset(unsigned long); 1518 /* wait 'til the chip gets some time for us */ 1519 while ((read_aux_stat(regs) & ASR_BSY) && busycount++ < 100) 1520 udelay (10); 1521 /* 1522 * there are scsi devices out there, which manage to lock up 1523 * the wd33c93 in a busy condition. In this state it won't 1524 * accept the reset command. The only way to solve this is to 1525 * give the chip a hardware reset (if possible). The code below 1526 * does this for the SGI Indy, where this is possible 1527 */ 1528 /* still busy ? */ 1529 if (read_aux_stat(regs) & ASR_BSY) 1530 sgiwd93_reset(instance->base); /* yeah, give it the hard one */ 1531 } 1532 #endif 1533 1534 write_wd33c93(regs, WD_OWN_ID, OWNID_EAF | OWNID_RAF | 1535 instance->this_id | hostdata->clock_freq); 1536 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); 1537 write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER, 1538 calc_sync_xfer(hostdata->default_sx_per / 4, 1539 DEFAULT_SX_OFF, 0, hostdata->sx_table)); 1540 write_wd33c93(regs, WD_COMMAND, WD_CMD_RESET); 1541 1542 1543 #ifdef CONFIG_MVME147_SCSI 1544 udelay(25); /* The old wd33c93 on MVME147 needs this, at least */ 1545 #endif 1546 1547 while (!(read_aux_stat(regs) & ASR_INT)) 1548 ; 1549 sr = read_wd33c93(regs, WD_SCSI_STATUS); 1550 1551 hostdata->microcode = read_wd33c93(regs, WD_CDB_1); 1552 if (sr == 0x00) 1553 hostdata->chip = C_WD33C93; 1554 else if (sr == 0x01) { 1555 write_wd33c93(regs, WD_QUEUE_TAG, 0xa5); /* any random number */ 1556 sr = read_wd33c93(regs, WD_QUEUE_TAG); 1557 if (sr == 0xa5) { 1558 hostdata->chip = C_WD33C93B; 1559 write_wd33c93(regs, WD_QUEUE_TAG, 0); 1560 } else 1561 hostdata->chip = C_WD33C93A; 1562 } else 1563 hostdata->chip = C_UNKNOWN_CHIP; 1564 1565 if (hostdata->chip != C_WD33C93B) /* Fast SCSI unavailable */ 1566 hostdata->fast = 0; 1567 1568 write_wd33c93(regs, WD_TIMEOUT_PERIOD, TIMEOUT_PERIOD_VALUE); 1569 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); 1570 } 1571 1572 int 1573 wd33c93_host_reset(struct scsi_cmnd * SCpnt) 1574 { 1575 struct Scsi_Host *instance; 1576 struct WD33C93_hostdata *hostdata; 1577 int i; 1578 1579 instance = SCpnt->device->host; 1580 hostdata = (struct WD33C93_hostdata *) instance->hostdata; 1581 1582 printk("scsi%d: reset. ", instance->host_no); 1583 disable_irq(instance->irq); 1584 1585 hostdata->dma_stop(instance, NULL, 0); 1586 for (i = 0; i < 8; i++) { 1587 hostdata->busy[i] = 0; 1588 hostdata->sync_xfer[i] = 1589 calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF, 1590 0, hostdata->sx_table); 1591 hostdata->sync_stat[i] = SS_UNSET; /* using default sync values */ 1592 } 1593 hostdata->input_Q = NULL; 1594 hostdata->selecting = NULL; 1595 hostdata->connected = NULL; 1596 hostdata->disconnected_Q = NULL; 1597 hostdata->state = S_UNCONNECTED; 1598 hostdata->dma = D_DMA_OFF; 1599 hostdata->incoming_ptr = 0; 1600 hostdata->outgoing_len = 0; 1601 1602 reset_wd33c93(instance); 1603 SCpnt->result = DID_RESET << 16; 1604 enable_irq(instance->irq); 1605 return SUCCESS; 1606 } 1607 1608 int 1609 wd33c93_abort(struct scsi_cmnd * cmd) 1610 { 1611 struct Scsi_Host *instance; 1612 struct WD33C93_hostdata *hostdata; 1613 wd33c93_regs regs; 1614 struct scsi_cmnd *tmp, *prev; 1615 1616 disable_irq(cmd->device->host->irq); 1617 1618 instance = cmd->device->host; 1619 hostdata = (struct WD33C93_hostdata *) instance->hostdata; 1620 regs = hostdata->regs; 1621 1622 /* 1623 * Case 1 : If the command hasn't been issued yet, we simply remove it 1624 * from the input_Q. 1625 */ 1626 1627 tmp = (struct scsi_cmnd *) hostdata->input_Q; 1628 prev = NULL; 1629 while (tmp) { 1630 if (tmp == cmd) { 1631 if (prev) 1632 prev->host_scribble = cmd->host_scribble; 1633 else 1634 hostdata->input_Q = 1635 (struct scsi_cmnd *) cmd->host_scribble; 1636 cmd->host_scribble = NULL; 1637 cmd->result = DID_ABORT << 16; 1638 printk 1639 ("scsi%d: Abort - removing command from input_Q. ", 1640 instance->host_no); 1641 enable_irq(cmd->device->host->irq); 1642 cmd->scsi_done(cmd); 1643 return SUCCESS; 1644 } 1645 prev = tmp; 1646 tmp = (struct scsi_cmnd *) tmp->host_scribble; 1647 } 1648 1649 /* 1650 * Case 2 : If the command is connected, we're going to fail the abort 1651 * and let the high level SCSI driver retry at a later time or 1652 * issue a reset. 1653 * 1654 * Timeouts, and therefore aborted commands, will be highly unlikely 1655 * and handling them cleanly in this situation would make the common 1656 * case of noresets less efficient, and would pollute our code. So, 1657 * we fail. 1658 */ 1659 1660 if (hostdata->connected == cmd) { 1661 uchar sr, asr; 1662 unsigned long timeout; 1663 1664 printk("scsi%d: Aborting connected command - ", 1665 instance->host_no); 1666 1667 printk("stopping DMA - "); 1668 if (hostdata->dma == D_DMA_RUNNING) { 1669 hostdata->dma_stop(instance, cmd, 0); 1670 hostdata->dma = D_DMA_OFF; 1671 } 1672 1673 printk("sending wd33c93 ABORT command - "); 1674 write_wd33c93(regs, WD_CONTROL, 1675 CTRL_IDI | CTRL_EDI | CTRL_POLLED); 1676 write_wd33c93_cmd(regs, WD_CMD_ABORT); 1677 1678 /* Now we have to attempt to flush out the FIFO... */ 1679 1680 printk("flushing fifo - "); 1681 timeout = 1000000; 1682 do { 1683 asr = read_aux_stat(regs); 1684 if (asr & ASR_DBR) 1685 read_wd33c93(regs, WD_DATA); 1686 } while (!(asr & ASR_INT) && timeout-- > 0); 1687 sr = read_wd33c93(regs, WD_SCSI_STATUS); 1688 printk 1689 ("asr=%02x, sr=%02x, %ld bytes un-transferred (timeout=%ld) - ", 1690 asr, sr, read_wd33c93_count(regs), timeout); 1691 1692 /* 1693 * Abort command processed. 1694 * Still connected. 1695 * We must disconnect. 1696 */ 1697 1698 printk("sending wd33c93 DISCONNECT command - "); 1699 write_wd33c93_cmd(regs, WD_CMD_DISCONNECT); 1700 1701 timeout = 1000000; 1702 asr = read_aux_stat(regs); 1703 while ((asr & ASR_CIP) && timeout-- > 0) 1704 asr = read_aux_stat(regs); 1705 sr = read_wd33c93(regs, WD_SCSI_STATUS); 1706 printk("asr=%02x, sr=%02x.", asr, sr); 1707 1708 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); 1709 hostdata->connected = NULL; 1710 hostdata->state = S_UNCONNECTED; 1711 cmd->result = DID_ABORT << 16; 1712 1713 /* sti();*/ 1714 wd33c93_execute(instance); 1715 1716 enable_irq(cmd->device->host->irq); 1717 cmd->scsi_done(cmd); 1718 return SUCCESS; 1719 } 1720 1721 /* 1722 * Case 3: If the command is currently disconnected from the bus, 1723 * we're not going to expend much effort here: Let's just return 1724 * an ABORT_SNOOZE and hope for the best... 1725 */ 1726 1727 tmp = (struct scsi_cmnd *) hostdata->disconnected_Q; 1728 while (tmp) { 1729 if (tmp == cmd) { 1730 printk 1731 ("scsi%d: Abort - command found on disconnected_Q - ", 1732 instance->host_no); 1733 printk("Abort SNOOZE. "); 1734 enable_irq(cmd->device->host->irq); 1735 return FAILED; 1736 } 1737 tmp = (struct scsi_cmnd *) tmp->host_scribble; 1738 } 1739 1740 /* 1741 * Case 4 : If we reached this point, the command was not found in any of 1742 * the queues. 1743 * 1744 * We probably reached this point because of an unlikely race condition 1745 * between the command completing successfully and the abortion code, 1746 * so we won't panic, but we will notify the user in case something really 1747 * broke. 1748 */ 1749 1750 /* sti();*/ 1751 wd33c93_execute(instance); 1752 1753 enable_irq(cmd->device->host->irq); 1754 printk("scsi%d: warning : SCSI command probably completed successfully" 1755 " before abortion. ", instance->host_no); 1756 return FAILED; 1757 } 1758 1759 #define MAX_WD33C93_HOSTS 4 1760 #define MAX_SETUP_ARGS ARRAY_SIZE(setup_args) 1761 #define SETUP_BUFFER_SIZE 200 1762 static char setup_buffer[SETUP_BUFFER_SIZE]; 1763 static char setup_used[MAX_SETUP_ARGS]; 1764 static int done_setup = 0; 1765 1766 static int 1767 wd33c93_setup(char *str) 1768 { 1769 int i; 1770 char *p1, *p2; 1771 1772 /* The kernel does some processing of the command-line before calling 1773 * this function: If it begins with any decimal or hex number arguments, 1774 * ints[0] = how many numbers found and ints[1] through [n] are the values 1775 * themselves. str points to where the non-numeric arguments (if any) 1776 * start: We do our own parsing of those. We construct synthetic 'nosync' 1777 * keywords out of numeric args (to maintain compatibility with older 1778 * versions) and then add the rest of the arguments. 1779 */ 1780 1781 p1 = setup_buffer; 1782 *p1 = '\0'; 1783 if (str) 1784 strncpy(p1, str, SETUP_BUFFER_SIZE - strlen(setup_buffer)); 1785 setup_buffer[SETUP_BUFFER_SIZE - 1] = '\0'; 1786 p1 = setup_buffer; 1787 i = 0; 1788 while (*p1 && (i < MAX_SETUP_ARGS)) { 1789 p2 = strchr(p1, ','); 1790 if (p2) { 1791 *p2 = '\0'; 1792 if (p1 != p2) 1793 setup_args[i] = p1; 1794 p1 = p2 + 1; 1795 i++; 1796 } else { 1797 setup_args[i] = p1; 1798 break; 1799 } 1800 } 1801 for (i = 0; i < MAX_SETUP_ARGS; i++) 1802 setup_used[i] = 0; 1803 done_setup = 1; 1804 1805 return 1; 1806 } 1807 __setup("wd33c93=", wd33c93_setup); 1808 1809 /* check_setup_args() returns index if key found, 0 if not 1810 */ 1811 static int 1812 check_setup_args(char *key, int *flags, int *val, char *buf) 1813 { 1814 int x; 1815 char *cp; 1816 1817 for (x = 0; x < MAX_SETUP_ARGS; x++) { 1818 if (setup_used[x]) 1819 continue; 1820 if (!strncmp(setup_args[x], key, strlen(key))) 1821 break; 1822 if (!strncmp(setup_args[x], "next", strlen("next"))) 1823 return 0; 1824 } 1825 if (x == MAX_SETUP_ARGS) 1826 return 0; 1827 setup_used[x] = 1; 1828 cp = setup_args[x] + strlen(key); 1829 *val = -1; 1830 if (*cp != ':') 1831 return ++x; 1832 cp++; 1833 if ((*cp >= '0') && (*cp <= '9')) { 1834 *val = simple_strtoul(cp, NULL, 0); 1835 } 1836 return ++x; 1837 } 1838 1839 /* 1840 * Calculate internal data-transfer-clock cycle from input-clock 1841 * frequency (/MHz) and fill 'sx_table'. 1842 * 1843 * The original driver used to rely on a fixed sx_table, containing periods 1844 * for (only) the lower limits of the respective input-clock-frequency ranges 1845 * (8-10/12-15/16-20 MHz). Although it seems, that no problems occurred with 1846 * this setting so far, it might be desirable to adjust the transfer periods 1847 * closer to the really attached, possibly 25% higher, input-clock, since 1848 * - the wd33c93 may really use a significant shorter period, than it has 1849 * negotiated (eg. thrashing the target, which expects 4/8MHz, with 5/10MHz 1850 * instead). 1851 * - the wd33c93 may ask the target for a lower transfer rate, than the target 1852 * is capable of (eg. negotiating for an assumed minimum of 252ns instead of 1853 * possible 200ns, which indeed shows up in tests as an approx. 10% lower 1854 * transfer rate). 1855 */ 1856 static inline unsigned int 1857 round_4(unsigned int x) 1858 { 1859 switch (x & 3) { 1860 case 1: --x; 1861 break; 1862 case 2: ++x; 1863 case 3: ++x; 1864 } 1865 return x; 1866 } 1867 1868 static void 1869 calc_sx_table(unsigned int mhz, struct sx_period sx_table[9]) 1870 { 1871 unsigned int d, i; 1872 if (mhz < 11) 1873 d = 2; /* divisor for 8-10 MHz input-clock */ 1874 else if (mhz < 16) 1875 d = 3; /* divisor for 12-15 MHz input-clock */ 1876 else 1877 d = 4; /* divisor for 16-20 MHz input-clock */ 1878 1879 d = (100000 * d) / 2 / mhz; /* 100 x DTCC / nanosec */ 1880 1881 sx_table[0].period_ns = 1; 1882 sx_table[0].reg_value = 0x20; 1883 for (i = 1; i < 8; i++) { 1884 sx_table[i].period_ns = round_4((i+1)*d / 100); 1885 sx_table[i].reg_value = (i+1)*0x10; 1886 } 1887 sx_table[7].reg_value = 0; 1888 sx_table[8].period_ns = 0; 1889 sx_table[8].reg_value = 0; 1890 } 1891 1892 /* 1893 * check and, maybe, map an init- or "clock:"- argument. 1894 */ 1895 static uchar 1896 set_clk_freq(int freq, int *mhz) 1897 { 1898 int x = freq; 1899 if (WD33C93_FS_8_10 == freq) 1900 freq = 8; 1901 else if (WD33C93_FS_12_15 == freq) 1902 freq = 12; 1903 else if (WD33C93_FS_16_20 == freq) 1904 freq = 16; 1905 else if (freq > 7 && freq < 11) 1906 x = WD33C93_FS_8_10; 1907 else if (freq > 11 && freq < 16) 1908 x = WD33C93_FS_12_15; 1909 else if (freq > 15 && freq < 21) 1910 x = WD33C93_FS_16_20; 1911 else { 1912 /* Hmm, wouldn't it be safer to assume highest freq here? */ 1913 x = WD33C93_FS_8_10; 1914 freq = 8; 1915 } 1916 *mhz = freq; 1917 return x; 1918 } 1919 1920 /* 1921 * to be used with the resync: fast: ... options 1922 */ 1923 static inline void set_resync ( struct WD33C93_hostdata *hd, int mask ) 1924 { 1925 int i; 1926 for (i = 0; i < 8; i++) 1927 if (mask & (1 << i)) 1928 hd->sync_stat[i] = SS_UNSET; 1929 } 1930 1931 void 1932 wd33c93_init(struct Scsi_Host *instance, const wd33c93_regs regs, 1933 dma_setup_t setup, dma_stop_t stop, int clock_freq) 1934 { 1935 struct WD33C93_hostdata *hostdata; 1936 int i; 1937 int flags; 1938 int val; 1939 char buf[32]; 1940 1941 if (!done_setup && setup_strings) 1942 wd33c93_setup(setup_strings); 1943 1944 hostdata = (struct WD33C93_hostdata *) instance->hostdata; 1945 1946 hostdata->regs = regs; 1947 hostdata->clock_freq = set_clk_freq(clock_freq, &i); 1948 calc_sx_table(i, hostdata->sx_table); 1949 hostdata->dma_setup = setup; 1950 hostdata->dma_stop = stop; 1951 hostdata->dma_bounce_buffer = NULL; 1952 hostdata->dma_bounce_len = 0; 1953 for (i = 0; i < 8; i++) { 1954 hostdata->busy[i] = 0; 1955 hostdata->sync_xfer[i] = 1956 calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF, 1957 0, hostdata->sx_table); 1958 hostdata->sync_stat[i] = SS_UNSET; /* using default sync values */ 1959 #ifdef PROC_STATISTICS 1960 hostdata->cmd_cnt[i] = 0; 1961 hostdata->disc_allowed_cnt[i] = 0; 1962 hostdata->disc_done_cnt[i] = 0; 1963 #endif 1964 } 1965 hostdata->input_Q = NULL; 1966 hostdata->selecting = NULL; 1967 hostdata->connected = NULL; 1968 hostdata->disconnected_Q = NULL; 1969 hostdata->state = S_UNCONNECTED; 1970 hostdata->dma = D_DMA_OFF; 1971 hostdata->level2 = L2_BASIC; 1972 hostdata->disconnect = DIS_ADAPTIVE; 1973 hostdata->args = DEBUG_DEFAULTS; 1974 hostdata->incoming_ptr = 0; 1975 hostdata->outgoing_len = 0; 1976 hostdata->default_sx_per = DEFAULT_SX_PER; 1977 hostdata->no_dma = 0; /* default is DMA enabled */ 1978 1979 #ifdef PROC_INTERFACE 1980 hostdata->proc = PR_VERSION | PR_INFO | PR_STATISTICS | 1981 PR_CONNECTED | PR_INPUTQ | PR_DISCQ | PR_STOP; 1982 #ifdef PROC_STATISTICS 1983 hostdata->dma_cnt = 0; 1984 hostdata->pio_cnt = 0; 1985 hostdata->int_cnt = 0; 1986 #endif 1987 #endif 1988 1989 if (check_setup_args("clock", &flags, &val, buf)) { 1990 hostdata->clock_freq = set_clk_freq(val, &val); 1991 calc_sx_table(val, hostdata->sx_table); 1992 } 1993 1994 if (check_setup_args("nosync", &flags, &val, buf)) 1995 hostdata->no_sync = val; 1996 1997 if (check_setup_args("nodma", &flags, &val, buf)) 1998 hostdata->no_dma = (val == -1) ? 1 : val; 1999 2000 if (check_setup_args("period", &flags, &val, buf)) 2001 hostdata->default_sx_per = 2002 hostdata->sx_table[round_period((unsigned int) val, 2003 hostdata->sx_table)].period_ns; 2004 2005 if (check_setup_args("disconnect", &flags, &val, buf)) { 2006 if ((val >= DIS_NEVER) && (val <= DIS_ALWAYS)) 2007 hostdata->disconnect = val; 2008 else 2009 hostdata->disconnect = DIS_ADAPTIVE; 2010 } 2011 2012 if (check_setup_args("level2", &flags, &val, buf)) 2013 hostdata->level2 = val; 2014 2015 if (check_setup_args("debug", &flags, &val, buf)) 2016 hostdata->args = val & DB_MASK; 2017 2018 if (check_setup_args("burst", &flags, &val, buf)) 2019 hostdata->dma_mode = val ? CTRL_BURST:CTRL_DMA; 2020 2021 if (WD33C93_FS_16_20 == hostdata->clock_freq /* divisor 4 */ 2022 && check_setup_args("fast", &flags, &val, buf)) 2023 hostdata->fast = !!val; 2024 2025 if ((i = check_setup_args("next", &flags, &val, buf))) { 2026 while (i) 2027 setup_used[--i] = 1; 2028 } 2029 #ifdef PROC_INTERFACE 2030 if (check_setup_args("proc", &flags, &val, buf)) 2031 hostdata->proc = val; 2032 #endif 2033 2034 spin_lock_irq(&hostdata->lock); 2035 reset_wd33c93(instance); 2036 spin_unlock_irq(&hostdata->lock); 2037 2038 printk("wd33c93-%d: chip=%s/%d no_sync=0x%x no_dma=%d", 2039 instance->host_no, 2040 (hostdata->chip == C_WD33C93) ? "WD33c93" : (hostdata->chip == 2041 C_WD33C93A) ? 2042 "WD33c93A" : (hostdata->chip == 2043 C_WD33C93B) ? "WD33c93B" : "unknown", 2044 hostdata->microcode, hostdata->no_sync, hostdata->no_dma); 2045 #ifdef DEBUGGING_ON 2046 printk(" debug_flags=0x%02x\n", hostdata->args); 2047 #else 2048 printk(" debugging=OFF\n"); 2049 #endif 2050 printk(" setup_args="); 2051 for (i = 0; i < MAX_SETUP_ARGS; i++) 2052 printk("%s,", setup_args[i]); 2053 printk("\n"); 2054 printk(" Version %s - %s\n", WD33C93_VERSION, WD33C93_DATE); 2055 } 2056 2057 int wd33c93_write_info(struct Scsi_Host *instance, char *buf, int len) 2058 { 2059 #ifdef PROC_INTERFACE 2060 char *bp; 2061 struct WD33C93_hostdata *hd; 2062 int x; 2063 2064 hd = (struct WD33C93_hostdata *) instance->hostdata; 2065 2066 /* We accept the following 2067 * keywords (same format as command-line, but arguments are not optional): 2068 * debug 2069 * disconnect 2070 * period 2071 * resync 2072 * proc 2073 * nodma 2074 * level2 2075 * burst 2076 * fast 2077 * nosync 2078 */ 2079 2080 buf[len] = '\0'; 2081 for (bp = buf; *bp; ) { 2082 while (',' == *bp || ' ' == *bp) 2083 ++bp; 2084 if (!strncmp(bp, "debug:", 6)) { 2085 hd->args = simple_strtoul(bp+6, &bp, 0) & DB_MASK; 2086 } else if (!strncmp(bp, "disconnect:", 11)) { 2087 x = simple_strtoul(bp+11, &bp, 0); 2088 if (x < DIS_NEVER || x > DIS_ALWAYS) 2089 x = DIS_ADAPTIVE; 2090 hd->disconnect = x; 2091 } else if (!strncmp(bp, "period:", 7)) { 2092 x = simple_strtoul(bp+7, &bp, 0); 2093 hd->default_sx_per = 2094 hd->sx_table[round_period((unsigned int) x, 2095 hd->sx_table)].period_ns; 2096 } else if (!strncmp(bp, "resync:", 7)) { 2097 set_resync(hd, (int)simple_strtoul(bp+7, &bp, 0)); 2098 } else if (!strncmp(bp, "proc:", 5)) { 2099 hd->proc = simple_strtoul(bp+5, &bp, 0); 2100 } else if (!strncmp(bp, "nodma:", 6)) { 2101 hd->no_dma = simple_strtoul(bp+6, &bp, 0); 2102 } else if (!strncmp(bp, "level2:", 7)) { 2103 hd->level2 = simple_strtoul(bp+7, &bp, 0); 2104 } else if (!strncmp(bp, "burst:", 6)) { 2105 hd->dma_mode = 2106 simple_strtol(bp+6, &bp, 0) ? CTRL_BURST:CTRL_DMA; 2107 } else if (!strncmp(bp, "fast:", 5)) { 2108 x = !!simple_strtol(bp+5, &bp, 0); 2109 if (x != hd->fast) 2110 set_resync(hd, 0xff); 2111 hd->fast = x; 2112 } else if (!strncmp(bp, "nosync:", 7)) { 2113 x = simple_strtoul(bp+7, &bp, 0); 2114 set_resync(hd, x ^ hd->no_sync); 2115 hd->no_sync = x; 2116 } else { 2117 break; /* unknown keyword,syntax-error,... */ 2118 } 2119 } 2120 return len; 2121 #else 2122 return 0; 2123 #endif 2124 } 2125 2126 int 2127 wd33c93_show_info(struct seq_file *m, struct Scsi_Host *instance) 2128 { 2129 #ifdef PROC_INTERFACE 2130 struct WD33C93_hostdata *hd; 2131 struct scsi_cmnd *cmd; 2132 int x; 2133 2134 hd = (struct WD33C93_hostdata *) instance->hostdata; 2135 2136 spin_lock_irq(&hd->lock); 2137 if (hd->proc & PR_VERSION) 2138 seq_printf(m, "\nVersion %s - %s.", 2139 WD33C93_VERSION, WD33C93_DATE); 2140 2141 if (hd->proc & PR_INFO) { 2142 seq_printf(m, "\nclock_freq=%02x no_sync=%02x no_dma=%d" 2143 " dma_mode=%02x fast=%d", 2144 hd->clock_freq, hd->no_sync, hd->no_dma, hd->dma_mode, hd->fast); 2145 seq_printf(m, "\nsync_xfer[] = "); 2146 for (x = 0; x < 7; x++) 2147 seq_printf(m, "\t%02x", hd->sync_xfer[x]); 2148 seq_printf(m, "\nsync_stat[] = "); 2149 for (x = 0; x < 7; x++) 2150 seq_printf(m, "\t%02x", hd->sync_stat[x]); 2151 } 2152 #ifdef PROC_STATISTICS 2153 if (hd->proc & PR_STATISTICS) { 2154 seq_printf(m, "\ncommands issued: "); 2155 for (x = 0; x < 7; x++) 2156 seq_printf(m, "\t%ld", hd->cmd_cnt[x]); 2157 seq_printf(m, "\ndisconnects allowed:"); 2158 for (x = 0; x < 7; x++) 2159 seq_printf(m, "\t%ld", hd->disc_allowed_cnt[x]); 2160 seq_printf(m, "\ndisconnects done: "); 2161 for (x = 0; x < 7; x++) 2162 seq_printf(m, "\t%ld", hd->disc_done_cnt[x]); 2163 seq_printf(m, 2164 "\ninterrupts: %ld, DATA_PHASE ints: %ld DMA, %ld PIO", 2165 hd->int_cnt, hd->dma_cnt, hd->pio_cnt); 2166 } 2167 #endif 2168 if (hd->proc & PR_CONNECTED) { 2169 seq_printf(m, "\nconnected: "); 2170 if (hd->connected) { 2171 cmd = (struct scsi_cmnd *) hd->connected; 2172 seq_printf(m, " %d:%d(%02x)", 2173 cmd->device->id, cmd->device->lun, cmd->cmnd[0]); 2174 } 2175 } 2176 if (hd->proc & PR_INPUTQ) { 2177 seq_printf(m, "\ninput_Q: "); 2178 cmd = (struct scsi_cmnd *) hd->input_Q; 2179 while (cmd) { 2180 seq_printf(m, " %d:%d(%02x)", 2181 cmd->device->id, cmd->device->lun, cmd->cmnd[0]); 2182 cmd = (struct scsi_cmnd *) cmd->host_scribble; 2183 } 2184 } 2185 if (hd->proc & PR_DISCQ) { 2186 seq_printf(m, "\ndisconnected_Q:"); 2187 cmd = (struct scsi_cmnd *) hd->disconnected_Q; 2188 while (cmd) { 2189 seq_printf(m, " %d:%d(%02x)", 2190 cmd->device->id, cmd->device->lun, cmd->cmnd[0]); 2191 cmd = (struct scsi_cmnd *) cmd->host_scribble; 2192 } 2193 } 2194 seq_printf(m, "\n"); 2195 spin_unlock_irq(&hd->lock); 2196 #endif /* PROC_INTERFACE */ 2197 return 0; 2198 } 2199 2200 EXPORT_SYMBOL(wd33c93_host_reset); 2201 EXPORT_SYMBOL(wd33c93_init); 2202 EXPORT_SYMBOL(wd33c93_abort); 2203 EXPORT_SYMBOL(wd33c93_queuecommand); 2204 EXPORT_SYMBOL(wd33c93_intr); 2205 EXPORT_SYMBOL(wd33c93_show_info); 2206 EXPORT_SYMBOL(wd33c93_write_info); 2207