1 /* 2 * Copyright (c) 1996 John Shifflett, GeoLog Consulting 3 * john@geolog.com 4 * jshiffle@netcom.com 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2, or (at your option) 9 * any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 */ 16 17 /* 18 * Drew Eckhardt's excellent 'Generic NCR5380' sources from Linux-PC 19 * provided much of the inspiration and some of the code for this 20 * driver. Everything I know about Amiga DMA was gleaned from careful 21 * reading of Hamish Mcdonald's original wd33c93 driver; in fact, I 22 * borrowed shamelessly from all over that source. Thanks Hamish! 23 * 24 * _This_ driver is (I feel) an improvement over the old one in 25 * several respects: 26 * 27 * - Target Disconnection/Reconnection is now supported. Any 28 * system with more than one device active on the SCSI bus 29 * will benefit from this. The driver defaults to what I 30 * call 'adaptive disconnect' - meaning that each command 31 * is evaluated individually as to whether or not it should 32 * be run with the option to disconnect/reselect (if the 33 * device chooses), or as a "SCSI-bus-hog". 34 * 35 * - Synchronous data transfers are now supported. Because of 36 * a few devices that choke after telling the driver that 37 * they can do sync transfers, we don't automatically use 38 * this faster protocol - it can be enabled via the command- 39 * line on a device-by-device basis. 40 * 41 * - Runtime operating parameters can now be specified through 42 * the 'amiboot' or the 'insmod' command line. For amiboot do: 43 * "amiboot [usual stuff] wd33c93=blah,blah,blah" 44 * The defaults should be good for most people. See the comment 45 * for 'setup_strings' below for more details. 46 * 47 * - The old driver relied exclusively on what the Western Digital 48 * docs call "Combination Level 2 Commands", which are a great 49 * idea in that the CPU is relieved of a lot of interrupt 50 * overhead. However, by accepting a certain (user-settable) 51 * amount of additional interrupts, this driver achieves 52 * better control over the SCSI bus, and data transfers are 53 * almost as fast while being much easier to define, track, 54 * and debug. 55 * 56 * 57 * TODO: 58 * more speed. linked commands. 59 * 60 * 61 * People with bug reports, wish-lists, complaints, comments, 62 * or improvements are asked to pah-leeez email me (John Shifflett) 63 * at john@geolog.com or jshiffle@netcom.com! I'm anxious to get 64 * this thing into as good a shape as possible, and I'm positive 65 * there are lots of lurking bugs and "Stupid Places". 66 * 67 * Updates: 68 * 69 * Added support for pre -A chips, which don't have advanced features 70 * and will generate CSR_RESEL rather than CSR_RESEL_AM. 71 * Richard Hirst <richard@sleepie.demon.co.uk> August 2000 72 * 73 * Added support for Burst Mode DMA and Fast SCSI. Enabled the use of 74 * default_sx_per for asynchronous data transfers. Added adjustment 75 * of transfer periods in sx_table to the actual input-clock. 76 * peter fuerst <post@pfrst.de> February 2007 77 */ 78 79 #include <linux/module.h> 80 81 #include <linux/string.h> 82 #include <linux/delay.h> 83 #include <linux/init.h> 84 #include <linux/interrupt.h> 85 #include <linux/blkdev.h> 86 87 #include <scsi/scsi.h> 88 #include <scsi/scsi_cmnd.h> 89 #include <scsi/scsi_device.h> 90 #include <scsi/scsi_host.h> 91 92 #include <asm/irq.h> 93 94 #include "wd33c93.h" 95 96 #define optimum_sx_per(hostdata) (hostdata)->sx_table[1].period_ns 97 98 99 #define WD33C93_VERSION "1.26++" 100 #define WD33C93_DATE "10/Feb/2007" 101 102 MODULE_AUTHOR("John Shifflett"); 103 MODULE_DESCRIPTION("Generic WD33C93 SCSI driver"); 104 MODULE_LICENSE("GPL"); 105 106 /* 107 * 'setup_strings' is a single string used to pass operating parameters and 108 * settings from the kernel/module command-line to the driver. 'setup_args[]' 109 * is an array of strings that define the compile-time default values for 110 * these settings. If Linux boots with an amiboot or insmod command-line, 111 * those settings are combined with 'setup_args[]'. Note that amiboot 112 * command-lines are prefixed with "wd33c93=" while insmod uses a 113 * "setup_strings=" prefix. The driver recognizes the following keywords 114 * (lower case required) and arguments: 115 * 116 * - nosync:bitmask -bitmask is a byte where the 1st 7 bits correspond with 117 * the 7 possible SCSI devices. Set a bit to negotiate for 118 * asynchronous transfers on that device. To maintain 119 * backwards compatibility, a command-line such as 120 * "wd33c93=255" will be automatically translated to 121 * "wd33c93=nosync:0xff". 122 * - nodma:x -x = 1 to disable DMA, x = 0 to enable it. Argument is 123 * optional - if not present, same as "nodma:1". 124 * - period:ns -ns is the minimum # of nanoseconds in a SCSI data transfer 125 * period. Default is 500; acceptable values are 250 - 1000. 126 * - disconnect:x -x = 0 to never allow disconnects, 2 to always allow them. 127 * x = 1 does 'adaptive' disconnects, which is the default 128 * and generally the best choice. 129 * - debug:x -If 'DEBUGGING_ON' is defined, x is a bit mask that causes 130 * various types of debug output to printed - see the DB_xxx 131 * defines in wd33c93.h 132 * - clock:x -x = clock input in MHz for WD33c93 chip. Normal values 133 * would be from 8 through 20. Default is 8. 134 * - burst:x -x = 1 to use Burst Mode (or Demand-Mode) DMA, x = 0 to use 135 * Single Byte DMA, which is the default. Argument is 136 * optional - if not present, same as "burst:1". 137 * - fast:x -x = 1 to enable Fast SCSI, which is only effective with 138 * input-clock divisor 4 (WD33C93_FS_16_20), x = 0 to disable 139 * it, which is the default. Argument is optional - if not 140 * present, same as "fast:1". 141 * - next -No argument. Used to separate blocks of keywords when 142 * there's more than one host adapter in the system. 143 * 144 * Syntax Notes: 145 * - Numeric arguments can be decimal or the '0x' form of hex notation. There 146 * _must_ be a colon between a keyword and its numeric argument, with no 147 * spaces. 148 * - Keywords are separated by commas, no spaces, in the standard kernel 149 * command-line manner. 150 * - A keyword in the 'nth' comma-separated command-line member will overwrite 151 * the 'nth' element of setup_args[]. A blank command-line member (in 152 * other words, a comma with no preceding keyword) will _not_ overwrite 153 * the corresponding setup_args[] element. 154 * - If a keyword is used more than once, the first one applies to the first 155 * SCSI host found, the second to the second card, etc, unless the 'next' 156 * keyword is used to change the order. 157 * 158 * Some amiboot examples (for insmod, use 'setup_strings' instead of 'wd33c93'): 159 * - wd33c93=nosync:255 160 * - wd33c93=nodma 161 * - wd33c93=nodma:1 162 * - wd33c93=disconnect:2,nosync:0x08,period:250 163 * - wd33c93=debug:0x1c 164 */ 165 166 /* Normally, no defaults are specified */ 167 static char *setup_args[] = { "", "", "", "", "", "", "", "", "", "" }; 168 169 static char *setup_strings; 170 module_param(setup_strings, charp, 0); 171 172 static void wd33c93_execute(struct Scsi_Host *instance); 173 174 #ifdef CONFIG_WD33C93_PIO 175 static inline uchar 176 read_wd33c93(const wd33c93_regs regs, uchar reg_num) 177 { 178 uchar data; 179 180 outb(reg_num, regs.SASR); 181 data = inb(regs.SCMD); 182 return data; 183 } 184 185 static inline unsigned long 186 read_wd33c93_count(const wd33c93_regs regs) 187 { 188 unsigned long value; 189 190 outb(WD_TRANSFER_COUNT_MSB, regs.SASR); 191 value = inb(regs.SCMD) << 16; 192 value |= inb(regs.SCMD) << 8; 193 value |= inb(regs.SCMD); 194 return value; 195 } 196 197 static inline uchar 198 read_aux_stat(const wd33c93_regs regs) 199 { 200 return inb(regs.SASR); 201 } 202 203 static inline void 204 write_wd33c93(const wd33c93_regs regs, uchar reg_num, uchar value) 205 { 206 outb(reg_num, regs.SASR); 207 outb(value, regs.SCMD); 208 } 209 210 static inline void 211 write_wd33c93_count(const wd33c93_regs regs, unsigned long value) 212 { 213 outb(WD_TRANSFER_COUNT_MSB, regs.SASR); 214 outb((value >> 16) & 0xff, regs.SCMD); 215 outb((value >> 8) & 0xff, regs.SCMD); 216 outb( value & 0xff, regs.SCMD); 217 } 218 219 #define write_wd33c93_cmd(regs, cmd) \ 220 write_wd33c93((regs), WD_COMMAND, (cmd)) 221 222 static inline void 223 write_wd33c93_cdb(const wd33c93_regs regs, uint len, uchar cmnd[]) 224 { 225 int i; 226 227 outb(WD_CDB_1, regs.SASR); 228 for (i=0; i<len; i++) 229 outb(cmnd[i], regs.SCMD); 230 } 231 232 #else /* CONFIG_WD33C93_PIO */ 233 static inline uchar 234 read_wd33c93(const wd33c93_regs regs, uchar reg_num) 235 { 236 *regs.SASR = reg_num; 237 mb(); 238 return (*regs.SCMD); 239 } 240 241 static unsigned long 242 read_wd33c93_count(const wd33c93_regs regs) 243 { 244 unsigned long value; 245 246 *regs.SASR = WD_TRANSFER_COUNT_MSB; 247 mb(); 248 value = *regs.SCMD << 16; 249 value |= *regs.SCMD << 8; 250 value |= *regs.SCMD; 251 mb(); 252 return value; 253 } 254 255 static inline uchar 256 read_aux_stat(const wd33c93_regs regs) 257 { 258 return *regs.SASR; 259 } 260 261 static inline void 262 write_wd33c93(const wd33c93_regs regs, uchar reg_num, uchar value) 263 { 264 *regs.SASR = reg_num; 265 mb(); 266 *regs.SCMD = value; 267 mb(); 268 } 269 270 static void 271 write_wd33c93_count(const wd33c93_regs regs, unsigned long value) 272 { 273 *regs.SASR = WD_TRANSFER_COUNT_MSB; 274 mb(); 275 *regs.SCMD = value >> 16; 276 *regs.SCMD = value >> 8; 277 *regs.SCMD = value; 278 mb(); 279 } 280 281 static inline void 282 write_wd33c93_cmd(const wd33c93_regs regs, uchar cmd) 283 { 284 *regs.SASR = WD_COMMAND; 285 mb(); 286 *regs.SCMD = cmd; 287 mb(); 288 } 289 290 static inline void 291 write_wd33c93_cdb(const wd33c93_regs regs, uint len, uchar cmnd[]) 292 { 293 int i; 294 295 *regs.SASR = WD_CDB_1; 296 for (i = 0; i < len; i++) 297 *regs.SCMD = cmnd[i]; 298 } 299 #endif /* CONFIG_WD33C93_PIO */ 300 301 static inline uchar 302 read_1_byte(const wd33c93_regs regs) 303 { 304 uchar asr; 305 uchar x = 0; 306 307 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); 308 write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO | 0x80); 309 do { 310 asr = read_aux_stat(regs); 311 if (asr & ASR_DBR) 312 x = read_wd33c93(regs, WD_DATA); 313 } while (!(asr & ASR_INT)); 314 return x; 315 } 316 317 static int 318 round_period(unsigned int period, const struct sx_period *sx_table) 319 { 320 int x; 321 322 for (x = 1; sx_table[x].period_ns; x++) { 323 if ((period <= sx_table[x - 0].period_ns) && 324 (period > sx_table[x - 1].period_ns)) { 325 return x; 326 } 327 } 328 return 7; 329 } 330 331 /* 332 * Calculate Synchronous Transfer Register value from SDTR code. 333 */ 334 static uchar 335 calc_sync_xfer(unsigned int period, unsigned int offset, unsigned int fast, 336 const struct sx_period *sx_table) 337 { 338 /* When doing Fast SCSI synchronous data transfers, the corresponding 339 * value in 'sx_table' is two times the actually used transfer period. 340 */ 341 uchar result; 342 343 if (offset && fast) { 344 fast = STR_FSS; 345 period *= 2; 346 } else { 347 fast = 0; 348 } 349 period *= 4; /* convert SDTR code to ns */ 350 result = sx_table[round_period(period,sx_table)].reg_value; 351 result |= (offset < OPTIMUM_SX_OFF) ? offset : OPTIMUM_SX_OFF; 352 result |= fast; 353 return result; 354 } 355 356 /* 357 * Calculate SDTR code bytes [3],[4] from period and offset. 358 */ 359 static inline void 360 calc_sync_msg(unsigned int period, unsigned int offset, unsigned int fast, 361 uchar msg[2]) 362 { 363 /* 'period' is a "normal"-mode value, like the ones in 'sx_table'. The 364 * actually used transfer period for Fast SCSI synchronous data 365 * transfers is half that value. 366 */ 367 period /= 4; 368 if (offset && fast) 369 period /= 2; 370 msg[0] = period; 371 msg[1] = offset; 372 } 373 374 int 375 wd33c93_queuecommand(struct scsi_cmnd *cmd, 376 void (*done)(struct scsi_cmnd *)) 377 { 378 struct WD33C93_hostdata *hostdata; 379 struct scsi_cmnd *tmp; 380 381 hostdata = (struct WD33C93_hostdata *) cmd->device->host->hostdata; 382 383 DB(DB_QUEUE_COMMAND, 384 printk("Q-%d-%02x-%ld( ", cmd->device->id, cmd->cmnd[0], cmd->serial_number)) 385 386 /* Set up a few fields in the scsi_cmnd structure for our own use: 387 * - host_scribble is the pointer to the next cmd in the input queue 388 * - scsi_done points to the routine we call when a cmd is finished 389 * - result is what you'd expect 390 */ 391 cmd->host_scribble = NULL; 392 cmd->scsi_done = done; 393 cmd->result = 0; 394 395 /* We use the Scsi_Pointer structure that's included with each command 396 * as a scratchpad (as it's intended to be used!). The handy thing about 397 * the SCp.xxx fields is that they're always associated with a given 398 * cmd, and are preserved across disconnect-reselect. This means we 399 * can pretty much ignore SAVE_POINTERS and RESTORE_POINTERS messages 400 * if we keep all the critical pointers and counters in SCp: 401 * - SCp.ptr is the pointer into the RAM buffer 402 * - SCp.this_residual is the size of that buffer 403 * - SCp.buffer points to the current scatter-gather buffer 404 * - SCp.buffers_residual tells us how many S.G. buffers there are 405 * - SCp.have_data_in is not used 406 * - SCp.sent_command is not used 407 * - SCp.phase records this command's SRCID_ER bit setting 408 */ 409 410 if (scsi_bufflen(cmd)) { 411 cmd->SCp.buffer = scsi_sglist(cmd); 412 cmd->SCp.buffers_residual = scsi_sg_count(cmd) - 1; 413 cmd->SCp.ptr = sg_virt(cmd->SCp.buffer); 414 cmd->SCp.this_residual = cmd->SCp.buffer->length; 415 } else { 416 cmd->SCp.buffer = NULL; 417 cmd->SCp.buffers_residual = 0; 418 cmd->SCp.ptr = NULL; 419 cmd->SCp.this_residual = 0; 420 } 421 422 /* WD docs state that at the conclusion of a "LEVEL2" command, the 423 * status byte can be retrieved from the LUN register. Apparently, 424 * this is the case only for *uninterrupted* LEVEL2 commands! If 425 * there are any unexpected phases entered, even if they are 100% 426 * legal (different devices may choose to do things differently), 427 * the LEVEL2 command sequence is exited. This often occurs prior 428 * to receiving the status byte, in which case the driver does a 429 * status phase interrupt and gets the status byte on its own. 430 * While such a command can then be "resumed" (ie restarted to 431 * finish up as a LEVEL2 command), the LUN register will NOT be 432 * a valid status byte at the command's conclusion, and we must 433 * use the byte obtained during the earlier interrupt. Here, we 434 * preset SCp.Status to an illegal value (0xff) so that when 435 * this command finally completes, we can tell where the actual 436 * status byte is stored. 437 */ 438 439 cmd->SCp.Status = ILLEGAL_STATUS_BYTE; 440 441 /* 442 * Add the cmd to the end of 'input_Q'. Note that REQUEST SENSE 443 * commands are added to the head of the queue so that the desired 444 * sense data is not lost before REQUEST_SENSE executes. 445 */ 446 447 spin_lock_irq(&hostdata->lock); 448 449 if (!(hostdata->input_Q) || (cmd->cmnd[0] == REQUEST_SENSE)) { 450 cmd->host_scribble = (uchar *) hostdata->input_Q; 451 hostdata->input_Q = cmd; 452 } else { /* find the end of the queue */ 453 for (tmp = (struct scsi_cmnd *) hostdata->input_Q; 454 tmp->host_scribble; 455 tmp = (struct scsi_cmnd *) tmp->host_scribble) ; 456 tmp->host_scribble = (uchar *) cmd; 457 } 458 459 /* We know that there's at least one command in 'input_Q' now. 460 * Go see if any of them are runnable! 461 */ 462 463 wd33c93_execute(cmd->device->host); 464 465 DB(DB_QUEUE_COMMAND, printk(")Q-%ld ", cmd->serial_number)) 466 467 spin_unlock_irq(&hostdata->lock); 468 return 0; 469 } 470 471 /* 472 * This routine attempts to start a scsi command. If the host_card is 473 * already connected, we give up immediately. Otherwise, look through 474 * the input_Q, using the first command we find that's intended 475 * for a currently non-busy target/lun. 476 * 477 * wd33c93_execute() is always called with interrupts disabled or from 478 * the wd33c93_intr itself, which means that a wd33c93 interrupt 479 * cannot occur while we are in here. 480 */ 481 static void 482 wd33c93_execute(struct Scsi_Host *instance) 483 { 484 struct WD33C93_hostdata *hostdata = 485 (struct WD33C93_hostdata *) instance->hostdata; 486 const wd33c93_regs regs = hostdata->regs; 487 struct scsi_cmnd *cmd, *prev; 488 489 DB(DB_EXECUTE, printk("EX(")) 490 if (hostdata->selecting || hostdata->connected) { 491 DB(DB_EXECUTE, printk(")EX-0 ")) 492 return; 493 } 494 495 /* 496 * Search through the input_Q for a command destined 497 * for an idle target/lun. 498 */ 499 500 cmd = (struct scsi_cmnd *) hostdata->input_Q; 501 prev = NULL; 502 while (cmd) { 503 if (!(hostdata->busy[cmd->device->id] & (1 << cmd->device->lun))) 504 break; 505 prev = cmd; 506 cmd = (struct scsi_cmnd *) cmd->host_scribble; 507 } 508 509 /* quit if queue empty or all possible targets are busy */ 510 511 if (!cmd) { 512 DB(DB_EXECUTE, printk(")EX-1 ")) 513 return; 514 } 515 516 /* remove command from queue */ 517 518 if (prev) 519 prev->host_scribble = cmd->host_scribble; 520 else 521 hostdata->input_Q = (struct scsi_cmnd *) cmd->host_scribble; 522 523 #ifdef PROC_STATISTICS 524 hostdata->cmd_cnt[cmd->device->id]++; 525 #endif 526 527 /* 528 * Start the selection process 529 */ 530 531 if (cmd->sc_data_direction == DMA_TO_DEVICE) 532 write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id); 533 else 534 write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD); 535 536 /* Now we need to figure out whether or not this command is a good 537 * candidate for disconnect/reselect. We guess to the best of our 538 * ability, based on a set of hierarchical rules. When several 539 * devices are operating simultaneously, disconnects are usually 540 * an advantage. In a single device system, or if only 1 device 541 * is being accessed, transfers usually go faster if disconnects 542 * are not allowed: 543 * 544 * + Commands should NEVER disconnect if hostdata->disconnect = 545 * DIS_NEVER (this holds for tape drives also), and ALWAYS 546 * disconnect if hostdata->disconnect = DIS_ALWAYS. 547 * + Tape drive commands should always be allowed to disconnect. 548 * + Disconnect should be allowed if disconnected_Q isn't empty. 549 * + Commands should NOT disconnect if input_Q is empty. 550 * + Disconnect should be allowed if there are commands in input_Q 551 * for a different target/lun. In this case, the other commands 552 * should be made disconnect-able, if not already. 553 * 554 * I know, I know - this code would flunk me out of any 555 * "C Programming 101" class ever offered. But it's easy 556 * to change around and experiment with for now. 557 */ 558 559 cmd->SCp.phase = 0; /* assume no disconnect */ 560 if (hostdata->disconnect == DIS_NEVER) 561 goto no; 562 if (hostdata->disconnect == DIS_ALWAYS) 563 goto yes; 564 if (cmd->device->type == 1) /* tape drive? */ 565 goto yes; 566 if (hostdata->disconnected_Q) /* other commands disconnected? */ 567 goto yes; 568 if (!(hostdata->input_Q)) /* input_Q empty? */ 569 goto no; 570 for (prev = (struct scsi_cmnd *) hostdata->input_Q; prev; 571 prev = (struct scsi_cmnd *) prev->host_scribble) { 572 if ((prev->device->id != cmd->device->id) || 573 (prev->device->lun != cmd->device->lun)) { 574 for (prev = (struct scsi_cmnd *) hostdata->input_Q; prev; 575 prev = (struct scsi_cmnd *) prev->host_scribble) 576 prev->SCp.phase = 1; 577 goto yes; 578 } 579 } 580 581 goto no; 582 583 yes: 584 cmd->SCp.phase = 1; 585 586 #ifdef PROC_STATISTICS 587 hostdata->disc_allowed_cnt[cmd->device->id]++; 588 #endif 589 590 no: 591 592 write_wd33c93(regs, WD_SOURCE_ID, ((cmd->SCp.phase) ? SRCID_ER : 0)); 593 594 write_wd33c93(regs, WD_TARGET_LUN, cmd->device->lun); 595 write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER, 596 hostdata->sync_xfer[cmd->device->id]); 597 hostdata->busy[cmd->device->id] |= (1 << cmd->device->lun); 598 599 if ((hostdata->level2 == L2_NONE) || 600 (hostdata->sync_stat[cmd->device->id] == SS_UNSET)) { 601 602 /* 603 * Do a 'Select-With-ATN' command. This will end with 604 * one of the following interrupts: 605 * CSR_RESEL_AM: failure - can try again later. 606 * CSR_TIMEOUT: failure - give up. 607 * CSR_SELECT: success - proceed. 608 */ 609 610 hostdata->selecting = cmd; 611 612 /* Every target has its own synchronous transfer setting, kept in the 613 * sync_xfer array, and a corresponding status byte in sync_stat[]. 614 * Each target's sync_stat[] entry is initialized to SX_UNSET, and its 615 * sync_xfer[] entry is initialized to the default/safe value. SS_UNSET 616 * means that the parameters are undetermined as yet, and that we 617 * need to send an SDTR message to this device after selection is 618 * complete: We set SS_FIRST to tell the interrupt routine to do so. 619 * If we've been asked not to try synchronous transfers on this 620 * target (and _all_ luns within it), we'll still send the SDTR message 621 * later, but at that time we'll negotiate for async by specifying a 622 * sync fifo depth of 0. 623 */ 624 if (hostdata->sync_stat[cmd->device->id] == SS_UNSET) 625 hostdata->sync_stat[cmd->device->id] = SS_FIRST; 626 hostdata->state = S_SELECTING; 627 write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */ 628 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN); 629 } else { 630 631 /* 632 * Do a 'Select-With-ATN-Xfer' command. This will end with 633 * one of the following interrupts: 634 * CSR_RESEL_AM: failure - can try again later. 635 * CSR_TIMEOUT: failure - give up. 636 * anything else: success - proceed. 637 */ 638 639 hostdata->connected = cmd; 640 write_wd33c93(regs, WD_COMMAND_PHASE, 0); 641 642 /* copy command_descriptor_block into WD chip 643 * (take advantage of auto-incrementing) 644 */ 645 646 write_wd33c93_cdb(regs, cmd->cmd_len, cmd->cmnd); 647 648 /* The wd33c93 only knows about Group 0, 1, and 5 commands when 649 * it's doing a 'select-and-transfer'. To be safe, we write the 650 * size of the CDB into the OWN_ID register for every case. This 651 * way there won't be problems with vendor-unique, audio, etc. 652 */ 653 654 write_wd33c93(regs, WD_OWN_ID, cmd->cmd_len); 655 656 /* When doing a non-disconnect command with DMA, we can save 657 * ourselves a DATA phase interrupt later by setting everything 658 * up ahead of time. 659 */ 660 661 if ((cmd->SCp.phase == 0) && (hostdata->no_dma == 0)) { 662 if (hostdata->dma_setup(cmd, 663 (cmd->sc_data_direction == DMA_TO_DEVICE) ? 664 DATA_OUT_DIR : DATA_IN_DIR)) 665 write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */ 666 else { 667 write_wd33c93_count(regs, 668 cmd->SCp.this_residual); 669 write_wd33c93(regs, WD_CONTROL, 670 CTRL_IDI | CTRL_EDI | hostdata->dma_mode); 671 hostdata->dma = D_DMA_RUNNING; 672 } 673 } else 674 write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */ 675 676 hostdata->state = S_RUNNING_LEVEL2; 677 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); 678 } 679 680 /* 681 * Since the SCSI bus can handle only 1 connection at a time, 682 * we get out of here now. If the selection fails, or when 683 * the command disconnects, we'll come back to this routine 684 * to search the input_Q again... 685 */ 686 687 DB(DB_EXECUTE, 688 printk("%s%ld)EX-2 ", (cmd->SCp.phase) ? "d:" : "", cmd->serial_number)) 689 } 690 691 static void 692 transfer_pio(const wd33c93_regs regs, uchar * buf, int cnt, 693 int data_in_dir, struct WD33C93_hostdata *hostdata) 694 { 695 uchar asr; 696 697 DB(DB_TRANSFER, 698 printk("(%p,%d,%s:", buf, cnt, data_in_dir ? "in" : "out")) 699 700 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); 701 write_wd33c93_count(regs, cnt); 702 write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO); 703 if (data_in_dir) { 704 do { 705 asr = read_aux_stat(regs); 706 if (asr & ASR_DBR) 707 *buf++ = read_wd33c93(regs, WD_DATA); 708 } while (!(asr & ASR_INT)); 709 } else { 710 do { 711 asr = read_aux_stat(regs); 712 if (asr & ASR_DBR) 713 write_wd33c93(regs, WD_DATA, *buf++); 714 } while (!(asr & ASR_INT)); 715 } 716 717 /* Note: we are returning with the interrupt UN-cleared. 718 * Since (presumably) an entire I/O operation has 719 * completed, the bus phase is probably different, and 720 * the interrupt routine will discover this when it 721 * responds to the uncleared int. 722 */ 723 724 } 725 726 static void 727 transfer_bytes(const wd33c93_regs regs, struct scsi_cmnd *cmd, 728 int data_in_dir) 729 { 730 struct WD33C93_hostdata *hostdata; 731 unsigned long length; 732 733 hostdata = (struct WD33C93_hostdata *) cmd->device->host->hostdata; 734 735 /* Normally, you'd expect 'this_residual' to be non-zero here. 736 * In a series of scatter-gather transfers, however, this 737 * routine will usually be called with 'this_residual' equal 738 * to 0 and 'buffers_residual' non-zero. This means that a 739 * previous transfer completed, clearing 'this_residual', and 740 * now we need to setup the next scatter-gather buffer as the 741 * source or destination for THIS transfer. 742 */ 743 if (!cmd->SCp.this_residual && cmd->SCp.buffers_residual) { 744 ++cmd->SCp.buffer; 745 --cmd->SCp.buffers_residual; 746 cmd->SCp.this_residual = cmd->SCp.buffer->length; 747 cmd->SCp.ptr = sg_virt(cmd->SCp.buffer); 748 } 749 if (!cmd->SCp.this_residual) /* avoid bogus setups */ 750 return; 751 752 write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER, 753 hostdata->sync_xfer[cmd->device->id]); 754 755 /* 'hostdata->no_dma' is TRUE if we don't even want to try DMA. 756 * Update 'this_residual' and 'ptr' after 'transfer_pio()' returns. 757 */ 758 759 if (hostdata->no_dma || hostdata->dma_setup(cmd, data_in_dir)) { 760 #ifdef PROC_STATISTICS 761 hostdata->pio_cnt++; 762 #endif 763 transfer_pio(regs, (uchar *) cmd->SCp.ptr, 764 cmd->SCp.this_residual, data_in_dir, hostdata); 765 length = cmd->SCp.this_residual; 766 cmd->SCp.this_residual = read_wd33c93_count(regs); 767 cmd->SCp.ptr += (length - cmd->SCp.this_residual); 768 } 769 770 /* We are able to do DMA (in fact, the Amiga hardware is 771 * already going!), so start up the wd33c93 in DMA mode. 772 * We set 'hostdata->dma' = D_DMA_RUNNING so that when the 773 * transfer completes and causes an interrupt, we're 774 * reminded to tell the Amiga to shut down its end. We'll 775 * postpone the updating of 'this_residual' and 'ptr' 776 * until then. 777 */ 778 779 else { 780 #ifdef PROC_STATISTICS 781 hostdata->dma_cnt++; 782 #endif 783 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | hostdata->dma_mode); 784 write_wd33c93_count(regs, cmd->SCp.this_residual); 785 786 if ((hostdata->level2 >= L2_DATA) || 787 (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) { 788 write_wd33c93(regs, WD_COMMAND_PHASE, 0x45); 789 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); 790 hostdata->state = S_RUNNING_LEVEL2; 791 } else 792 write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO); 793 794 hostdata->dma = D_DMA_RUNNING; 795 } 796 } 797 798 void 799 wd33c93_intr(struct Scsi_Host *instance) 800 { 801 struct WD33C93_hostdata *hostdata = 802 (struct WD33C93_hostdata *) instance->hostdata; 803 const wd33c93_regs regs = hostdata->regs; 804 struct scsi_cmnd *patch, *cmd; 805 uchar asr, sr, phs, id, lun, *ucp, msg; 806 unsigned long length, flags; 807 808 asr = read_aux_stat(regs); 809 if (!(asr & ASR_INT) || (asr & ASR_BSY)) 810 return; 811 812 spin_lock_irqsave(&hostdata->lock, flags); 813 814 #ifdef PROC_STATISTICS 815 hostdata->int_cnt++; 816 #endif 817 818 cmd = (struct scsi_cmnd *) hostdata->connected; /* assume we're connected */ 819 sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear the interrupt */ 820 phs = read_wd33c93(regs, WD_COMMAND_PHASE); 821 822 DB(DB_INTR, printk("{%02x:%02x-", asr, sr)) 823 824 /* After starting a DMA transfer, the next interrupt 825 * is guaranteed to be in response to completion of 826 * the transfer. Since the Amiga DMA hardware runs in 827 * in an open-ended fashion, it needs to be told when 828 * to stop; do that here if D_DMA_RUNNING is true. 829 * Also, we have to update 'this_residual' and 'ptr' 830 * based on the contents of the TRANSFER_COUNT register, 831 * in case the device decided to do an intermediate 832 * disconnect (a device may do this if it has to do a 833 * seek, or just to be nice and let other devices have 834 * some bus time during long transfers). After doing 835 * whatever is needed, we go on and service the WD3393 836 * interrupt normally. 837 */ 838 if (hostdata->dma == D_DMA_RUNNING) { 839 DB(DB_TRANSFER, 840 printk("[%p/%d:", cmd->SCp.ptr, cmd->SCp.this_residual)) 841 hostdata->dma_stop(cmd->device->host, cmd, 1); 842 hostdata->dma = D_DMA_OFF; 843 length = cmd->SCp.this_residual; 844 cmd->SCp.this_residual = read_wd33c93_count(regs); 845 cmd->SCp.ptr += (length - cmd->SCp.this_residual); 846 DB(DB_TRANSFER, 847 printk("%p/%d]", cmd->SCp.ptr, cmd->SCp.this_residual)) 848 } 849 850 /* Respond to the specific WD3393 interrupt - there are quite a few! */ 851 switch (sr) { 852 case CSR_TIMEOUT: 853 DB(DB_INTR, printk("TIMEOUT")) 854 855 if (hostdata->state == S_RUNNING_LEVEL2) 856 hostdata->connected = NULL; 857 else { 858 cmd = (struct scsi_cmnd *) hostdata->selecting; /* get a valid cmd */ 859 hostdata->selecting = NULL; 860 } 861 862 cmd->result = DID_NO_CONNECT << 16; 863 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); 864 hostdata->state = S_UNCONNECTED; 865 cmd->scsi_done(cmd); 866 867 /* From esp.c: 868 * There is a window of time within the scsi_done() path 869 * of execution where interrupts are turned back on full 870 * blast and left that way. During that time we could 871 * reconnect to a disconnected command, then we'd bomb 872 * out below. We could also end up executing two commands 873 * at _once_. ...just so you know why the restore_flags() 874 * is here... 875 */ 876 877 spin_unlock_irqrestore(&hostdata->lock, flags); 878 879 /* We are not connected to a target - check to see if there 880 * are commands waiting to be executed. 881 */ 882 883 wd33c93_execute(instance); 884 break; 885 886 /* Note: this interrupt should not occur in a LEVEL2 command */ 887 888 case CSR_SELECT: 889 DB(DB_INTR, printk("SELECT")) 890 hostdata->connected = cmd = 891 (struct scsi_cmnd *) hostdata->selecting; 892 hostdata->selecting = NULL; 893 894 /* construct an IDENTIFY message with correct disconnect bit */ 895 896 hostdata->outgoing_msg[0] = (0x80 | 0x00 | cmd->device->lun); 897 if (cmd->SCp.phase) 898 hostdata->outgoing_msg[0] |= 0x40; 899 900 if (hostdata->sync_stat[cmd->device->id] == SS_FIRST) { 901 902 hostdata->sync_stat[cmd->device->id] = SS_WAITING; 903 904 /* Tack on a 2nd message to ask about synchronous transfers. If we've 905 * been asked to do only asynchronous transfers on this device, we 906 * request a fifo depth of 0, which is equivalent to async - should 907 * solve the problems some people have had with GVP's Guru ROM. 908 */ 909 910 hostdata->outgoing_msg[1] = EXTENDED_MESSAGE; 911 hostdata->outgoing_msg[2] = 3; 912 hostdata->outgoing_msg[3] = EXTENDED_SDTR; 913 if (hostdata->no_sync & (1 << cmd->device->id)) { 914 calc_sync_msg(hostdata->default_sx_per, 0, 915 0, hostdata->outgoing_msg + 4); 916 } else { 917 calc_sync_msg(optimum_sx_per(hostdata), 918 OPTIMUM_SX_OFF, 919 hostdata->fast, 920 hostdata->outgoing_msg + 4); 921 } 922 hostdata->outgoing_len = 6; 923 #ifdef SYNC_DEBUG 924 ucp = hostdata->outgoing_msg + 1; 925 printk(" sending SDTR %02x03%02x%02x%02x ", 926 ucp[0], ucp[2], ucp[3], ucp[4]); 927 #endif 928 } else 929 hostdata->outgoing_len = 1; 930 931 hostdata->state = S_CONNECTED; 932 spin_unlock_irqrestore(&hostdata->lock, flags); 933 break; 934 935 case CSR_XFER_DONE | PHS_DATA_IN: 936 case CSR_UNEXP | PHS_DATA_IN: 937 case CSR_SRV_REQ | PHS_DATA_IN: 938 DB(DB_INTR, 939 printk("IN-%d.%d", cmd->SCp.this_residual, 940 cmd->SCp.buffers_residual)) 941 transfer_bytes(regs, cmd, DATA_IN_DIR); 942 if (hostdata->state != S_RUNNING_LEVEL2) 943 hostdata->state = S_CONNECTED; 944 spin_unlock_irqrestore(&hostdata->lock, flags); 945 break; 946 947 case CSR_XFER_DONE | PHS_DATA_OUT: 948 case CSR_UNEXP | PHS_DATA_OUT: 949 case CSR_SRV_REQ | PHS_DATA_OUT: 950 DB(DB_INTR, 951 printk("OUT-%d.%d", cmd->SCp.this_residual, 952 cmd->SCp.buffers_residual)) 953 transfer_bytes(regs, cmd, DATA_OUT_DIR); 954 if (hostdata->state != S_RUNNING_LEVEL2) 955 hostdata->state = S_CONNECTED; 956 spin_unlock_irqrestore(&hostdata->lock, flags); 957 break; 958 959 /* Note: this interrupt should not occur in a LEVEL2 command */ 960 961 case CSR_XFER_DONE | PHS_COMMAND: 962 case CSR_UNEXP | PHS_COMMAND: 963 case CSR_SRV_REQ | PHS_COMMAND: 964 DB(DB_INTR, printk("CMND-%02x,%ld", cmd->cmnd[0], cmd->serial_number)) 965 transfer_pio(regs, cmd->cmnd, cmd->cmd_len, DATA_OUT_DIR, 966 hostdata); 967 hostdata->state = S_CONNECTED; 968 spin_unlock_irqrestore(&hostdata->lock, flags); 969 break; 970 971 case CSR_XFER_DONE | PHS_STATUS: 972 case CSR_UNEXP | PHS_STATUS: 973 case CSR_SRV_REQ | PHS_STATUS: 974 DB(DB_INTR, printk("STATUS=")) 975 cmd->SCp.Status = read_1_byte(regs); 976 DB(DB_INTR, printk("%02x", cmd->SCp.Status)) 977 if (hostdata->level2 >= L2_BASIC) { 978 sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear interrupt */ 979 udelay(7); 980 hostdata->state = S_RUNNING_LEVEL2; 981 write_wd33c93(regs, WD_COMMAND_PHASE, 0x50); 982 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); 983 } else { 984 hostdata->state = S_CONNECTED; 985 } 986 spin_unlock_irqrestore(&hostdata->lock, flags); 987 break; 988 989 case CSR_XFER_DONE | PHS_MESS_IN: 990 case CSR_UNEXP | PHS_MESS_IN: 991 case CSR_SRV_REQ | PHS_MESS_IN: 992 DB(DB_INTR, printk("MSG_IN=")) 993 994 msg = read_1_byte(regs); 995 sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear interrupt */ 996 udelay(7); 997 998 hostdata->incoming_msg[hostdata->incoming_ptr] = msg; 999 if (hostdata->incoming_msg[0] == EXTENDED_MESSAGE) 1000 msg = EXTENDED_MESSAGE; 1001 else 1002 hostdata->incoming_ptr = 0; 1003 1004 cmd->SCp.Message = msg; 1005 switch (msg) { 1006 1007 case COMMAND_COMPLETE: 1008 DB(DB_INTR, printk("CCMP-%ld", cmd->serial_number)) 1009 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1010 hostdata->state = S_PRE_CMP_DISC; 1011 break; 1012 1013 case SAVE_POINTERS: 1014 DB(DB_INTR, printk("SDP")) 1015 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1016 hostdata->state = S_CONNECTED; 1017 break; 1018 1019 case RESTORE_POINTERS: 1020 DB(DB_INTR, printk("RDP")) 1021 if (hostdata->level2 >= L2_BASIC) { 1022 write_wd33c93(regs, WD_COMMAND_PHASE, 0x45); 1023 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); 1024 hostdata->state = S_RUNNING_LEVEL2; 1025 } else { 1026 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1027 hostdata->state = S_CONNECTED; 1028 } 1029 break; 1030 1031 case DISCONNECT: 1032 DB(DB_INTR, printk("DIS")) 1033 cmd->device->disconnect = 1; 1034 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1035 hostdata->state = S_PRE_TMP_DISC; 1036 break; 1037 1038 case MESSAGE_REJECT: 1039 DB(DB_INTR, printk("REJ")) 1040 #ifdef SYNC_DEBUG 1041 printk("-REJ-"); 1042 #endif 1043 if (hostdata->sync_stat[cmd->device->id] == SS_WAITING) { 1044 hostdata->sync_stat[cmd->device->id] = SS_SET; 1045 /* we want default_sx_per, not DEFAULT_SX_PER */ 1046 hostdata->sync_xfer[cmd->device->id] = 1047 calc_sync_xfer(hostdata->default_sx_per 1048 / 4, 0, 0, hostdata->sx_table); 1049 } 1050 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1051 hostdata->state = S_CONNECTED; 1052 break; 1053 1054 case EXTENDED_MESSAGE: 1055 DB(DB_INTR, printk("EXT")) 1056 1057 ucp = hostdata->incoming_msg; 1058 1059 #ifdef SYNC_DEBUG 1060 printk("%02x", ucp[hostdata->incoming_ptr]); 1061 #endif 1062 /* Is this the last byte of the extended message? */ 1063 1064 if ((hostdata->incoming_ptr >= 2) && 1065 (hostdata->incoming_ptr == (ucp[1] + 1))) { 1066 1067 switch (ucp[2]) { /* what's the EXTENDED code? */ 1068 case EXTENDED_SDTR: 1069 /* default to default async period */ 1070 id = calc_sync_xfer(hostdata-> 1071 default_sx_per / 4, 0, 1072 0, hostdata->sx_table); 1073 if (hostdata->sync_stat[cmd->device->id] != 1074 SS_WAITING) { 1075 1076 /* A device has sent an unsolicited SDTR message; rather than go 1077 * through the effort of decoding it and then figuring out what 1078 * our reply should be, we're just gonna say that we have a 1079 * synchronous fifo depth of 0. This will result in asynchronous 1080 * transfers - not ideal but so much easier. 1081 * Actually, this is OK because it assures us that if we don't 1082 * specifically ask for sync transfers, we won't do any. 1083 */ 1084 1085 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */ 1086 hostdata->outgoing_msg[0] = 1087 EXTENDED_MESSAGE; 1088 hostdata->outgoing_msg[1] = 3; 1089 hostdata->outgoing_msg[2] = 1090 EXTENDED_SDTR; 1091 calc_sync_msg(hostdata-> 1092 default_sx_per, 0, 1093 0, hostdata->outgoing_msg + 3); 1094 hostdata->outgoing_len = 5; 1095 } else { 1096 if (ucp[4]) /* well, sync transfer */ 1097 id = calc_sync_xfer(ucp[3], ucp[4], 1098 hostdata->fast, 1099 hostdata->sx_table); 1100 else if (ucp[3]) /* very unlikely... */ 1101 id = calc_sync_xfer(ucp[3], ucp[4], 1102 0, hostdata->sx_table); 1103 } 1104 hostdata->sync_xfer[cmd->device->id] = id; 1105 #ifdef SYNC_DEBUG 1106 printk(" sync_xfer=%02x\n", 1107 hostdata->sync_xfer[cmd->device->id]); 1108 #endif 1109 hostdata->sync_stat[cmd->device->id] = 1110 SS_SET; 1111 write_wd33c93_cmd(regs, 1112 WD_CMD_NEGATE_ACK); 1113 hostdata->state = S_CONNECTED; 1114 break; 1115 case EXTENDED_WDTR: 1116 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */ 1117 printk("sending WDTR "); 1118 hostdata->outgoing_msg[0] = 1119 EXTENDED_MESSAGE; 1120 hostdata->outgoing_msg[1] = 2; 1121 hostdata->outgoing_msg[2] = 1122 EXTENDED_WDTR; 1123 hostdata->outgoing_msg[3] = 0; /* 8 bit transfer width */ 1124 hostdata->outgoing_len = 4; 1125 write_wd33c93_cmd(regs, 1126 WD_CMD_NEGATE_ACK); 1127 hostdata->state = S_CONNECTED; 1128 break; 1129 default: 1130 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */ 1131 printk 1132 ("Rejecting Unknown Extended Message(%02x). ", 1133 ucp[2]); 1134 hostdata->outgoing_msg[0] = 1135 MESSAGE_REJECT; 1136 hostdata->outgoing_len = 1; 1137 write_wd33c93_cmd(regs, 1138 WD_CMD_NEGATE_ACK); 1139 hostdata->state = S_CONNECTED; 1140 break; 1141 } 1142 hostdata->incoming_ptr = 0; 1143 } 1144 1145 /* We need to read more MESS_IN bytes for the extended message */ 1146 1147 else { 1148 hostdata->incoming_ptr++; 1149 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1150 hostdata->state = S_CONNECTED; 1151 } 1152 break; 1153 1154 default: 1155 printk("Rejecting Unknown Message(%02x) ", msg); 1156 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */ 1157 hostdata->outgoing_msg[0] = MESSAGE_REJECT; 1158 hostdata->outgoing_len = 1; 1159 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1160 hostdata->state = S_CONNECTED; 1161 } 1162 spin_unlock_irqrestore(&hostdata->lock, flags); 1163 break; 1164 1165 /* Note: this interrupt will occur only after a LEVEL2 command */ 1166 1167 case CSR_SEL_XFER_DONE: 1168 1169 /* Make sure that reselection is enabled at this point - it may 1170 * have been turned off for the command that just completed. 1171 */ 1172 1173 write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER); 1174 if (phs == 0x60) { 1175 DB(DB_INTR, printk("SX-DONE-%ld", cmd->serial_number)) 1176 cmd->SCp.Message = COMMAND_COMPLETE; 1177 lun = read_wd33c93(regs, WD_TARGET_LUN); 1178 DB(DB_INTR, printk(":%d.%d", cmd->SCp.Status, lun)) 1179 hostdata->connected = NULL; 1180 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); 1181 hostdata->state = S_UNCONNECTED; 1182 if (cmd->SCp.Status == ILLEGAL_STATUS_BYTE) 1183 cmd->SCp.Status = lun; 1184 if (cmd->cmnd[0] == REQUEST_SENSE 1185 && cmd->SCp.Status != GOOD) 1186 cmd->result = 1187 (cmd-> 1188 result & 0x00ffff) | (DID_ERROR << 16); 1189 else 1190 cmd->result = 1191 cmd->SCp.Status | (cmd->SCp.Message << 8); 1192 cmd->scsi_done(cmd); 1193 1194 /* We are no longer connected to a target - check to see if 1195 * there are commands waiting to be executed. 1196 */ 1197 spin_unlock_irqrestore(&hostdata->lock, flags); 1198 wd33c93_execute(instance); 1199 } else { 1200 printk 1201 ("%02x:%02x:%02x-%ld: Unknown SEL_XFER_DONE phase!!---", 1202 asr, sr, phs, cmd->serial_number); 1203 spin_unlock_irqrestore(&hostdata->lock, flags); 1204 } 1205 break; 1206 1207 /* Note: this interrupt will occur only after a LEVEL2 command */ 1208 1209 case CSR_SDP: 1210 DB(DB_INTR, printk("SDP")) 1211 hostdata->state = S_RUNNING_LEVEL2; 1212 write_wd33c93(regs, WD_COMMAND_PHASE, 0x41); 1213 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); 1214 spin_unlock_irqrestore(&hostdata->lock, flags); 1215 break; 1216 1217 case CSR_XFER_DONE | PHS_MESS_OUT: 1218 case CSR_UNEXP | PHS_MESS_OUT: 1219 case CSR_SRV_REQ | PHS_MESS_OUT: 1220 DB(DB_INTR, printk("MSG_OUT=")) 1221 1222 /* To get here, we've probably requested MESSAGE_OUT and have 1223 * already put the correct bytes in outgoing_msg[] and filled 1224 * in outgoing_len. We simply send them out to the SCSI bus. 1225 * Sometimes we get MESSAGE_OUT phase when we're not expecting 1226 * it - like when our SDTR message is rejected by a target. Some 1227 * targets send the REJECT before receiving all of the extended 1228 * message, and then seem to go back to MESSAGE_OUT for a byte 1229 * or two. Not sure why, or if I'm doing something wrong to 1230 * cause this to happen. Regardless, it seems that sending 1231 * NOP messages in these situations results in no harm and 1232 * makes everyone happy. 1233 */ 1234 if (hostdata->outgoing_len == 0) { 1235 hostdata->outgoing_len = 1; 1236 hostdata->outgoing_msg[0] = NOP; 1237 } 1238 transfer_pio(regs, hostdata->outgoing_msg, 1239 hostdata->outgoing_len, DATA_OUT_DIR, hostdata); 1240 DB(DB_INTR, printk("%02x", hostdata->outgoing_msg[0])) 1241 hostdata->outgoing_len = 0; 1242 hostdata->state = S_CONNECTED; 1243 spin_unlock_irqrestore(&hostdata->lock, flags); 1244 break; 1245 1246 case CSR_UNEXP_DISC: 1247 1248 /* I think I've seen this after a request-sense that was in response 1249 * to an error condition, but not sure. We certainly need to do 1250 * something when we get this interrupt - the question is 'what?'. 1251 * Let's think positively, and assume some command has finished 1252 * in a legal manner (like a command that provokes a request-sense), 1253 * so we treat it as a normal command-complete-disconnect. 1254 */ 1255 1256 /* Make sure that reselection is enabled at this point - it may 1257 * have been turned off for the command that just completed. 1258 */ 1259 1260 write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER); 1261 if (cmd == NULL) { 1262 printk(" - Already disconnected! "); 1263 hostdata->state = S_UNCONNECTED; 1264 spin_unlock_irqrestore(&hostdata->lock, flags); 1265 return; 1266 } 1267 DB(DB_INTR, printk("UNEXP_DISC-%ld", cmd->serial_number)) 1268 hostdata->connected = NULL; 1269 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); 1270 hostdata->state = S_UNCONNECTED; 1271 if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD) 1272 cmd->result = 1273 (cmd->result & 0x00ffff) | (DID_ERROR << 16); 1274 else 1275 cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8); 1276 cmd->scsi_done(cmd); 1277 1278 /* We are no longer connected to a target - check to see if 1279 * there are commands waiting to be executed. 1280 */ 1281 /* look above for comments on scsi_done() */ 1282 spin_unlock_irqrestore(&hostdata->lock, flags); 1283 wd33c93_execute(instance); 1284 break; 1285 1286 case CSR_DISC: 1287 1288 /* Make sure that reselection is enabled at this point - it may 1289 * have been turned off for the command that just completed. 1290 */ 1291 1292 write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER); 1293 DB(DB_INTR, printk("DISC-%ld", cmd->serial_number)) 1294 if (cmd == NULL) { 1295 printk(" - Already disconnected! "); 1296 hostdata->state = S_UNCONNECTED; 1297 } 1298 switch (hostdata->state) { 1299 case S_PRE_CMP_DISC: 1300 hostdata->connected = NULL; 1301 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); 1302 hostdata->state = S_UNCONNECTED; 1303 DB(DB_INTR, printk(":%d", cmd->SCp.Status)) 1304 if (cmd->cmnd[0] == REQUEST_SENSE 1305 && cmd->SCp.Status != GOOD) 1306 cmd->result = 1307 (cmd-> 1308 result & 0x00ffff) | (DID_ERROR << 16); 1309 else 1310 cmd->result = 1311 cmd->SCp.Status | (cmd->SCp.Message << 8); 1312 cmd->scsi_done(cmd); 1313 break; 1314 case S_PRE_TMP_DISC: 1315 case S_RUNNING_LEVEL2: 1316 cmd->host_scribble = (uchar *) hostdata->disconnected_Q; 1317 hostdata->disconnected_Q = cmd; 1318 hostdata->connected = NULL; 1319 hostdata->state = S_UNCONNECTED; 1320 1321 #ifdef PROC_STATISTICS 1322 hostdata->disc_done_cnt[cmd->device->id]++; 1323 #endif 1324 1325 break; 1326 default: 1327 printk("*** Unexpected DISCONNECT interrupt! ***"); 1328 hostdata->state = S_UNCONNECTED; 1329 } 1330 1331 /* We are no longer connected to a target - check to see if 1332 * there are commands waiting to be executed. 1333 */ 1334 spin_unlock_irqrestore(&hostdata->lock, flags); 1335 wd33c93_execute(instance); 1336 break; 1337 1338 case CSR_RESEL_AM: 1339 case CSR_RESEL: 1340 DB(DB_INTR, printk("RESEL%s", sr == CSR_RESEL_AM ? "_AM" : "")) 1341 1342 /* Old chips (pre -A ???) don't have advanced features and will 1343 * generate CSR_RESEL. In that case we have to extract the LUN the 1344 * hard way (see below). 1345 * First we have to make sure this reselection didn't 1346 * happen during Arbitration/Selection of some other device. 1347 * If yes, put losing command back on top of input_Q. 1348 */ 1349 if (hostdata->level2 <= L2_NONE) { 1350 1351 if (hostdata->selecting) { 1352 cmd = (struct scsi_cmnd *) hostdata->selecting; 1353 hostdata->selecting = NULL; 1354 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); 1355 cmd->host_scribble = 1356 (uchar *) hostdata->input_Q; 1357 hostdata->input_Q = cmd; 1358 } 1359 } 1360 1361 else { 1362 1363 if (cmd) { 1364 if (phs == 0x00) { 1365 hostdata->busy[cmd->device->id] &= 1366 ~(1 << cmd->device->lun); 1367 cmd->host_scribble = 1368 (uchar *) hostdata->input_Q; 1369 hostdata->input_Q = cmd; 1370 } else { 1371 printk 1372 ("---%02x:%02x:%02x-TROUBLE: Intrusive ReSelect!---", 1373 asr, sr, phs); 1374 while (1) 1375 printk("\r"); 1376 } 1377 } 1378 1379 } 1380 1381 /* OK - find out which device reselected us. */ 1382 1383 id = read_wd33c93(regs, WD_SOURCE_ID); 1384 id &= SRCID_MASK; 1385 1386 /* and extract the lun from the ID message. (Note that we don't 1387 * bother to check for a valid message here - I guess this is 1388 * not the right way to go, but...) 1389 */ 1390 1391 if (sr == CSR_RESEL_AM) { 1392 lun = read_wd33c93(regs, WD_DATA); 1393 if (hostdata->level2 < L2_RESELECT) 1394 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1395 lun &= 7; 1396 } else { 1397 /* Old chip; wait for msgin phase to pick up the LUN. */ 1398 for (lun = 255; lun; lun--) { 1399 if ((asr = read_aux_stat(regs)) & ASR_INT) 1400 break; 1401 udelay(10); 1402 } 1403 if (!(asr & ASR_INT)) { 1404 printk 1405 ("wd33c93: Reselected without IDENTIFY\n"); 1406 lun = 0; 1407 } else { 1408 /* Verify this is a change to MSG_IN and read the message */ 1409 sr = read_wd33c93(regs, WD_SCSI_STATUS); 1410 udelay(7); 1411 if (sr == (CSR_ABORT | PHS_MESS_IN) || 1412 sr == (CSR_UNEXP | PHS_MESS_IN) || 1413 sr == (CSR_SRV_REQ | PHS_MESS_IN)) { 1414 /* Got MSG_IN, grab target LUN */ 1415 lun = read_1_byte(regs); 1416 /* Now we expect a 'paused with ACK asserted' int.. */ 1417 asr = read_aux_stat(regs); 1418 if (!(asr & ASR_INT)) { 1419 udelay(10); 1420 asr = read_aux_stat(regs); 1421 if (!(asr & ASR_INT)) 1422 printk 1423 ("wd33c93: No int after LUN on RESEL (%02x)\n", 1424 asr); 1425 } 1426 sr = read_wd33c93(regs, WD_SCSI_STATUS); 1427 udelay(7); 1428 if (sr != CSR_MSGIN) 1429 printk 1430 ("wd33c93: Not paused with ACK on RESEL (%02x)\n", 1431 sr); 1432 lun &= 7; 1433 write_wd33c93_cmd(regs, 1434 WD_CMD_NEGATE_ACK); 1435 } else { 1436 printk 1437 ("wd33c93: Not MSG_IN on reselect (%02x)\n", 1438 sr); 1439 lun = 0; 1440 } 1441 } 1442 } 1443 1444 /* Now we look for the command that's reconnecting. */ 1445 1446 cmd = (struct scsi_cmnd *) hostdata->disconnected_Q; 1447 patch = NULL; 1448 while (cmd) { 1449 if (id == cmd->device->id && lun == cmd->device->lun) 1450 break; 1451 patch = cmd; 1452 cmd = (struct scsi_cmnd *) cmd->host_scribble; 1453 } 1454 1455 /* Hmm. Couldn't find a valid command.... What to do? */ 1456 1457 if (!cmd) { 1458 printk 1459 ("---TROUBLE: target %d.%d not in disconnect queue---", 1460 id, lun); 1461 spin_unlock_irqrestore(&hostdata->lock, flags); 1462 return; 1463 } 1464 1465 /* Ok, found the command - now start it up again. */ 1466 1467 if (patch) 1468 patch->host_scribble = cmd->host_scribble; 1469 else 1470 hostdata->disconnected_Q = 1471 (struct scsi_cmnd *) cmd->host_scribble; 1472 hostdata->connected = cmd; 1473 1474 /* We don't need to worry about 'initialize_SCp()' or 'hostdata->busy[]' 1475 * because these things are preserved over a disconnect. 1476 * But we DO need to fix the DPD bit so it's correct for this command. 1477 */ 1478 1479 if (cmd->sc_data_direction == DMA_TO_DEVICE) 1480 write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id); 1481 else 1482 write_wd33c93(regs, WD_DESTINATION_ID, 1483 cmd->device->id | DSTID_DPD); 1484 if (hostdata->level2 >= L2_RESELECT) { 1485 write_wd33c93_count(regs, 0); /* we want a DATA_PHASE interrupt */ 1486 write_wd33c93(regs, WD_COMMAND_PHASE, 0x45); 1487 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); 1488 hostdata->state = S_RUNNING_LEVEL2; 1489 } else 1490 hostdata->state = S_CONNECTED; 1491 1492 DB(DB_INTR, printk("-%ld", cmd->serial_number)) 1493 spin_unlock_irqrestore(&hostdata->lock, flags); 1494 break; 1495 1496 default: 1497 printk("--UNKNOWN INTERRUPT:%02x:%02x:%02x--", asr, sr, phs); 1498 spin_unlock_irqrestore(&hostdata->lock, flags); 1499 } 1500 1501 DB(DB_INTR, printk("} ")) 1502 1503 } 1504 1505 static void 1506 reset_wd33c93(struct Scsi_Host *instance) 1507 { 1508 struct WD33C93_hostdata *hostdata = 1509 (struct WD33C93_hostdata *) instance->hostdata; 1510 const wd33c93_regs regs = hostdata->regs; 1511 uchar sr; 1512 1513 #ifdef CONFIG_SGI_IP22 1514 { 1515 int busycount = 0; 1516 extern void sgiwd93_reset(unsigned long); 1517 /* wait 'til the chip gets some time for us */ 1518 while ((read_aux_stat(regs) & ASR_BSY) && busycount++ < 100) 1519 udelay (10); 1520 /* 1521 * there are scsi devices out there, which manage to lock up 1522 * the wd33c93 in a busy condition. In this state it won't 1523 * accept the reset command. The only way to solve this is to 1524 * give the chip a hardware reset (if possible). The code below 1525 * does this for the SGI Indy, where this is possible 1526 */ 1527 /* still busy ? */ 1528 if (read_aux_stat(regs) & ASR_BSY) 1529 sgiwd93_reset(instance->base); /* yeah, give it the hard one */ 1530 } 1531 #endif 1532 1533 write_wd33c93(regs, WD_OWN_ID, OWNID_EAF | OWNID_RAF | 1534 instance->this_id | hostdata->clock_freq); 1535 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); 1536 write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER, 1537 calc_sync_xfer(hostdata->default_sx_per / 4, 1538 DEFAULT_SX_OFF, 0, hostdata->sx_table)); 1539 write_wd33c93(regs, WD_COMMAND, WD_CMD_RESET); 1540 1541 1542 #ifdef CONFIG_MVME147_SCSI 1543 udelay(25); /* The old wd33c93 on MVME147 needs this, at least */ 1544 #endif 1545 1546 while (!(read_aux_stat(regs) & ASR_INT)) 1547 ; 1548 sr = read_wd33c93(regs, WD_SCSI_STATUS); 1549 1550 hostdata->microcode = read_wd33c93(regs, WD_CDB_1); 1551 if (sr == 0x00) 1552 hostdata->chip = C_WD33C93; 1553 else if (sr == 0x01) { 1554 write_wd33c93(regs, WD_QUEUE_TAG, 0xa5); /* any random number */ 1555 sr = read_wd33c93(regs, WD_QUEUE_TAG); 1556 if (sr == 0xa5) { 1557 hostdata->chip = C_WD33C93B; 1558 write_wd33c93(regs, WD_QUEUE_TAG, 0); 1559 } else 1560 hostdata->chip = C_WD33C93A; 1561 } else 1562 hostdata->chip = C_UNKNOWN_CHIP; 1563 1564 if (hostdata->chip != C_WD33C93B) /* Fast SCSI unavailable */ 1565 hostdata->fast = 0; 1566 1567 write_wd33c93(regs, WD_TIMEOUT_PERIOD, TIMEOUT_PERIOD_VALUE); 1568 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); 1569 } 1570 1571 int 1572 wd33c93_host_reset(struct scsi_cmnd * SCpnt) 1573 { 1574 struct Scsi_Host *instance; 1575 struct WD33C93_hostdata *hostdata; 1576 int i; 1577 1578 instance = SCpnt->device->host; 1579 hostdata = (struct WD33C93_hostdata *) instance->hostdata; 1580 1581 printk("scsi%d: reset. ", instance->host_no); 1582 disable_irq(instance->irq); 1583 1584 hostdata->dma_stop(instance, NULL, 0); 1585 for (i = 0; i < 8; i++) { 1586 hostdata->busy[i] = 0; 1587 hostdata->sync_xfer[i] = 1588 calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF, 1589 0, hostdata->sx_table); 1590 hostdata->sync_stat[i] = SS_UNSET; /* using default sync values */ 1591 } 1592 hostdata->input_Q = NULL; 1593 hostdata->selecting = NULL; 1594 hostdata->connected = NULL; 1595 hostdata->disconnected_Q = NULL; 1596 hostdata->state = S_UNCONNECTED; 1597 hostdata->dma = D_DMA_OFF; 1598 hostdata->incoming_ptr = 0; 1599 hostdata->outgoing_len = 0; 1600 1601 reset_wd33c93(instance); 1602 SCpnt->result = DID_RESET << 16; 1603 enable_irq(instance->irq); 1604 return SUCCESS; 1605 } 1606 1607 int 1608 wd33c93_abort(struct scsi_cmnd * cmd) 1609 { 1610 struct Scsi_Host *instance; 1611 struct WD33C93_hostdata *hostdata; 1612 wd33c93_regs regs; 1613 struct scsi_cmnd *tmp, *prev; 1614 1615 disable_irq(cmd->device->host->irq); 1616 1617 instance = cmd->device->host; 1618 hostdata = (struct WD33C93_hostdata *) instance->hostdata; 1619 regs = hostdata->regs; 1620 1621 /* 1622 * Case 1 : If the command hasn't been issued yet, we simply remove it 1623 * from the input_Q. 1624 */ 1625 1626 tmp = (struct scsi_cmnd *) hostdata->input_Q; 1627 prev = NULL; 1628 while (tmp) { 1629 if (tmp == cmd) { 1630 if (prev) 1631 prev->host_scribble = cmd->host_scribble; 1632 else 1633 hostdata->input_Q = 1634 (struct scsi_cmnd *) cmd->host_scribble; 1635 cmd->host_scribble = NULL; 1636 cmd->result = DID_ABORT << 16; 1637 printk 1638 ("scsi%d: Abort - removing command %ld from input_Q. ", 1639 instance->host_no, cmd->serial_number); 1640 enable_irq(cmd->device->host->irq); 1641 cmd->scsi_done(cmd); 1642 return SUCCESS; 1643 } 1644 prev = tmp; 1645 tmp = (struct scsi_cmnd *) tmp->host_scribble; 1646 } 1647 1648 /* 1649 * Case 2 : If the command is connected, we're going to fail the abort 1650 * and let the high level SCSI driver retry at a later time or 1651 * issue a reset. 1652 * 1653 * Timeouts, and therefore aborted commands, will be highly unlikely 1654 * and handling them cleanly in this situation would make the common 1655 * case of noresets less efficient, and would pollute our code. So, 1656 * we fail. 1657 */ 1658 1659 if (hostdata->connected == cmd) { 1660 uchar sr, asr; 1661 unsigned long timeout; 1662 1663 printk("scsi%d: Aborting connected command %ld - ", 1664 instance->host_no, cmd->serial_number); 1665 1666 printk("stopping DMA - "); 1667 if (hostdata->dma == D_DMA_RUNNING) { 1668 hostdata->dma_stop(instance, cmd, 0); 1669 hostdata->dma = D_DMA_OFF; 1670 } 1671 1672 printk("sending wd33c93 ABORT command - "); 1673 write_wd33c93(regs, WD_CONTROL, 1674 CTRL_IDI | CTRL_EDI | CTRL_POLLED); 1675 write_wd33c93_cmd(regs, WD_CMD_ABORT); 1676 1677 /* Now we have to attempt to flush out the FIFO... */ 1678 1679 printk("flushing fifo - "); 1680 timeout = 1000000; 1681 do { 1682 asr = read_aux_stat(regs); 1683 if (asr & ASR_DBR) 1684 read_wd33c93(regs, WD_DATA); 1685 } while (!(asr & ASR_INT) && timeout-- > 0); 1686 sr = read_wd33c93(regs, WD_SCSI_STATUS); 1687 printk 1688 ("asr=%02x, sr=%02x, %ld bytes un-transferred (timeout=%ld) - ", 1689 asr, sr, read_wd33c93_count(regs), timeout); 1690 1691 /* 1692 * Abort command processed. 1693 * Still connected. 1694 * We must disconnect. 1695 */ 1696 1697 printk("sending wd33c93 DISCONNECT command - "); 1698 write_wd33c93_cmd(regs, WD_CMD_DISCONNECT); 1699 1700 timeout = 1000000; 1701 asr = read_aux_stat(regs); 1702 while ((asr & ASR_CIP) && timeout-- > 0) 1703 asr = read_aux_stat(regs); 1704 sr = read_wd33c93(regs, WD_SCSI_STATUS); 1705 printk("asr=%02x, sr=%02x.", asr, sr); 1706 1707 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); 1708 hostdata->connected = NULL; 1709 hostdata->state = S_UNCONNECTED; 1710 cmd->result = DID_ABORT << 16; 1711 1712 /* sti();*/ 1713 wd33c93_execute(instance); 1714 1715 enable_irq(cmd->device->host->irq); 1716 cmd->scsi_done(cmd); 1717 return SUCCESS; 1718 } 1719 1720 /* 1721 * Case 3: If the command is currently disconnected from the bus, 1722 * we're not going to expend much effort here: Let's just return 1723 * an ABORT_SNOOZE and hope for the best... 1724 */ 1725 1726 tmp = (struct scsi_cmnd *) hostdata->disconnected_Q; 1727 while (tmp) { 1728 if (tmp == cmd) { 1729 printk 1730 ("scsi%d: Abort - command %ld found on disconnected_Q - ", 1731 instance->host_no, cmd->serial_number); 1732 printk("Abort SNOOZE. "); 1733 enable_irq(cmd->device->host->irq); 1734 return FAILED; 1735 } 1736 tmp = (struct scsi_cmnd *) tmp->host_scribble; 1737 } 1738 1739 /* 1740 * Case 4 : If we reached this point, the command was not found in any of 1741 * the queues. 1742 * 1743 * We probably reached this point because of an unlikely race condition 1744 * between the command completing successfully and the abortion code, 1745 * so we won't panic, but we will notify the user in case something really 1746 * broke. 1747 */ 1748 1749 /* sti();*/ 1750 wd33c93_execute(instance); 1751 1752 enable_irq(cmd->device->host->irq); 1753 printk("scsi%d: warning : SCSI command probably completed successfully" 1754 " before abortion. ", instance->host_no); 1755 return FAILED; 1756 } 1757 1758 #define MAX_WD33C93_HOSTS 4 1759 #define MAX_SETUP_ARGS ARRAY_SIZE(setup_args) 1760 #define SETUP_BUFFER_SIZE 200 1761 static char setup_buffer[SETUP_BUFFER_SIZE]; 1762 static char setup_used[MAX_SETUP_ARGS]; 1763 static int done_setup = 0; 1764 1765 static int 1766 wd33c93_setup(char *str) 1767 { 1768 int i; 1769 char *p1, *p2; 1770 1771 /* The kernel does some processing of the command-line before calling 1772 * this function: If it begins with any decimal or hex number arguments, 1773 * ints[0] = how many numbers found and ints[1] through [n] are the values 1774 * themselves. str points to where the non-numeric arguments (if any) 1775 * start: We do our own parsing of those. We construct synthetic 'nosync' 1776 * keywords out of numeric args (to maintain compatibility with older 1777 * versions) and then add the rest of the arguments. 1778 */ 1779 1780 p1 = setup_buffer; 1781 *p1 = '\0'; 1782 if (str) 1783 strncpy(p1, str, SETUP_BUFFER_SIZE - strlen(setup_buffer)); 1784 setup_buffer[SETUP_BUFFER_SIZE - 1] = '\0'; 1785 p1 = setup_buffer; 1786 i = 0; 1787 while (*p1 && (i < MAX_SETUP_ARGS)) { 1788 p2 = strchr(p1, ','); 1789 if (p2) { 1790 *p2 = '\0'; 1791 if (p1 != p2) 1792 setup_args[i] = p1; 1793 p1 = p2 + 1; 1794 i++; 1795 } else { 1796 setup_args[i] = p1; 1797 break; 1798 } 1799 } 1800 for (i = 0; i < MAX_SETUP_ARGS; i++) 1801 setup_used[i] = 0; 1802 done_setup = 1; 1803 1804 return 1; 1805 } 1806 __setup("wd33c93=", wd33c93_setup); 1807 1808 /* check_setup_args() returns index if key found, 0 if not 1809 */ 1810 static int 1811 check_setup_args(char *key, int *flags, int *val, char *buf) 1812 { 1813 int x; 1814 char *cp; 1815 1816 for (x = 0; x < MAX_SETUP_ARGS; x++) { 1817 if (setup_used[x]) 1818 continue; 1819 if (!strncmp(setup_args[x], key, strlen(key))) 1820 break; 1821 if (!strncmp(setup_args[x], "next", strlen("next"))) 1822 return 0; 1823 } 1824 if (x == MAX_SETUP_ARGS) 1825 return 0; 1826 setup_used[x] = 1; 1827 cp = setup_args[x] + strlen(key); 1828 *val = -1; 1829 if (*cp != ':') 1830 return ++x; 1831 cp++; 1832 if ((*cp >= '0') && (*cp <= '9')) { 1833 *val = simple_strtoul(cp, NULL, 0); 1834 } 1835 return ++x; 1836 } 1837 1838 /* 1839 * Calculate internal data-transfer-clock cycle from input-clock 1840 * frequency (/MHz) and fill 'sx_table'. 1841 * 1842 * The original driver used to rely on a fixed sx_table, containing periods 1843 * for (only) the lower limits of the respective input-clock-frequency ranges 1844 * (8-10/12-15/16-20 MHz). Although it seems, that no problems ocurred with 1845 * this setting so far, it might be desirable to adjust the transfer periods 1846 * closer to the really attached, possibly 25% higher, input-clock, since 1847 * - the wd33c93 may really use a significant shorter period, than it has 1848 * negotiated (eg. thrashing the target, which expects 4/8MHz, with 5/10MHz 1849 * instead). 1850 * - the wd33c93 may ask the target for a lower transfer rate, than the target 1851 * is capable of (eg. negotiating for an assumed minimum of 252ns instead of 1852 * possible 200ns, which indeed shows up in tests as an approx. 10% lower 1853 * transfer rate). 1854 */ 1855 static inline unsigned int 1856 round_4(unsigned int x) 1857 { 1858 switch (x & 3) { 1859 case 1: --x; 1860 break; 1861 case 2: ++x; 1862 case 3: ++x; 1863 } 1864 return x; 1865 } 1866 1867 static void 1868 calc_sx_table(unsigned int mhz, struct sx_period sx_table[9]) 1869 { 1870 unsigned int d, i; 1871 if (mhz < 11) 1872 d = 2; /* divisor for 8-10 MHz input-clock */ 1873 else if (mhz < 16) 1874 d = 3; /* divisor for 12-15 MHz input-clock */ 1875 else 1876 d = 4; /* divisor for 16-20 MHz input-clock */ 1877 1878 d = (100000 * d) / 2 / mhz; /* 100 x DTCC / nanosec */ 1879 1880 sx_table[0].period_ns = 1; 1881 sx_table[0].reg_value = 0x20; 1882 for (i = 1; i < 8; i++) { 1883 sx_table[i].period_ns = round_4((i+1)*d / 100); 1884 sx_table[i].reg_value = (i+1)*0x10; 1885 } 1886 sx_table[7].reg_value = 0; 1887 sx_table[8].period_ns = 0; 1888 sx_table[8].reg_value = 0; 1889 } 1890 1891 /* 1892 * check and, maybe, map an init- or "clock:"- argument. 1893 */ 1894 static uchar 1895 set_clk_freq(int freq, int *mhz) 1896 { 1897 int x = freq; 1898 if (WD33C93_FS_8_10 == freq) 1899 freq = 8; 1900 else if (WD33C93_FS_12_15 == freq) 1901 freq = 12; 1902 else if (WD33C93_FS_16_20 == freq) 1903 freq = 16; 1904 else if (freq > 7 && freq < 11) 1905 x = WD33C93_FS_8_10; 1906 else if (freq > 11 && freq < 16) 1907 x = WD33C93_FS_12_15; 1908 else if (freq > 15 && freq < 21) 1909 x = WD33C93_FS_16_20; 1910 else { 1911 /* Hmm, wouldn't it be safer to assume highest freq here? */ 1912 x = WD33C93_FS_8_10; 1913 freq = 8; 1914 } 1915 *mhz = freq; 1916 return x; 1917 } 1918 1919 /* 1920 * to be used with the resync: fast: ... options 1921 */ 1922 static inline void set_resync ( struct WD33C93_hostdata *hd, int mask ) 1923 { 1924 int i; 1925 for (i = 0; i < 8; i++) 1926 if (mask & (1 << i)) 1927 hd->sync_stat[i] = SS_UNSET; 1928 } 1929 1930 void 1931 wd33c93_init(struct Scsi_Host *instance, const wd33c93_regs regs, 1932 dma_setup_t setup, dma_stop_t stop, int clock_freq) 1933 { 1934 struct WD33C93_hostdata *hostdata; 1935 int i; 1936 int flags; 1937 int val; 1938 char buf[32]; 1939 1940 if (!done_setup && setup_strings) 1941 wd33c93_setup(setup_strings); 1942 1943 hostdata = (struct WD33C93_hostdata *) instance->hostdata; 1944 1945 hostdata->regs = regs; 1946 hostdata->clock_freq = set_clk_freq(clock_freq, &i); 1947 calc_sx_table(i, hostdata->sx_table); 1948 hostdata->dma_setup = setup; 1949 hostdata->dma_stop = stop; 1950 hostdata->dma_bounce_buffer = NULL; 1951 hostdata->dma_bounce_len = 0; 1952 for (i = 0; i < 8; i++) { 1953 hostdata->busy[i] = 0; 1954 hostdata->sync_xfer[i] = 1955 calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF, 1956 0, hostdata->sx_table); 1957 hostdata->sync_stat[i] = SS_UNSET; /* using default sync values */ 1958 #ifdef PROC_STATISTICS 1959 hostdata->cmd_cnt[i] = 0; 1960 hostdata->disc_allowed_cnt[i] = 0; 1961 hostdata->disc_done_cnt[i] = 0; 1962 #endif 1963 } 1964 hostdata->input_Q = NULL; 1965 hostdata->selecting = NULL; 1966 hostdata->connected = NULL; 1967 hostdata->disconnected_Q = NULL; 1968 hostdata->state = S_UNCONNECTED; 1969 hostdata->dma = D_DMA_OFF; 1970 hostdata->level2 = L2_BASIC; 1971 hostdata->disconnect = DIS_ADAPTIVE; 1972 hostdata->args = DEBUG_DEFAULTS; 1973 hostdata->incoming_ptr = 0; 1974 hostdata->outgoing_len = 0; 1975 hostdata->default_sx_per = DEFAULT_SX_PER; 1976 hostdata->no_dma = 0; /* default is DMA enabled */ 1977 1978 #ifdef PROC_INTERFACE 1979 hostdata->proc = PR_VERSION | PR_INFO | PR_STATISTICS | 1980 PR_CONNECTED | PR_INPUTQ | PR_DISCQ | PR_STOP; 1981 #ifdef PROC_STATISTICS 1982 hostdata->dma_cnt = 0; 1983 hostdata->pio_cnt = 0; 1984 hostdata->int_cnt = 0; 1985 #endif 1986 #endif 1987 1988 if (check_setup_args("clock", &flags, &val, buf)) { 1989 hostdata->clock_freq = set_clk_freq(val, &val); 1990 calc_sx_table(val, hostdata->sx_table); 1991 } 1992 1993 if (check_setup_args("nosync", &flags, &val, buf)) 1994 hostdata->no_sync = val; 1995 1996 if (check_setup_args("nodma", &flags, &val, buf)) 1997 hostdata->no_dma = (val == -1) ? 1 : val; 1998 1999 if (check_setup_args("period", &flags, &val, buf)) 2000 hostdata->default_sx_per = 2001 hostdata->sx_table[round_period((unsigned int) val, 2002 hostdata->sx_table)].period_ns; 2003 2004 if (check_setup_args("disconnect", &flags, &val, buf)) { 2005 if ((val >= DIS_NEVER) && (val <= DIS_ALWAYS)) 2006 hostdata->disconnect = val; 2007 else 2008 hostdata->disconnect = DIS_ADAPTIVE; 2009 } 2010 2011 if (check_setup_args("level2", &flags, &val, buf)) 2012 hostdata->level2 = val; 2013 2014 if (check_setup_args("debug", &flags, &val, buf)) 2015 hostdata->args = val & DB_MASK; 2016 2017 if (check_setup_args("burst", &flags, &val, buf)) 2018 hostdata->dma_mode = val ? CTRL_BURST:CTRL_DMA; 2019 2020 if (WD33C93_FS_16_20 == hostdata->clock_freq /* divisor 4 */ 2021 && check_setup_args("fast", &flags, &val, buf)) 2022 hostdata->fast = !!val; 2023 2024 if ((i = check_setup_args("next", &flags, &val, buf))) { 2025 while (i) 2026 setup_used[--i] = 1; 2027 } 2028 #ifdef PROC_INTERFACE 2029 if (check_setup_args("proc", &flags, &val, buf)) 2030 hostdata->proc = val; 2031 #endif 2032 2033 spin_lock_irq(&hostdata->lock); 2034 reset_wd33c93(instance); 2035 spin_unlock_irq(&hostdata->lock); 2036 2037 printk("wd33c93-%d: chip=%s/%d no_sync=0x%x no_dma=%d", 2038 instance->host_no, 2039 (hostdata->chip == C_WD33C93) ? "WD33c93" : (hostdata->chip == 2040 C_WD33C93A) ? 2041 "WD33c93A" : (hostdata->chip == 2042 C_WD33C93B) ? "WD33c93B" : "unknown", 2043 hostdata->microcode, hostdata->no_sync, hostdata->no_dma); 2044 #ifdef DEBUGGING_ON 2045 printk(" debug_flags=0x%02x\n", hostdata->args); 2046 #else 2047 printk(" debugging=OFF\n"); 2048 #endif 2049 printk(" setup_args="); 2050 for (i = 0; i < MAX_SETUP_ARGS; i++) 2051 printk("%s,", setup_args[i]); 2052 printk("\n"); 2053 printk(" Version %s - %s, Compiled %s at %s\n", 2054 WD33C93_VERSION, WD33C93_DATE, __DATE__, __TIME__); 2055 } 2056 2057 int 2058 wd33c93_proc_info(struct Scsi_Host *instance, char *buf, char **start, off_t off, int len, int in) 2059 { 2060 2061 #ifdef PROC_INTERFACE 2062 2063 char *bp; 2064 char tbuf[128]; 2065 struct WD33C93_hostdata *hd; 2066 struct scsi_cmnd *cmd; 2067 int x; 2068 static int stop = 0; 2069 2070 hd = (struct WD33C93_hostdata *) instance->hostdata; 2071 2072 /* If 'in' is TRUE we need to _read_ the proc file. We accept the following 2073 * keywords (same format as command-line, but arguments are not optional): 2074 * debug 2075 * disconnect 2076 * period 2077 * resync 2078 * proc 2079 * nodma 2080 * level2 2081 * burst 2082 * fast 2083 * nosync 2084 */ 2085 2086 if (in) { 2087 buf[len] = '\0'; 2088 for (bp = buf; *bp; ) { 2089 while (',' == *bp || ' ' == *bp) 2090 ++bp; 2091 if (!strncmp(bp, "debug:", 6)) { 2092 hd->args = simple_strtoul(bp+6, &bp, 0) & DB_MASK; 2093 } else if (!strncmp(bp, "disconnect:", 11)) { 2094 x = simple_strtoul(bp+11, &bp, 0); 2095 if (x < DIS_NEVER || x > DIS_ALWAYS) 2096 x = DIS_ADAPTIVE; 2097 hd->disconnect = x; 2098 } else if (!strncmp(bp, "period:", 7)) { 2099 x = simple_strtoul(bp+7, &bp, 0); 2100 hd->default_sx_per = 2101 hd->sx_table[round_period((unsigned int) x, 2102 hd->sx_table)].period_ns; 2103 } else if (!strncmp(bp, "resync:", 7)) { 2104 set_resync(hd, (int)simple_strtoul(bp+7, &bp, 0)); 2105 } else if (!strncmp(bp, "proc:", 5)) { 2106 hd->proc = simple_strtoul(bp+5, &bp, 0); 2107 } else if (!strncmp(bp, "nodma:", 6)) { 2108 hd->no_dma = simple_strtoul(bp+6, &bp, 0); 2109 } else if (!strncmp(bp, "level2:", 7)) { 2110 hd->level2 = simple_strtoul(bp+7, &bp, 0); 2111 } else if (!strncmp(bp, "burst:", 6)) { 2112 hd->dma_mode = 2113 simple_strtol(bp+6, &bp, 0) ? CTRL_BURST:CTRL_DMA; 2114 } else if (!strncmp(bp, "fast:", 5)) { 2115 x = !!simple_strtol(bp+5, &bp, 0); 2116 if (x != hd->fast) 2117 set_resync(hd, 0xff); 2118 hd->fast = x; 2119 } else if (!strncmp(bp, "nosync:", 7)) { 2120 x = simple_strtoul(bp+7, &bp, 0); 2121 set_resync(hd, x ^ hd->no_sync); 2122 hd->no_sync = x; 2123 } else { 2124 break; /* unknown keyword,syntax-error,... */ 2125 } 2126 } 2127 return len; 2128 } 2129 2130 spin_lock_irq(&hd->lock); 2131 bp = buf; 2132 *bp = '\0'; 2133 if (hd->proc & PR_VERSION) { 2134 sprintf(tbuf, "\nVersion %s - %s. Compiled %s %s", 2135 WD33C93_VERSION, WD33C93_DATE, __DATE__, __TIME__); 2136 strcat(bp, tbuf); 2137 } 2138 if (hd->proc & PR_INFO) { 2139 sprintf(tbuf, "\nclock_freq=%02x no_sync=%02x no_dma=%d" 2140 " dma_mode=%02x fast=%d", 2141 hd->clock_freq, hd->no_sync, hd->no_dma, hd->dma_mode, hd->fast); 2142 strcat(bp, tbuf); 2143 strcat(bp, "\nsync_xfer[] = "); 2144 for (x = 0; x < 7; x++) { 2145 sprintf(tbuf, "\t%02x", hd->sync_xfer[x]); 2146 strcat(bp, tbuf); 2147 } 2148 strcat(bp, "\nsync_stat[] = "); 2149 for (x = 0; x < 7; x++) { 2150 sprintf(tbuf, "\t%02x", hd->sync_stat[x]); 2151 strcat(bp, tbuf); 2152 } 2153 } 2154 #ifdef PROC_STATISTICS 2155 if (hd->proc & PR_STATISTICS) { 2156 strcat(bp, "\ncommands issued: "); 2157 for (x = 0; x < 7; x++) { 2158 sprintf(tbuf, "\t%ld", hd->cmd_cnt[x]); 2159 strcat(bp, tbuf); 2160 } 2161 strcat(bp, "\ndisconnects allowed:"); 2162 for (x = 0; x < 7; x++) { 2163 sprintf(tbuf, "\t%ld", hd->disc_allowed_cnt[x]); 2164 strcat(bp, tbuf); 2165 } 2166 strcat(bp, "\ndisconnects done: "); 2167 for (x = 0; x < 7; x++) { 2168 sprintf(tbuf, "\t%ld", hd->disc_done_cnt[x]); 2169 strcat(bp, tbuf); 2170 } 2171 sprintf(tbuf, 2172 "\ninterrupts: %ld, DATA_PHASE ints: %ld DMA, %ld PIO", 2173 hd->int_cnt, hd->dma_cnt, hd->pio_cnt); 2174 strcat(bp, tbuf); 2175 } 2176 #endif 2177 if (hd->proc & PR_CONNECTED) { 2178 strcat(bp, "\nconnected: "); 2179 if (hd->connected) { 2180 cmd = (struct scsi_cmnd *) hd->connected; 2181 sprintf(tbuf, " %ld-%d:%d(%02x)", 2182 cmd->serial_number, cmd->device->id, cmd->device->lun, cmd->cmnd[0]); 2183 strcat(bp, tbuf); 2184 } 2185 } 2186 if (hd->proc & PR_INPUTQ) { 2187 strcat(bp, "\ninput_Q: "); 2188 cmd = (struct scsi_cmnd *) hd->input_Q; 2189 while (cmd) { 2190 sprintf(tbuf, " %ld-%d:%d(%02x)", 2191 cmd->serial_number, cmd->device->id, cmd->device->lun, cmd->cmnd[0]); 2192 strcat(bp, tbuf); 2193 cmd = (struct scsi_cmnd *) cmd->host_scribble; 2194 } 2195 } 2196 if (hd->proc & PR_DISCQ) { 2197 strcat(bp, "\ndisconnected_Q:"); 2198 cmd = (struct scsi_cmnd *) hd->disconnected_Q; 2199 while (cmd) { 2200 sprintf(tbuf, " %ld-%d:%d(%02x)", 2201 cmd->serial_number, cmd->device->id, cmd->device->lun, cmd->cmnd[0]); 2202 strcat(bp, tbuf); 2203 cmd = (struct scsi_cmnd *) cmd->host_scribble; 2204 } 2205 } 2206 strcat(bp, "\n"); 2207 spin_unlock_irq(&hd->lock); 2208 *start = buf; 2209 if (stop) { 2210 stop = 0; 2211 return 0; 2212 } 2213 if (off > 0x40000) /* ALWAYS stop after 256k bytes have been read */ 2214 stop = 1; 2215 if (hd->proc & PR_STOP) /* stop every other time */ 2216 stop = 1; 2217 return strlen(bp); 2218 2219 #else /* PROC_INTERFACE */ 2220 2221 return 0; 2222 2223 #endif /* PROC_INTERFACE */ 2224 2225 } 2226 2227 void 2228 wd33c93_release(void) 2229 { 2230 } 2231 2232 EXPORT_SYMBOL(wd33c93_host_reset); 2233 EXPORT_SYMBOL(wd33c93_init); 2234 EXPORT_SYMBOL(wd33c93_release); 2235 EXPORT_SYMBOL(wd33c93_abort); 2236 EXPORT_SYMBOL(wd33c93_queuecommand); 2237 EXPORT_SYMBOL(wd33c93_intr); 2238 EXPORT_SYMBOL(wd33c93_proc_info); 2239