xref: /linux/drivers/scsi/sym53c8xx_2/sym_malloc.c (revision 36110669ddf832e6c9ceba4dd203749d5be31d31)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
4  * of PCI-SCSI IO processors.
5  *
6  * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
7  *
8  * This driver is derived from the Linux sym53c8xx driver.
9  * Copyright (C) 1998-2000  Gerard Roudier
10  *
11  * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
12  * a port of the FreeBSD ncr driver to Linux-1.2.13.
13  *
14  * The original ncr driver has been written for 386bsd and FreeBSD by
15  *         Wolfgang Stanglmeier        <wolf@cologne.de>
16  *         Stefan Esser                <se@mi.Uni-Koeln.de>
17  * Copyright (C) 1994  Wolfgang Stanglmeier
18  *
19  * Other major contributions:
20  *
21  * NVRAM detection and reading.
22  * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
23  *
24  *-----------------------------------------------------------------------------
25  */
26 
27 #include "sym_glue.h"
28 
29 /*
30  *  Simple power of two buddy-like generic allocator.
31  *  Provides naturally aligned memory chunks.
32  *
33  *  This simple code is not intended to be fast, but to
34  *  provide power of 2 aligned memory allocations.
35  *  Since the SCRIPTS processor only supplies 8 bit arithmetic,
36  *  this allocator allows simple and fast address calculations
37  *  from the SCRIPTS code. In addition, cache line alignment
38  *  is guaranteed for power of 2 cache line size.
39  *
40  *  This allocator has been developed for the Linux sym53c8xx
41  *  driver, since this O/S does not provide naturally aligned
42  *  allocations.
43  *  It has the advantage of allowing the driver to use private
44  *  pages of memory that will be useful if we ever need to deal
45  *  with IO MMUs for PCI.
46  */
47 static void *___sym_malloc(m_pool_p mp, int size)
48 {
49 	int i = 0;
50 	int s = (1 << SYM_MEM_SHIFT);
51 	int j;
52 	void *a;
53 	m_link_p h = mp->h;
54 
55 	if (size > SYM_MEM_CLUSTER_SIZE)
56 		return NULL;
57 
58 	while (size > s) {
59 		s <<= 1;
60 		++i;
61 	}
62 
63 	j = i;
64 	while (!h[j].next) {
65 		if (s == SYM_MEM_CLUSTER_SIZE) {
66 			h[j].next = (m_link_p) M_GET_MEM_CLUSTER();
67 			if (h[j].next)
68 				h[j].next->next = NULL;
69 			break;
70 		}
71 		++j;
72 		s <<= 1;
73 	}
74 	a = h[j].next;
75 	if (a) {
76 		h[j].next = h[j].next->next;
77 		while (j > i) {
78 			j -= 1;
79 			s >>= 1;
80 			h[j].next = (m_link_p) (a+s);
81 			h[j].next->next = NULL;
82 		}
83 	}
84 #ifdef DEBUG
85 	printf("___sym_malloc(%d) = %p\n", size, (void *) a);
86 #endif
87 	return a;
88 }
89 
90 /*
91  *  Counter-part of the generic allocator.
92  */
93 static void ___sym_mfree(m_pool_p mp, void *ptr, int size)
94 {
95 	int i = 0;
96 	int s = (1 << SYM_MEM_SHIFT);
97 	m_link_p q;
98 	unsigned long a, b;
99 	m_link_p h = mp->h;
100 
101 #ifdef DEBUG
102 	printf("___sym_mfree(%p, %d)\n", ptr, size);
103 #endif
104 
105 	if (size > SYM_MEM_CLUSTER_SIZE)
106 		return;
107 
108 	while (size > s) {
109 		s <<= 1;
110 		++i;
111 	}
112 
113 	a = (unsigned long)ptr;
114 
115 	while (1) {
116 		if (s == SYM_MEM_CLUSTER_SIZE) {
117 #ifdef SYM_MEM_FREE_UNUSED
118 			M_FREE_MEM_CLUSTER((void *)a);
119 #else
120 			((m_link_p) a)->next = h[i].next;
121 			h[i].next = (m_link_p) a;
122 #endif
123 			break;
124 		}
125 		b = a ^ s;
126 		q = &h[i];
127 		while (q->next && q->next != (m_link_p) b) {
128 			q = q->next;
129 		}
130 		if (!q->next) {
131 			((m_link_p) a)->next = h[i].next;
132 			h[i].next = (m_link_p) a;
133 			break;
134 		}
135 		q->next = q->next->next;
136 		a = a & b;
137 		s <<= 1;
138 		++i;
139 	}
140 }
141 
142 /*
143  *  Verbose and zeroing allocator that wrapps to the generic allocator.
144  */
145 static void *__sym_calloc2(m_pool_p mp, int size, char *name, int uflags)
146 {
147 	void *p;
148 
149 	p = ___sym_malloc(mp, size);
150 
151 	if (DEBUG_FLAGS & DEBUG_ALLOC) {
152 		printf ("new %-10s[%4d] @%p.\n", name, size, p);
153 	}
154 
155 	if (p)
156 		memset(p, 0, size);
157 	else if (uflags & SYM_MEM_WARN)
158 		printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size);
159 	return p;
160 }
161 #define __sym_calloc(mp, s, n)	__sym_calloc2(mp, s, n, SYM_MEM_WARN)
162 
163 /*
164  *  Its counter-part.
165  */
166 static void __sym_mfree(m_pool_p mp, void *ptr, int size, char *name)
167 {
168 	if (DEBUG_FLAGS & DEBUG_ALLOC)
169 		printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
170 
171 	___sym_mfree(mp, ptr, size);
172 }
173 
174 /*
175  *  Default memory pool we donnot need to involve in DMA.
176  *
177  *  With DMA abstraction, we use functions (methods), to
178  *  distinguish between non DMAable memory and DMAable memory.
179  */
180 static void *___mp0_get_mem_cluster(m_pool_p mp)
181 {
182 	void *m = sym_get_mem_cluster();
183 	if (m)
184 		++mp->nump;
185 	return m;
186 }
187 
188 #ifdef	SYM_MEM_FREE_UNUSED
189 static void ___mp0_free_mem_cluster(m_pool_p mp, void *m)
190 {
191 	sym_free_mem_cluster(m);
192 	--mp->nump;
193 }
194 #else
195 #define ___mp0_free_mem_cluster NULL
196 #endif
197 
198 static struct sym_m_pool mp0 = {
199 	NULL,
200 	___mp0_get_mem_cluster,
201 	___mp0_free_mem_cluster
202 };
203 
204 /*
205  *  Methods that maintains DMAable pools according to user allocations.
206  *  New pools are created on the fly when a new pool id is provided.
207  *  They are deleted on the fly when they get emptied.
208  */
209 /* Get a memory cluster that matches the DMA constraints of a given pool */
210 static void * ___get_dma_mem_cluster(m_pool_p mp)
211 {
212 	m_vtob_p vbp;
213 	void *vaddr;
214 
215 	vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB");
216 	if (!vbp)
217 		goto out_err;
218 
219 	vaddr = sym_m_get_dma_mem_cluster(mp, vbp);
220 	if (vaddr) {
221 		int hc = VTOB_HASH_CODE(vaddr);
222 		vbp->next = mp->vtob[hc];
223 		mp->vtob[hc] = vbp;
224 		++mp->nump;
225 	}
226 	return vaddr;
227 out_err:
228 	return NULL;
229 }
230 
231 #ifdef	SYM_MEM_FREE_UNUSED
232 /* Free a memory cluster and associated resources for DMA */
233 static void ___free_dma_mem_cluster(m_pool_p mp, void *m)
234 {
235 	m_vtob_p *vbpp, vbp;
236 	int hc = VTOB_HASH_CODE(m);
237 
238 	vbpp = &mp->vtob[hc];
239 	while (*vbpp && (*vbpp)->vaddr != m)
240 		vbpp = &(*vbpp)->next;
241 	if (*vbpp) {
242 		vbp = *vbpp;
243 		*vbpp = (*vbpp)->next;
244 		sym_m_free_dma_mem_cluster(mp, vbp);
245 		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
246 		--mp->nump;
247 	}
248 }
249 #endif
250 
251 /* Fetch the memory pool for a given pool id (i.e. DMA constraints) */
252 static inline m_pool_p ___get_dma_pool(m_pool_ident_t dev_dmat)
253 {
254 	m_pool_p mp;
255 	for (mp = mp0.next;
256 		mp && !sym_m_pool_match(mp->dev_dmat, dev_dmat);
257 			mp = mp->next);
258 	return mp;
259 }
260 
261 /* Create a new memory DMAable pool (when fetch failed) */
262 static m_pool_p ___cre_dma_pool(m_pool_ident_t dev_dmat)
263 {
264 	m_pool_p mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL");
265 	if (mp) {
266 		mp->dev_dmat = dev_dmat;
267 		mp->get_mem_cluster = ___get_dma_mem_cluster;
268 #ifdef	SYM_MEM_FREE_UNUSED
269 		mp->free_mem_cluster = ___free_dma_mem_cluster;
270 #endif
271 		mp->next = mp0.next;
272 		mp0.next = mp;
273 		return mp;
274 	}
275 	return NULL;
276 }
277 
278 #ifdef	SYM_MEM_FREE_UNUSED
279 /* Destroy a DMAable memory pool (when got emptied) */
280 static void ___del_dma_pool(m_pool_p p)
281 {
282 	m_pool_p *pp = &mp0.next;
283 
284 	while (*pp && *pp != p)
285 		pp = &(*pp)->next;
286 	if (*pp) {
287 		*pp = (*pp)->next;
288 		__sym_mfree(&mp0, p, sizeof(*p), "MPOOL");
289 	}
290 }
291 #endif
292 
293 /* This lock protects only the memory allocation/free.  */
294 static DEFINE_SPINLOCK(sym53c8xx_lock);
295 
296 /*
297  *  Actual allocator for DMAable memory.
298  */
299 void *__sym_calloc_dma(m_pool_ident_t dev_dmat, int size, char *name)
300 {
301 	unsigned long flags;
302 	m_pool_p mp;
303 	void *m = NULL;
304 
305 	spin_lock_irqsave(&sym53c8xx_lock, flags);
306 	mp = ___get_dma_pool(dev_dmat);
307 	if (!mp)
308 		mp = ___cre_dma_pool(dev_dmat);
309 	if (!mp)
310 		goto out;
311 	m = __sym_calloc(mp, size, name);
312 #ifdef	SYM_MEM_FREE_UNUSED
313 	if (!mp->nump)
314 		___del_dma_pool(mp);
315 #endif
316 
317  out:
318 	spin_unlock_irqrestore(&sym53c8xx_lock, flags);
319 	return m;
320 }
321 
322 void __sym_mfree_dma(m_pool_ident_t dev_dmat, void *m, int size, char *name)
323 {
324 	unsigned long flags;
325 	m_pool_p mp;
326 
327 	spin_lock_irqsave(&sym53c8xx_lock, flags);
328 	mp = ___get_dma_pool(dev_dmat);
329 	if (!mp)
330 		goto out;
331 	__sym_mfree(mp, m, size, name);
332 #ifdef	SYM_MEM_FREE_UNUSED
333 	if (!mp->nump)
334 		___del_dma_pool(mp);
335 #endif
336  out:
337 	spin_unlock_irqrestore(&sym53c8xx_lock, flags);
338 }
339 
340 /*
341  *  Actual virtual to bus physical address translator
342  *  for 32 bit addressable DMAable memory.
343  */
344 dma_addr_t __vtobus(m_pool_ident_t dev_dmat, void *m)
345 {
346 	unsigned long flags;
347 	m_pool_p mp;
348 	int hc = VTOB_HASH_CODE(m);
349 	m_vtob_p vp = NULL;
350 	void *a = (void *)((unsigned long)m & ~SYM_MEM_CLUSTER_MASK);
351 	dma_addr_t b;
352 
353 	spin_lock_irqsave(&sym53c8xx_lock, flags);
354 	mp = ___get_dma_pool(dev_dmat);
355 	if (mp) {
356 		vp = mp->vtob[hc];
357 		while (vp && vp->vaddr != a)
358 			vp = vp->next;
359 	}
360 	if (!vp)
361 		panic("sym: VTOBUS FAILED!\n");
362 	b = vp->baddr + (m - a);
363 	spin_unlock_irqrestore(&sym53c8xx_lock, flags);
364 	return b;
365 }
366