xref: /linux/drivers/scsi/sym53c8xx_2/sym_hipd.c (revision 9ce7677cfd7cd871adb457c80bea3b581b839641)
1 /*
2  * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3  * of PCI-SCSI IO processors.
4  *
5  * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6  * Copyright (c) 2003-2005  Matthew Wilcox <matthew@wil.cx>
7  *
8  * This driver is derived from the Linux sym53c8xx driver.
9  * Copyright (C) 1998-2000  Gerard Roudier
10  *
11  * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
12  * a port of the FreeBSD ncr driver to Linux-1.2.13.
13  *
14  * The original ncr driver has been written for 386bsd and FreeBSD by
15  *         Wolfgang Stanglmeier        <wolf@cologne.de>
16  *         Stefan Esser                <se@mi.Uni-Koeln.de>
17  * Copyright (C) 1994  Wolfgang Stanglmeier
18  *
19  * Other major contributions:
20  *
21  * NVRAM detection and reading.
22  * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
23  *
24  *-----------------------------------------------------------------------------
25  *
26  * This program is free software; you can redistribute it and/or modify
27  * it under the terms of the GNU General Public License as published by
28  * the Free Software Foundation; either version 2 of the License, or
29  * (at your option) any later version.
30  *
31  * This program is distributed in the hope that it will be useful,
32  * but WITHOUT ANY WARRANTY; without even the implied warranty of
33  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
34  * GNU General Public License for more details.
35  *
36  * You should have received a copy of the GNU General Public License
37  * along with this program; if not, write to the Free Software
38  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
39  */
40 
41 #include <linux/slab.h>
42 #include <asm/param.h>		/* for timeouts in units of HZ */
43 
44 #include "sym_glue.h"
45 #include "sym_nvram.h"
46 
47 #if 0
48 #define SYM_DEBUG_GENERIC_SUPPORT
49 #endif
50 
51 /*
52  *  Needed function prototypes.
53  */
54 static void sym_int_ma (struct sym_hcb *np);
55 static void sym_int_sir (struct sym_hcb *np);
56 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np);
57 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa);
58 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln);
59 static void sym_complete_error (struct sym_hcb *np, struct sym_ccb *cp);
60 static void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp);
61 static int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp);
62 
63 /*
64  *  Print a buffer in hexadecimal format with a ".\n" at end.
65  */
66 static void sym_printl_hex(u_char *p, int n)
67 {
68 	while (n-- > 0)
69 		printf (" %x", *p++);
70 	printf (".\n");
71 }
72 
73 /*
74  *  Print out the content of a SCSI message.
75  */
76 static int sym_show_msg (u_char * msg)
77 {
78 	u_char i;
79 	printf ("%x",*msg);
80 	if (*msg==M_EXTENDED) {
81 		for (i=1;i<8;i++) {
82 			if (i-1>msg[1]) break;
83 			printf ("-%x",msg[i]);
84 		}
85 		return (i+1);
86 	} else if ((*msg & 0xf0) == 0x20) {
87 		printf ("-%x",msg[1]);
88 		return (2);
89 	}
90 	return (1);
91 }
92 
93 static void sym_print_msg(struct sym_ccb *cp, char *label, u_char *msg)
94 {
95 	sym_print_addr(cp->cmd, "%s: ", label);
96 
97 	sym_show_msg(msg);
98 	printf(".\n");
99 }
100 
101 static void sym_print_nego_msg(struct sym_hcb *np, int target, char *label, u_char *msg)
102 {
103 	struct sym_tcb *tp = &np->target[target];
104 	dev_info(&tp->starget->dev, "%s: ", label);
105 
106 	sym_show_msg(msg);
107 	printf(".\n");
108 }
109 
110 /*
111  *  Print something that tells about extended errors.
112  */
113 void sym_print_xerr(struct scsi_cmnd *cmd, int x_status)
114 {
115 	if (x_status & XE_PARITY_ERR) {
116 		sym_print_addr(cmd, "unrecovered SCSI parity error.\n");
117 	}
118 	if (x_status & XE_EXTRA_DATA) {
119 		sym_print_addr(cmd, "extraneous data discarded.\n");
120 	}
121 	if (x_status & XE_BAD_PHASE) {
122 		sym_print_addr(cmd, "illegal scsi phase (4/5).\n");
123 	}
124 	if (x_status & XE_SODL_UNRUN) {
125 		sym_print_addr(cmd, "ODD transfer in DATA OUT phase.\n");
126 	}
127 	if (x_status & XE_SWIDE_OVRUN) {
128 		sym_print_addr(cmd, "ODD transfer in DATA IN phase.\n");
129 	}
130 }
131 
132 /*
133  *  Return a string for SCSI BUS mode.
134  */
135 static char *sym_scsi_bus_mode(int mode)
136 {
137 	switch(mode) {
138 	case SMODE_HVD:	return "HVD";
139 	case SMODE_SE:	return "SE";
140 	case SMODE_LVD: return "LVD";
141 	}
142 	return "??";
143 }
144 
145 /*
146  *  Soft reset the chip.
147  *
148  *  Raising SRST when the chip is running may cause
149  *  problems on dual function chips (see below).
150  *  On the other hand, LVD devices need some delay
151  *  to settle and report actual BUS mode in STEST4.
152  */
153 static void sym_chip_reset (struct sym_hcb *np)
154 {
155 	OUTB(np, nc_istat, SRST);
156 	INB(np, nc_mbox1);
157 	udelay(10);
158 	OUTB(np, nc_istat, 0);
159 	INB(np, nc_mbox1);
160 	udelay(2000);	/* For BUS MODE to settle */
161 }
162 
163 /*
164  *  Really soft reset the chip.:)
165  *
166  *  Some 896 and 876 chip revisions may hang-up if we set
167  *  the SRST (soft reset) bit at the wrong time when SCRIPTS
168  *  are running.
169  *  So, we need to abort the current operation prior to
170  *  soft resetting the chip.
171  */
172 static void sym_soft_reset (struct sym_hcb *np)
173 {
174 	u_char istat = 0;
175 	int i;
176 
177 	if (!(np->features & FE_ISTAT1) || !(INB(np, nc_istat1) & SCRUN))
178 		goto do_chip_reset;
179 
180 	OUTB(np, nc_istat, CABRT);
181 	for (i = 100000 ; i ; --i) {
182 		istat = INB(np, nc_istat);
183 		if (istat & SIP) {
184 			INW(np, nc_sist);
185 		}
186 		else if (istat & DIP) {
187 			if (INB(np, nc_dstat) & ABRT)
188 				break;
189 		}
190 		udelay(5);
191 	}
192 	OUTB(np, nc_istat, 0);
193 	if (!i)
194 		printf("%s: unable to abort current chip operation, "
195 		       "ISTAT=0x%02x.\n", sym_name(np), istat);
196 do_chip_reset:
197 	sym_chip_reset(np);
198 }
199 
200 /*
201  *  Start reset process.
202  *
203  *  The interrupt handler will reinitialize the chip.
204  */
205 static void sym_start_reset(struct sym_hcb *np)
206 {
207 	sym_reset_scsi_bus(np, 1);
208 }
209 
210 int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int)
211 {
212 	u32 term;
213 	int retv = 0;
214 
215 	sym_soft_reset(np);	/* Soft reset the chip */
216 	if (enab_int)
217 		OUTW(np, nc_sien, RST);
218 	/*
219 	 *  Enable Tolerant, reset IRQD if present and
220 	 *  properly set IRQ mode, prior to resetting the bus.
221 	 */
222 	OUTB(np, nc_stest3, TE);
223 	OUTB(np, nc_dcntl, (np->rv_dcntl & IRQM));
224 	OUTB(np, nc_scntl1, CRST);
225 	INB(np, nc_mbox1);
226 	udelay(200);
227 
228 	if (!SYM_SETUP_SCSI_BUS_CHECK)
229 		goto out;
230 	/*
231 	 *  Check for no terminators or SCSI bus shorts to ground.
232 	 *  Read SCSI data bus, data parity bits and control signals.
233 	 *  We are expecting RESET to be TRUE and other signals to be
234 	 *  FALSE.
235 	 */
236 	term =	INB(np, nc_sstat0);
237 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
238 	term |= ((INB(np, nc_sstat2) & 0x01) << 26) |	/* sdp1     */
239 		((INW(np, nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
240 		((INW(np, nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
241 		INB(np, nc_sbcl);	/* req ack bsy sel atn msg cd io    */
242 
243 	if (!np->maxwide)
244 		term &= 0x3ffff;
245 
246 	if (term != (2<<7)) {
247 		printf("%s: suspicious SCSI data while resetting the BUS.\n",
248 			sym_name(np));
249 		printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
250 			"0x%lx, expecting 0x%lx\n",
251 			sym_name(np),
252 			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
253 			(u_long)term, (u_long)(2<<7));
254 		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
255 			retv = 1;
256 	}
257 out:
258 	OUTB(np, nc_scntl1, 0);
259 	return retv;
260 }
261 
262 /*
263  *  Select SCSI clock frequency
264  */
265 static void sym_selectclock(struct sym_hcb *np, u_char scntl3)
266 {
267 	/*
268 	 *  If multiplier not present or not selected, leave here.
269 	 */
270 	if (np->multiplier <= 1) {
271 		OUTB(np, nc_scntl3, scntl3);
272 		return;
273 	}
274 
275 	if (sym_verbose >= 2)
276 		printf ("%s: enabling clock multiplier\n", sym_name(np));
277 
278 	OUTB(np, nc_stest1, DBLEN);	   /* Enable clock multiplier */
279 	/*
280 	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
281 	 *  Otherwise wait 50 micro-seconds (at least).
282 	 */
283 	if (np->features & FE_LCKFRQ) {
284 		int i = 20;
285 		while (!(INB(np, nc_stest4) & LCKFRQ) && --i > 0)
286 			udelay(20);
287 		if (!i)
288 			printf("%s: the chip cannot lock the frequency\n",
289 				sym_name(np));
290 	} else {
291 		INB(np, nc_mbox1);
292 		udelay(50+10);
293 	}
294 	OUTB(np, nc_stest3, HSC);		/* Halt the scsi clock	*/
295 	OUTB(np, nc_scntl3, scntl3);
296 	OUTB(np, nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
297 	OUTB(np, nc_stest3, 0x00);		/* Restart scsi clock 	*/
298 }
299 
300 
301 /*
302  *  Determine the chip's clock frequency.
303  *
304  *  This is essential for the negotiation of the synchronous
305  *  transfer rate.
306  *
307  *  Note: we have to return the correct value.
308  *  THERE IS NO SAFE DEFAULT VALUE.
309  *
310  *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
311  *  53C860 and 53C875 rev. 1 support fast20 transfers but
312  *  do not have a clock doubler and so are provided with a
313  *  80 MHz clock. All other fast20 boards incorporate a doubler
314  *  and so should be delivered with a 40 MHz clock.
315  *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
316  *  clock and provide a clock quadrupler (160 Mhz).
317  */
318 
319 /*
320  *  calculate SCSI clock frequency (in KHz)
321  */
322 static unsigned getfreq (struct sym_hcb *np, int gen)
323 {
324 	unsigned int ms = 0;
325 	unsigned int f;
326 
327 	/*
328 	 * Measure GEN timer delay in order
329 	 * to calculate SCSI clock frequency
330 	 *
331 	 * This code will never execute too
332 	 * many loop iterations (if DELAY is
333 	 * reasonably correct). It could get
334 	 * too low a delay (too high a freq.)
335 	 * if the CPU is slow executing the
336 	 * loop for some reason (an NMI, for
337 	 * example). For this reason we will
338 	 * if multiple measurements are to be
339 	 * performed trust the higher delay
340 	 * (lower frequency returned).
341 	 */
342 	OUTW(np, nc_sien, 0);	/* mask all scsi interrupts */
343 	INW(np, nc_sist);	/* clear pending scsi interrupt */
344 	OUTB(np, nc_dien, 0);	/* mask all dma interrupts */
345 	INW(np, nc_sist);	/* another one, just to be sure :) */
346 	/*
347 	 * The C1010-33 core does not report GEN in SIST,
348 	 * if this interrupt is masked in SIEN.
349 	 * I don't know yet if the C1010-66 behaves the same way.
350 	 */
351 	if (np->features & FE_C10) {
352 		OUTW(np, nc_sien, GEN);
353 		OUTB(np, nc_istat1, SIRQD);
354 	}
355 	OUTB(np, nc_scntl3, 4);	   /* set pre-scaler to divide by 3 */
356 	OUTB(np, nc_stime1, 0);	   /* disable general purpose timer */
357 	OUTB(np, nc_stime1, gen);  /* set to nominal delay of 1<<gen * 125us */
358 	while (!(INW(np, nc_sist) & GEN) && ms++ < 100000)
359 		udelay(1000/4);    /* count in 1/4 of ms */
360 	OUTB(np, nc_stime1, 0);    /* disable general purpose timer */
361 	/*
362 	 * Undo C1010-33 specific settings.
363 	 */
364 	if (np->features & FE_C10) {
365 		OUTW(np, nc_sien, 0);
366 		OUTB(np, nc_istat1, 0);
367 	}
368  	/*
369  	 * set prescaler to divide by whatever 0 means
370  	 * 0 ought to choose divide by 2, but appears
371  	 * to set divide by 3.5 mode in my 53c810 ...
372  	 */
373  	OUTB(np, nc_scntl3, 0);
374 
375   	/*
376  	 * adjust for prescaler, and convert into KHz
377   	 */
378 	f = ms ? ((1 << gen) * (4340*4)) / ms : 0;
379 
380 	/*
381 	 * The C1010-33 result is biased by a factor
382 	 * of 2/3 compared to earlier chips.
383 	 */
384 	if (np->features & FE_C10)
385 		f = (f * 2) / 3;
386 
387 	if (sym_verbose >= 2)
388 		printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
389 			sym_name(np), gen, ms/4, f);
390 
391 	return f;
392 }
393 
394 static unsigned sym_getfreq (struct sym_hcb *np)
395 {
396 	u_int f1, f2;
397 	int gen = 8;
398 
399 	getfreq (np, gen);	/* throw away first result */
400 	f1 = getfreq (np, gen);
401 	f2 = getfreq (np, gen);
402 	if (f1 > f2) f1 = f2;		/* trust lower result	*/
403 	return f1;
404 }
405 
406 /*
407  *  Get/probe chip SCSI clock frequency
408  */
409 static void sym_getclock (struct sym_hcb *np, int mult)
410 {
411 	unsigned char scntl3 = np->sv_scntl3;
412 	unsigned char stest1 = np->sv_stest1;
413 	unsigned f1;
414 
415 	np->multiplier = 1;
416 	f1 = 40000;
417 	/*
418 	 *  True with 875/895/896/895A with clock multiplier selected
419 	 */
420 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
421 		if (sym_verbose >= 2)
422 			printf ("%s: clock multiplier found\n", sym_name(np));
423 		np->multiplier = mult;
424 	}
425 
426 	/*
427 	 *  If multiplier not found or scntl3 not 7,5,3,
428 	 *  reset chip and get frequency from general purpose timer.
429 	 *  Otherwise trust scntl3 BIOS setting.
430 	 */
431 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
432 		OUTB(np, nc_stest1, 0);		/* make sure doubler is OFF */
433 		f1 = sym_getfreq (np);
434 
435 		if (sym_verbose)
436 			printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
437 
438 		if	(f1 <	45000)		f1 =  40000;
439 		else if (f1 <	55000)		f1 =  50000;
440 		else				f1 =  80000;
441 
442 		if (f1 < 80000 && mult > 1) {
443 			if (sym_verbose >= 2)
444 				printf ("%s: clock multiplier assumed\n",
445 					sym_name(np));
446 			np->multiplier	= mult;
447 		}
448 	} else {
449 		if	((scntl3 & 7) == 3)	f1 =  40000;
450 		else if	((scntl3 & 7) == 5)	f1 =  80000;
451 		else 				f1 = 160000;
452 
453 		f1 /= np->multiplier;
454 	}
455 
456 	/*
457 	 *  Compute controller synchronous parameters.
458 	 */
459 	f1		*= np->multiplier;
460 	np->clock_khz	= f1;
461 }
462 
463 /*
464  *  Get/probe PCI clock frequency
465  */
466 static int sym_getpciclock (struct sym_hcb *np)
467 {
468 	int f = 0;
469 
470 	/*
471 	 *  For now, we only need to know about the actual
472 	 *  PCI BUS clock frequency for C1010-66 chips.
473 	 */
474 #if 1
475 	if (np->features & FE_66MHZ) {
476 #else
477 	if (1) {
478 #endif
479 		OUTB(np, nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
480 		f = sym_getfreq(np);
481 		OUTB(np, nc_stest1, 0);
482 	}
483 	np->pciclk_khz = f;
484 
485 	return f;
486 }
487 
488 /*
489  *  SYMBIOS chip clock divisor table.
490  *
491  *  Divisors are multiplied by 10,000,000 in order to make
492  *  calculations more simple.
493  */
494 #define _5M 5000000
495 static u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
496 
497 /*
498  *  Get clock factor and sync divisor for a given
499  *  synchronous factor period.
500  */
501 static int
502 sym_getsync(struct sym_hcb *np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
503 {
504 	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
505 	int	div = np->clock_divn;	/* Number of divisors supported	*/
506 	u32	fak;			/* Sync factor in sxfer		*/
507 	u32	per;			/* Period in tenths of ns	*/
508 	u32	kpc;			/* (per * clk)			*/
509 	int	ret;
510 
511 	/*
512 	 *  Compute the synchronous period in tenths of nano-seconds
513 	 */
514 	if (dt && sfac <= 9)	per = 125;
515 	else if	(sfac <= 10)	per = 250;
516 	else if	(sfac == 11)	per = 303;
517 	else if	(sfac == 12)	per = 500;
518 	else			per = 40 * sfac;
519 	ret = per;
520 
521 	kpc = per * clk;
522 	if (dt)
523 		kpc <<= 1;
524 
525 	/*
526 	 *  For earliest C10 revision 0, we cannot use extra
527 	 *  clocks for the setting of the SCSI clocking.
528 	 *  Note that this limits the lowest sync data transfer
529 	 *  to 5 Mega-transfers per second and may result in
530 	 *  using higher clock divisors.
531 	 */
532 #if 1
533 	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
534 		/*
535 		 *  Look for the lowest clock divisor that allows an
536 		 *  output speed not faster than the period.
537 		 */
538 		while (div > 0) {
539 			--div;
540 			if (kpc > (div_10M[div] << 2)) {
541 				++div;
542 				break;
543 			}
544 		}
545 		fak = 0;			/* No extra clocks */
546 		if (div == np->clock_divn) {	/* Are we too fast ? */
547 			ret = -1;
548 		}
549 		*divp = div;
550 		*fakp = fak;
551 		return ret;
552 	}
553 #endif
554 
555 	/*
556 	 *  Look for the greatest clock divisor that allows an
557 	 *  input speed faster than the period.
558 	 */
559 	while (div-- > 0)
560 		if (kpc >= (div_10M[div] << 2)) break;
561 
562 	/*
563 	 *  Calculate the lowest clock factor that allows an output
564 	 *  speed not faster than the period, and the max output speed.
565 	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
566 	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
567 	 */
568 	if (dt) {
569 		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
570 		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
571 	} else {
572 		fak = (kpc - 1) / div_10M[div] + 1 - 4;
573 		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
574 	}
575 
576 	/*
577 	 *  Check against our hardware limits, or bugs :).
578 	 */
579 	if (fak > 2) {
580 		fak = 2;
581 		ret = -1;
582 	}
583 
584 	/*
585 	 *  Compute and return sync parameters.
586 	 */
587 	*divp = div;
588 	*fakp = fak;
589 
590 	return ret;
591 }
592 
593 /*
594  *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
595  *  128 transfers. All chips support at least 16 transfers
596  *  bursts. The 825A, 875 and 895 chips support bursts of up
597  *  to 128 transfers and the 895A and 896 support bursts of up
598  *  to 64 transfers. All other chips support up to 16
599  *  transfers bursts.
600  *
601  *  For PCI 32 bit data transfers each transfer is a DWORD.
602  *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
603  *
604  *  We use log base 2 (burst length) as internal code, with
605  *  value 0 meaning "burst disabled".
606  */
607 
608 /*
609  *  Burst length from burst code.
610  */
611 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
612 
613 /*
614  *  Burst code from io register bits.
615  */
616 #define burst_code(dmode, ctest4, ctest5) \
617 	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
618 
619 /*
620  *  Set initial io register bits from burst code.
621  */
622 static __inline void sym_init_burst(struct sym_hcb *np, u_char bc)
623 {
624 	np->rv_ctest4	&= ~0x80;
625 	np->rv_dmode	&= ~(0x3 << 6);
626 	np->rv_ctest5	&= ~0x4;
627 
628 	if (!bc) {
629 		np->rv_ctest4	|= 0x80;
630 	}
631 	else {
632 		--bc;
633 		np->rv_dmode	|= ((bc & 0x3) << 6);
634 		np->rv_ctest5	|= (bc & 0x4);
635 	}
636 }
637 
638 
639 /*
640  * Print out the list of targets that have some flag disabled by user.
641  */
642 static void sym_print_targets_flag(struct sym_hcb *np, int mask, char *msg)
643 {
644 	int cnt;
645 	int i;
646 
647 	for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
648 		if (i == np->myaddr)
649 			continue;
650 		if (np->target[i].usrflags & mask) {
651 			if (!cnt++)
652 				printf("%s: %s disabled for targets",
653 					sym_name(np), msg);
654 			printf(" %d", i);
655 		}
656 	}
657 	if (cnt)
658 		printf(".\n");
659 }
660 
661 /*
662  *  Save initial settings of some IO registers.
663  *  Assumed to have been set by BIOS.
664  *  We cannot reset the chip prior to reading the
665  *  IO registers, since informations will be lost.
666  *  Since the SCRIPTS processor may be running, this
667  *  is not safe on paper, but it seems to work quite
668  *  well. :)
669  */
670 static void sym_save_initial_setting (struct sym_hcb *np)
671 {
672 	np->sv_scntl0	= INB(np, nc_scntl0) & 0x0a;
673 	np->sv_scntl3	= INB(np, nc_scntl3) & 0x07;
674 	np->sv_dmode	= INB(np, nc_dmode)  & 0xce;
675 	np->sv_dcntl	= INB(np, nc_dcntl)  & 0xa8;
676 	np->sv_ctest3	= INB(np, nc_ctest3) & 0x01;
677 	np->sv_ctest4	= INB(np, nc_ctest4) & 0x80;
678 	np->sv_gpcntl	= INB(np, nc_gpcntl);
679 	np->sv_stest1	= INB(np, nc_stest1);
680 	np->sv_stest2	= INB(np, nc_stest2) & 0x20;
681 	np->sv_stest4	= INB(np, nc_stest4);
682 	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
683 		np->sv_scntl4	= INB(np, nc_scntl4);
684 		np->sv_ctest5	= INB(np, nc_ctest5) & 0x04;
685 	}
686 	else
687 		np->sv_ctest5	= INB(np, nc_ctest5) & 0x24;
688 }
689 
690 /*
691  *  Prepare io register values used by sym_start_up()
692  *  according to selected and supported features.
693  */
694 static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram)
695 {
696 	u_char	burst_max;
697 	u32	period;
698 	int i;
699 
700 	/*
701 	 *  Wide ?
702 	 */
703 	np->maxwide	= (np->features & FE_WIDE)? 1 : 0;
704 
705 	/*
706 	 *  Guess the frequency of the chip's clock.
707 	 */
708 	if	(np->features & (FE_ULTRA3 | FE_ULTRA2))
709 		np->clock_khz = 160000;
710 	else if	(np->features & FE_ULTRA)
711 		np->clock_khz = 80000;
712 	else
713 		np->clock_khz = 40000;
714 
715 	/*
716 	 *  Get the clock multiplier factor.
717  	 */
718 	if	(np->features & FE_QUAD)
719 		np->multiplier	= 4;
720 	else if	(np->features & FE_DBLR)
721 		np->multiplier	= 2;
722 	else
723 		np->multiplier	= 1;
724 
725 	/*
726 	 *  Measure SCSI clock frequency for chips
727 	 *  it may vary from assumed one.
728 	 */
729 	if (np->features & FE_VARCLK)
730 		sym_getclock(np, np->multiplier);
731 
732 	/*
733 	 * Divisor to be used for async (timer pre-scaler).
734 	 */
735 	i = np->clock_divn - 1;
736 	while (--i >= 0) {
737 		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
738 			++i;
739 			break;
740 		}
741 	}
742 	np->rv_scntl3 = i+1;
743 
744 	/*
745 	 * The C1010 uses hardwired divisors for async.
746 	 * So, we just throw away, the async. divisor.:-)
747 	 */
748 	if (np->features & FE_C10)
749 		np->rv_scntl3 = 0;
750 
751 	/*
752 	 * Minimum synchronous period factor supported by the chip.
753 	 * Btw, 'period' is in tenths of nanoseconds.
754 	 */
755 	period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
756 
757 	if	(period <= 250)		np->minsync = 10;
758 	else if	(period <= 303)		np->minsync = 11;
759 	else if	(period <= 500)		np->minsync = 12;
760 	else				np->minsync = (period + 40 - 1) / 40;
761 
762 	/*
763 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
764 	 */
765 	if	(np->minsync < 25 &&
766 		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
767 		np->minsync = 25;
768 	else if	(np->minsync < 12 &&
769 		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
770 		np->minsync = 12;
771 
772 	/*
773 	 * Maximum synchronous period factor supported by the chip.
774 	 */
775 	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
776 	np->maxsync = period > 2540 ? 254 : period / 10;
777 
778 	/*
779 	 * If chip is a C1010, guess the sync limits in DT mode.
780 	 */
781 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
782 		if (np->clock_khz == 160000) {
783 			np->minsync_dt = 9;
784 			np->maxsync_dt = 50;
785 			np->maxoffs_dt = nvram->type ? 62 : 31;
786 		}
787 	}
788 
789 	/*
790 	 *  64 bit addressing  (895A/896/1010) ?
791 	 */
792 	if (np->features & FE_DAC) {
793 #if   SYM_CONF_DMA_ADDRESSING_MODE == 0
794 		np->rv_ccntl1	|= (DDAC);
795 #elif SYM_CONF_DMA_ADDRESSING_MODE == 1
796 		if (!np->use_dac)
797 			np->rv_ccntl1	|= (DDAC);
798 		else
799 			np->rv_ccntl1	|= (XTIMOD | EXTIBMV);
800 #elif SYM_CONF_DMA_ADDRESSING_MODE == 2
801 		if (!np->use_dac)
802 			np->rv_ccntl1	|= (DDAC);
803 		else
804 			np->rv_ccntl1	|= (0 | EXTIBMV);
805 #endif
806 	}
807 
808 	/*
809 	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
810   	 */
811 	if (np->features & FE_NOPM)
812 		np->rv_ccntl0	|= (ENPMJ);
813 
814  	/*
815 	 *  C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed.
816 	 *  In dual channel mode, contention occurs if internal cycles
817 	 *  are used. Disable internal cycles.
818 	 */
819 	if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_33 &&
820 	    np->revision_id < 0x1)
821 		np->rv_ccntl0	|=  DILS;
822 
823 	/*
824 	 *  Select burst length (dwords)
825 	 */
826 	burst_max	= SYM_SETUP_BURST_ORDER;
827 	if (burst_max == 255)
828 		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
829 				       np->sv_ctest5);
830 	if (burst_max > 7)
831 		burst_max = 7;
832 	if (burst_max > np->maxburst)
833 		burst_max = np->maxburst;
834 
835 	/*
836 	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
837 	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
838 	 *  based transactions on LOAD/STORE instructions. So we have
839 	 *  to prevent these chips from using such PCI transactions in
840 	 *  this driver. The generic ncr driver that does not use
841 	 *  LOAD/STORE instructions does not need this work-around.
842 	 */
843 	if ((np->device_id == PCI_DEVICE_ID_NCR_53C810 &&
844 	     np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
845 	    (np->device_id == PCI_DEVICE_ID_NCR_53C860 &&
846 	     np->revision_id <= 0x1))
847 		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
848 
849 	/*
850 	 *  Select all supported special features.
851 	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
852 	 *  does not help, but burst op fetch (BOF) does.
853 	 *  Disabling PFEN makes sure BOF will be used.
854 	 */
855 	if (np->features & FE_ERL)
856 		np->rv_dmode	|= ERL;		/* Enable Read Line */
857 	if (np->features & FE_BOF)
858 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
859 	if (np->features & FE_ERMP)
860 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
861 #if 1
862 	if ((np->features & FE_PFEN) && !np->ram_ba)
863 #else
864 	if (np->features & FE_PFEN)
865 #endif
866 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
867 	if (np->features & FE_CLSE)
868 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
869 	if (np->features & FE_WRIE)
870 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
871 	if (np->features & FE_DFS)
872 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
873 
874 	/*
875 	 *  Select some other
876 	 */
877 	np->rv_ctest4	|= MPEE; /* Master parity checking */
878 	np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
879 
880 	/*
881 	 *  Get parity checking, host ID and verbose mode from NVRAM
882 	 */
883 	np->myaddr = 255;
884 	sym_nvram_setup_host(shost, np, nvram);
885 
886 	/*
887 	 *  Get SCSI addr of host adapter (set by bios?).
888 	 */
889 	if (np->myaddr == 255) {
890 		np->myaddr = INB(np, nc_scid) & 0x07;
891 		if (!np->myaddr)
892 			np->myaddr = SYM_SETUP_HOST_ID;
893 	}
894 
895 	/*
896 	 *  Prepare initial io register bits for burst length
897 	 */
898 	sym_init_burst(np, burst_max);
899 
900 	/*
901 	 *  Set SCSI BUS mode.
902 	 *  - LVD capable chips (895/895A/896/1010) report the
903 	 *    current BUS mode through the STEST4 IO register.
904 	 *  - For previous generation chips (825/825A/875),
905 	 *    user has to tell us how to check against HVD,
906 	 *    since a 100% safe algorithm is not possible.
907 	 */
908 	np->scsi_mode = SMODE_SE;
909 	if (np->features & (FE_ULTRA2|FE_ULTRA3))
910 		np->scsi_mode = (np->sv_stest4 & SMODE);
911 	else if	(np->features & FE_DIFF) {
912 		if (SYM_SETUP_SCSI_DIFF == 1) {
913 			if (np->sv_scntl3) {
914 				if (np->sv_stest2 & 0x20)
915 					np->scsi_mode = SMODE_HVD;
916 			}
917 			else if (nvram->type == SYM_SYMBIOS_NVRAM) {
918 				if (!(INB(np, nc_gpreg) & 0x08))
919 					np->scsi_mode = SMODE_HVD;
920 			}
921 		}
922 		else if	(SYM_SETUP_SCSI_DIFF == 2)
923 			np->scsi_mode = SMODE_HVD;
924 	}
925 	if (np->scsi_mode == SMODE_HVD)
926 		np->rv_stest2 |= 0x20;
927 
928 	/*
929 	 *  Set LED support from SCRIPTS.
930 	 *  Ignore this feature for boards known to use a
931 	 *  specific GPIO wiring and for the 895A, 896
932 	 *  and 1010 that drive the LED directly.
933 	 */
934 	if ((SYM_SETUP_SCSI_LED ||
935 	     (nvram->type == SYM_SYMBIOS_NVRAM ||
936 	      (nvram->type == SYM_TEKRAM_NVRAM &&
937 	       np->device_id == PCI_DEVICE_ID_NCR_53C895))) &&
938 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
939 		np->features |= FE_LED0;
940 
941 	/*
942 	 *  Set irq mode.
943 	 */
944 	switch(SYM_SETUP_IRQ_MODE & 3) {
945 	case 2:
946 		np->rv_dcntl	|= IRQM;
947 		break;
948 	case 1:
949 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
950 		break;
951 	default:
952 		break;
953 	}
954 
955 	/*
956 	 *  Configure targets according to driver setup.
957 	 *  If NVRAM present get targets setup from NVRAM.
958 	 */
959 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
960 		struct sym_tcb *tp = &np->target[i];
961 
962 		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
963 		tp->usrtags = SYM_SETUP_MAX_TAG;
964 
965 		sym_nvram_setup_target(np, i, nvram);
966 
967 		if (!tp->usrtags)
968 			tp->usrflags &= ~SYM_TAGS_ENABLED;
969 	}
970 
971 	/*
972 	 *  Let user know about the settings.
973 	 */
974 	printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np),
975 		sym_nvram_type(nvram), np->myaddr,
976 		(np->features & FE_ULTRA3) ? 80 :
977 		(np->features & FE_ULTRA2) ? 40 :
978 		(np->features & FE_ULTRA)  ? 20 : 10,
979 		sym_scsi_bus_mode(np->scsi_mode),
980 		(np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
981 	/*
982 	 *  Tell him more on demand.
983 	 */
984 	if (sym_verbose) {
985 		printf("%s: %s IRQ line driver%s\n",
986 			sym_name(np),
987 			np->rv_dcntl & IRQM ? "totem pole" : "open drain",
988 			np->ram_ba ? ", using on-chip SRAM" : "");
989 		printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
990 		if (np->features & FE_NOPM)
991 			printf("%s: handling phase mismatch from SCRIPTS.\n",
992 			       sym_name(np));
993 	}
994 	/*
995 	 *  And still more.
996 	 */
997 	if (sym_verbose >= 2) {
998 		printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
999 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
1000 			sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
1001 			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
1002 
1003 		printf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
1004 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
1005 			sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
1006 			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
1007 	}
1008 	/*
1009 	 *  Let user be aware of targets that have some disable flags set.
1010 	 */
1011 	sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
1012 	if (sym_verbose)
1013 		sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
1014 				       "SCAN FOR LUNS");
1015 
1016 	return 0;
1017 }
1018 
1019 /*
1020  *  Test the pci bus snoop logic :-(
1021  *
1022  *  Has to be called with interrupts disabled.
1023  */
1024 #ifndef CONFIG_SCSI_SYM53C8XX_IOMAPPED
1025 static int sym_regtest (struct sym_hcb *np)
1026 {
1027 	register volatile u32 data;
1028 	/*
1029 	 *  chip registers may NOT be cached.
1030 	 *  write 0xffffffff to a read only register area,
1031 	 *  and try to read it back.
1032 	 */
1033 	data = 0xffffffff;
1034 	OUTL(np, nc_dstat, data);
1035 	data = INL(np, nc_dstat);
1036 #if 1
1037 	if (data == 0xffffffff) {
1038 #else
1039 	if ((data & 0xe2f0fffd) != 0x02000080) {
1040 #endif
1041 		printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
1042 			(unsigned) data);
1043 		return (0x10);
1044 	}
1045 	return (0);
1046 }
1047 #endif
1048 
1049 static int sym_snooptest (struct sym_hcb *np)
1050 {
1051 	u32	sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
1052 	int	i, err=0;
1053 #ifndef CONFIG_SCSI_SYM53C8XX_IOMAPPED
1054 	err |= sym_regtest (np);
1055 	if (err) return (err);
1056 #endif
1057 restart_test:
1058 	/*
1059 	 *  Enable Master Parity Checking as we intend
1060 	 *  to enable it for normal operations.
1061 	 */
1062 	OUTB(np, nc_ctest4, (np->rv_ctest4 & MPEE));
1063 	/*
1064 	 *  init
1065 	 */
1066 	pc  = SCRIPTZ_BA(np, snooptest);
1067 	host_wr = 1;
1068 	sym_wr  = 2;
1069 	/*
1070 	 *  Set memory and register.
1071 	 */
1072 	np->scratch = cpu_to_scr(host_wr);
1073 	OUTL(np, nc_temp, sym_wr);
1074 	/*
1075 	 *  Start script (exchange values)
1076 	 */
1077 	OUTL(np, nc_dsa, np->hcb_ba);
1078 	OUTL_DSP(np, pc);
1079 	/*
1080 	 *  Wait 'til done (with timeout)
1081 	 */
1082 	for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
1083 		if (INB(np, nc_istat) & (INTF|SIP|DIP))
1084 			break;
1085 	if (i>=SYM_SNOOP_TIMEOUT) {
1086 		printf ("CACHE TEST FAILED: timeout.\n");
1087 		return (0x20);
1088 	}
1089 	/*
1090 	 *  Check for fatal DMA errors.
1091 	 */
1092 	dstat = INB(np, nc_dstat);
1093 #if 1	/* Band aiding for broken hardwares that fail PCI parity */
1094 	if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
1095 		printf ("%s: PCI DATA PARITY ERROR DETECTED - "
1096 			"DISABLING MASTER DATA PARITY CHECKING.\n",
1097 			sym_name(np));
1098 		np->rv_ctest4 &= ~MPEE;
1099 		goto restart_test;
1100 	}
1101 #endif
1102 	if (dstat & (MDPE|BF|IID)) {
1103 		printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
1104 		return (0x80);
1105 	}
1106 	/*
1107 	 *  Save termination position.
1108 	 */
1109 	pc = INL(np, nc_dsp);
1110 	/*
1111 	 *  Read memory and register.
1112 	 */
1113 	host_rd = scr_to_cpu(np->scratch);
1114 	sym_rd  = INL(np, nc_scratcha);
1115 	sym_bk  = INL(np, nc_temp);
1116 	/*
1117 	 *  Check termination position.
1118 	 */
1119 	if (pc != SCRIPTZ_BA(np, snoopend)+8) {
1120 		printf ("CACHE TEST FAILED: script execution failed.\n");
1121 		printf ("start=%08lx, pc=%08lx, end=%08lx\n",
1122 			(u_long) SCRIPTZ_BA(np, snooptest), (u_long) pc,
1123 			(u_long) SCRIPTZ_BA(np, snoopend) +8);
1124 		return (0x40);
1125 	}
1126 	/*
1127 	 *  Show results.
1128 	 */
1129 	if (host_wr != sym_rd) {
1130 		printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
1131 			(int) host_wr, (int) sym_rd);
1132 		err |= 1;
1133 	}
1134 	if (host_rd != sym_wr) {
1135 		printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
1136 			(int) sym_wr, (int) host_rd);
1137 		err |= 2;
1138 	}
1139 	if (sym_bk != sym_wr) {
1140 		printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
1141 			(int) sym_wr, (int) sym_bk);
1142 		err |= 4;
1143 	}
1144 
1145 	return (err);
1146 }
1147 
1148 /*
1149  *  log message for real hard errors
1150  *
1151  *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc).
1152  *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
1153  *
1154  *  exception register:
1155  *  	ds:	dstat
1156  *  	si:	sist
1157  *
1158  *  SCSI bus lines:
1159  *  	so:	control lines as driven by chip.
1160  *  	si:	control lines as seen by chip.
1161  *  	sd:	scsi data lines as seen by chip.
1162  *
1163  *  wide/fastmode:
1164  *  	sx:	sxfer  (see the manual)
1165  *  	s3:	scntl3 (see the manual)
1166  *  	s4:	scntl4 (see the manual)
1167  *
1168  *  current script command:
1169  *  	dsp:	script address (relative to start of script).
1170  *  	dbc:	first word of script command.
1171  *
1172  *  First 24 register of the chip:
1173  *  	r0..rf
1174  */
1175 static void sym_log_hard_error(struct sym_hcb *np, u_short sist, u_char dstat)
1176 {
1177 	u32	dsp;
1178 	int	script_ofs;
1179 	int	script_size;
1180 	char	*script_name;
1181 	u_char	*script_base;
1182 	int	i;
1183 
1184 	dsp	= INL(np, nc_dsp);
1185 
1186 	if	(dsp > np->scripta_ba &&
1187 		 dsp <= np->scripta_ba + np->scripta_sz) {
1188 		script_ofs	= dsp - np->scripta_ba;
1189 		script_size	= np->scripta_sz;
1190 		script_base	= (u_char *) np->scripta0;
1191 		script_name	= "scripta";
1192 	}
1193 	else if (np->scriptb_ba < dsp &&
1194 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
1195 		script_ofs	= dsp - np->scriptb_ba;
1196 		script_size	= np->scriptb_sz;
1197 		script_base	= (u_char *) np->scriptb0;
1198 		script_name	= "scriptb";
1199 	} else {
1200 		script_ofs	= dsp;
1201 		script_size	= 0;
1202 		script_base	= NULL;
1203 		script_name	= "mem";
1204 	}
1205 
1206 	printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n",
1207 		sym_name(np), (unsigned)INB(np, nc_sdid)&0x0f, dstat, sist,
1208 		(unsigned)INB(np, nc_socl), (unsigned)INB(np, nc_sbcl),
1209 		(unsigned)INB(np, nc_sbdl), (unsigned)INB(np, nc_sxfer),
1210 		(unsigned)INB(np, nc_scntl3),
1211 		(np->features & FE_C10) ?  (unsigned)INB(np, nc_scntl4) : 0,
1212 		script_name, script_ofs,   (unsigned)INL(np, nc_dbc));
1213 
1214 	if (((script_ofs & 3) == 0) &&
1215 	    (unsigned)script_ofs < script_size) {
1216 		printf ("%s: script cmd = %08x\n", sym_name(np),
1217 			scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
1218 	}
1219 
1220         printf ("%s: regdump:", sym_name(np));
1221         for (i=0; i<24;i++)
1222             printf (" %02x", (unsigned)INB_OFF(np, i));
1223         printf (".\n");
1224 
1225 	/*
1226 	 *  PCI BUS error.
1227 	 */
1228 	if (dstat & (MDPE|BF))
1229 		sym_log_bus_error(np);
1230 }
1231 
1232 static struct sym_chip sym_dev_table[] = {
1233  {PCI_DEVICE_ID_NCR_53C810, 0x0f, "810", 4, 8, 4, 64,
1234  FE_ERL}
1235  ,
1236 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1237  {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4,  8, 4, 1,
1238  FE_BOF}
1239  ,
1240 #else
1241  {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4,  8, 4, 1,
1242  FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
1243  ,
1244 #endif
1245  {PCI_DEVICE_ID_NCR_53C815, 0xff, "815", 4,  8, 4, 64,
1246  FE_BOF|FE_ERL}
1247  ,
1248  {PCI_DEVICE_ID_NCR_53C825, 0x0f, "825", 6,  8, 4, 64,
1249  FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
1250  ,
1251  {PCI_DEVICE_ID_NCR_53C825, 0xff, "825a", 6,  8, 4, 2,
1252  FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
1253  ,
1254  {PCI_DEVICE_ID_NCR_53C860, 0xff, "860", 4,  8, 5, 1,
1255  FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
1256  ,
1257  {PCI_DEVICE_ID_NCR_53C875, 0x01, "875", 6, 16, 5, 2,
1258  FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1259  FE_RAM|FE_DIFF|FE_VARCLK}
1260  ,
1261  {PCI_DEVICE_ID_NCR_53C875, 0xff, "875", 6, 16, 5, 2,
1262  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1263  FE_RAM|FE_DIFF|FE_VARCLK}
1264  ,
1265  {PCI_DEVICE_ID_NCR_53C875J, 0xff, "875J", 6, 16, 5, 2,
1266  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1267  FE_RAM|FE_DIFF|FE_VARCLK}
1268  ,
1269  {PCI_DEVICE_ID_NCR_53C885, 0xff, "885", 6, 16, 5, 2,
1270  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1271  FE_RAM|FE_DIFF|FE_VARCLK}
1272  ,
1273 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1274  {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1275  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
1276  FE_RAM|FE_LCKFRQ}
1277  ,
1278 #else
1279  {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1280  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1281  FE_RAM|FE_LCKFRQ}
1282  ,
1283 #endif
1284  {PCI_DEVICE_ID_NCR_53C896, 0xff, "896", 6, 31, 7, 4,
1285  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1286  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1287  ,
1288  {PCI_DEVICE_ID_LSI_53C895A, 0xff, "895a", 6, 31, 7, 4,
1289  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1290  FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1291  ,
1292  {PCI_DEVICE_ID_LSI_53C875A, 0xff, "875a", 6, 31, 7, 4,
1293  FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1294  FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1295  ,
1296  {PCI_DEVICE_ID_LSI_53C1010_33, 0x00, "1010-33", 6, 31, 7, 8,
1297  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1298  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1299  FE_C10}
1300  ,
1301  {PCI_DEVICE_ID_LSI_53C1010_33, 0xff, "1010-33", 6, 31, 7, 8,
1302  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1303  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1304  FE_C10|FE_U3EN}
1305  ,
1306  {PCI_DEVICE_ID_LSI_53C1010_66, 0xff, "1010-66", 6, 31, 7, 8,
1307  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1308  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
1309  FE_C10|FE_U3EN}
1310  ,
1311  {PCI_DEVICE_ID_LSI_53C1510, 0xff, "1510d", 6, 31, 7, 4,
1312  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1313  FE_RAM|FE_IO256|FE_LEDC}
1314 };
1315 
1316 #define sym_num_devs \
1317 	(sizeof(sym_dev_table) / sizeof(sym_dev_table[0]))
1318 
1319 /*
1320  *  Look up the chip table.
1321  *
1322  *  Return a pointer to the chip entry if found,
1323  *  zero otherwise.
1324  */
1325 struct sym_chip *
1326 sym_lookup_chip_table (u_short device_id, u_char revision)
1327 {
1328 	struct	sym_chip *chip;
1329 	int	i;
1330 
1331 	for (i = 0; i < sym_num_devs; i++) {
1332 		chip = &sym_dev_table[i];
1333 		if (device_id != chip->device_id)
1334 			continue;
1335 		if (revision > chip->revision_id)
1336 			continue;
1337 		return chip;
1338 	}
1339 
1340 	return NULL;
1341 }
1342 
1343 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1344 /*
1345  *  Lookup the 64 bit DMA segments map.
1346  *  This is only used if the direct mapping
1347  *  has been unsuccessful.
1348  */
1349 int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s)
1350 {
1351 	int i;
1352 
1353 	if (!np->use_dac)
1354 		goto weird;
1355 
1356 	/* Look up existing mappings */
1357 	for (i = SYM_DMAP_SIZE-1; i > 0; i--) {
1358 		if (h == np->dmap_bah[i])
1359 			return i;
1360 	}
1361 	/* If direct mapping is free, get it */
1362 	if (!np->dmap_bah[s])
1363 		goto new;
1364 	/* Collision -> lookup free mappings */
1365 	for (s = SYM_DMAP_SIZE-1; s > 0; s--) {
1366 		if (!np->dmap_bah[s])
1367 			goto new;
1368 	}
1369 weird:
1370 	panic("sym: ran out of 64 bit DMA segment registers");
1371 	return -1;
1372 new:
1373 	np->dmap_bah[s] = h;
1374 	np->dmap_dirty = 1;
1375 	return s;
1376 }
1377 
1378 /*
1379  *  Update IO registers scratch C..R so they will be
1380  *  in sync. with queued CCB expectations.
1381  */
1382 static void sym_update_dmap_regs(struct sym_hcb *np)
1383 {
1384 	int o, i;
1385 
1386 	if (!np->dmap_dirty)
1387 		return;
1388 	o = offsetof(struct sym_reg, nc_scrx[0]);
1389 	for (i = 0; i < SYM_DMAP_SIZE; i++) {
1390 		OUTL_OFF(np, o, np->dmap_bah[i]);
1391 		o += 4;
1392 	}
1393 	np->dmap_dirty = 0;
1394 }
1395 #endif
1396 
1397 /* Enforce all the fiddly SPI rules and the chip limitations */
1398 static void sym_check_goals(struct sym_hcb *np, struct scsi_target *starget,
1399 		struct sym_trans *goal)
1400 {
1401 	if (!spi_support_wide(starget))
1402 		goal->width = 0;
1403 
1404 	if (!spi_support_sync(starget)) {
1405 		goal->iu = 0;
1406 		goal->dt = 0;
1407 		goal->qas = 0;
1408 		goal->offset = 0;
1409 		return;
1410 	}
1411 
1412 	if (spi_support_dt(starget)) {
1413 		if (spi_support_dt_only(starget))
1414 			goal->dt = 1;
1415 
1416 		if (goal->offset == 0)
1417 			goal->dt = 0;
1418 	} else {
1419 		goal->dt = 0;
1420 	}
1421 
1422 	/* Some targets fail to properly negotiate DT in SE mode */
1423 	if ((np->scsi_mode != SMODE_LVD) || !(np->features & FE_U3EN))
1424 		goal->dt = 0;
1425 
1426 	if (goal->dt) {
1427 		/* all DT transfers must be wide */
1428 		goal->width = 1;
1429 		if (goal->offset > np->maxoffs_dt)
1430 			goal->offset = np->maxoffs_dt;
1431 		if (goal->period < np->minsync_dt)
1432 			goal->period = np->minsync_dt;
1433 		if (goal->period > np->maxsync_dt)
1434 			goal->period = np->maxsync_dt;
1435 	} else {
1436 		goal->iu = goal->qas = 0;
1437 		if (goal->offset > np->maxoffs)
1438 			goal->offset = np->maxoffs;
1439 		if (goal->period < np->minsync)
1440 			goal->period = np->minsync;
1441 		if (goal->period > np->maxsync)
1442 			goal->period = np->maxsync;
1443 	}
1444 }
1445 
1446 /*
1447  *  Prepare the next negotiation message if needed.
1448  *
1449  *  Fill in the part of message buffer that contains the
1450  *  negotiation and the nego_status field of the CCB.
1451  *  Returns the size of the message in bytes.
1452  */
1453 static int sym_prepare_nego(struct sym_hcb *np, struct sym_ccb *cp, u_char *msgptr)
1454 {
1455 	struct sym_tcb *tp = &np->target[cp->target];
1456 	struct scsi_target *starget = tp->starget;
1457 	struct sym_trans *goal = &tp->tgoal;
1458 	int msglen = 0;
1459 	int nego;
1460 
1461 	sym_check_goals(np, starget, goal);
1462 
1463 	/*
1464 	 * Many devices implement PPR in a buggy way, so only use it if we
1465 	 * really want to.
1466 	 */
1467 	if (goal->offset &&
1468 	    (goal->iu || goal->dt || goal->qas || (goal->period < 0xa))) {
1469 		nego = NS_PPR;
1470 	} else if (spi_width(starget) != goal->width) {
1471 		nego = NS_WIDE;
1472 	} else if (spi_period(starget) != goal->period ||
1473 		   spi_offset(starget) != goal->offset) {
1474 		nego = NS_SYNC;
1475 	} else {
1476 		goal->check_nego = 0;
1477 		nego = 0;
1478 	}
1479 
1480 	switch (nego) {
1481 	case NS_SYNC:
1482 		msgptr[msglen++] = M_EXTENDED;
1483 		msgptr[msglen++] = 3;
1484 		msgptr[msglen++] = M_X_SYNC_REQ;
1485 		msgptr[msglen++] = goal->period;
1486 		msgptr[msglen++] = goal->offset;
1487 		break;
1488 	case NS_WIDE:
1489 		msgptr[msglen++] = M_EXTENDED;
1490 		msgptr[msglen++] = 2;
1491 		msgptr[msglen++] = M_X_WIDE_REQ;
1492 		msgptr[msglen++] = goal->width;
1493 		break;
1494 	case NS_PPR:
1495 		msgptr[msglen++] = M_EXTENDED;
1496 		msgptr[msglen++] = 6;
1497 		msgptr[msglen++] = M_X_PPR_REQ;
1498 		msgptr[msglen++] = goal->period;
1499 		msgptr[msglen++] = 0;
1500 		msgptr[msglen++] = goal->offset;
1501 		msgptr[msglen++] = goal->width;
1502 		msgptr[msglen++] = (goal->iu ? PPR_OPT_IU : 0) |
1503 					(goal->dt ? PPR_OPT_DT : 0) |
1504 					(goal->qas ? PPR_OPT_QAS : 0);
1505 		break;
1506 	}
1507 
1508 	cp->nego_status = nego;
1509 
1510 	if (nego) {
1511 		tp->nego_cp = cp; /* Keep track a nego will be performed */
1512 		if (DEBUG_FLAGS & DEBUG_NEGO) {
1513 			sym_print_nego_msg(np, cp->target,
1514 					  nego == NS_SYNC ? "sync msgout" :
1515 					  nego == NS_WIDE ? "wide msgout" :
1516 					  "ppr msgout", msgptr);
1517 		}
1518 	}
1519 
1520 	return msglen;
1521 }
1522 
1523 /*
1524  *  Insert a job into the start queue.
1525  */
1526 void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp)
1527 {
1528 	u_short	qidx;
1529 
1530 #ifdef SYM_CONF_IARB_SUPPORT
1531 	/*
1532 	 *  If the previously queued CCB is not yet done,
1533 	 *  set the IARB hint. The SCRIPTS will go with IARB
1534 	 *  for this job when starting the previous one.
1535 	 *  We leave devices a chance to win arbitration by
1536 	 *  not using more than 'iarb_max' consecutive
1537 	 *  immediate arbitrations.
1538 	 */
1539 	if (np->last_cp && np->iarb_count < np->iarb_max) {
1540 		np->last_cp->host_flags |= HF_HINT_IARB;
1541 		++np->iarb_count;
1542 	}
1543 	else
1544 		np->iarb_count = 0;
1545 	np->last_cp = cp;
1546 #endif
1547 
1548 #if   SYM_CONF_DMA_ADDRESSING_MODE == 2
1549 	/*
1550 	 *  Make SCRIPTS aware of the 64 bit DMA
1551 	 *  segment registers not being up-to-date.
1552 	 */
1553 	if (np->dmap_dirty)
1554 		cp->host_xflags |= HX_DMAP_DIRTY;
1555 #endif
1556 
1557 	/*
1558 	 *  Insert first the idle task and then our job.
1559 	 *  The MBs should ensure proper ordering.
1560 	 */
1561 	qidx = np->squeueput + 2;
1562 	if (qidx >= MAX_QUEUE*2) qidx = 0;
1563 
1564 	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
1565 	MEMORY_WRITE_BARRIER();
1566 	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
1567 
1568 	np->squeueput = qidx;
1569 
1570 	if (DEBUG_FLAGS & DEBUG_QUEUE)
1571 		printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
1572 
1573 	/*
1574 	 *  Script processor may be waiting for reselect.
1575 	 *  Wake it up.
1576 	 */
1577 	MEMORY_WRITE_BARRIER();
1578 	OUTB(np, nc_istat, SIGP|np->istat_sem);
1579 }
1580 
1581 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1582 /*
1583  *  Start next ready-to-start CCBs.
1584  */
1585 void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn)
1586 {
1587 	SYM_QUEHEAD *qp;
1588 	struct sym_ccb *cp;
1589 
1590 	/*
1591 	 *  Paranoia, as usual. :-)
1592 	 */
1593 	assert(!lp->started_tags || !lp->started_no_tag);
1594 
1595 	/*
1596 	 *  Try to start as many commands as asked by caller.
1597 	 *  Prevent from having both tagged and untagged
1598 	 *  commands queued to the device at the same time.
1599 	 */
1600 	while (maxn--) {
1601 		qp = sym_remque_head(&lp->waiting_ccbq);
1602 		if (!qp)
1603 			break;
1604 		cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq);
1605 		if (cp->tag != NO_TAG) {
1606 			if (lp->started_no_tag ||
1607 			    lp->started_tags >= lp->started_max) {
1608 				sym_insque_head(qp, &lp->waiting_ccbq);
1609 				break;
1610 			}
1611 			lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba);
1612 			lp->head.resel_sa =
1613 				cpu_to_scr(SCRIPTA_BA(np, resel_tag));
1614 			++lp->started_tags;
1615 		} else {
1616 			if (lp->started_no_tag || lp->started_tags) {
1617 				sym_insque_head(qp, &lp->waiting_ccbq);
1618 				break;
1619 			}
1620 			lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
1621 			lp->head.resel_sa =
1622 			      cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
1623 			++lp->started_no_tag;
1624 		}
1625 		cp->started = 1;
1626 		sym_insque_tail(qp, &lp->started_ccbq);
1627 		sym_put_start_queue(np, cp);
1628 	}
1629 }
1630 #endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */
1631 
1632 /*
1633  *  The chip may have completed jobs. Look at the DONE QUEUE.
1634  *
1635  *  On paper, memory read barriers may be needed here to
1636  *  prevent out of order LOADs by the CPU from having
1637  *  prefetched stale data prior to DMA having occurred.
1638  */
1639 static int sym_wakeup_done (struct sym_hcb *np)
1640 {
1641 	struct sym_ccb *cp;
1642 	int i, n;
1643 	u32 dsa;
1644 
1645 	n = 0;
1646 	i = np->dqueueget;
1647 
1648 	/* MEMORY_READ_BARRIER(); */
1649 	while (1) {
1650 		dsa = scr_to_cpu(np->dqueue[i]);
1651 		if (!dsa)
1652 			break;
1653 		np->dqueue[i] = 0;
1654 		if ((i = i+2) >= MAX_QUEUE*2)
1655 			i = 0;
1656 
1657 		cp = sym_ccb_from_dsa(np, dsa);
1658 		if (cp) {
1659 			MEMORY_READ_BARRIER();
1660 			sym_complete_ok (np, cp);
1661 			++n;
1662 		}
1663 		else
1664 			printf ("%s: bad DSA (%x) in done queue.\n",
1665 				sym_name(np), (u_int) dsa);
1666 	}
1667 	np->dqueueget = i;
1668 
1669 	return n;
1670 }
1671 
1672 /*
1673  *  Complete all CCBs queued to the COMP queue.
1674  *
1675  *  These CCBs are assumed:
1676  *  - Not to be referenced either by devices or
1677  *    SCRIPTS-related queues and datas.
1678  *  - To have to be completed with an error condition
1679  *    or requeued.
1680  *
1681  *  The device queue freeze count is incremented
1682  *  for each CCB that does not prevent this.
1683  *  This function is called when all CCBs involved
1684  *  in error handling/recovery have been reaped.
1685  */
1686 static void sym_flush_comp_queue(struct sym_hcb *np, int cam_status)
1687 {
1688 	SYM_QUEHEAD *qp;
1689 	struct sym_ccb *cp;
1690 
1691 	while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) {
1692 		struct scsi_cmnd *cmd;
1693 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
1694 		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
1695 		/* Leave quiet CCBs waiting for resources */
1696 		if (cp->host_status == HS_WAIT)
1697 			continue;
1698 		cmd = cp->cmd;
1699 		if (cam_status)
1700 			sym_set_cam_status(cmd, cam_status);
1701 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1702 		if (sym_get_cam_status(cmd) == DID_SOFT_ERROR) {
1703 			struct sym_tcb *tp = &np->target[cp->target];
1704 			struct sym_lcb *lp = sym_lp(tp, cp->lun);
1705 			if (lp) {
1706 				sym_remque(&cp->link2_ccbq);
1707 				sym_insque_tail(&cp->link2_ccbq,
1708 				                &lp->waiting_ccbq);
1709 				if (cp->started) {
1710 					if (cp->tag != NO_TAG)
1711 						--lp->started_tags;
1712 					else
1713 						--lp->started_no_tag;
1714 				}
1715 			}
1716 			cp->started = 0;
1717 			continue;
1718 		}
1719 #endif
1720 		sym_free_ccb(np, cp);
1721 		sym_xpt_done(np, cmd);
1722 	}
1723 }
1724 
1725 /*
1726  *  Complete all active CCBs with error.
1727  *  Used on CHIP/SCSI RESET.
1728  */
1729 static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status)
1730 {
1731 	/*
1732 	 *  Move all active CCBs to the COMP queue
1733 	 *  and flush this queue.
1734 	 */
1735 	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
1736 	sym_que_init(&np->busy_ccbq);
1737 	sym_flush_comp_queue(np, cam_status);
1738 }
1739 
1740 /*
1741  *  Start chip.
1742  *
1743  *  'reason' means:
1744  *     0: initialisation.
1745  *     1: SCSI BUS RESET delivered or received.
1746  *     2: SCSI BUS MODE changed.
1747  */
1748 void sym_start_up (struct sym_hcb *np, int reason)
1749 {
1750  	int	i;
1751 	u32	phys;
1752 
1753  	/*
1754 	 *  Reset chip if asked, otherwise just clear fifos.
1755  	 */
1756 	if (reason == 1)
1757 		sym_soft_reset(np);
1758 	else {
1759 		OUTB(np, nc_stest3, TE|CSF);
1760 		OUTONB(np, nc_ctest3, CLF);
1761 	}
1762 
1763 	/*
1764 	 *  Clear Start Queue
1765 	 */
1766 	phys = np->squeue_ba;
1767 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
1768 		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
1769 		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
1770 	}
1771 	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1772 
1773 	/*
1774 	 *  Start at first entry.
1775 	 */
1776 	np->squeueput = 0;
1777 
1778 	/*
1779 	 *  Clear Done Queue
1780 	 */
1781 	phys = np->dqueue_ba;
1782 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
1783 		np->dqueue[i]   = 0;
1784 		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
1785 	}
1786 	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1787 
1788 	/*
1789 	 *  Start at first entry.
1790 	 */
1791 	np->dqueueget = 0;
1792 
1793 	/*
1794 	 *  Install patches in scripts.
1795 	 *  This also let point to first position the start
1796 	 *  and done queue pointers used from SCRIPTS.
1797 	 */
1798 	np->fw_patch(np);
1799 
1800 	/*
1801 	 *  Wakeup all pending jobs.
1802 	 */
1803 	sym_flush_busy_queue(np, DID_RESET);
1804 
1805 	/*
1806 	 *  Init chip.
1807 	 */
1808 	OUTB(np, nc_istat,  0x00);			/*  Remove Reset, abort */
1809 	INB(np, nc_mbox1);
1810 	udelay(2000); /* The 895 needs time for the bus mode to settle */
1811 
1812 	OUTB(np, nc_scntl0, np->rv_scntl0 | 0xc0);
1813 					/*  full arb., ena parity, par->ATN  */
1814 	OUTB(np, nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
1815 
1816 	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
1817 
1818 	OUTB(np, nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
1819 	OUTW(np, nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
1820 	OUTB(np, nc_istat , SIGP	);		/*  Signal Process */
1821 	OUTB(np, nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
1822 	OUTB(np, nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
1823 
1824 	OUTB(np, nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
1825 	OUTB(np, nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
1826 	OUTB(np, nc_ctest4, np->rv_ctest4);	/* Master parity checking */
1827 
1828 	/* Extended Sreq/Sack filtering not supported on the C10 */
1829 	if (np->features & FE_C10)
1830 		OUTB(np, nc_stest2, np->rv_stest2);
1831 	else
1832 		OUTB(np, nc_stest2, EXT|np->rv_stest2);
1833 
1834 	OUTB(np, nc_stest3, TE);			/* TolerANT enable */
1835 	OUTB(np, nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
1836 
1837 	/*
1838 	 *  For now, disable AIP generation on C1010-66.
1839 	 */
1840 	if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_66)
1841 		OUTB(np, nc_aipcntl1, DISAIP);
1842 
1843 	/*
1844 	 *  C10101 rev. 0 errata.
1845 	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
1846 	 *  STEST1 register to disable SGE. We probably should do
1847 	 *  that from SCRIPTS for each selection/reselection, but
1848 	 *  I just don't want. :)
1849 	 */
1850 	if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_33 &&
1851 	    np->revision_id < 1)
1852 		OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30);
1853 
1854 	/*
1855 	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
1856 	 *  Disable overlapped arbitration for some dual function devices,
1857 	 *  regardless revision id (kind of post-chip-design feature. ;-))
1858 	 */
1859 	if (np->device_id == PCI_DEVICE_ID_NCR_53C875)
1860 		OUTB(np, nc_ctest0, (1<<5));
1861 	else if (np->device_id == PCI_DEVICE_ID_NCR_53C896)
1862 		np->rv_ccntl0 |= DPR;
1863 
1864 	/*
1865 	 *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
1866 	 *  and/or hardware phase mismatch, since only such chips
1867 	 *  seem to support those IO registers.
1868 	 */
1869 	if (np->features & (FE_DAC|FE_NOPM)) {
1870 		OUTB(np, nc_ccntl0, np->rv_ccntl0);
1871 		OUTB(np, nc_ccntl1, np->rv_ccntl1);
1872 	}
1873 
1874 #if	SYM_CONF_DMA_ADDRESSING_MODE == 2
1875 	/*
1876 	 *  Set up scratch C and DRS IO registers to map the 32 bit
1877 	 *  DMA address range our data structures are located in.
1878 	 */
1879 	if (np->use_dac) {
1880 		np->dmap_bah[0] = 0;	/* ??? */
1881 		OUTL(np, nc_scrx[0], np->dmap_bah[0]);
1882 		OUTL(np, nc_drs, np->dmap_bah[0]);
1883 	}
1884 #endif
1885 
1886 	/*
1887 	 *  If phase mismatch handled by scripts (895A/896/1010),
1888 	 *  set PM jump addresses.
1889 	 */
1890 	if (np->features & FE_NOPM) {
1891 		OUTL(np, nc_pmjad1, SCRIPTB_BA(np, pm_handle));
1892 		OUTL(np, nc_pmjad2, SCRIPTB_BA(np, pm_handle));
1893 	}
1894 
1895 	/*
1896 	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
1897 	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
1898 	 */
1899 	if (np->features & FE_LED0)
1900 		OUTB(np, nc_gpcntl, INB(np, nc_gpcntl) & ~0x01);
1901 	else if (np->features & FE_LEDC)
1902 		OUTB(np, nc_gpcntl, (INB(np, nc_gpcntl) & ~0x41) | 0x20);
1903 
1904 	/*
1905 	 *      enable ints
1906 	 */
1907 	OUTW(np, nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
1908 	OUTB(np, nc_dien , MDPE|BF|SSI|SIR|IID);
1909 
1910 	/*
1911 	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
1912 	 *  Try to eat the spurious SBMC interrupt that may occur when
1913 	 *  we reset the chip but not the SCSI BUS (at initialization).
1914 	 */
1915 	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
1916 		OUTONW(np, nc_sien, SBMC);
1917 		if (reason == 0) {
1918 			INB(np, nc_mbox1);
1919 			mdelay(100);
1920 			INW(np, nc_sist);
1921 		}
1922 		np->scsi_mode = INB(np, nc_stest4) & SMODE;
1923 	}
1924 
1925 	/*
1926 	 *  Fill in target structure.
1927 	 *  Reinitialize usrsync.
1928 	 *  Reinitialize usrwide.
1929 	 *  Prepare sync negotiation according to actual SCSI bus mode.
1930 	 */
1931 	for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
1932 		struct sym_tcb *tp = &np->target[i];
1933 
1934 		tp->to_reset  = 0;
1935 		tp->head.sval = 0;
1936 		tp->head.wval = np->rv_scntl3;
1937 		tp->head.uval = 0;
1938 	}
1939 
1940 	/*
1941 	 *  Download SCSI SCRIPTS to on-chip RAM if present,
1942 	 *  and start script processor.
1943 	 *  We do the download preferently from the CPU.
1944 	 *  For platforms that may not support PCI memory mapping,
1945 	 *  we use simple SCRIPTS that performs MEMORY MOVEs.
1946 	 */
1947 	phys = SCRIPTA_BA(np, init);
1948 	if (np->ram_ba) {
1949 		if (sym_verbose >= 2)
1950 			printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np));
1951 		memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz);
1952 		if (np->ram_ws == 8192) {
1953 			memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz);
1954 			phys = scr_to_cpu(np->scr_ram_seg);
1955 			OUTL(np, nc_mmws, phys);
1956 			OUTL(np, nc_mmrs, phys);
1957 			OUTL(np, nc_sfs,  phys);
1958 			phys = SCRIPTB_BA(np, start64);
1959 		}
1960 	}
1961 
1962 	np->istat_sem = 0;
1963 
1964 	OUTL(np, nc_dsa, np->hcb_ba);
1965 	OUTL_DSP(np, phys);
1966 
1967 	/*
1968 	 *  Notify the XPT about the RESET condition.
1969 	 */
1970 	if (reason != 0)
1971 		sym_xpt_async_bus_reset(np);
1972 }
1973 
1974 /*
1975  *  Switch trans mode for current job and its target.
1976  */
1977 static void sym_settrans(struct sym_hcb *np, int target, u_char opts, u_char ofs,
1978 			 u_char per, u_char wide, u_char div, u_char fak)
1979 {
1980 	SYM_QUEHEAD *qp;
1981 	u_char sval, wval, uval;
1982 	struct sym_tcb *tp = &np->target[target];
1983 
1984 	assert(target == (INB(np, nc_sdid) & 0x0f));
1985 
1986 	sval = tp->head.sval;
1987 	wval = tp->head.wval;
1988 	uval = tp->head.uval;
1989 
1990 #if 0
1991 	printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
1992 		sval, wval, uval, np->rv_scntl3);
1993 #endif
1994 	/*
1995 	 *  Set the offset.
1996 	 */
1997 	if (!(np->features & FE_C10))
1998 		sval = (sval & ~0x1f) | ofs;
1999 	else
2000 		sval = (sval & ~0x3f) | ofs;
2001 
2002 	/*
2003 	 *  Set the sync divisor and extra clock factor.
2004 	 */
2005 	if (ofs != 0) {
2006 		wval = (wval & ~0x70) | ((div+1) << 4);
2007 		if (!(np->features & FE_C10))
2008 			sval = (sval & ~0xe0) | (fak << 5);
2009 		else {
2010 			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
2011 			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
2012 			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
2013 		}
2014 	}
2015 
2016 	/*
2017 	 *  Set the bus width.
2018 	 */
2019 	wval = wval & ~EWS;
2020 	if (wide != 0)
2021 		wval |= EWS;
2022 
2023 	/*
2024 	 *  Set misc. ultra enable bits.
2025 	 */
2026 	if (np->features & FE_C10) {
2027 		uval = uval & ~(U3EN|AIPCKEN);
2028 		if (opts)	{
2029 			assert(np->features & FE_U3EN);
2030 			uval |= U3EN;
2031 		}
2032 	} else {
2033 		wval = wval & ~ULTRA;
2034 		if (per <= 12)	wval |= ULTRA;
2035 	}
2036 
2037 	/*
2038 	 *   Stop there if sync parameters are unchanged.
2039 	 */
2040 	if (tp->head.sval == sval &&
2041 	    tp->head.wval == wval &&
2042 	    tp->head.uval == uval)
2043 		return;
2044 	tp->head.sval = sval;
2045 	tp->head.wval = wval;
2046 	tp->head.uval = uval;
2047 
2048 	/*
2049 	 *  Disable extended Sreq/Sack filtering if per < 50.
2050 	 *  Not supported on the C1010.
2051 	 */
2052 	if (per < 50 && !(np->features & FE_C10))
2053 		OUTOFFB(np, nc_stest2, EXT);
2054 
2055 	/*
2056 	 *  set actual value and sync_status
2057 	 */
2058 	OUTB(np, nc_sxfer,  tp->head.sval);
2059 	OUTB(np, nc_scntl3, tp->head.wval);
2060 
2061 	if (np->features & FE_C10) {
2062 		OUTB(np, nc_scntl4, tp->head.uval);
2063 	}
2064 
2065 	/*
2066 	 *  patch ALL busy ccbs of this target.
2067 	 */
2068 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
2069 		struct sym_ccb *cp;
2070 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
2071 		if (cp->target != target)
2072 			continue;
2073 		cp->phys.select.sel_scntl3 = tp->head.wval;
2074 		cp->phys.select.sel_sxfer  = tp->head.sval;
2075 		if (np->features & FE_C10) {
2076 			cp->phys.select.sel_scntl4 = tp->head.uval;
2077 		}
2078 	}
2079 }
2080 
2081 /*
2082  *  We received a WDTR.
2083  *  Let everything be aware of the changes.
2084  */
2085 static void sym_setwide(struct sym_hcb *np, int target, u_char wide)
2086 {
2087 	struct sym_tcb *tp = &np->target[target];
2088 	struct scsi_target *starget = tp->starget;
2089 
2090 	if (spi_width(starget) == wide)
2091 		return;
2092 
2093 	sym_settrans(np, target, 0, 0, 0, wide, 0, 0);
2094 
2095 	tp->tgoal.width = wide;
2096 	spi_offset(starget) = 0;
2097 	spi_period(starget) = 0;
2098 	spi_width(starget) = wide;
2099 	spi_iu(starget) = 0;
2100 	spi_dt(starget) = 0;
2101 	spi_qas(starget) = 0;
2102 
2103 	if (sym_verbose >= 3)
2104 		spi_display_xfer_agreement(starget);
2105 }
2106 
2107 /*
2108  *  We received a SDTR.
2109  *  Let everything be aware of the changes.
2110  */
2111 static void
2112 sym_setsync(struct sym_hcb *np, int target,
2113             u_char ofs, u_char per, u_char div, u_char fak)
2114 {
2115 	struct sym_tcb *tp = &np->target[target];
2116 	struct scsi_target *starget = tp->starget;
2117 	u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT;
2118 
2119 	sym_settrans(np, target, 0, ofs, per, wide, div, fak);
2120 
2121 	spi_period(starget) = per;
2122 	spi_offset(starget) = ofs;
2123 	spi_iu(starget) = spi_dt(starget) = spi_qas(starget) = 0;
2124 
2125 	if (!tp->tgoal.dt && !tp->tgoal.iu && !tp->tgoal.qas) {
2126 		tp->tgoal.period = per;
2127 		tp->tgoal.offset = ofs;
2128 		tp->tgoal.check_nego = 0;
2129 	}
2130 
2131 	spi_display_xfer_agreement(starget);
2132 }
2133 
2134 /*
2135  *  We received a PPR.
2136  *  Let everything be aware of the changes.
2137  */
2138 static void
2139 sym_setpprot(struct sym_hcb *np, int target, u_char opts, u_char ofs,
2140              u_char per, u_char wide, u_char div, u_char fak)
2141 {
2142 	struct sym_tcb *tp = &np->target[target];
2143 	struct scsi_target *starget = tp->starget;
2144 
2145 	sym_settrans(np, target, opts, ofs, per, wide, div, fak);
2146 
2147 	spi_width(starget) = tp->tgoal.width = wide;
2148 	spi_period(starget) = tp->tgoal.period = per;
2149 	spi_offset(starget) = tp->tgoal.offset = ofs;
2150 	spi_iu(starget) = tp->tgoal.iu = !!(opts & PPR_OPT_IU);
2151 	spi_dt(starget) = tp->tgoal.dt = !!(opts & PPR_OPT_DT);
2152 	spi_qas(starget) = tp->tgoal.qas = !!(opts & PPR_OPT_QAS);
2153 	tp->tgoal.check_nego = 0;
2154 
2155 	spi_display_xfer_agreement(starget);
2156 }
2157 
2158 /*
2159  *  generic recovery from scsi interrupt
2160  *
2161  *  The doc says that when the chip gets an SCSI interrupt,
2162  *  it tries to stop in an orderly fashion, by completing
2163  *  an instruction fetch that had started or by flushing
2164  *  the DMA fifo for a write to memory that was executing.
2165  *  Such a fashion is not enough to know if the instruction
2166  *  that was just before the current DSP value has been
2167  *  executed or not.
2168  *
2169  *  There are some small SCRIPTS sections that deal with
2170  *  the start queue and the done queue that may break any
2171  *  assomption from the C code if we are interrupted
2172  *  inside, so we reset if this happens. Btw, since these
2173  *  SCRIPTS sections are executed while the SCRIPTS hasn't
2174  *  started SCSI operations, it is very unlikely to happen.
2175  *
2176  *  All the driver data structures are supposed to be
2177  *  allocated from the same 4 GB memory window, so there
2178  *  is a 1 to 1 relationship between DSA and driver data
2179  *  structures. Since we are careful :) to invalidate the
2180  *  DSA when we complete a command or when the SCRIPTS
2181  *  pushes a DSA into a queue, we can trust it when it
2182  *  points to a CCB.
2183  */
2184 static void sym_recover_scsi_int (struct sym_hcb *np, u_char hsts)
2185 {
2186 	u32	dsp	= INL(np, nc_dsp);
2187 	u32	dsa	= INL(np, nc_dsa);
2188 	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
2189 
2190 	/*
2191 	 *  If we haven't been interrupted inside the SCRIPTS
2192 	 *  critical pathes, we can safely restart the SCRIPTS
2193 	 *  and trust the DSA value if it matches a CCB.
2194 	 */
2195 	if ((!(dsp > SCRIPTA_BA(np, getjob_begin) &&
2196 	       dsp < SCRIPTA_BA(np, getjob_end) + 1)) &&
2197 	    (!(dsp > SCRIPTA_BA(np, ungetjob) &&
2198 	       dsp < SCRIPTA_BA(np, reselect) + 1)) &&
2199 	    (!(dsp > SCRIPTB_BA(np, sel_for_abort) &&
2200 	       dsp < SCRIPTB_BA(np, sel_for_abort_1) + 1)) &&
2201 	    (!(dsp > SCRIPTA_BA(np, done) &&
2202 	       dsp < SCRIPTA_BA(np, done_end) + 1))) {
2203 		OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo  */
2204 		OUTB(np, nc_stest3, TE|CSF);		/* clear scsi fifo */
2205 		/*
2206 		 *  If we have a CCB, let the SCRIPTS call us back for
2207 		 *  the handling of the error with SCRATCHA filled with
2208 		 *  STARTPOS. This way, we will be able to freeze the
2209 		 *  device queue and requeue awaiting IOs.
2210 		 */
2211 		if (cp) {
2212 			cp->host_status = hsts;
2213 			OUTL_DSP(np, SCRIPTA_BA(np, complete_error));
2214 		}
2215 		/*
2216 		 *  Otherwise just restart the SCRIPTS.
2217 		 */
2218 		else {
2219 			OUTL(np, nc_dsa, 0xffffff);
2220 			OUTL_DSP(np, SCRIPTA_BA(np, start));
2221 		}
2222 	}
2223 	else
2224 		goto reset_all;
2225 
2226 	return;
2227 
2228 reset_all:
2229 	sym_start_reset(np);
2230 }
2231 
2232 /*
2233  *  chip exception handler for selection timeout
2234  */
2235 static void sym_int_sto (struct sym_hcb *np)
2236 {
2237 	u32 dsp	= INL(np, nc_dsp);
2238 
2239 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
2240 
2241 	if (dsp == SCRIPTA_BA(np, wf_sel_done) + 8)
2242 		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
2243 	else
2244 		sym_start_reset(np);
2245 }
2246 
2247 /*
2248  *  chip exception handler for unexpected disconnect
2249  */
2250 static void sym_int_udc (struct sym_hcb *np)
2251 {
2252 	printf ("%s: unexpected disconnect\n", sym_name(np));
2253 	sym_recover_scsi_int(np, HS_UNEXPECTED);
2254 }
2255 
2256 /*
2257  *  chip exception handler for SCSI bus mode change
2258  *
2259  *  spi2-r12 11.2.3 says a transceiver mode change must
2260  *  generate a reset event and a device that detects a reset
2261  *  event shall initiate a hard reset. It says also that a
2262  *  device that detects a mode change shall set data transfer
2263  *  mode to eight bit asynchronous, etc...
2264  *  So, just reinitializing all except chip should be enough.
2265  */
2266 static void sym_int_sbmc (struct sym_hcb *np)
2267 {
2268 	u_char scsi_mode = INB(np, nc_stest4) & SMODE;
2269 
2270 	/*
2271 	 *  Notify user.
2272 	 */
2273 	printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np),
2274 		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
2275 
2276 	/*
2277 	 *  Should suspend command processing for a few seconds and
2278 	 *  reinitialize all except the chip.
2279 	 */
2280 	sym_start_up (np, 2);
2281 }
2282 
2283 /*
2284  *  chip exception handler for SCSI parity error.
2285  *
2286  *  When the chip detects a SCSI parity error and is
2287  *  currently executing a (CH)MOV instruction, it does
2288  *  not interrupt immediately, but tries to finish the
2289  *  transfer of the current scatter entry before
2290  *  interrupting. The following situations may occur:
2291  *
2292  *  - The complete scatter entry has been transferred
2293  *    without the device having changed phase.
2294  *    The chip will then interrupt with the DSP pointing
2295  *    to the instruction that follows the MOV.
2296  *
2297  *  - A phase mismatch occurs before the MOV finished
2298  *    and phase errors are to be handled by the C code.
2299  *    The chip will then interrupt with both PAR and MA
2300  *    conditions set.
2301  *
2302  *  - A phase mismatch occurs before the MOV finished and
2303  *    phase errors are to be handled by SCRIPTS.
2304  *    The chip will load the DSP with the phase mismatch
2305  *    JUMP address and interrupt the host processor.
2306  */
2307 static void sym_int_par (struct sym_hcb *np, u_short sist)
2308 {
2309 	u_char	hsts	= INB(np, HS_PRT);
2310 	u32	dsp	= INL(np, nc_dsp);
2311 	u32	dbc	= INL(np, nc_dbc);
2312 	u32	dsa	= INL(np, nc_dsa);
2313 	u_char	sbcl	= INB(np, nc_sbcl);
2314 	u_char	cmd	= dbc >> 24;
2315 	int phase	= cmd & 7;
2316 	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
2317 
2318 	printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
2319 		sym_name(np), hsts, dbc, sbcl);
2320 
2321 	/*
2322 	 *  Check that the chip is connected to the SCSI BUS.
2323 	 */
2324 	if (!(INB(np, nc_scntl1) & ISCON)) {
2325 		sym_recover_scsi_int(np, HS_UNEXPECTED);
2326 		return;
2327 	}
2328 
2329 	/*
2330 	 *  If the nexus is not clearly identified, reset the bus.
2331 	 *  We will try to do better later.
2332 	 */
2333 	if (!cp)
2334 		goto reset_all;
2335 
2336 	/*
2337 	 *  Check instruction was a MOV, direction was INPUT and
2338 	 *  ATN is asserted.
2339 	 */
2340 	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
2341 		goto reset_all;
2342 
2343 	/*
2344 	 *  Keep track of the parity error.
2345 	 */
2346 	OUTONB(np, HF_PRT, HF_EXT_ERR);
2347 	cp->xerr_status |= XE_PARITY_ERR;
2348 
2349 	/*
2350 	 *  Prepare the message to send to the device.
2351 	 */
2352 	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
2353 
2354 	/*
2355 	 *  If the old phase was DATA IN phase, we have to deal with
2356 	 *  the 3 situations described above.
2357 	 *  For other input phases (MSG IN and STATUS), the device
2358 	 *  must resend the whole thing that failed parity checking
2359 	 *  or signal error. So, jumping to dispatcher should be OK.
2360 	 */
2361 	if (phase == 1 || phase == 5) {
2362 		/* Phase mismatch handled by SCRIPTS */
2363 		if (dsp == SCRIPTB_BA(np, pm_handle))
2364 			OUTL_DSP(np, dsp);
2365 		/* Phase mismatch handled by the C code */
2366 		else if (sist & MA)
2367 			sym_int_ma (np);
2368 		/* No phase mismatch occurred */
2369 		else {
2370 			sym_set_script_dp (np, cp, dsp);
2371 			OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2372 		}
2373 	}
2374 	else if (phase == 7)	/* We definitely cannot handle parity errors */
2375 #if 1				/* in message-in phase due to the relection  */
2376 		goto reset_all; /* path and various message anticipations.   */
2377 #else
2378 		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
2379 #endif
2380 	else
2381 		OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2382 	return;
2383 
2384 reset_all:
2385 	sym_start_reset(np);
2386 	return;
2387 }
2388 
2389 /*
2390  *  chip exception handler for phase errors.
2391  *
2392  *  We have to construct a new transfer descriptor,
2393  *  to transfer the rest of the current block.
2394  */
2395 static void sym_int_ma (struct sym_hcb *np)
2396 {
2397 	u32	dbc;
2398 	u32	rest;
2399 	u32	dsp;
2400 	u32	dsa;
2401 	u32	nxtdsp;
2402 	u32	*vdsp;
2403 	u32	oadr, olen;
2404 	u32	*tblp;
2405         u32	newcmd;
2406 	u_int	delta;
2407 	u_char	cmd;
2408 	u_char	hflags, hflags0;
2409 	struct	sym_pmc *pm;
2410 	struct sym_ccb *cp;
2411 
2412 	dsp	= INL(np, nc_dsp);
2413 	dbc	= INL(np, nc_dbc);
2414 	dsa	= INL(np, nc_dsa);
2415 
2416 	cmd	= dbc >> 24;
2417 	rest	= dbc & 0xffffff;
2418 	delta	= 0;
2419 
2420 	/*
2421 	 *  locate matching cp if any.
2422 	 */
2423 	cp = sym_ccb_from_dsa(np, dsa);
2424 
2425 	/*
2426 	 *  Donnot take into account dma fifo and various buffers in
2427 	 *  INPUT phase since the chip flushes everything before
2428 	 *  raising the MA interrupt for interrupted INPUT phases.
2429 	 *  For DATA IN phase, we will check for the SWIDE later.
2430 	 */
2431 	if ((cmd & 7) != 1 && (cmd & 7) != 5) {
2432 		u_char ss0, ss2;
2433 
2434 		if (np->features & FE_DFBC)
2435 			delta = INW(np, nc_dfbc);
2436 		else {
2437 			u32 dfifo;
2438 
2439 			/*
2440 			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
2441 			 */
2442 			dfifo = INL(np, nc_dfifo);
2443 
2444 			/*
2445 			 *  Calculate remaining bytes in DMA fifo.
2446 			 *  (CTEST5 = dfifo >> 16)
2447 			 */
2448 			if (dfifo & (DFS << 16))
2449 				delta = ((((dfifo >> 8) & 0x300) |
2450 				          (dfifo & 0xff)) - rest) & 0x3ff;
2451 			else
2452 				delta = ((dfifo & 0xff) - rest) & 0x7f;
2453 		}
2454 
2455 		/*
2456 		 *  The data in the dma fifo has not been transfered to
2457 		 *  the target -> add the amount to the rest
2458 		 *  and clear the data.
2459 		 *  Check the sstat2 register in case of wide transfer.
2460 		 */
2461 		rest += delta;
2462 		ss0  = INB(np, nc_sstat0);
2463 		if (ss0 & OLF) rest++;
2464 		if (!(np->features & FE_C10))
2465 			if (ss0 & ORF) rest++;
2466 		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
2467 			ss2 = INB(np, nc_sstat2);
2468 			if (ss2 & OLF1) rest++;
2469 			if (!(np->features & FE_C10))
2470 				if (ss2 & ORF1) rest++;
2471 		}
2472 
2473 		/*
2474 		 *  Clear fifos.
2475 		 */
2476 		OUTB(np, nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
2477 		OUTB(np, nc_stest3, TE|CSF);		/* scsi fifo */
2478 	}
2479 
2480 	/*
2481 	 *  log the information
2482 	 */
2483 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
2484 		printf ("P%x%x RL=%d D=%d ", cmd&7, INB(np, nc_sbcl)&7,
2485 			(unsigned) rest, (unsigned) delta);
2486 
2487 	/*
2488 	 *  try to find the interrupted script command,
2489 	 *  and the address at which to continue.
2490 	 */
2491 	vdsp	= NULL;
2492 	nxtdsp	= 0;
2493 	if	(dsp >  np->scripta_ba &&
2494 		 dsp <= np->scripta_ba + np->scripta_sz) {
2495 		vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
2496 		nxtdsp = dsp;
2497 	}
2498 	else if	(dsp >  np->scriptb_ba &&
2499 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
2500 		vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
2501 		nxtdsp = dsp;
2502 	}
2503 
2504 	/*
2505 	 *  log the information
2506 	 */
2507 	if (DEBUG_FLAGS & DEBUG_PHASE) {
2508 		printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
2509 			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
2510 	}
2511 
2512 	if (!vdsp) {
2513 		printf ("%s: interrupted SCRIPT address not found.\n",
2514 			sym_name (np));
2515 		goto reset_all;
2516 	}
2517 
2518 	if (!cp) {
2519 		printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
2520 			sym_name (np));
2521 		goto reset_all;
2522 	}
2523 
2524 	/*
2525 	 *  get old startaddress and old length.
2526 	 */
2527 	oadr = scr_to_cpu(vdsp[1]);
2528 
2529 	if (cmd & 0x10) {	/* Table indirect */
2530 		tblp = (u32 *) ((char*) &cp->phys + oadr);
2531 		olen = scr_to_cpu(tblp[0]);
2532 		oadr = scr_to_cpu(tblp[1]);
2533 	} else {
2534 		tblp = (u32 *) 0;
2535 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
2536 	}
2537 
2538 	if (DEBUG_FLAGS & DEBUG_PHASE) {
2539 		printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
2540 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
2541 			tblp,
2542 			(unsigned) olen,
2543 			(unsigned) oadr);
2544 	}
2545 
2546 	/*
2547 	 *  check cmd against assumed interrupted script command.
2548 	 *  If dt data phase, the MOVE instruction hasn't bit 4 of
2549 	 *  the phase.
2550 	 */
2551 	if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
2552 		sym_print_addr(cp->cmd,
2553 			"internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
2554 			cmd, scr_to_cpu(vdsp[0]) >> 24);
2555 
2556 		goto reset_all;
2557 	}
2558 
2559 	/*
2560 	 *  if old phase not dataphase, leave here.
2561 	 */
2562 	if (cmd & 2) {
2563 		sym_print_addr(cp->cmd,
2564 			"phase change %x-%x %d@%08x resid=%d.\n",
2565 			cmd&7, INB(np, nc_sbcl)&7, (unsigned)olen,
2566 			(unsigned)oadr, (unsigned)rest);
2567 		goto unexpected_phase;
2568 	}
2569 
2570 	/*
2571 	 *  Choose the correct PM save area.
2572 	 *
2573 	 *  Look at the PM_SAVE SCRIPT if you want to understand
2574 	 *  this stuff. The equivalent code is implemented in
2575 	 *  SCRIPTS for the 895A, 896 and 1010 that are able to
2576 	 *  handle PM from the SCRIPTS processor.
2577 	 */
2578 	hflags0 = INB(np, HF_PRT);
2579 	hflags = hflags0;
2580 
2581 	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
2582 		if (hflags & HF_IN_PM0)
2583 			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
2584 		else if	(hflags & HF_IN_PM1)
2585 			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
2586 
2587 		if (hflags & HF_DP_SAVED)
2588 			hflags ^= HF_ACT_PM;
2589 	}
2590 
2591 	if (!(hflags & HF_ACT_PM)) {
2592 		pm = &cp->phys.pm0;
2593 		newcmd = SCRIPTA_BA(np, pm0_data);
2594 	}
2595 	else {
2596 		pm = &cp->phys.pm1;
2597 		newcmd = SCRIPTA_BA(np, pm1_data);
2598 	}
2599 
2600 	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
2601 	if (hflags != hflags0)
2602 		OUTB(np, HF_PRT, hflags);
2603 
2604 	/*
2605 	 *  fillin the phase mismatch context
2606 	 */
2607 	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
2608 	pm->sg.size = cpu_to_scr(rest);
2609 	pm->ret     = cpu_to_scr(nxtdsp);
2610 
2611 	/*
2612 	 *  If we have a SWIDE,
2613 	 *  - prepare the address to write the SWIDE from SCRIPTS,
2614 	 *  - compute the SCRIPTS address to restart from,
2615 	 *  - move current data pointer context by one byte.
2616 	 */
2617 	nxtdsp = SCRIPTA_BA(np, dispatch);
2618 	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
2619 	    (INB(np, nc_scntl2) & WSR)) {
2620 		u32 tmp;
2621 
2622 		/*
2623 		 *  Set up the table indirect for the MOVE
2624 		 *  of the residual byte and adjust the data
2625 		 *  pointer context.
2626 		 */
2627 		tmp = scr_to_cpu(pm->sg.addr);
2628 		cp->phys.wresid.addr = cpu_to_scr(tmp);
2629 		pm->sg.addr = cpu_to_scr(tmp + 1);
2630 		tmp = scr_to_cpu(pm->sg.size);
2631 		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
2632 		pm->sg.size = cpu_to_scr(tmp - 1);
2633 
2634 		/*
2635 		 *  If only the residual byte is to be moved,
2636 		 *  no PM context is needed.
2637 		 */
2638 		if ((tmp&0xffffff) == 1)
2639 			newcmd = pm->ret;
2640 
2641 		/*
2642 		 *  Prepare the address of SCRIPTS that will
2643 		 *  move the residual byte to memory.
2644 		 */
2645 		nxtdsp = SCRIPTB_BA(np, wsr_ma_helper);
2646 	}
2647 
2648 	if (DEBUG_FLAGS & DEBUG_PHASE) {
2649 		sym_print_addr(cp->cmd, "PM %x %x %x / %x %x %x.\n",
2650 			hflags0, hflags, newcmd,
2651 			(unsigned)scr_to_cpu(pm->sg.addr),
2652 			(unsigned)scr_to_cpu(pm->sg.size),
2653 			(unsigned)scr_to_cpu(pm->ret));
2654 	}
2655 
2656 	/*
2657 	 *  Restart the SCRIPTS processor.
2658 	 */
2659 	sym_set_script_dp (np, cp, newcmd);
2660 	OUTL_DSP(np, nxtdsp);
2661 	return;
2662 
2663 	/*
2664 	 *  Unexpected phase changes that occurs when the current phase
2665 	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
2666 	 *  Such event may only happen when the SCRIPTS is using a
2667 	 *  multibyte SCSI MOVE.
2668 	 *
2669 	 *  Phase change		Some possible cause
2670 	 *
2671 	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
2672 	 *  COMMAND  --> STATUS	Bad command or refused by target.
2673 	 *  MSG OUT  --> MSG IN     Message rejected by target.
2674 	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
2675 	 *  			negotiation messages.
2676 	 *
2677 	 *  The code below does not care of the new phase and so
2678 	 *  trusts the target. Why to annoy it ?
2679 	 *  If the interrupted phase is COMMAND phase, we restart at
2680 	 *  dispatcher.
2681 	 *  If a target does not get all the messages after selection,
2682 	 *  the code assumes blindly that the target discards extended
2683 	 *  messages and clears the negotiation status.
2684 	 *  If the target does not want all our response to negotiation,
2685 	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
2686 	 *  bloat for such a should_not_happen situation).
2687 	 *  In all other situation, we reset the BUS.
2688 	 *  Are these assumptions reasonnable ? (Wait and see ...)
2689 	 */
2690 unexpected_phase:
2691 	dsp -= 8;
2692 	nxtdsp = 0;
2693 
2694 	switch (cmd & 7) {
2695 	case 2:	/* COMMAND phase */
2696 		nxtdsp = SCRIPTA_BA(np, dispatch);
2697 		break;
2698 #if 0
2699 	case 3:	/* STATUS  phase */
2700 		nxtdsp = SCRIPTA_BA(np, dispatch);
2701 		break;
2702 #endif
2703 	case 6:	/* MSG OUT phase */
2704 		/*
2705 		 *  If the device may want to use untagged when we want
2706 		 *  tagged, we prepare an IDENTIFY without disc. granted,
2707 		 *  since we will not be able to handle reselect.
2708 		 *  Otherwise, we just don't care.
2709 		 */
2710 		if	(dsp == SCRIPTA_BA(np, send_ident)) {
2711 			if (cp->tag != NO_TAG && olen - rest <= 3) {
2712 				cp->host_status = HS_BUSY;
2713 				np->msgout[0] = IDENTIFY(0, cp->lun);
2714 				nxtdsp = SCRIPTB_BA(np, ident_break_atn);
2715 			}
2716 			else
2717 				nxtdsp = SCRIPTB_BA(np, ident_break);
2718 		}
2719 		else if	(dsp == SCRIPTB_BA(np, send_wdtr) ||
2720 			 dsp == SCRIPTB_BA(np, send_sdtr) ||
2721 			 dsp == SCRIPTB_BA(np, send_ppr)) {
2722 			nxtdsp = SCRIPTB_BA(np, nego_bad_phase);
2723 			if (dsp == SCRIPTB_BA(np, send_ppr)) {
2724 				struct scsi_device *dev = cp->cmd->device;
2725 				dev->ppr = 0;
2726 			}
2727 		}
2728 		break;
2729 #if 0
2730 	case 7:	/* MSG IN  phase */
2731 		nxtdsp = SCRIPTA_BA(np, clrack);
2732 		break;
2733 #endif
2734 	}
2735 
2736 	if (nxtdsp) {
2737 		OUTL_DSP(np, nxtdsp);
2738 		return;
2739 	}
2740 
2741 reset_all:
2742 	sym_start_reset(np);
2743 }
2744 
2745 /*
2746  *  chip interrupt handler
2747  *
2748  *  In normal situations, interrupt conditions occur one at
2749  *  a time. But when something bad happens on the SCSI BUS,
2750  *  the chip may raise several interrupt flags before
2751  *  stopping and interrupting the CPU. The additionnal
2752  *  interrupt flags are stacked in some extra registers
2753  *  after the SIP and/or DIP flag has been raised in the
2754  *  ISTAT. After the CPU has read the interrupt condition
2755  *  flag from SIST or DSTAT, the chip unstacks the other
2756  *  interrupt flags and sets the corresponding bits in
2757  *  SIST or DSTAT. Since the chip starts stacking once the
2758  *  SIP or DIP flag is set, there is a small window of time
2759  *  where the stacking does not occur.
2760  *
2761  *  Typically, multiple interrupt conditions may happen in
2762  *  the following situations:
2763  *
2764  *  - SCSI parity error + Phase mismatch  (PAR|MA)
2765  *    When an parity error is detected in input phase
2766  *    and the device switches to msg-in phase inside a
2767  *    block MOV.
2768  *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
2769  *    When a stupid device does not want to handle the
2770  *    recovery of an SCSI parity error.
2771  *  - Some combinations of STO, PAR, UDC, ...
2772  *    When using non compliant SCSI stuff, when user is
2773  *    doing non compliant hot tampering on the BUS, when
2774  *    something really bad happens to a device, etc ...
2775  *
2776  *  The heuristic suggested by SYMBIOS to handle
2777  *  multiple interrupts is to try unstacking all
2778  *  interrupts conditions and to handle them on some
2779  *  priority based on error severity.
2780  *  This will work when the unstacking has been
2781  *  successful, but we cannot be 100 % sure of that,
2782  *  since the CPU may have been faster to unstack than
2783  *  the chip is able to stack. Hmmm ... But it seems that
2784  *  such a situation is very unlikely to happen.
2785  *
2786  *  If this happen, for example STO caught by the CPU
2787  *  then UDC happenning before the CPU have restarted
2788  *  the SCRIPTS, the driver may wrongly complete the
2789  *  same command on UDC, since the SCRIPTS didn't restart
2790  *  and the DSA still points to the same command.
2791  *  We avoid this situation by setting the DSA to an
2792  *  invalid value when the CCB is completed and before
2793  *  restarting the SCRIPTS.
2794  *
2795  *  Another issue is that we need some section of our
2796  *  recovery procedures to be somehow uninterruptible but
2797  *  the SCRIPTS processor does not provides such a
2798  *  feature. For this reason, we handle recovery preferently
2799  *  from the C code and check against some SCRIPTS critical
2800  *  sections from the C code.
2801  *
2802  *  Hopefully, the interrupt handling of the driver is now
2803  *  able to resist to weird BUS error conditions, but donnot
2804  *  ask me for any guarantee that it will never fail. :-)
2805  *  Use at your own decision and risk.
2806  */
2807 
2808 void sym_interrupt (struct sym_hcb *np)
2809 {
2810 	u_char	istat, istatc;
2811 	u_char	dstat;
2812 	u_short	sist;
2813 
2814 	/*
2815 	 *  interrupt on the fly ?
2816 	 *  (SCRIPTS may still be running)
2817 	 *
2818 	 *  A `dummy read' is needed to ensure that the
2819 	 *  clear of the INTF flag reaches the device
2820 	 *  and that posted writes are flushed to memory
2821 	 *  before the scanning of the DONE queue.
2822 	 *  Note that SCRIPTS also (dummy) read to memory
2823 	 *  prior to deliver the INTF interrupt condition.
2824 	 */
2825 	istat = INB(np, nc_istat);
2826 	if (istat & INTF) {
2827 		OUTB(np, nc_istat, (istat & SIGP) | INTF | np->istat_sem);
2828 		istat = INB(np, nc_istat);		/* DUMMY READ */
2829 		if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
2830 		sym_wakeup_done(np);
2831 	}
2832 
2833 	if (!(istat & (SIP|DIP)))
2834 		return;
2835 
2836 #if 0	/* We should never get this one */
2837 	if (istat & CABRT)
2838 		OUTB(np, nc_istat, CABRT);
2839 #endif
2840 
2841 	/*
2842 	 *  PAR and MA interrupts may occur at the same time,
2843 	 *  and we need to know of both in order to handle
2844 	 *  this situation properly. We try to unstack SCSI
2845 	 *  interrupts for that reason. BTW, I dislike a LOT
2846 	 *  such a loop inside the interrupt routine.
2847 	 *  Even if DMA interrupt stacking is very unlikely to
2848 	 *  happen, we also try unstacking these ones, since
2849 	 *  this has no performance impact.
2850 	 */
2851 	sist	= 0;
2852 	dstat	= 0;
2853 	istatc	= istat;
2854 	do {
2855 		if (istatc & SIP)
2856 			sist  |= INW(np, nc_sist);
2857 		if (istatc & DIP)
2858 			dstat |= INB(np, nc_dstat);
2859 		istatc = INB(np, nc_istat);
2860 		istat |= istatc;
2861 	} while (istatc & (SIP|DIP));
2862 
2863 	if (DEBUG_FLAGS & DEBUG_TINY)
2864 		printf ("<%d|%x:%x|%x:%x>",
2865 			(int)INB(np, nc_scr0),
2866 			dstat,sist,
2867 			(unsigned)INL(np, nc_dsp),
2868 			(unsigned)INL(np, nc_dbc));
2869 	/*
2870 	 *  On paper, a memory read barrier may be needed here to
2871 	 *  prevent out of order LOADs by the CPU from having
2872 	 *  prefetched stale data prior to DMA having occurred.
2873 	 *  And since we are paranoid ... :)
2874 	 */
2875 	MEMORY_READ_BARRIER();
2876 
2877 	/*
2878 	 *  First, interrupts we want to service cleanly.
2879 	 *
2880 	 *  Phase mismatch (MA) is the most frequent interrupt
2881 	 *  for chip earlier than the 896 and so we have to service
2882 	 *  it as quickly as possible.
2883 	 *  A SCSI parity error (PAR) may be combined with a phase
2884 	 *  mismatch condition (MA).
2885 	 *  Programmed interrupts (SIR) are used to call the C code
2886 	 *  from SCRIPTS.
2887 	 *  The single step interrupt (SSI) is not used in this
2888 	 *  driver.
2889 	 */
2890 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
2891 	    !(dstat & (MDPE|BF|ABRT|IID))) {
2892 		if	(sist & PAR)	sym_int_par (np, sist);
2893 		else if (sist & MA)	sym_int_ma (np);
2894 		else if (dstat & SIR)	sym_int_sir (np);
2895 		else if (dstat & SSI)	OUTONB_STD();
2896 		else			goto unknown_int;
2897 		return;
2898 	}
2899 
2900 	/*
2901 	 *  Now, interrupts that donnot happen in normal
2902 	 *  situations and that we may need to recover from.
2903 	 *
2904 	 *  On SCSI RESET (RST), we reset everything.
2905 	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
2906 	 *  active CCBs with RESET status, prepare all devices
2907 	 *  for negotiating again and restart the SCRIPTS.
2908 	 *  On STO and UDC, we complete the CCB with the corres-
2909 	 *  ponding status and restart the SCRIPTS.
2910 	 */
2911 	if (sist & RST) {
2912 		printf("%s: SCSI BUS reset detected.\n", sym_name(np));
2913 		sym_start_up (np, 1);
2914 		return;
2915 	}
2916 
2917 	OUTB(np, nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
2918 	OUTB(np, nc_stest3, TE|CSF);		/* clear scsi fifo */
2919 
2920 	if (!(sist  & (GEN|HTH|SGE)) &&
2921 	    !(dstat & (MDPE|BF|ABRT|IID))) {
2922 		if	(sist & SBMC)	sym_int_sbmc (np);
2923 		else if (sist & STO)	sym_int_sto (np);
2924 		else if (sist & UDC)	sym_int_udc (np);
2925 		else			goto unknown_int;
2926 		return;
2927 	}
2928 
2929 	/*
2930 	 *  Now, interrupts we are not able to recover cleanly.
2931 	 *
2932 	 *  Log message for hard errors.
2933 	 *  Reset everything.
2934 	 */
2935 
2936 	sym_log_hard_error(np, sist, dstat);
2937 
2938 	if ((sist & (GEN|HTH|SGE)) ||
2939 		(dstat & (MDPE|BF|ABRT|IID))) {
2940 		sym_start_reset(np);
2941 		return;
2942 	}
2943 
2944 unknown_int:
2945 	/*
2946 	 *  We just miss the cause of the interrupt. :(
2947 	 *  Print a message. The timeout will do the real work.
2948 	 */
2949 	printf(	"%s: unknown interrupt(s) ignored, "
2950 		"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
2951 		sym_name(np), istat, dstat, sist);
2952 }
2953 
2954 /*
2955  *  Dequeue from the START queue all CCBs that match
2956  *  a given target/lun/task condition (-1 means all),
2957  *  and move them from the BUSY queue to the COMP queue
2958  *  with DID_SOFT_ERROR status condition.
2959  *  This function is used during error handling/recovery.
2960  *  It is called with SCRIPTS not running.
2961  */
2962 static int
2963 sym_dequeue_from_squeue(struct sym_hcb *np, int i, int target, int lun, int task)
2964 {
2965 	int j;
2966 	struct sym_ccb *cp;
2967 
2968 	/*
2969 	 *  Make sure the starting index is within range.
2970 	 */
2971 	assert((i >= 0) && (i < 2*MAX_QUEUE));
2972 
2973 	/*
2974 	 *  Walk until end of START queue and dequeue every job
2975 	 *  that matches the target/lun/task condition.
2976 	 */
2977 	j = i;
2978 	while (i != np->squeueput) {
2979 		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
2980 		assert(cp);
2981 #ifdef SYM_CONF_IARB_SUPPORT
2982 		/* Forget hints for IARB, they may be no longer relevant */
2983 		cp->host_flags &= ~HF_HINT_IARB;
2984 #endif
2985 		if ((target == -1 || cp->target == target) &&
2986 		    (lun    == -1 || cp->lun    == lun)    &&
2987 		    (task   == -1 || cp->tag    == task)) {
2988 			sym_set_cam_status(cp->cmd, DID_SOFT_ERROR);
2989 			sym_remque(&cp->link_ccbq);
2990 			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
2991 		}
2992 		else {
2993 			if (i != j)
2994 				np->squeue[j] = np->squeue[i];
2995 			if ((j += 2) >= MAX_QUEUE*2) j = 0;
2996 		}
2997 		if ((i += 2) >= MAX_QUEUE*2) i = 0;
2998 	}
2999 	if (i != j)		/* Copy back the idle task if needed */
3000 		np->squeue[j] = np->squeue[i];
3001 	np->squeueput = j;	/* Update our current start queue pointer */
3002 
3003 	return (i - j) / 2;
3004 }
3005 
3006 /*
3007  *  chip handler for bad SCSI status condition
3008  *
3009  *  In case of bad SCSI status, we unqueue all the tasks
3010  *  currently queued to the controller but not yet started
3011  *  and then restart the SCRIPTS processor immediately.
3012  *
3013  *  QUEUE FULL and BUSY conditions are handled the same way.
3014  *  Basically all the not yet started tasks are requeued in
3015  *  device queue and the queue is frozen until a completion.
3016  *
3017  *  For CHECK CONDITION and COMMAND TERMINATED status, we use
3018  *  the CCB of the failed command to prepare a REQUEST SENSE
3019  *  SCSI command and queue it to the controller queue.
3020  *
3021  *  SCRATCHA is assumed to have been loaded with STARTPOS
3022  *  before the SCRIPTS called the C code.
3023  */
3024 static void sym_sir_bad_scsi_status(struct sym_hcb *np, int num, struct sym_ccb *cp)
3025 {
3026 	u32		startp;
3027 	u_char		s_status = cp->ssss_status;
3028 	u_char		h_flags  = cp->host_flags;
3029 	int		msglen;
3030 	int		i;
3031 
3032 	/*
3033 	 *  Compute the index of the next job to start from SCRIPTS.
3034 	 */
3035 	i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3036 
3037 	/*
3038 	 *  The last CCB queued used for IARB hint may be
3039 	 *  no longer relevant. Forget it.
3040 	 */
3041 #ifdef SYM_CONF_IARB_SUPPORT
3042 	if (np->last_cp)
3043 		np->last_cp = 0;
3044 #endif
3045 
3046 	/*
3047 	 *  Now deal with the SCSI status.
3048 	 */
3049 	switch(s_status) {
3050 	case S_BUSY:
3051 	case S_QUEUE_FULL:
3052 		if (sym_verbose >= 2) {
3053 			sym_print_addr(cp->cmd, "%s\n",
3054 			        s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
3055 		}
3056 	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
3057 		sym_complete_error (np, cp);
3058 		break;
3059 	case S_TERMINATED:
3060 	case S_CHECK_COND:
3061 		/*
3062 		 *  If we get an SCSI error when requesting sense, give up.
3063 		 */
3064 		if (h_flags & HF_SENSE) {
3065 			sym_complete_error (np, cp);
3066 			break;
3067 		}
3068 
3069 		/*
3070 		 *  Dequeue all queued CCBs for that device not yet started,
3071 		 *  and restart the SCRIPTS processor immediately.
3072 		 */
3073 		sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3074 		OUTL_DSP(np, SCRIPTA_BA(np, start));
3075 
3076  		/*
3077 		 *  Save some info of the actual IO.
3078 		 *  Compute the data residual.
3079 		 */
3080 		cp->sv_scsi_status = cp->ssss_status;
3081 		cp->sv_xerr_status = cp->xerr_status;
3082 		cp->sv_resid = sym_compute_residual(np, cp);
3083 
3084 		/*
3085 		 *  Prepare all needed data structures for
3086 		 *  requesting sense data.
3087 		 */
3088 
3089 		cp->scsi_smsg2[0] = IDENTIFY(0, cp->lun);
3090 		msglen = 1;
3091 
3092 		/*
3093 		 *  If we are currently using anything different from
3094 		 *  async. 8 bit data transfers with that target,
3095 		 *  start a negotiation, since the device may want
3096 		 *  to report us a UNIT ATTENTION condition due to
3097 		 *  a cause we currently ignore, and we donnot want
3098 		 *  to be stuck with WIDE and/or SYNC data transfer.
3099 		 *
3100 		 *  cp->nego_status is filled by sym_prepare_nego().
3101 		 */
3102 		cp->nego_status = 0;
3103 		msglen += sym_prepare_nego(np, cp, &cp->scsi_smsg2[msglen]);
3104 		/*
3105 		 *  Message table indirect structure.
3106 		 */
3107 		cp->phys.smsg.addr	= CCB_BA(cp, scsi_smsg2);
3108 		cp->phys.smsg.size	= cpu_to_scr(msglen);
3109 
3110 		/*
3111 		 *  sense command
3112 		 */
3113 		cp->phys.cmd.addr	= CCB_BA(cp, sensecmd);
3114 		cp->phys.cmd.size	= cpu_to_scr(6);
3115 
3116 		/*
3117 		 *  patch requested size into sense command
3118 		 */
3119 		cp->sensecmd[0]		= REQUEST_SENSE;
3120 		cp->sensecmd[1]		= 0;
3121 		if (cp->cmd->device->scsi_level <= SCSI_2 && cp->lun <= 7)
3122 			cp->sensecmd[1]	= cp->lun << 5;
3123 		cp->sensecmd[4]		= SYM_SNS_BBUF_LEN;
3124 		cp->data_len		= SYM_SNS_BBUF_LEN;
3125 
3126 		/*
3127 		 *  sense data
3128 		 */
3129 		memset(cp->sns_bbuf, 0, SYM_SNS_BBUF_LEN);
3130 		cp->phys.sense.addr	= CCB_BA(cp, sns_bbuf);
3131 		cp->phys.sense.size	= cpu_to_scr(SYM_SNS_BBUF_LEN);
3132 
3133 		/*
3134 		 *  requeue the command.
3135 		 */
3136 		startp = SCRIPTB_BA(np, sdata_in);
3137 
3138 		cp->phys.head.savep	= cpu_to_scr(startp);
3139 		cp->phys.head.lastp	= cpu_to_scr(startp);
3140 		cp->startp		= cpu_to_scr(startp);
3141 		cp->goalp		= cpu_to_scr(startp + 16);
3142 
3143 		cp->host_xflags = 0;
3144 		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
3145 		cp->ssss_status = S_ILLEGAL;
3146 		cp->host_flags	= (HF_SENSE|HF_DATA_IN);
3147 		cp->xerr_status = 0;
3148 		cp->extra_bytes = 0;
3149 
3150 		cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
3151 
3152 		/*
3153 		 *  Requeue the command.
3154 		 */
3155 		sym_put_start_queue(np, cp);
3156 
3157 		/*
3158 		 *  Give back to upper layer everything we have dequeued.
3159 		 */
3160 		sym_flush_comp_queue(np, 0);
3161 		break;
3162 	}
3163 }
3164 
3165 /*
3166  *  After a device has accepted some management message
3167  *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
3168  *  a device signals a UNIT ATTENTION condition, some
3169  *  tasks are thrown away by the device. We are required
3170  *  to reflect that on our tasks list since the device
3171  *  will never complete these tasks.
3172  *
3173  *  This function move from the BUSY queue to the COMP
3174  *  queue all disconnected CCBs for a given target that
3175  *  match the following criteria:
3176  *  - lun=-1  means any logical UNIT otherwise a given one.
3177  *  - task=-1 means any task, otherwise a given one.
3178  */
3179 int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task)
3180 {
3181 	SYM_QUEHEAD qtmp, *qp;
3182 	int i = 0;
3183 	struct sym_ccb *cp;
3184 
3185 	/*
3186 	 *  Move the entire BUSY queue to our temporary queue.
3187 	 */
3188 	sym_que_init(&qtmp);
3189 	sym_que_splice(&np->busy_ccbq, &qtmp);
3190 	sym_que_init(&np->busy_ccbq);
3191 
3192 	/*
3193 	 *  Put all CCBs that matches our criteria into
3194 	 *  the COMP queue and put back other ones into
3195 	 *  the BUSY queue.
3196 	 */
3197 	while ((qp = sym_remque_head(&qtmp)) != 0) {
3198 		struct scsi_cmnd *cmd;
3199 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3200 		cmd = cp->cmd;
3201 		if (cp->host_status != HS_DISCONNECT ||
3202 		    cp->target != target	     ||
3203 		    (lun  != -1 && cp->lun != lun)   ||
3204 		    (task != -1 &&
3205 			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
3206 			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
3207 			continue;
3208 		}
3209 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3210 
3211 		/* Preserve the software timeout condition */
3212 		if (sym_get_cam_status(cmd) != DID_TIME_OUT)
3213 			sym_set_cam_status(cmd, cam_status);
3214 		++i;
3215 #if 0
3216 printf("XXXX TASK @%p CLEARED\n", cp);
3217 #endif
3218 	}
3219 	return i;
3220 }
3221 
3222 /*
3223  *  chip handler for TASKS recovery
3224  *
3225  *  We cannot safely abort a command, while the SCRIPTS
3226  *  processor is running, since we just would be in race
3227  *  with it.
3228  *
3229  *  As long as we have tasks to abort, we keep the SEM
3230  *  bit set in the ISTAT. When this bit is set, the
3231  *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
3232  *  each time it enters the scheduler.
3233  *
3234  *  If we have to reset a target, clear tasks of a unit,
3235  *  or to perform the abort of a disconnected job, we
3236  *  restart the SCRIPTS for selecting the target. Once
3237  *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
3238  *  If it loses arbitration, the SCRIPTS will interrupt again
3239  *  the next time it will enter its scheduler, and so on ...
3240  *
3241  *  On SIR_TARGET_SELECTED, we scan for the more
3242  *  appropriate thing to do:
3243  *
3244  *  - If nothing, we just sent a M_ABORT message to the
3245  *    target to get rid of the useless SCSI bus ownership.
3246  *    According to the specs, no tasks shall be affected.
3247  *  - If the target is to be reset, we send it a M_RESET
3248  *    message.
3249  *  - If a logical UNIT is to be cleared , we send the
3250  *    IDENTIFY(lun) + M_ABORT.
3251  *  - If an untagged task is to be aborted, we send the
3252  *    IDENTIFY(lun) + M_ABORT.
3253  *  - If a tagged task is to be aborted, we send the
3254  *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
3255  *
3256  *  Once our 'kiss of death' :) message has been accepted
3257  *  by the target, the SCRIPTS interrupts again
3258  *  (SIR_ABORT_SENT). On this interrupt, we complete
3259  *  all the CCBs that should have been aborted by the
3260  *  target according to our message.
3261  */
3262 static void sym_sir_task_recovery(struct sym_hcb *np, int num)
3263 {
3264 	SYM_QUEHEAD *qp;
3265 	struct sym_ccb *cp;
3266 	struct sym_tcb *tp = NULL; /* gcc isn't quite smart enough yet */
3267 	struct scsi_target *starget;
3268 	int target=-1, lun=-1, task;
3269 	int i, k;
3270 
3271 	switch(num) {
3272 	/*
3273 	 *  The SCRIPTS processor stopped before starting
3274 	 *  the next command in order to allow us to perform
3275 	 *  some task recovery.
3276 	 */
3277 	case SIR_SCRIPT_STOPPED:
3278 		/*
3279 		 *  Do we have any target to reset or unit to clear ?
3280 		 */
3281 		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
3282 			tp = &np->target[i];
3283 			if (tp->to_reset ||
3284 			    (tp->lun0p && tp->lun0p->to_clear)) {
3285 				target = i;
3286 				break;
3287 			}
3288 			if (!tp->lunmp)
3289 				continue;
3290 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3291 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3292 					target	= i;
3293 					break;
3294 				}
3295 			}
3296 			if (target != -1)
3297 				break;
3298 		}
3299 
3300 		/*
3301 		 *  If not, walk the busy queue for any
3302 		 *  disconnected CCB to be aborted.
3303 		 */
3304 		if (target == -1) {
3305 			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3306 				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
3307 				if (cp->host_status != HS_DISCONNECT)
3308 					continue;
3309 				if (cp->to_abort) {
3310 					target = cp->target;
3311 					break;
3312 				}
3313 			}
3314 		}
3315 
3316 		/*
3317 		 *  If some target is to be selected,
3318 		 *  prepare and start the selection.
3319 		 */
3320 		if (target != -1) {
3321 			tp = &np->target[target];
3322 			np->abrt_sel.sel_id	= target;
3323 			np->abrt_sel.sel_scntl3 = tp->head.wval;
3324 			np->abrt_sel.sel_sxfer  = tp->head.sval;
3325 			OUTL(np, nc_dsa, np->hcb_ba);
3326 			OUTL_DSP(np, SCRIPTB_BA(np, sel_for_abort));
3327 			return;
3328 		}
3329 
3330 		/*
3331 		 *  Now look for a CCB to abort that haven't started yet.
3332 		 *  Btw, the SCRIPTS processor is still stopped, so
3333 		 *  we are not in race.
3334 		 */
3335 		i = 0;
3336 		cp = NULL;
3337 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3338 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3339 			if (cp->host_status != HS_BUSY &&
3340 			    cp->host_status != HS_NEGOTIATE)
3341 				continue;
3342 			if (!cp->to_abort)
3343 				continue;
3344 #ifdef SYM_CONF_IARB_SUPPORT
3345 			/*
3346 			 *    If we are using IMMEDIATE ARBITRATION, we donnot
3347 			 *    want to cancel the last queued CCB, since the
3348 			 *    SCRIPTS may have anticipated the selection.
3349 			 */
3350 			if (cp == np->last_cp) {
3351 				cp->to_abort = 0;
3352 				continue;
3353 			}
3354 #endif
3355 			i = 1;	/* Means we have found some */
3356 			break;
3357 		}
3358 		if (!i) {
3359 			/*
3360 			 *  We are done, so we donnot need
3361 			 *  to synchronize with the SCRIPTS anylonger.
3362 			 *  Remove the SEM flag from the ISTAT.
3363 			 */
3364 			np->istat_sem = 0;
3365 			OUTB(np, nc_istat, SIGP);
3366 			break;
3367 		}
3368 		/*
3369 		 *  Compute index of next position in the start
3370 		 *  queue the SCRIPTS intends to start and dequeue
3371 		 *  all CCBs for that device that haven't been started.
3372 		 */
3373 		i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3374 		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3375 
3376 		/*
3377 		 *  Make sure at least our IO to abort has been dequeued.
3378 		 */
3379 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
3380 		assert(i && sym_get_cam_status(cp->cmd) == DID_SOFT_ERROR);
3381 #else
3382 		sym_remque(&cp->link_ccbq);
3383 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3384 #endif
3385 		/*
3386 		 *  Keep track in cam status of the reason of the abort.
3387 		 */
3388 		if (cp->to_abort == 2)
3389 			sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3390 		else
3391 			sym_set_cam_status(cp->cmd, DID_ABORT);
3392 
3393 		/*
3394 		 *  Complete with error everything that we have dequeued.
3395 	 	 */
3396 		sym_flush_comp_queue(np, 0);
3397 		break;
3398 	/*
3399 	 *  The SCRIPTS processor has selected a target
3400 	 *  we may have some manual recovery to perform for.
3401 	 */
3402 	case SIR_TARGET_SELECTED:
3403 		target = INB(np, nc_sdid) & 0xf;
3404 		tp = &np->target[target];
3405 
3406 		np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
3407 
3408 		/*
3409 		 *  If the target is to be reset, prepare a
3410 		 *  M_RESET message and clear the to_reset flag
3411 		 *  since we donnot expect this operation to fail.
3412 		 */
3413 		if (tp->to_reset) {
3414 			np->abrt_msg[0] = M_RESET;
3415 			np->abrt_tbl.size = 1;
3416 			tp->to_reset = 0;
3417 			break;
3418 		}
3419 
3420 		/*
3421 		 *  Otherwise, look for some logical unit to be cleared.
3422 		 */
3423 		if (tp->lun0p && tp->lun0p->to_clear)
3424 			lun = 0;
3425 		else if (tp->lunmp) {
3426 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3427 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3428 					lun = k;
3429 					break;
3430 				}
3431 			}
3432 		}
3433 
3434 		/*
3435 		 *  If a logical unit is to be cleared, prepare
3436 		 *  an IDENTIFY(lun) + ABORT MESSAGE.
3437 		 */
3438 		if (lun != -1) {
3439 			struct sym_lcb *lp = sym_lp(tp, lun);
3440 			lp->to_clear = 0; /* We don't expect to fail here */
3441 			np->abrt_msg[0] = IDENTIFY(0, lun);
3442 			np->abrt_msg[1] = M_ABORT;
3443 			np->abrt_tbl.size = 2;
3444 			break;
3445 		}
3446 
3447 		/*
3448 		 *  Otherwise, look for some disconnected job to
3449 		 *  abort for this target.
3450 		 */
3451 		i = 0;
3452 		cp = NULL;
3453 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3454 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3455 			if (cp->host_status != HS_DISCONNECT)
3456 				continue;
3457 			if (cp->target != target)
3458 				continue;
3459 			if (!cp->to_abort)
3460 				continue;
3461 			i = 1;	/* Means we have some */
3462 			break;
3463 		}
3464 
3465 		/*
3466 		 *  If we have none, probably since the device has
3467 		 *  completed the command before we won abitration,
3468 		 *  send a M_ABORT message without IDENTIFY.
3469 		 *  According to the specs, the device must just
3470 		 *  disconnect the BUS and not abort any task.
3471 		 */
3472 		if (!i) {
3473 			np->abrt_msg[0] = M_ABORT;
3474 			np->abrt_tbl.size = 1;
3475 			break;
3476 		}
3477 
3478 		/*
3479 		 *  We have some task to abort.
3480 		 *  Set the IDENTIFY(lun)
3481 		 */
3482 		np->abrt_msg[0] = IDENTIFY(0, cp->lun);
3483 
3484 		/*
3485 		 *  If we want to abort an untagged command, we
3486 		 *  will send a IDENTIFY + M_ABORT.
3487 		 *  Otherwise (tagged command), we will send
3488 		 *  a IDENTITFY + task attributes + ABORT TAG.
3489 		 */
3490 		if (cp->tag == NO_TAG) {
3491 			np->abrt_msg[1] = M_ABORT;
3492 			np->abrt_tbl.size = 2;
3493 		} else {
3494 			np->abrt_msg[1] = cp->scsi_smsg[1];
3495 			np->abrt_msg[2] = cp->scsi_smsg[2];
3496 			np->abrt_msg[3] = M_ABORT_TAG;
3497 			np->abrt_tbl.size = 4;
3498 		}
3499 		/*
3500 		 *  Keep track of software timeout condition, since the
3501 		 *  peripheral driver may not count retries on abort
3502 		 *  conditions not due to timeout.
3503 		 */
3504 		if (cp->to_abort == 2)
3505 			sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3506 		cp->to_abort = 0; /* We donnot expect to fail here */
3507 		break;
3508 
3509 	/*
3510 	 *  The target has accepted our message and switched
3511 	 *  to BUS FREE phase as we expected.
3512 	 */
3513 	case SIR_ABORT_SENT:
3514 		target = INB(np, nc_sdid) & 0xf;
3515 		tp = &np->target[target];
3516 		starget = tp->starget;
3517 
3518 		/*
3519 		**  If we didn't abort anything, leave here.
3520 		*/
3521 		if (np->abrt_msg[0] == M_ABORT)
3522 			break;
3523 
3524 		/*
3525 		 *  If we sent a M_RESET, then a hardware reset has
3526 		 *  been performed by the target.
3527 		 *  - Reset everything to async 8 bit
3528 		 *  - Tell ourself to negotiate next time :-)
3529 		 *  - Prepare to clear all disconnected CCBs for
3530 		 *    this target from our task list (lun=task=-1)
3531 		 */
3532 		lun = -1;
3533 		task = -1;
3534 		if (np->abrt_msg[0] == M_RESET) {
3535 			tp->head.sval = 0;
3536 			tp->head.wval = np->rv_scntl3;
3537 			tp->head.uval = 0;
3538 			spi_period(starget) = 0;
3539 			spi_offset(starget) = 0;
3540 			spi_width(starget) = 0;
3541 			spi_iu(starget) = 0;
3542 			spi_dt(starget) = 0;
3543 			spi_qas(starget) = 0;
3544 			tp->tgoal.check_nego = 1;
3545 		}
3546 
3547 		/*
3548 		 *  Otherwise, check for the LUN and TASK(s)
3549 		 *  concerned by the cancelation.
3550 		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
3551 		 *  or an ABORT message :-)
3552 		 */
3553 		else {
3554 			lun = np->abrt_msg[0] & 0x3f;
3555 			if (np->abrt_msg[1] == M_ABORT_TAG)
3556 				task = np->abrt_msg[2];
3557 		}
3558 
3559 		/*
3560 		 *  Complete all the CCBs the device should have
3561 		 *  aborted due to our 'kiss of death' message.
3562 		 */
3563 		i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3564 		sym_dequeue_from_squeue(np, i, target, lun, -1);
3565 		sym_clear_tasks(np, DID_ABORT, target, lun, task);
3566 		sym_flush_comp_queue(np, 0);
3567 
3568  		/*
3569 		 *  If we sent a BDR, make upper layer aware of that.
3570  		 */
3571 		if (np->abrt_msg[0] == M_RESET)
3572 			sym_xpt_async_sent_bdr(np, target);
3573 		break;
3574 	}
3575 
3576 	/*
3577 	 *  Print to the log the message we intend to send.
3578 	 */
3579 	if (num == SIR_TARGET_SELECTED) {
3580 		dev_info(&tp->starget->dev, "control msgout:");
3581 		sym_printl_hex(np->abrt_msg, np->abrt_tbl.size);
3582 		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
3583 	}
3584 
3585 	/*
3586 	 *  Let the SCRIPTS processor continue.
3587 	 */
3588 	OUTONB_STD();
3589 }
3590 
3591 /*
3592  *  Gerard's alchemy:) that deals with with the data
3593  *  pointer for both MDP and the residual calculation.
3594  *
3595  *  I didn't want to bloat the code by more than 200
3596  *  lines for the handling of both MDP and the residual.
3597  *  This has been achieved by using a data pointer
3598  *  representation consisting in an index in the data
3599  *  array (dp_sg) and a negative offset (dp_ofs) that
3600  *  have the following meaning:
3601  *
3602  *  - dp_sg = SYM_CONF_MAX_SG
3603  *    we are at the end of the data script.
3604  *  - dp_sg < SYM_CONF_MAX_SG
3605  *    dp_sg points to the next entry of the scatter array
3606  *    we want to transfer.
3607  *  - dp_ofs < 0
3608  *    dp_ofs represents the residual of bytes of the
3609  *    previous entry scatter entry we will send first.
3610  *  - dp_ofs = 0
3611  *    no residual to send first.
3612  *
3613  *  The function sym_evaluate_dp() accepts an arbitray
3614  *  offset (basically from the MDP message) and returns
3615  *  the corresponding values of dp_sg and dp_ofs.
3616  */
3617 
3618 static int sym_evaluate_dp(struct sym_hcb *np, struct sym_ccb *cp, u32 scr, int *ofs)
3619 {
3620 	u32	dp_scr;
3621 	int	dp_ofs, dp_sg, dp_sgmin;
3622 	int	tmp;
3623 	struct sym_pmc *pm;
3624 
3625 	/*
3626 	 *  Compute the resulted data pointer in term of a script
3627 	 *  address within some DATA script and a signed byte offset.
3628 	 */
3629 	dp_scr = scr;
3630 	dp_ofs = *ofs;
3631 	if	(dp_scr == SCRIPTA_BA(np, pm0_data))
3632 		pm = &cp->phys.pm0;
3633 	else if (dp_scr == SCRIPTA_BA(np, pm1_data))
3634 		pm = &cp->phys.pm1;
3635 	else
3636 		pm = NULL;
3637 
3638 	if (pm) {
3639 		dp_scr  = scr_to_cpu(pm->ret);
3640 		dp_ofs -= scr_to_cpu(pm->sg.size);
3641 	}
3642 
3643 	/*
3644 	 *  If we are auto-sensing, then we are done.
3645 	 */
3646 	if (cp->host_flags & HF_SENSE) {
3647 		*ofs = dp_ofs;
3648 		return 0;
3649 	}
3650 
3651 	/*
3652 	 *  Deduce the index of the sg entry.
3653 	 *  Keep track of the index of the first valid entry.
3654 	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
3655 	 *  end of the data.
3656 	 */
3657 	tmp = scr_to_cpu(sym_goalp(cp));
3658 	dp_sg = SYM_CONF_MAX_SG;
3659 	if (dp_scr != tmp)
3660 		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
3661 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3662 
3663 	/*
3664 	 *  Move to the sg entry the data pointer belongs to.
3665 	 *
3666 	 *  If we are inside the data area, we expect result to be:
3667 	 *
3668 	 *  Either,
3669 	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
3670 	 *      the data pointer belongs to (or the end of the data)
3671 	 *  Or,
3672 	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
3673 	 *      the data pointer belongs to + 1.
3674 	 */
3675 	if (dp_ofs < 0) {
3676 		int n;
3677 		while (dp_sg > dp_sgmin) {
3678 			--dp_sg;
3679 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3680 			n = dp_ofs + (tmp & 0xffffff);
3681 			if (n > 0) {
3682 				++dp_sg;
3683 				break;
3684 			}
3685 			dp_ofs = n;
3686 		}
3687 	}
3688 	else if (dp_ofs > 0) {
3689 		while (dp_sg < SYM_CONF_MAX_SG) {
3690 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3691 			dp_ofs -= (tmp & 0xffffff);
3692 			++dp_sg;
3693 			if (dp_ofs <= 0)
3694 				break;
3695 		}
3696 	}
3697 
3698 	/*
3699 	 *  Make sure the data pointer is inside the data area.
3700 	 *  If not, return some error.
3701 	 */
3702 	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
3703 		goto out_err;
3704 	else if	(dp_sg > SYM_CONF_MAX_SG ||
3705 		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
3706 		goto out_err;
3707 
3708 	/*
3709 	 *  Save the extreme pointer if needed.
3710 	 */
3711 	if (dp_sg > cp->ext_sg ||
3712             (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
3713 		cp->ext_sg  = dp_sg;
3714 		cp->ext_ofs = dp_ofs;
3715 	}
3716 
3717 	/*
3718 	 *  Return data.
3719 	 */
3720 	*ofs = dp_ofs;
3721 	return dp_sg;
3722 
3723 out_err:
3724 	return -1;
3725 }
3726 
3727 /*
3728  *  chip handler for MODIFY DATA POINTER MESSAGE
3729  *
3730  *  We also call this function on IGNORE WIDE RESIDUE
3731  *  messages that do not match a SWIDE full condition.
3732  *  Btw, we assume in that situation that such a message
3733  *  is equivalent to a MODIFY DATA POINTER (offset=-1).
3734  */
3735 
3736 static void sym_modify_dp(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp, int ofs)
3737 {
3738 	int dp_ofs	= ofs;
3739 	u32	dp_scr	= sym_get_script_dp (np, cp);
3740 	u32	dp_ret;
3741 	u32	tmp;
3742 	u_char	hflags;
3743 	int	dp_sg;
3744 	struct	sym_pmc *pm;
3745 
3746 	/*
3747 	 *  Not supported for auto-sense.
3748 	 */
3749 	if (cp->host_flags & HF_SENSE)
3750 		goto out_reject;
3751 
3752 	/*
3753 	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
3754 	 *  to the resulted data pointer.
3755 	 */
3756 	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
3757 	if (dp_sg < 0)
3758 		goto out_reject;
3759 
3760 	/*
3761 	 *  And our alchemy:) allows to easily calculate the data
3762 	 *  script address we want to return for the next data phase.
3763 	 */
3764 	dp_ret = cpu_to_scr(sym_goalp(cp));
3765 	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
3766 
3767 	/*
3768 	 *  If offset / scatter entry is zero we donnot need
3769 	 *  a context for the new current data pointer.
3770 	 */
3771 	if (dp_ofs == 0) {
3772 		dp_scr = dp_ret;
3773 		goto out_ok;
3774 	}
3775 
3776 	/*
3777 	 *  Get a context for the new current data pointer.
3778 	 */
3779 	hflags = INB(np, HF_PRT);
3780 
3781 	if (hflags & HF_DP_SAVED)
3782 		hflags ^= HF_ACT_PM;
3783 
3784 	if (!(hflags & HF_ACT_PM)) {
3785 		pm  = &cp->phys.pm0;
3786 		dp_scr = SCRIPTA_BA(np, pm0_data);
3787 	}
3788 	else {
3789 		pm = &cp->phys.pm1;
3790 		dp_scr = SCRIPTA_BA(np, pm1_data);
3791 	}
3792 
3793 	hflags &= ~(HF_DP_SAVED);
3794 
3795 	OUTB(np, HF_PRT, hflags);
3796 
3797 	/*
3798 	 *  Set up the new current data pointer.
3799 	 *  ofs < 0 there, and for the next data phase, we
3800 	 *  want to transfer part of the data of the sg entry
3801 	 *  corresponding to index dp_sg-1 prior to returning
3802 	 *  to the main data script.
3803 	 */
3804 	pm->ret = cpu_to_scr(dp_ret);
3805 	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
3806 	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
3807 	pm->sg.addr = cpu_to_scr(tmp);
3808 	pm->sg.size = cpu_to_scr(-dp_ofs);
3809 
3810 out_ok:
3811 	sym_set_script_dp (np, cp, dp_scr);
3812 	OUTL_DSP(np, SCRIPTA_BA(np, clrack));
3813 	return;
3814 
3815 out_reject:
3816 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
3817 }
3818 
3819 
3820 /*
3821  *  chip calculation of the data residual.
3822  *
3823  *  As I used to say, the requirement of data residual
3824  *  in SCSI is broken, useless and cannot be achieved
3825  *  without huge complexity.
3826  *  But most OSes and even the official CAM require it.
3827  *  When stupidity happens to be so widely spread inside
3828  *  a community, it gets hard to convince.
3829  *
3830  *  Anyway, I don't care, since I am not going to use
3831  *  any software that considers this data residual as
3832  *  a relevant information. :)
3833  */
3834 
3835 int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp)
3836 {
3837 	int dp_sg, dp_sgmin, resid = 0;
3838 	int dp_ofs = 0;
3839 
3840 	/*
3841 	 *  Check for some data lost or just thrown away.
3842 	 *  We are not required to be quite accurate in this
3843 	 *  situation. Btw, if we are odd for output and the
3844 	 *  device claims some more data, it may well happen
3845 	 *  than our residual be zero. :-)
3846 	 */
3847 	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
3848 		if (cp->xerr_status & XE_EXTRA_DATA)
3849 			resid -= cp->extra_bytes;
3850 		if (cp->xerr_status & XE_SODL_UNRUN)
3851 			++resid;
3852 		if (cp->xerr_status & XE_SWIDE_OVRUN)
3853 			--resid;
3854 	}
3855 
3856 	/*
3857 	 *  If all data has been transferred,
3858 	 *  there is no residual.
3859 	 */
3860 	if (cp->phys.head.lastp == sym_goalp(cp))
3861 		return resid;
3862 
3863 	/*
3864 	 *  If no data transfer occurs, or if the data
3865 	 *  pointer is weird, return full residual.
3866 	 */
3867 	if (cp->startp == cp->phys.head.lastp ||
3868 	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
3869 			    &dp_ofs) < 0) {
3870 		return cp->data_len;
3871 	}
3872 
3873 	/*
3874 	 *  If we were auto-sensing, then we are done.
3875 	 */
3876 	if (cp->host_flags & HF_SENSE) {
3877 		return -dp_ofs;
3878 	}
3879 
3880 	/*
3881 	 *  We are now full comfortable in the computation
3882 	 *  of the data residual (2's complement).
3883 	 */
3884 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3885 	resid = -cp->ext_ofs;
3886 	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
3887 		u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3888 		resid += (tmp & 0xffffff);
3889 	}
3890 
3891 	resid -= cp->odd_byte_adjustment;
3892 
3893 	/*
3894 	 *  Hopefully, the result is not too wrong.
3895 	 */
3896 	return resid;
3897 }
3898 
3899 /*
3900  *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
3901  *
3902  *  When we try to negotiate, we append the negotiation message
3903  *  to the identify and (maybe) simple tag message.
3904  *  The host status field is set to HS_NEGOTIATE to mark this
3905  *  situation.
3906  *
3907  *  If the target doesn't answer this message immediately
3908  *  (as required by the standard), the SIR_NEGO_FAILED interrupt
3909  *  will be raised eventually.
3910  *  The handler removes the HS_NEGOTIATE status, and sets the
3911  *  negotiated value to the default (async / nowide).
3912  *
3913  *  If we receive a matching answer immediately, we check it
3914  *  for validity, and set the values.
3915  *
3916  *  If we receive a Reject message immediately, we assume the
3917  *  negotiation has failed, and fall back to standard values.
3918  *
3919  *  If we receive a negotiation message while not in HS_NEGOTIATE
3920  *  state, it's a target initiated negotiation. We prepare a
3921  *  (hopefully) valid answer, set our parameters, and send back
3922  *  this answer to the target.
3923  *
3924  *  If the target doesn't fetch the answer (no message out phase),
3925  *  we assume the negotiation has failed, and fall back to default
3926  *  settings (SIR_NEGO_PROTO interrupt).
3927  *
3928  *  When we set the values, we adjust them in all ccbs belonging
3929  *  to this target, in the controller's register, and in the "phys"
3930  *  field of the controller's struct sym_hcb.
3931  */
3932 
3933 /*
3934  *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
3935  */
3936 static int
3937 sym_sync_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
3938 {
3939 	int target = cp->target;
3940 	u_char	chg, ofs, per, fak, div;
3941 
3942 	if (DEBUG_FLAGS & DEBUG_NEGO) {
3943 		sym_print_nego_msg(np, target, "sync msgin", np->msgin);
3944 	}
3945 
3946 	/*
3947 	 *  Get requested values.
3948 	 */
3949 	chg = 0;
3950 	per = np->msgin[3];
3951 	ofs = np->msgin[4];
3952 
3953 	/*
3954 	 *  Check values against our limits.
3955 	 */
3956 	if (ofs) {
3957 		if (ofs > np->maxoffs)
3958 			{chg = 1; ofs = np->maxoffs;}
3959 	}
3960 
3961 	if (ofs) {
3962 		if (per < np->minsync)
3963 			{chg = 1; per = np->minsync;}
3964 	}
3965 
3966 	/*
3967 	 *  Get new chip synchronous parameters value.
3968 	 */
3969 	div = fak = 0;
3970 	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
3971 		goto reject_it;
3972 
3973 	if (DEBUG_FLAGS & DEBUG_NEGO) {
3974 		sym_print_addr(cp->cmd,
3975 				"sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
3976 				ofs, per, div, fak, chg);
3977 	}
3978 
3979 	/*
3980 	 *  If it was an answer we want to change,
3981 	 *  then it isn't acceptable. Reject it.
3982 	 */
3983 	if (!req && chg)
3984 		goto reject_it;
3985 
3986 	/*
3987 	 *  Apply new values.
3988 	 */
3989 	sym_setsync (np, target, ofs, per, div, fak);
3990 
3991 	/*
3992 	 *  It was an answer. We are done.
3993 	 */
3994 	if (!req)
3995 		return 0;
3996 
3997 	/*
3998 	 *  It was a request. Prepare an answer message.
3999 	 */
4000 	np->msgout[0] = M_EXTENDED;
4001 	np->msgout[1] = 3;
4002 	np->msgout[2] = M_X_SYNC_REQ;
4003 	np->msgout[3] = per;
4004 	np->msgout[4] = ofs;
4005 
4006 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4007 		sym_print_nego_msg(np, target, "sync msgout", np->msgout);
4008 	}
4009 
4010 	np->msgin [0] = M_NOOP;
4011 
4012 	return 0;
4013 
4014 reject_it:
4015 	sym_setsync (np, target, 0, 0, 0, 0);
4016 	return -1;
4017 }
4018 
4019 static void sym_sync_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4020 {
4021 	int req = 1;
4022 	int result;
4023 
4024 	/*
4025 	 *  Request or answer ?
4026 	 */
4027 	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4028 		OUTB(np, HS_PRT, HS_BUSY);
4029 		if (cp->nego_status && cp->nego_status != NS_SYNC)
4030 			goto reject_it;
4031 		req = 0;
4032 	}
4033 
4034 	/*
4035 	 *  Check and apply new values.
4036 	 */
4037 	result = sym_sync_nego_check(np, req, cp);
4038 	if (result)	/* Not acceptable, reject it */
4039 		goto reject_it;
4040 	if (req) {	/* Was a request, send response. */
4041 		cp->nego_status = NS_SYNC;
4042 		OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4043 	}
4044 	else		/* Was a response, we are done. */
4045 		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4046 	return;
4047 
4048 reject_it:
4049 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4050 }
4051 
4052 /*
4053  *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
4054  */
4055 static int
4056 sym_ppr_nego_check(struct sym_hcb *np, int req, int target)
4057 {
4058 	struct sym_tcb *tp = &np->target[target];
4059 	unsigned char fak, div;
4060 	int dt, chg = 0;
4061 
4062 	unsigned char per = np->msgin[3];
4063 	unsigned char ofs = np->msgin[5];
4064 	unsigned char wide = np->msgin[6];
4065 	unsigned char opts = np->msgin[7] & PPR_OPT_MASK;
4066 
4067 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4068 		sym_print_nego_msg(np, target, "ppr msgin", np->msgin);
4069 	}
4070 
4071 	/*
4072 	 *  Check values against our limits.
4073 	 */
4074 	if (wide > np->maxwide) {
4075 		chg = 1;
4076 		wide = np->maxwide;
4077 	}
4078 	if (!wide || !(np->features & FE_U3EN))
4079 		opts = 0;
4080 
4081 	if (opts != (np->msgin[7] & PPR_OPT_MASK))
4082 		chg = 1;
4083 
4084 	dt = opts & PPR_OPT_DT;
4085 
4086 	if (ofs) {
4087 		unsigned char maxoffs = dt ? np->maxoffs_dt : np->maxoffs;
4088 		if (ofs > maxoffs) {
4089 			chg = 1;
4090 			ofs = maxoffs;
4091 		}
4092 	}
4093 
4094 	if (ofs) {
4095 		unsigned char minsync = dt ? np->minsync_dt : np->minsync;
4096 		if (per < minsync) {
4097 			chg = 1;
4098 			per = minsync;
4099 		}
4100 	}
4101 
4102 	/*
4103 	 *  Get new chip synchronous parameters value.
4104 	 */
4105 	div = fak = 0;
4106 	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
4107 		goto reject_it;
4108 
4109 	/*
4110 	 *  If it was an answer we want to change,
4111 	 *  then it isn't acceptable. Reject it.
4112 	 */
4113 	if (!req && chg)
4114 		goto reject_it;
4115 
4116 	/*
4117 	 *  Apply new values.
4118 	 */
4119 	sym_setpprot(np, target, opts, ofs, per, wide, div, fak);
4120 
4121 	/*
4122 	 *  It was an answer. We are done.
4123 	 */
4124 	if (!req)
4125 		return 0;
4126 
4127 	/*
4128 	 *  It was a request. Prepare an answer message.
4129 	 */
4130 	np->msgout[0] = M_EXTENDED;
4131 	np->msgout[1] = 6;
4132 	np->msgout[2] = M_X_PPR_REQ;
4133 	np->msgout[3] = per;
4134 	np->msgout[4] = 0;
4135 	np->msgout[5] = ofs;
4136 	np->msgout[6] = wide;
4137 	np->msgout[7] = opts;
4138 
4139 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4140 		sym_print_nego_msg(np, target, "ppr msgout", np->msgout);
4141 	}
4142 
4143 	np->msgin [0] = M_NOOP;
4144 
4145 	return 0;
4146 
4147 reject_it:
4148 	sym_setpprot (np, target, 0, 0, 0, 0, 0, 0);
4149 	/*
4150 	 *  If it is a device response that should result in
4151 	 *  ST, we may want to try a legacy negotiation later.
4152 	 */
4153 	if (!req && !opts) {
4154 		tp->tgoal.period = per;
4155 		tp->tgoal.offset = ofs;
4156 		tp->tgoal.width = wide;
4157 		tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4158 		tp->tgoal.check_nego = 1;
4159 	}
4160 	return -1;
4161 }
4162 
4163 static void sym_ppr_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4164 {
4165 	int req = 1;
4166 	int result;
4167 
4168 	/*
4169 	 *  Request or answer ?
4170 	 */
4171 	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4172 		OUTB(np, HS_PRT, HS_BUSY);
4173 		if (cp->nego_status && cp->nego_status != NS_PPR)
4174 			goto reject_it;
4175 		req = 0;
4176 	}
4177 
4178 	/*
4179 	 *  Check and apply new values.
4180 	 */
4181 	result = sym_ppr_nego_check(np, req, cp->target);
4182 	if (result)	/* Not acceptable, reject it */
4183 		goto reject_it;
4184 	if (req) {	/* Was a request, send response. */
4185 		cp->nego_status = NS_PPR;
4186 		OUTL_DSP(np, SCRIPTB_BA(np, ppr_resp));
4187 	}
4188 	else		/* Was a response, we are done. */
4189 		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4190 	return;
4191 
4192 reject_it:
4193 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4194 }
4195 
4196 /*
4197  *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
4198  */
4199 static int
4200 sym_wide_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
4201 {
4202 	int target = cp->target;
4203 	u_char	chg, wide;
4204 
4205 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4206 		sym_print_nego_msg(np, target, "wide msgin", np->msgin);
4207 	}
4208 
4209 	/*
4210 	 *  Get requested values.
4211 	 */
4212 	chg  = 0;
4213 	wide = np->msgin[3];
4214 
4215 	/*
4216 	 *  Check values against our limits.
4217 	 */
4218 	if (wide > np->maxwide) {
4219 		chg = 1;
4220 		wide = np->maxwide;
4221 	}
4222 
4223 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4224 		sym_print_addr(cp->cmd, "wdtr: wide=%d chg=%d.\n",
4225 				wide, chg);
4226 	}
4227 
4228 	/*
4229 	 *  If it was an answer we want to change,
4230 	 *  then it isn't acceptable. Reject it.
4231 	 */
4232 	if (!req && chg)
4233 		goto reject_it;
4234 
4235 	/*
4236 	 *  Apply new values.
4237 	 */
4238 	sym_setwide (np, target, wide);
4239 
4240 	/*
4241 	 *  It was an answer. We are done.
4242 	 */
4243 	if (!req)
4244 		return 0;
4245 
4246 	/*
4247 	 *  It was a request. Prepare an answer message.
4248 	 */
4249 	np->msgout[0] = M_EXTENDED;
4250 	np->msgout[1] = 2;
4251 	np->msgout[2] = M_X_WIDE_REQ;
4252 	np->msgout[3] = wide;
4253 
4254 	np->msgin [0] = M_NOOP;
4255 
4256 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4257 		sym_print_nego_msg(np, target, "wide msgout", np->msgout);
4258 	}
4259 
4260 	return 0;
4261 
4262 reject_it:
4263 	return -1;
4264 }
4265 
4266 static void sym_wide_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4267 {
4268 	int req = 1;
4269 	int result;
4270 
4271 	/*
4272 	 *  Request or answer ?
4273 	 */
4274 	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4275 		OUTB(np, HS_PRT, HS_BUSY);
4276 		if (cp->nego_status && cp->nego_status != NS_WIDE)
4277 			goto reject_it;
4278 		req = 0;
4279 	}
4280 
4281 	/*
4282 	 *  Check and apply new values.
4283 	 */
4284 	result = sym_wide_nego_check(np, req, cp);
4285 	if (result)	/* Not acceptable, reject it */
4286 		goto reject_it;
4287 	if (req) {	/* Was a request, send response. */
4288 		cp->nego_status = NS_WIDE;
4289 		OUTL_DSP(np, SCRIPTB_BA(np, wdtr_resp));
4290 	} else {		/* Was a response. */
4291 		/*
4292 		 * Negotiate for SYNC immediately after WIDE response.
4293 		 * This allows to negotiate for both WIDE and SYNC on
4294 		 * a single SCSI command (Suggested by Justin Gibbs).
4295 		 */
4296 		if (tp->tgoal.offset) {
4297 			np->msgout[0] = M_EXTENDED;
4298 			np->msgout[1] = 3;
4299 			np->msgout[2] = M_X_SYNC_REQ;
4300 			np->msgout[3] = tp->tgoal.period;
4301 			np->msgout[4] = tp->tgoal.offset;
4302 
4303 			if (DEBUG_FLAGS & DEBUG_NEGO) {
4304 				sym_print_nego_msg(np, cp->target,
4305 				                   "sync msgout", np->msgout);
4306 			}
4307 
4308 			cp->nego_status = NS_SYNC;
4309 			OUTB(np, HS_PRT, HS_NEGOTIATE);
4310 			OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4311 			return;
4312 		} else
4313 			OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4314 	}
4315 
4316 	return;
4317 
4318 reject_it:
4319 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4320 }
4321 
4322 /*
4323  *  Reset DT, SYNC or WIDE to default settings.
4324  *
4325  *  Called when a negotiation does not succeed either
4326  *  on rejection or on protocol error.
4327  *
4328  *  A target that understands a PPR message should never
4329  *  reject it, and messing with it is very unlikely.
4330  *  So, if a PPR makes problems, we may just want to
4331  *  try a legacy negotiation later.
4332  */
4333 static void sym_nego_default(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4334 {
4335 	switch (cp->nego_status) {
4336 	case NS_PPR:
4337 #if 0
4338 		sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0);
4339 #else
4340 		if (tp->tgoal.period < np->minsync)
4341 			tp->tgoal.period = np->minsync;
4342 		if (tp->tgoal.offset > np->maxoffs)
4343 			tp->tgoal.offset = np->maxoffs;
4344 		tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4345 		tp->tgoal.check_nego = 1;
4346 #endif
4347 		break;
4348 	case NS_SYNC:
4349 		sym_setsync (np, cp->target, 0, 0, 0, 0);
4350 		break;
4351 	case NS_WIDE:
4352 		sym_setwide (np, cp->target, 0);
4353 		break;
4354 	}
4355 	np->msgin [0] = M_NOOP;
4356 	np->msgout[0] = M_NOOP;
4357 	cp->nego_status = 0;
4358 }
4359 
4360 /*
4361  *  chip handler for MESSAGE REJECT received in response to
4362  *  PPR, WIDE or SYNCHRONOUS negotiation.
4363  */
4364 static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4365 {
4366 	sym_nego_default(np, tp, cp);
4367 	OUTB(np, HS_PRT, HS_BUSY);
4368 }
4369 
4370 /*
4371  *  chip exception handler for programmed interrupts.
4372  */
4373 static void sym_int_sir (struct sym_hcb *np)
4374 {
4375 	u_char	num	= INB(np, nc_dsps);
4376 	u32	dsa	= INL(np, nc_dsa);
4377 	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
4378 	u_char	target	= INB(np, nc_sdid) & 0x0f;
4379 	struct sym_tcb *tp	= &np->target[target];
4380 	int	tmp;
4381 
4382 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
4383 
4384 	switch (num) {
4385 #if   SYM_CONF_DMA_ADDRESSING_MODE == 2
4386 	/*
4387 	 *  SCRIPTS tell us that we may have to update
4388 	 *  64 bit DMA segment registers.
4389 	 */
4390 	case SIR_DMAP_DIRTY:
4391 		sym_update_dmap_regs(np);
4392 		goto out;
4393 #endif
4394 	/*
4395 	 *  Command has been completed with error condition
4396 	 *  or has been auto-sensed.
4397 	 */
4398 	case SIR_COMPLETE_ERROR:
4399 		sym_complete_error(np, cp);
4400 		return;
4401 	/*
4402 	 *  The C code is currently trying to recover from something.
4403 	 *  Typically, user want to abort some command.
4404 	 */
4405 	case SIR_SCRIPT_STOPPED:
4406 	case SIR_TARGET_SELECTED:
4407 	case SIR_ABORT_SENT:
4408 		sym_sir_task_recovery(np, num);
4409 		return;
4410 	/*
4411 	 *  The device didn't go to MSG OUT phase after having
4412 	 *  been selected with ATN. We donnot want to handle
4413 	 *  that.
4414 	 */
4415 	case SIR_SEL_ATN_NO_MSG_OUT:
4416 		printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
4417 			sym_name (np), target);
4418 		goto out_stuck;
4419 	/*
4420 	 *  The device didn't switch to MSG IN phase after
4421 	 *  having reseleted the initiator.
4422 	 */
4423 	case SIR_RESEL_NO_MSG_IN:
4424 		printf ("%s:%d: No MSG IN phase after reselection.\n",
4425 			sym_name (np), target);
4426 		goto out_stuck;
4427 	/*
4428 	 *  After reselection, the device sent a message that wasn't
4429 	 *  an IDENTIFY.
4430 	 */
4431 	case SIR_RESEL_NO_IDENTIFY:
4432 		printf ("%s:%d: No IDENTIFY after reselection.\n",
4433 			sym_name (np), target);
4434 		goto out_stuck;
4435 	/*
4436 	 *  The device reselected a LUN we donnot know about.
4437 	 */
4438 	case SIR_RESEL_BAD_LUN:
4439 		np->msgout[0] = M_RESET;
4440 		goto out;
4441 	/*
4442 	 *  The device reselected for an untagged nexus and we
4443 	 *  haven't any.
4444 	 */
4445 	case SIR_RESEL_BAD_I_T_L:
4446 		np->msgout[0] = M_ABORT;
4447 		goto out;
4448 	/*
4449 	 *  The device reselected for a tagged nexus that we donnot
4450 	 *  have.
4451 	 */
4452 	case SIR_RESEL_BAD_I_T_L_Q:
4453 		np->msgout[0] = M_ABORT_TAG;
4454 		goto out;
4455 	/*
4456 	 *  The SCRIPTS let us know that the device has grabbed
4457 	 *  our message and will abort the job.
4458 	 */
4459 	case SIR_RESEL_ABORTED:
4460 		np->lastmsg = np->msgout[0];
4461 		np->msgout[0] = M_NOOP;
4462 		printf ("%s:%d: message %x sent on bad reselection.\n",
4463 			sym_name (np), target, np->lastmsg);
4464 		goto out;
4465 	/*
4466 	 *  The SCRIPTS let us know that a message has been
4467 	 *  successfully sent to the device.
4468 	 */
4469 	case SIR_MSG_OUT_DONE:
4470 		np->lastmsg = np->msgout[0];
4471 		np->msgout[0] = M_NOOP;
4472 		/* Should we really care of that */
4473 		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
4474 			if (cp) {
4475 				cp->xerr_status &= ~XE_PARITY_ERR;
4476 				if (!cp->xerr_status)
4477 					OUTOFFB(np, HF_PRT, HF_EXT_ERR);
4478 			}
4479 		}
4480 		goto out;
4481 	/*
4482 	 *  The device didn't send a GOOD SCSI status.
4483 	 *  We may have some work to do prior to allow
4484 	 *  the SCRIPTS processor to continue.
4485 	 */
4486 	case SIR_BAD_SCSI_STATUS:
4487 		if (!cp)
4488 			goto out;
4489 		sym_sir_bad_scsi_status(np, num, cp);
4490 		return;
4491 	/*
4492 	 *  We are asked by the SCRIPTS to prepare a
4493 	 *  REJECT message.
4494 	 */
4495 	case SIR_REJECT_TO_SEND:
4496 		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
4497 		np->msgout[0] = M_REJECT;
4498 		goto out;
4499 	/*
4500 	 *  We have been ODD at the end of a DATA IN
4501 	 *  transfer and the device didn't send a
4502 	 *  IGNORE WIDE RESIDUE message.
4503 	 *  It is a data overrun condition.
4504 	 */
4505 	case SIR_SWIDE_OVERRUN:
4506 		if (cp) {
4507 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4508 			cp->xerr_status |= XE_SWIDE_OVRUN;
4509 		}
4510 		goto out;
4511 	/*
4512 	 *  We have been ODD at the end of a DATA OUT
4513 	 *  transfer.
4514 	 *  It is a data underrun condition.
4515 	 */
4516 	case SIR_SODL_UNDERRUN:
4517 		if (cp) {
4518 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4519 			cp->xerr_status |= XE_SODL_UNRUN;
4520 		}
4521 		goto out;
4522 	/*
4523 	 *  The device wants us to tranfer more data than
4524 	 *  expected or in the wrong direction.
4525 	 *  The number of extra bytes is in scratcha.
4526 	 *  It is a data overrun condition.
4527 	 */
4528 	case SIR_DATA_OVERRUN:
4529 		if (cp) {
4530 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4531 			cp->xerr_status |= XE_EXTRA_DATA;
4532 			cp->extra_bytes += INL(np, nc_scratcha);
4533 		}
4534 		goto out;
4535 	/*
4536 	 *  The device switched to an illegal phase (4/5).
4537 	 */
4538 	case SIR_BAD_PHASE:
4539 		if (cp) {
4540 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4541 			cp->xerr_status |= XE_BAD_PHASE;
4542 		}
4543 		goto out;
4544 	/*
4545 	 *  We received a message.
4546 	 */
4547 	case SIR_MSG_RECEIVED:
4548 		if (!cp)
4549 			goto out_stuck;
4550 		switch (np->msgin [0]) {
4551 		/*
4552 		 *  We received an extended message.
4553 		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
4554 		 *  and reject all other extended messages.
4555 		 */
4556 		case M_EXTENDED:
4557 			switch (np->msgin [2]) {
4558 			case M_X_MODIFY_DP:
4559 				if (DEBUG_FLAGS & DEBUG_POINTER)
4560 					sym_print_msg(cp,"modify DP",np->msgin);
4561 				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
4562 				      (np->msgin[5]<<8)  + (np->msgin[6]);
4563 				sym_modify_dp(np, tp, cp, tmp);
4564 				return;
4565 			case M_X_SYNC_REQ:
4566 				sym_sync_nego(np, tp, cp);
4567 				return;
4568 			case M_X_PPR_REQ:
4569 				sym_ppr_nego(np, tp, cp);
4570 				return;
4571 			case M_X_WIDE_REQ:
4572 				sym_wide_nego(np, tp, cp);
4573 				return;
4574 			default:
4575 				goto out_reject;
4576 			}
4577 			break;
4578 		/*
4579 		 *  We received a 1/2 byte message not handled from SCRIPTS.
4580 		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
4581 		 *  RESIDUE messages that haven't been anticipated by
4582 		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
4583 		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
4584 		 */
4585 		case M_IGN_RESIDUE:
4586 			if (DEBUG_FLAGS & DEBUG_POINTER)
4587 				sym_print_msg(cp,"ign wide residue", np->msgin);
4588 			if (cp->host_flags & HF_SENSE)
4589 				OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4590 			else
4591 				sym_modify_dp(np, tp, cp, -1);
4592 			return;
4593 		case M_REJECT:
4594 			if (INB(np, HS_PRT) == HS_NEGOTIATE)
4595 				sym_nego_rejected(np, tp, cp);
4596 			else {
4597 				sym_print_addr(cp->cmd,
4598 					"M_REJECT received (%x:%x).\n",
4599 					scr_to_cpu(np->lastmsg), np->msgout[0]);
4600 			}
4601 			goto out_clrack;
4602 			break;
4603 		default:
4604 			goto out_reject;
4605 		}
4606 		break;
4607 	/*
4608 	 *  We received an unknown message.
4609 	 *  Ignore all MSG IN phases and reject it.
4610 	 */
4611 	case SIR_MSG_WEIRD:
4612 		sym_print_msg(cp, "WEIRD message received", np->msgin);
4613 		OUTL_DSP(np, SCRIPTB_BA(np, msg_weird));
4614 		return;
4615 	/*
4616 	 *  Negotiation failed.
4617 	 *  Target does not send us the reply.
4618 	 *  Remove the HS_NEGOTIATE status.
4619 	 */
4620 	case SIR_NEGO_FAILED:
4621 		OUTB(np, HS_PRT, HS_BUSY);
4622 	/*
4623 	 *  Negotiation failed.
4624 	 *  Target does not want answer message.
4625 	 */
4626 	case SIR_NEGO_PROTO:
4627 		sym_nego_default(np, tp, cp);
4628 		goto out;
4629 	}
4630 
4631 out:
4632 	OUTONB_STD();
4633 	return;
4634 out_reject:
4635 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4636 	return;
4637 out_clrack:
4638 	OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4639 	return;
4640 out_stuck:
4641 	return;
4642 }
4643 
4644 /*
4645  *  Acquire a control block
4646  */
4647 struct sym_ccb *sym_get_ccb (struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order)
4648 {
4649 	u_char tn = cmd->device->id;
4650 	u_char ln = cmd->device->lun;
4651 	struct sym_tcb *tp = &np->target[tn];
4652 	struct sym_lcb *lp = sym_lp(tp, ln);
4653 	u_short tag = NO_TAG;
4654 	SYM_QUEHEAD *qp;
4655 	struct sym_ccb *cp = NULL;
4656 
4657 	/*
4658 	 *  Look for a free CCB
4659 	 */
4660 	if (sym_que_empty(&np->free_ccbq))
4661 		sym_alloc_ccb(np);
4662 	qp = sym_remque_head(&np->free_ccbq);
4663 	if (!qp)
4664 		goto out;
4665 	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4666 
4667 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4668 	/*
4669 	 *  If the LCB is not yet available and the LUN
4670 	 *  has been probed ok, try to allocate the LCB.
4671 	 */
4672 	if (!lp && sym_is_bit(tp->lun_map, ln)) {
4673 		lp = sym_alloc_lcb(np, tn, ln);
4674 		if (!lp)
4675 			goto out_free;
4676 	}
4677 #endif
4678 
4679 	/*
4680 	 *  If the LCB is not available here, then the
4681 	 *  logical unit is not yet discovered. For those
4682 	 *  ones only accept 1 SCSI IO per logical unit,
4683 	 *  since we cannot allow disconnections.
4684 	 */
4685 	if (!lp) {
4686 		if (!sym_is_bit(tp->busy0_map, ln))
4687 			sym_set_bit(tp->busy0_map, ln);
4688 		else
4689 			goto out_free;
4690 	} else {
4691 		/*
4692 		 *  If we have been asked for a tagged command.
4693 		 */
4694 		if (tag_order) {
4695 			/*
4696 			 *  Debugging purpose.
4697 			 */
4698 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4699 			assert(lp->busy_itl == 0);
4700 #endif
4701 			/*
4702 			 *  Allocate resources for tags if not yet.
4703 			 */
4704 			if (!lp->cb_tags) {
4705 				sym_alloc_lcb_tags(np, tn, ln);
4706 				if (!lp->cb_tags)
4707 					goto out_free;
4708 			}
4709 			/*
4710 			 *  Get a tag for this SCSI IO and set up
4711 			 *  the CCB bus address for reselection,
4712 			 *  and count it for this LUN.
4713 			 *  Toggle reselect path to tagged.
4714 			 */
4715 			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
4716 				tag = lp->cb_tags[lp->ia_tag];
4717 				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
4718 					lp->ia_tag = 0;
4719 				++lp->busy_itlq;
4720 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4721 				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
4722 				lp->head.resel_sa =
4723 					cpu_to_scr(SCRIPTA_BA(np, resel_tag));
4724 #endif
4725 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4726 				cp->tags_si = lp->tags_si;
4727 				++lp->tags_sum[cp->tags_si];
4728 				++lp->tags_since;
4729 #endif
4730 			}
4731 			else
4732 				goto out_free;
4733 		}
4734 		/*
4735 		 *  This command will not be tagged.
4736 		 *  If we already have either a tagged or untagged
4737 		 *  one, refuse to overlap this untagged one.
4738 		 */
4739 		else {
4740 			/*
4741 			 *  Debugging purpose.
4742 			 */
4743 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4744 			assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
4745 #endif
4746 			/*
4747 			 *  Count this nexus for this LUN.
4748 			 *  Set up the CCB bus address for reselection.
4749 			 *  Toggle reselect path to untagged.
4750 			 */
4751 			++lp->busy_itl;
4752 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4753 			if (lp->busy_itl == 1) {
4754 				lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
4755 				lp->head.resel_sa =
4756 				      cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
4757 			}
4758 			else
4759 				goto out_free;
4760 #endif
4761 		}
4762 	}
4763 	/*
4764 	 *  Put the CCB into the busy queue.
4765 	 */
4766 	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4767 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4768 	if (lp) {
4769 		sym_remque(&cp->link2_ccbq);
4770 		sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq);
4771 	}
4772 
4773 #endif
4774 	cp->to_abort = 0;
4775 	cp->odd_byte_adjustment = 0;
4776 	cp->tag	   = tag;
4777 	cp->order  = tag_order;
4778 	cp->target = tn;
4779 	cp->lun    = ln;
4780 
4781 	if (DEBUG_FLAGS & DEBUG_TAGS) {
4782 		sym_print_addr(cmd, "ccb @%p using tag %d.\n", cp, tag);
4783 	}
4784 
4785 out:
4786 	return cp;
4787 out_free:
4788 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4789 	return NULL;
4790 }
4791 
4792 /*
4793  *  Release one control block
4794  */
4795 void sym_free_ccb (struct sym_hcb *np, struct sym_ccb *cp)
4796 {
4797 	struct sym_tcb *tp = &np->target[cp->target];
4798 	struct sym_lcb *lp = sym_lp(tp, cp->lun);
4799 
4800 	if (DEBUG_FLAGS & DEBUG_TAGS) {
4801 		sym_print_addr(cp->cmd, "ccb @%p freeing tag %d.\n",
4802 				cp, cp->tag);
4803 	}
4804 
4805 	/*
4806 	 *  If LCB available,
4807 	 */
4808 	if (lp) {
4809 		/*
4810 		 *  If tagged, release the tag, set the relect path
4811 		 */
4812 		if (cp->tag != NO_TAG) {
4813 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4814 			--lp->tags_sum[cp->tags_si];
4815 #endif
4816 			/*
4817 			 *  Free the tag value.
4818 			 */
4819 			lp->cb_tags[lp->if_tag] = cp->tag;
4820 			if (++lp->if_tag == SYM_CONF_MAX_TASK)
4821 				lp->if_tag = 0;
4822 			/*
4823 			 *  Make the reselect path invalid,
4824 			 *  and uncount this CCB.
4825 			 */
4826 			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
4827 			--lp->busy_itlq;
4828 		} else {	/* Untagged */
4829 			/*
4830 			 *  Make the reselect path invalid,
4831 			 *  and uncount this CCB.
4832 			 */
4833 			lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
4834 			--lp->busy_itl;
4835 		}
4836 		/*
4837 		 *  If no JOB active, make the LUN reselect path invalid.
4838 		 */
4839 		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
4840 			lp->head.resel_sa =
4841 				cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
4842 	}
4843 	/*
4844 	 *  Otherwise, we only accept 1 IO per LUN.
4845 	 *  Clear the bit that keeps track of this IO.
4846 	 */
4847 	else
4848 		sym_clr_bit(tp->busy0_map, cp->lun);
4849 
4850 	/*
4851 	 *  We donnot queue more than 1 ccb per target
4852 	 *  with negotiation at any time. If this ccb was
4853 	 *  used for negotiation, clear this info in the tcb.
4854 	 */
4855 	if (cp == tp->nego_cp)
4856 		tp->nego_cp = NULL;
4857 
4858 #ifdef SYM_CONF_IARB_SUPPORT
4859 	/*
4860 	 *  If we just complete the last queued CCB,
4861 	 *  clear this info that is no longer relevant.
4862 	 */
4863 	if (cp == np->last_cp)
4864 		np->last_cp = 0;
4865 #endif
4866 
4867 	/*
4868 	 *  Make this CCB available.
4869 	 */
4870 	cp->cmd = NULL;
4871 	cp->host_status = HS_IDLE;
4872 	sym_remque(&cp->link_ccbq);
4873 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4874 
4875 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4876 	if (lp) {
4877 		sym_remque(&cp->link2_ccbq);
4878 		sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq);
4879 		if (cp->started) {
4880 			if (cp->tag != NO_TAG)
4881 				--lp->started_tags;
4882 			else
4883 				--lp->started_no_tag;
4884 		}
4885 	}
4886 	cp->started = 0;
4887 #endif
4888 }
4889 
4890 /*
4891  *  Allocate a CCB from memory and initialize its fixed part.
4892  */
4893 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np)
4894 {
4895 	struct sym_ccb *cp = NULL;
4896 	int hcode;
4897 
4898 	/*
4899 	 *  Prevent from allocating more CCBs than we can
4900 	 *  queue to the controller.
4901 	 */
4902 	if (np->actccbs >= SYM_CONF_MAX_START)
4903 		return NULL;
4904 
4905 	/*
4906 	 *  Allocate memory for this CCB.
4907 	 */
4908 	cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
4909 	if (!cp)
4910 		goto out_free;
4911 
4912 	/*
4913 	 *  Count it.
4914 	 */
4915 	np->actccbs++;
4916 
4917 	/*
4918 	 *  Compute the bus address of this ccb.
4919 	 */
4920 	cp->ccb_ba = vtobus(cp);
4921 
4922 	/*
4923 	 *  Insert this ccb into the hashed list.
4924 	 */
4925 	hcode = CCB_HASH_CODE(cp->ccb_ba);
4926 	cp->link_ccbh = np->ccbh[hcode];
4927 	np->ccbh[hcode] = cp;
4928 
4929 	/*
4930 	 *  Initialyze the start and restart actions.
4931 	 */
4932 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA(np, idle));
4933 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
4934 
4935  	/*
4936 	 *  Initilialyze some other fields.
4937 	 */
4938 	cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
4939 
4940 	/*
4941 	 *  Chain into free ccb queue.
4942 	 */
4943 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4944 
4945 	/*
4946 	 *  Chain into optionnal lists.
4947 	 */
4948 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4949 	sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq);
4950 #endif
4951 	return cp;
4952 out_free:
4953 	if (cp)
4954 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
4955 	return NULL;
4956 }
4957 
4958 /*
4959  *  Look up a CCB from a DSA value.
4960  */
4961 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa)
4962 {
4963 	int hcode;
4964 	struct sym_ccb *cp;
4965 
4966 	hcode = CCB_HASH_CODE(dsa);
4967 	cp = np->ccbh[hcode];
4968 	while (cp) {
4969 		if (cp->ccb_ba == dsa)
4970 			break;
4971 		cp = cp->link_ccbh;
4972 	}
4973 
4974 	return cp;
4975 }
4976 
4977 /*
4978  *  Target control block initialisation.
4979  *  Nothing important to do at the moment.
4980  */
4981 static void sym_init_tcb (struct sym_hcb *np, u_char tn)
4982 {
4983 #if 0	/*  Hmmm... this checking looks paranoid. */
4984 	/*
4985 	 *  Check some alignments required by the chip.
4986 	 */
4987 	assert (((offsetof(struct sym_reg, nc_sxfer) ^
4988 		offsetof(struct sym_tcb, head.sval)) &3) == 0);
4989 	assert (((offsetof(struct sym_reg, nc_scntl3) ^
4990 		offsetof(struct sym_tcb, head.wval)) &3) == 0);
4991 #endif
4992 }
4993 
4994 /*
4995  *  Lun control block allocation and initialization.
4996  */
4997 struct sym_lcb *sym_alloc_lcb (struct sym_hcb *np, u_char tn, u_char ln)
4998 {
4999 	struct sym_tcb *tp = &np->target[tn];
5000 	struct sym_lcb *lp = sym_lp(tp, ln);
5001 
5002 	/*
5003 	 *  Already done, just return.
5004 	 */
5005 	if (lp)
5006 		return lp;
5007 
5008 	/*
5009 	 *  Donnot allow LUN control block
5010 	 *  allocation for not probed LUNs.
5011 	 */
5012 	if (!sym_is_bit(tp->lun_map, ln))
5013 		return NULL;
5014 
5015 	/*
5016 	 *  Initialize the target control block if not yet.
5017 	 */
5018 	sym_init_tcb (np, tn);
5019 
5020 	/*
5021 	 *  Allocate the LCB bus address array.
5022 	 *  Compute the bus address of this table.
5023 	 */
5024 	if (ln && !tp->luntbl) {
5025 		int i;
5026 
5027 		tp->luntbl = sym_calloc_dma(256, "LUNTBL");
5028 		if (!tp->luntbl)
5029 			goto fail;
5030 		for (i = 0 ; i < 64 ; i++)
5031 			tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
5032 		tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
5033 	}
5034 
5035 	/*
5036 	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
5037 	 */
5038 	if (ln && !tp->lunmp) {
5039 		tp->lunmp = kcalloc(SYM_CONF_MAX_LUN, sizeof(struct sym_lcb *),
5040 				GFP_KERNEL);
5041 		if (!tp->lunmp)
5042 			goto fail;
5043 	}
5044 
5045 	/*
5046 	 *  Allocate the lcb.
5047 	 *  Make it available to the chip.
5048 	 */
5049 	lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
5050 	if (!lp)
5051 		goto fail;
5052 	if (ln) {
5053 		tp->lunmp[ln] = lp;
5054 		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
5055 	}
5056 	else {
5057 		tp->lun0p = lp;
5058 		tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
5059 	}
5060 
5061 	/*
5062 	 *  Let the itl task point to error handling.
5063 	 */
5064 	lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
5065 
5066 	/*
5067 	 *  Set the reselect pattern to our default. :)
5068 	 */
5069 	lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5070 
5071 	/*
5072 	 *  Set user capabilities.
5073 	 */
5074 	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
5075 
5076 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5077 	/*
5078 	 *  Initialize device queueing.
5079 	 */
5080 	sym_que_init(&lp->waiting_ccbq);
5081 	sym_que_init(&lp->started_ccbq);
5082 	lp->started_max   = SYM_CONF_MAX_TASK;
5083 	lp->started_limit = SYM_CONF_MAX_TASK;
5084 #endif
5085 	/*
5086 	 *  If we are busy, count the IO.
5087 	 */
5088 	if (sym_is_bit(tp->busy0_map, ln)) {
5089 		lp->busy_itl = 1;
5090 		sym_clr_bit(tp->busy0_map, ln);
5091 	}
5092 fail:
5093 	return lp;
5094 }
5095 
5096 /*
5097  *  Allocate LCB resources for tagged command queuing.
5098  */
5099 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln)
5100 {
5101 	struct sym_tcb *tp = &np->target[tn];
5102 	struct sym_lcb *lp = sym_lp(tp, ln);
5103 	int i;
5104 
5105 	/*
5106 	 *  If LCB not available, try to allocate it.
5107 	 */
5108 	if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
5109 		goto fail;
5110 
5111 	/*
5112 	 *  Allocate the task table and and the tag allocation
5113 	 *  circular buffer. We want both or none.
5114 	 */
5115 	lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5116 	if (!lp->itlq_tbl)
5117 		goto fail;
5118 	lp->cb_tags = kcalloc(SYM_CONF_MAX_TASK, 1, GFP_ATOMIC);
5119 	if (!lp->cb_tags) {
5120 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5121 		lp->itlq_tbl = NULL;
5122 		goto fail;
5123 	}
5124 
5125 	/*
5126 	 *  Initialize the task table with invalid entries.
5127 	 */
5128 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5129 		lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
5130 
5131 	/*
5132 	 *  Fill up the tag buffer with tag numbers.
5133 	 */
5134 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5135 		lp->cb_tags[i] = i;
5136 
5137 	/*
5138 	 *  Make the task table available to SCRIPTS,
5139 	 *  And accept tagged commands now.
5140 	 */
5141 	lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
5142 
5143 	return;
5144 fail:
5145 	return;
5146 }
5147 
5148 /*
5149  *  Queue a SCSI IO to the controller.
5150  */
5151 int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
5152 {
5153 	struct scsi_device *sdev = cmd->device;
5154 	struct sym_tcb *tp;
5155 	struct sym_lcb *lp;
5156 	u_char	*msgptr;
5157 	u_int   msglen;
5158 	int can_disconnect;
5159 
5160 	/*
5161 	 *  Keep track of the IO in our CCB.
5162 	 */
5163 	cp->cmd = cmd;
5164 
5165 	/*
5166 	 *  Retrieve the target descriptor.
5167 	 */
5168 	tp = &np->target[cp->target];
5169 
5170 	/*
5171 	 *  Retrieve the lun descriptor.
5172 	 */
5173 	lp = sym_lp(tp, sdev->lun);
5174 
5175 	can_disconnect = (cp->tag != NO_TAG) ||
5176 		(lp && (lp->curr_flags & SYM_DISC_ENABLED));
5177 
5178 	msgptr = cp->scsi_smsg;
5179 	msglen = 0;
5180 	msgptr[msglen++] = IDENTIFY(can_disconnect, sdev->lun);
5181 
5182 	/*
5183 	 *  Build the tag message if present.
5184 	 */
5185 	if (cp->tag != NO_TAG) {
5186 		u_char order = cp->order;
5187 
5188 		switch(order) {
5189 		case M_ORDERED_TAG:
5190 			break;
5191 		case M_HEAD_TAG:
5192 			break;
5193 		default:
5194 			order = M_SIMPLE_TAG;
5195 		}
5196 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
5197 		/*
5198 		 *  Avoid too much reordering of SCSI commands.
5199 		 *  The algorithm tries to prevent completion of any
5200 		 *  tagged command from being delayed against more
5201 		 *  than 3 times the max number of queued commands.
5202 		 */
5203 		if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) {
5204 			lp->tags_si = !(lp->tags_si);
5205 			if (lp->tags_sum[lp->tags_si]) {
5206 				order = M_ORDERED_TAG;
5207 				if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) {
5208 					sym_print_addr(cmd,
5209 						"ordered tag forced.\n");
5210 				}
5211 			}
5212 			lp->tags_since = 0;
5213 		}
5214 #endif
5215 		msgptr[msglen++] = order;
5216 
5217 		/*
5218 		 *  For less than 128 tags, actual tags are numbered
5219 		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
5220 		 *  with devices that have problems with #TAG 0 or too
5221 		 *  great #TAG numbers. For more tags (up to 256),
5222 		 *  we use directly our tag number.
5223 		 */
5224 #if SYM_CONF_MAX_TASK > (512/4)
5225 		msgptr[msglen++] = cp->tag;
5226 #else
5227 		msgptr[msglen++] = (cp->tag << 1) + 1;
5228 #endif
5229 	}
5230 
5231 	/*
5232 	 *  Build a negotiation message if needed.
5233 	 *  (nego_status is filled by sym_prepare_nego())
5234 	 */
5235 	cp->nego_status = 0;
5236 	if (tp->tgoal.check_nego && !tp->nego_cp && lp) {
5237 		msglen += sym_prepare_nego(np, cp, msgptr + msglen);
5238 	}
5239 
5240 	/*
5241 	 *  Startqueue
5242 	 */
5243 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA(np, select));
5244 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA(np, resel_dsa));
5245 
5246 	/*
5247 	 *  select
5248 	 */
5249 	cp->phys.select.sel_id		= cp->target;
5250 	cp->phys.select.sel_scntl3	= tp->head.wval;
5251 	cp->phys.select.sel_sxfer	= tp->head.sval;
5252 	cp->phys.select.sel_scntl4	= tp->head.uval;
5253 
5254 	/*
5255 	 *  message
5256 	 */
5257 	cp->phys.smsg.addr	= CCB_BA(cp, scsi_smsg);
5258 	cp->phys.smsg.size	= cpu_to_scr(msglen);
5259 
5260 	/*
5261 	 *  status
5262 	 */
5263 	cp->host_xflags		= 0;
5264 	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
5265 	cp->ssss_status		= S_ILLEGAL;
5266 	cp->xerr_status		= 0;
5267 	cp->host_flags		= 0;
5268 	cp->extra_bytes		= 0;
5269 
5270 	/*
5271 	 *  extreme data pointer.
5272 	 *  shall be positive, so -1 is lower than lowest.:)
5273 	 */
5274 	cp->ext_sg  = -1;
5275 	cp->ext_ofs = 0;
5276 
5277 	/*
5278 	 *  Build the CDB and DATA descriptor block
5279 	 *  and start the IO.
5280 	 */
5281 	return sym_setup_data_and_start(np, cmd, cp);
5282 }
5283 
5284 /*
5285  *  Reset a SCSI target (all LUNs of this target).
5286  */
5287 int sym_reset_scsi_target(struct sym_hcb *np, int target)
5288 {
5289 	struct sym_tcb *tp;
5290 
5291 	if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET)
5292 		return -1;
5293 
5294 	tp = &np->target[target];
5295 	tp->to_reset = 1;
5296 
5297 	np->istat_sem = SEM;
5298 	OUTB(np, nc_istat, SIGP|SEM);
5299 
5300 	return 0;
5301 }
5302 
5303 /*
5304  *  Abort a SCSI IO.
5305  */
5306 static int sym_abort_ccb(struct sym_hcb *np, struct sym_ccb *cp, int timed_out)
5307 {
5308 	/*
5309 	 *  Check that the IO is active.
5310 	 */
5311 	if (!cp || !cp->host_status || cp->host_status == HS_WAIT)
5312 		return -1;
5313 
5314 	/*
5315 	 *  If a previous abort didn't succeed in time,
5316 	 *  perform a BUS reset.
5317 	 */
5318 	if (cp->to_abort) {
5319 		sym_reset_scsi_bus(np, 1);
5320 		return 0;
5321 	}
5322 
5323 	/*
5324 	 *  Mark the CCB for abort and allow time for.
5325 	 */
5326 	cp->to_abort = timed_out ? 2 : 1;
5327 
5328 	/*
5329 	 *  Tell the SCRIPTS processor to stop and synchronize with us.
5330 	 */
5331 	np->istat_sem = SEM;
5332 	OUTB(np, nc_istat, SIGP|SEM);
5333 	return 0;
5334 }
5335 
5336 int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, int timed_out)
5337 {
5338 	struct sym_ccb *cp;
5339 	SYM_QUEHEAD *qp;
5340 
5341 	/*
5342 	 *  Look up our CCB control block.
5343 	 */
5344 	cp = NULL;
5345 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5346 		struct sym_ccb *cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5347 		if (cp2->cmd == cmd) {
5348 			cp = cp2;
5349 			break;
5350 		}
5351 	}
5352 
5353 	return sym_abort_ccb(np, cp, timed_out);
5354 }
5355 
5356 /*
5357  *  Complete execution of a SCSI command with extended
5358  *  error, SCSI status error, or having been auto-sensed.
5359  *
5360  *  The SCRIPTS processor is not running there, so we
5361  *  can safely access IO registers and remove JOBs from
5362  *  the START queue.
5363  *  SCRATCHA is assumed to have been loaded with STARTPOS
5364  *  before the SCRIPTS called the C code.
5365  */
5366 void sym_complete_error(struct sym_hcb *np, struct sym_ccb *cp)
5367 {
5368 	struct scsi_device *sdev;
5369 	struct scsi_cmnd *cmd;
5370 	struct sym_tcb *tp;
5371 	struct sym_lcb *lp;
5372 	int resid;
5373 	int i;
5374 
5375 	/*
5376 	 *  Paranoid check. :)
5377 	 */
5378 	if (!cp || !cp->cmd)
5379 		return;
5380 
5381 	cmd = cp->cmd;
5382 	sdev = cmd->device;
5383 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
5384 		dev_info(&sdev->sdev_gendev, "CCB=%p STAT=%x/%x/%x\n", cp,
5385 			cp->host_status, cp->ssss_status, cp->host_flags);
5386 	}
5387 
5388 	/*
5389 	 *  Get target and lun pointers.
5390 	 */
5391 	tp = &np->target[cp->target];
5392 	lp = sym_lp(tp, sdev->lun);
5393 
5394 	/*
5395 	 *  Check for extended errors.
5396 	 */
5397 	if (cp->xerr_status) {
5398 		if (sym_verbose)
5399 			sym_print_xerr(cmd, cp->xerr_status);
5400 		if (cp->host_status == HS_COMPLETE)
5401 			cp->host_status = HS_COMP_ERR;
5402 	}
5403 
5404 	/*
5405 	 *  Calculate the residual.
5406 	 */
5407 	resid = sym_compute_residual(np, cp);
5408 
5409 	if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */
5410 		resid  = 0;		 /* throw them away. :)		    */
5411 		cp->sv_resid = 0;
5412 	}
5413 #ifdef DEBUG_2_0_X
5414 if (resid)
5415 	printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5416 #endif
5417 
5418 	/*
5419 	 *  Dequeue all queued CCBs for that device
5420 	 *  not yet started by SCRIPTS.
5421 	 */
5422 	i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
5423 	i = sym_dequeue_from_squeue(np, i, cp->target, sdev->lun, -1);
5424 
5425 	/*
5426 	 *  Restart the SCRIPTS processor.
5427 	 */
5428 	OUTL_DSP(np, SCRIPTA_BA(np, start));
5429 
5430 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5431 	if (cp->host_status == HS_COMPLETE &&
5432 	    cp->ssss_status == S_QUEUE_FULL) {
5433 		if (!lp || lp->started_tags - i < 2)
5434 			goto weirdness;
5435 		/*
5436 		 *  Decrease queue depth as needed.
5437 		 */
5438 		lp->started_max = lp->started_tags - i - 1;
5439 		lp->num_sgood = 0;
5440 
5441 		if (sym_verbose >= 2) {
5442 			sym_print_addr(cmd, " queue depth is now %d\n",
5443 					lp->started_max);
5444 		}
5445 
5446 		/*
5447 		 *  Repair the CCB.
5448 		 */
5449 		cp->host_status = HS_BUSY;
5450 		cp->ssss_status = S_ILLEGAL;
5451 
5452 		/*
5453 		 *  Let's requeue it to device.
5454 		 */
5455 		sym_set_cam_status(cmd, DID_SOFT_ERROR);
5456 		goto finish;
5457 	}
5458 weirdness:
5459 #endif
5460 	/*
5461 	 *  Build result in CAM ccb.
5462 	 */
5463 	sym_set_cam_result_error(np, cp, resid);
5464 
5465 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5466 finish:
5467 #endif
5468 	/*
5469 	 *  Add this one to the COMP queue.
5470 	 */
5471 	sym_remque(&cp->link_ccbq);
5472 	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
5473 
5474 	/*
5475 	 *  Complete all those commands with either error
5476 	 *  or requeue condition.
5477 	 */
5478 	sym_flush_comp_queue(np, 0);
5479 
5480 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5481 	/*
5482 	 *  Donnot start more than 1 command after an error.
5483 	 */
5484 	if (lp)
5485 		sym_start_next_ccbs(np, lp, 1);
5486 #endif
5487 }
5488 
5489 /*
5490  *  Complete execution of a successful SCSI command.
5491  *
5492  *  Only successful commands go to the DONE queue,
5493  *  since we need to have the SCRIPTS processor
5494  *  stopped on any error condition.
5495  *  The SCRIPTS processor is running while we are
5496  *  completing successful commands.
5497  */
5498 void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp)
5499 {
5500 	struct sym_tcb *tp;
5501 	struct sym_lcb *lp;
5502 	struct scsi_cmnd *cmd;
5503 	int resid;
5504 
5505 	/*
5506 	 *  Paranoid check. :)
5507 	 */
5508 	if (!cp || !cp->cmd)
5509 		return;
5510 	assert (cp->host_status == HS_COMPLETE);
5511 
5512 	/*
5513 	 *  Get user command.
5514 	 */
5515 	cmd = cp->cmd;
5516 
5517 	/*
5518 	 *  Get target and lun pointers.
5519 	 */
5520 	tp = &np->target[cp->target];
5521 	lp = sym_lp(tp, cp->lun);
5522 
5523 	/*
5524 	 *  Assume device discovered on first success.
5525 	 */
5526 	if (!lp)
5527 		sym_set_bit(tp->lun_map, cp->lun);
5528 
5529 	/*
5530 	 *  If all data have been transferred, given than no
5531 	 *  extended error did occur, there is no residual.
5532 	 */
5533 	resid = 0;
5534 	if (cp->phys.head.lastp != sym_goalp(cp))
5535 		resid = sym_compute_residual(np, cp);
5536 
5537 	/*
5538 	 *  Wrong transfer residuals may be worse than just always
5539 	 *  returning zero. User can disable this feature in
5540 	 *  sym53c8xx.h. Residual support is enabled by default.
5541 	 */
5542 	if (!SYM_SETUP_RESIDUAL_SUPPORT)
5543 		resid  = 0;
5544 #ifdef DEBUG_2_0_X
5545 if (resid)
5546 	printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5547 #endif
5548 
5549 	/*
5550 	 *  Build result in CAM ccb.
5551 	 */
5552 	sym_set_cam_result_ok(cp, cmd, resid);
5553 
5554 #ifdef	SYM_OPT_SNIFF_INQUIRY
5555 	/*
5556 	 *  On standard INQUIRY response (EVPD and CmDt
5557 	 *  not set), sniff out device capabilities.
5558 	 */
5559 	if (cp->cdb_buf[0] == INQUIRY && !(cp->cdb_buf[1] & 0x3))
5560 		sym_sniff_inquiry(np, cmd, resid);
5561 #endif
5562 
5563 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5564 	/*
5565 	 *  If max number of started ccbs had been reduced,
5566 	 *  increase it if 200 good status received.
5567 	 */
5568 	if (lp && lp->started_max < lp->started_limit) {
5569 		++lp->num_sgood;
5570 		if (lp->num_sgood >= 200) {
5571 			lp->num_sgood = 0;
5572 			++lp->started_max;
5573 			if (sym_verbose >= 2) {
5574 				sym_print_addr(cmd, " queue depth is now %d\n",
5575 				       lp->started_max);
5576 			}
5577 		}
5578 	}
5579 #endif
5580 
5581 	/*
5582 	 *  Free our CCB.
5583 	 */
5584 	sym_free_ccb (np, cp);
5585 
5586 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5587 	/*
5588 	 *  Requeue a couple of awaiting scsi commands.
5589 	 */
5590 	if (lp && !sym_que_empty(&lp->waiting_ccbq))
5591 		sym_start_next_ccbs(np, lp, 2);
5592 #endif
5593 	/*
5594 	 *  Complete the command.
5595 	 */
5596 	sym_xpt_done(np, cmd);
5597 }
5598 
5599 /*
5600  *  Soft-attach the controller.
5601  */
5602 int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram)
5603 {
5604 	struct sym_hcb *np = sym_get_hcb(shost);
5605 	int i;
5606 
5607 	/*
5608 	 *  Get some info about the firmware.
5609 	 */
5610 	np->scripta_sz	 = fw->a_size;
5611 	np->scriptb_sz	 = fw->b_size;
5612 	np->scriptz_sz	 = fw->z_size;
5613 	np->fw_setup	 = fw->setup;
5614 	np->fw_patch	 = fw->patch;
5615 	np->fw_name	 = fw->name;
5616 
5617 	/*
5618 	 *  Save setting of some IO registers, so we will
5619 	 *  be able to probe specific implementations.
5620 	 */
5621 	sym_save_initial_setting (np);
5622 
5623 	/*
5624 	 *  Reset the chip now, since it has been reported
5625 	 *  that SCSI clock calibration may not work properly
5626 	 *  if the chip is currently active.
5627 	 */
5628 	sym_chip_reset(np);
5629 
5630 	/*
5631 	 *  Prepare controller and devices settings, according
5632 	 *  to chip features, user set-up and driver set-up.
5633 	 */
5634 	sym_prepare_setting(shost, np, nvram);
5635 
5636 	/*
5637 	 *  Check the PCI clock frequency.
5638 	 *  Must be performed after prepare_setting since it destroys
5639 	 *  STEST1 that is used to probe for the clock doubler.
5640 	 */
5641 	i = sym_getpciclock(np);
5642 	if (i > 37000 && !(np->features & FE_66MHZ))
5643 		printf("%s: PCI BUS clock seems too high: %u KHz.\n",
5644 			sym_name(np), i);
5645 
5646 	/*
5647 	 *  Allocate the start queue.
5648 	 */
5649 	np->squeue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
5650 	if (!np->squeue)
5651 		goto attach_failed;
5652 	np->squeue_ba = vtobus(np->squeue);
5653 
5654 	/*
5655 	 *  Allocate the done queue.
5656 	 */
5657 	np->dqueue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
5658 	if (!np->dqueue)
5659 		goto attach_failed;
5660 	np->dqueue_ba = vtobus(np->dqueue);
5661 
5662 	/*
5663 	 *  Allocate the target bus address array.
5664 	 */
5665 	np->targtbl = sym_calloc_dma(256, "TARGTBL");
5666 	if (!np->targtbl)
5667 		goto attach_failed;
5668 	np->targtbl_ba = vtobus(np->targtbl);
5669 
5670 	/*
5671 	 *  Allocate SCRIPTS areas.
5672 	 */
5673 	np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
5674 	np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
5675 	np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0");
5676 	if (!np->scripta0 || !np->scriptb0 || !np->scriptz0)
5677 		goto attach_failed;
5678 
5679 	/*
5680 	 *  Allocate the array of lists of CCBs hashed by DSA.
5681 	 */
5682 	np->ccbh = kcalloc(sizeof(struct sym_ccb **), CCB_HASH_SIZE, GFP_KERNEL);
5683 	if (!np->ccbh)
5684 		goto attach_failed;
5685 
5686 	/*
5687 	 *  Initialyze the CCB free and busy queues.
5688 	 */
5689 	sym_que_init(&np->free_ccbq);
5690 	sym_que_init(&np->busy_ccbq);
5691 	sym_que_init(&np->comp_ccbq);
5692 
5693 	/*
5694 	 *  Initialization for optional handling
5695 	 *  of device queueing.
5696 	 */
5697 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5698 	sym_que_init(&np->dummy_ccbq);
5699 #endif
5700 	/*
5701 	 *  Allocate some CCB. We need at least ONE.
5702 	 */
5703 	if (!sym_alloc_ccb(np))
5704 		goto attach_failed;
5705 
5706 	/*
5707 	 *  Calculate BUS addresses where we are going
5708 	 *  to load the SCRIPTS.
5709 	 */
5710 	np->scripta_ba	= vtobus(np->scripta0);
5711 	np->scriptb_ba	= vtobus(np->scriptb0);
5712 	np->scriptz_ba	= vtobus(np->scriptz0);
5713 
5714 	if (np->ram_ba) {
5715 		np->scripta_ba	= np->ram_ba;
5716 		if (np->features & FE_RAM8K) {
5717 			np->ram_ws = 8192;
5718 			np->scriptb_ba = np->scripta_ba + 4096;
5719 #if 0	/* May get useful for 64 BIT PCI addressing */
5720 			np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
5721 #endif
5722 		}
5723 		else
5724 			np->ram_ws = 4096;
5725 	}
5726 
5727 	/*
5728 	 *  Copy scripts to controller instance.
5729 	 */
5730 	memcpy(np->scripta0, fw->a_base, np->scripta_sz);
5731 	memcpy(np->scriptb0, fw->b_base, np->scriptb_sz);
5732 	memcpy(np->scriptz0, fw->z_base, np->scriptz_sz);
5733 
5734 	/*
5735 	 *  Setup variable parts in scripts and compute
5736 	 *  scripts bus addresses used from the C code.
5737 	 */
5738 	np->fw_setup(np, fw);
5739 
5740 	/*
5741 	 *  Bind SCRIPTS with physical addresses usable by the
5742 	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
5743 	 */
5744 	sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
5745 	sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
5746 	sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz);
5747 
5748 #ifdef SYM_CONF_IARB_SUPPORT
5749 	/*
5750 	 *    If user wants IARB to be set when we win arbitration
5751 	 *    and have other jobs, compute the max number of consecutive
5752 	 *    settings of IARB hints before we leave devices a chance to
5753 	 *    arbitrate for reselection.
5754 	 */
5755 #ifdef	SYM_SETUP_IARB_MAX
5756 	np->iarb_max = SYM_SETUP_IARB_MAX;
5757 #else
5758 	np->iarb_max = 4;
5759 #endif
5760 #endif
5761 
5762 	/*
5763 	 *  Prepare the idle and invalid task actions.
5764 	 */
5765 	np->idletask.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5766 	np->idletask.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5767 	np->idletask_ba		= vtobus(&np->idletask);
5768 
5769 	np->notask.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5770 	np->notask.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5771 	np->notask_ba		= vtobus(&np->notask);
5772 
5773 	np->bad_itl.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5774 	np->bad_itl.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5775 	np->bad_itl_ba		= vtobus(&np->bad_itl);
5776 
5777 	np->bad_itlq.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5778 	np->bad_itlq.restart	= cpu_to_scr(SCRIPTB_BA(np,bad_i_t_l_q));
5779 	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
5780 
5781 	/*
5782 	 *  Allocate and prepare the lun JUMP table that is used
5783 	 *  for a target prior the probing of devices (bad lun table).
5784 	 *  A private table will be allocated for the target on the
5785 	 *  first INQUIRY response received.
5786 	 */
5787 	np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
5788 	if (!np->badluntbl)
5789 		goto attach_failed;
5790 
5791 	np->badlun_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5792 	for (i = 0 ; i < 64 ; i++)	/* 64 luns/target, no less */
5793 		np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
5794 
5795 	/*
5796 	 *  Prepare the bus address array that contains the bus
5797 	 *  address of each target control block.
5798 	 *  For now, assume all logical units are wrong. :)
5799 	 */
5800 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
5801 		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
5802 		np->target[i].head.luntbl_sa =
5803 				cpu_to_scr(vtobus(np->badluntbl));
5804 		np->target[i].head.lun0_sa =
5805 				cpu_to_scr(vtobus(&np->badlun_sa));
5806 	}
5807 
5808 	/*
5809 	 *  Now check the cache handling of the pci chipset.
5810 	 */
5811 	if (sym_snooptest (np)) {
5812 		printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
5813 		goto attach_failed;
5814 	}
5815 
5816 	/*
5817 	 *  Sigh! we are done.
5818 	 */
5819 	return 0;
5820 
5821 attach_failed:
5822 	return -ENXIO;
5823 }
5824 
5825 /*
5826  *  Free everything that has been allocated for this device.
5827  */
5828 void sym_hcb_free(struct sym_hcb *np)
5829 {
5830 	SYM_QUEHEAD *qp;
5831 	struct sym_ccb *cp;
5832 	struct sym_tcb *tp;
5833 	struct sym_lcb *lp;
5834 	int target, lun;
5835 
5836 	if (np->scriptz0)
5837 		sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0");
5838 	if (np->scriptb0)
5839 		sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
5840 	if (np->scripta0)
5841 		sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
5842 	if (np->squeue)
5843 		sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
5844 	if (np->dqueue)
5845 		sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
5846 
5847 	if (np->actccbs) {
5848 		while ((qp = sym_remque_head(&np->free_ccbq)) != 0) {
5849 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5850 			sym_mfree_dma(cp, sizeof(*cp), "CCB");
5851 		}
5852 	}
5853 	kfree(np->ccbh);
5854 
5855 	if (np->badluntbl)
5856 		sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
5857 
5858 	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
5859 		tp = &np->target[target];
5860 		for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
5861 			lp = sym_lp(tp, lun);
5862 			if (!lp)
5863 				continue;
5864 			if (lp->itlq_tbl)
5865 				sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
5866 				       "ITLQ_TBL");
5867 			kfree(lp->cb_tags);
5868 			sym_mfree_dma(lp, sizeof(*lp), "LCB");
5869 		}
5870 #if SYM_CONF_MAX_LUN > 1
5871 		kfree(tp->lunmp);
5872 #endif
5873 	}
5874 	if (np->targtbl)
5875 		sym_mfree_dma(np->targtbl, 256, "TARGTBL");
5876 }
5877