xref: /linux/drivers/scsi/sym53c8xx_2/sym_hipd.c (revision 858259cf7d1c443c836a2022b78cb281f0a9b95e)
1 /*
2  * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3  * of PCI-SCSI IO processors.
4  *
5  * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6  * Copyright (c) 2003-2005  Matthew Wilcox <matthew@wil.cx>
7  *
8  * This driver is derived from the Linux sym53c8xx driver.
9  * Copyright (C) 1998-2000  Gerard Roudier
10  *
11  * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
12  * a port of the FreeBSD ncr driver to Linux-1.2.13.
13  *
14  * The original ncr driver has been written for 386bsd and FreeBSD by
15  *         Wolfgang Stanglmeier        <wolf@cologne.de>
16  *         Stefan Esser                <se@mi.Uni-Koeln.de>
17  * Copyright (C) 1994  Wolfgang Stanglmeier
18  *
19  * Other major contributions:
20  *
21  * NVRAM detection and reading.
22  * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
23  *
24  *-----------------------------------------------------------------------------
25  *
26  * This program is free software; you can redistribute it and/or modify
27  * it under the terms of the GNU General Public License as published by
28  * the Free Software Foundation; either version 2 of the License, or
29  * (at your option) any later version.
30  *
31  * This program is distributed in the hope that it will be useful,
32  * but WITHOUT ANY WARRANTY; without even the implied warranty of
33  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
34  * GNU General Public License for more details.
35  *
36  * You should have received a copy of the GNU General Public License
37  * along with this program; if not, write to the Free Software
38  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
39  */
40 
41 #include <linux/slab.h>
42 
43 #include "sym_glue.h"
44 #include "sym_nvram.h"
45 
46 #if 0
47 #define SYM_DEBUG_GENERIC_SUPPORT
48 #endif
49 
50 /*
51  *  Needed function prototypes.
52  */
53 static void sym_int_ma (struct sym_hcb *np);
54 static void sym_int_sir (struct sym_hcb *np);
55 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np);
56 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa);
57 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln);
58 static void sym_complete_error (struct sym_hcb *np, struct sym_ccb *cp);
59 static void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp);
60 static int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp);
61 
62 /*
63  *  Print a buffer in hexadecimal format with a ".\n" at end.
64  */
65 static void sym_printl_hex(u_char *p, int n)
66 {
67 	while (n-- > 0)
68 		printf (" %x", *p++);
69 	printf (".\n");
70 }
71 
72 /*
73  *  Print out the content of a SCSI message.
74  */
75 static int sym_show_msg (u_char * msg)
76 {
77 	u_char i;
78 	printf ("%x",*msg);
79 	if (*msg==M_EXTENDED) {
80 		for (i=1;i<8;i++) {
81 			if (i-1>msg[1]) break;
82 			printf ("-%x",msg[i]);
83 		}
84 		return (i+1);
85 	} else if ((*msg & 0xf0) == 0x20) {
86 		printf ("-%x",msg[1]);
87 		return (2);
88 	}
89 	return (1);
90 }
91 
92 static void sym_print_msg(struct sym_ccb *cp, char *label, u_char *msg)
93 {
94 	sym_print_addr(cp->cmd, "%s: ", label);
95 
96 	sym_show_msg(msg);
97 	printf(".\n");
98 }
99 
100 static void sym_print_nego_msg(struct sym_hcb *np, int target, char *label, u_char *msg)
101 {
102 	struct sym_tcb *tp = &np->target[target];
103 	dev_info(&tp->starget->dev, "%s: ", label);
104 
105 	sym_show_msg(msg);
106 	printf(".\n");
107 }
108 
109 /*
110  *  Print something that tells about extended errors.
111  */
112 void sym_print_xerr(struct scsi_cmnd *cmd, int x_status)
113 {
114 	if (x_status & XE_PARITY_ERR) {
115 		sym_print_addr(cmd, "unrecovered SCSI parity error.\n");
116 	}
117 	if (x_status & XE_EXTRA_DATA) {
118 		sym_print_addr(cmd, "extraneous data discarded.\n");
119 	}
120 	if (x_status & XE_BAD_PHASE) {
121 		sym_print_addr(cmd, "illegal scsi phase (4/5).\n");
122 	}
123 	if (x_status & XE_SODL_UNRUN) {
124 		sym_print_addr(cmd, "ODD transfer in DATA OUT phase.\n");
125 	}
126 	if (x_status & XE_SWIDE_OVRUN) {
127 		sym_print_addr(cmd, "ODD transfer in DATA IN phase.\n");
128 	}
129 }
130 
131 /*
132  *  Return a string for SCSI BUS mode.
133  */
134 static char *sym_scsi_bus_mode(int mode)
135 {
136 	switch(mode) {
137 	case SMODE_HVD:	return "HVD";
138 	case SMODE_SE:	return "SE";
139 	case SMODE_LVD: return "LVD";
140 	}
141 	return "??";
142 }
143 
144 /*
145  *  Soft reset the chip.
146  *
147  *  Raising SRST when the chip is running may cause
148  *  problems on dual function chips (see below).
149  *  On the other hand, LVD devices need some delay
150  *  to settle and report actual BUS mode in STEST4.
151  */
152 static void sym_chip_reset (struct sym_hcb *np)
153 {
154 	OUTB(np, nc_istat, SRST);
155 	INB(np, nc_mbox1);
156 	udelay(10);
157 	OUTB(np, nc_istat, 0);
158 	INB(np, nc_mbox1);
159 	udelay(2000);	/* For BUS MODE to settle */
160 }
161 
162 /*
163  *  Really soft reset the chip.:)
164  *
165  *  Some 896 and 876 chip revisions may hang-up if we set
166  *  the SRST (soft reset) bit at the wrong time when SCRIPTS
167  *  are running.
168  *  So, we need to abort the current operation prior to
169  *  soft resetting the chip.
170  */
171 static void sym_soft_reset (struct sym_hcb *np)
172 {
173 	u_char istat = 0;
174 	int i;
175 
176 	if (!(np->features & FE_ISTAT1) || !(INB(np, nc_istat1) & SCRUN))
177 		goto do_chip_reset;
178 
179 	OUTB(np, nc_istat, CABRT);
180 	for (i = 100000 ; i ; --i) {
181 		istat = INB(np, nc_istat);
182 		if (istat & SIP) {
183 			INW(np, nc_sist);
184 		}
185 		else if (istat & DIP) {
186 			if (INB(np, nc_dstat) & ABRT)
187 				break;
188 		}
189 		udelay(5);
190 	}
191 	OUTB(np, nc_istat, 0);
192 	if (!i)
193 		printf("%s: unable to abort current chip operation, "
194 		       "ISTAT=0x%02x.\n", sym_name(np), istat);
195 do_chip_reset:
196 	sym_chip_reset(np);
197 }
198 
199 /*
200  *  Start reset process.
201  *
202  *  The interrupt handler will reinitialize the chip.
203  */
204 static void sym_start_reset(struct sym_hcb *np)
205 {
206 	sym_reset_scsi_bus(np, 1);
207 }
208 
209 int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int)
210 {
211 	u32 term;
212 	int retv = 0;
213 
214 	sym_soft_reset(np);	/* Soft reset the chip */
215 	if (enab_int)
216 		OUTW(np, nc_sien, RST);
217 	/*
218 	 *  Enable Tolerant, reset IRQD if present and
219 	 *  properly set IRQ mode, prior to resetting the bus.
220 	 */
221 	OUTB(np, nc_stest3, TE);
222 	OUTB(np, nc_dcntl, (np->rv_dcntl & IRQM));
223 	OUTB(np, nc_scntl1, CRST);
224 	INB(np, nc_mbox1);
225 	udelay(200);
226 
227 	if (!SYM_SETUP_SCSI_BUS_CHECK)
228 		goto out;
229 	/*
230 	 *  Check for no terminators or SCSI bus shorts to ground.
231 	 *  Read SCSI data bus, data parity bits and control signals.
232 	 *  We are expecting RESET to be TRUE and other signals to be
233 	 *  FALSE.
234 	 */
235 	term =	INB(np, nc_sstat0);
236 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
237 	term |= ((INB(np, nc_sstat2) & 0x01) << 26) |	/* sdp1     */
238 		((INW(np, nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
239 		((INW(np, nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
240 		INB(np, nc_sbcl);	/* req ack bsy sel atn msg cd io    */
241 
242 	if (!np->maxwide)
243 		term &= 0x3ffff;
244 
245 	if (term != (2<<7)) {
246 		printf("%s: suspicious SCSI data while resetting the BUS.\n",
247 			sym_name(np));
248 		printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
249 			"0x%lx, expecting 0x%lx\n",
250 			sym_name(np),
251 			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
252 			(u_long)term, (u_long)(2<<7));
253 		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
254 			retv = 1;
255 	}
256 out:
257 	OUTB(np, nc_scntl1, 0);
258 	return retv;
259 }
260 
261 /*
262  *  Select SCSI clock frequency
263  */
264 static void sym_selectclock(struct sym_hcb *np, u_char scntl3)
265 {
266 	/*
267 	 *  If multiplier not present or not selected, leave here.
268 	 */
269 	if (np->multiplier <= 1) {
270 		OUTB(np, nc_scntl3, scntl3);
271 		return;
272 	}
273 
274 	if (sym_verbose >= 2)
275 		printf ("%s: enabling clock multiplier\n", sym_name(np));
276 
277 	OUTB(np, nc_stest1, DBLEN);	   /* Enable clock multiplier */
278 	/*
279 	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
280 	 *  Otherwise wait 50 micro-seconds (at least).
281 	 */
282 	if (np->features & FE_LCKFRQ) {
283 		int i = 20;
284 		while (!(INB(np, nc_stest4) & LCKFRQ) && --i > 0)
285 			udelay(20);
286 		if (!i)
287 			printf("%s: the chip cannot lock the frequency\n",
288 				sym_name(np));
289 	} else {
290 		INB(np, nc_mbox1);
291 		udelay(50+10);
292 	}
293 	OUTB(np, nc_stest3, HSC);		/* Halt the scsi clock	*/
294 	OUTB(np, nc_scntl3, scntl3);
295 	OUTB(np, nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
296 	OUTB(np, nc_stest3, 0x00);		/* Restart scsi clock 	*/
297 }
298 
299 
300 /*
301  *  Determine the chip's clock frequency.
302  *
303  *  This is essential for the negotiation of the synchronous
304  *  transfer rate.
305  *
306  *  Note: we have to return the correct value.
307  *  THERE IS NO SAFE DEFAULT VALUE.
308  *
309  *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
310  *  53C860 and 53C875 rev. 1 support fast20 transfers but
311  *  do not have a clock doubler and so are provided with a
312  *  80 MHz clock. All other fast20 boards incorporate a doubler
313  *  and so should be delivered with a 40 MHz clock.
314  *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
315  *  clock and provide a clock quadrupler (160 Mhz).
316  */
317 
318 /*
319  *  calculate SCSI clock frequency (in KHz)
320  */
321 static unsigned getfreq (struct sym_hcb *np, int gen)
322 {
323 	unsigned int ms = 0;
324 	unsigned int f;
325 
326 	/*
327 	 * Measure GEN timer delay in order
328 	 * to calculate SCSI clock frequency
329 	 *
330 	 * This code will never execute too
331 	 * many loop iterations (if DELAY is
332 	 * reasonably correct). It could get
333 	 * too low a delay (too high a freq.)
334 	 * if the CPU is slow executing the
335 	 * loop for some reason (an NMI, for
336 	 * example). For this reason we will
337 	 * if multiple measurements are to be
338 	 * performed trust the higher delay
339 	 * (lower frequency returned).
340 	 */
341 	OUTW(np, nc_sien, 0);	/* mask all scsi interrupts */
342 	INW(np, nc_sist);	/* clear pending scsi interrupt */
343 	OUTB(np, nc_dien, 0);	/* mask all dma interrupts */
344 	INW(np, nc_sist);	/* another one, just to be sure :) */
345 	/*
346 	 * The C1010-33 core does not report GEN in SIST,
347 	 * if this interrupt is masked in SIEN.
348 	 * I don't know yet if the C1010-66 behaves the same way.
349 	 */
350 	if (np->features & FE_C10) {
351 		OUTW(np, nc_sien, GEN);
352 		OUTB(np, nc_istat1, SIRQD);
353 	}
354 	OUTB(np, nc_scntl3, 4);	   /* set pre-scaler to divide by 3 */
355 	OUTB(np, nc_stime1, 0);	   /* disable general purpose timer */
356 	OUTB(np, nc_stime1, gen);  /* set to nominal delay of 1<<gen * 125us */
357 	while (!(INW(np, nc_sist) & GEN) && ms++ < 100000)
358 		udelay(1000/4);    /* count in 1/4 of ms */
359 	OUTB(np, nc_stime1, 0);    /* disable general purpose timer */
360 	/*
361 	 * Undo C1010-33 specific settings.
362 	 */
363 	if (np->features & FE_C10) {
364 		OUTW(np, nc_sien, 0);
365 		OUTB(np, nc_istat1, 0);
366 	}
367  	/*
368  	 * set prescaler to divide by whatever 0 means
369  	 * 0 ought to choose divide by 2, but appears
370  	 * to set divide by 3.5 mode in my 53c810 ...
371  	 */
372  	OUTB(np, nc_scntl3, 0);
373 
374   	/*
375  	 * adjust for prescaler, and convert into KHz
376   	 */
377 	f = ms ? ((1 << gen) * (4340*4)) / ms : 0;
378 
379 	/*
380 	 * The C1010-33 result is biased by a factor
381 	 * of 2/3 compared to earlier chips.
382 	 */
383 	if (np->features & FE_C10)
384 		f = (f * 2) / 3;
385 
386 	if (sym_verbose >= 2)
387 		printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
388 			sym_name(np), gen, ms/4, f);
389 
390 	return f;
391 }
392 
393 static unsigned sym_getfreq (struct sym_hcb *np)
394 {
395 	u_int f1, f2;
396 	int gen = 8;
397 
398 	getfreq (np, gen);	/* throw away first result */
399 	f1 = getfreq (np, gen);
400 	f2 = getfreq (np, gen);
401 	if (f1 > f2) f1 = f2;		/* trust lower result	*/
402 	return f1;
403 }
404 
405 /*
406  *  Get/probe chip SCSI clock frequency
407  */
408 static void sym_getclock (struct sym_hcb *np, int mult)
409 {
410 	unsigned char scntl3 = np->sv_scntl3;
411 	unsigned char stest1 = np->sv_stest1;
412 	unsigned f1;
413 
414 	np->multiplier = 1;
415 	f1 = 40000;
416 	/*
417 	 *  True with 875/895/896/895A with clock multiplier selected
418 	 */
419 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
420 		if (sym_verbose >= 2)
421 			printf ("%s: clock multiplier found\n", sym_name(np));
422 		np->multiplier = mult;
423 	}
424 
425 	/*
426 	 *  If multiplier not found or scntl3 not 7,5,3,
427 	 *  reset chip and get frequency from general purpose timer.
428 	 *  Otherwise trust scntl3 BIOS setting.
429 	 */
430 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
431 		OUTB(np, nc_stest1, 0);		/* make sure doubler is OFF */
432 		f1 = sym_getfreq (np);
433 
434 		if (sym_verbose)
435 			printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
436 
437 		if	(f1 <	45000)		f1 =  40000;
438 		else if (f1 <	55000)		f1 =  50000;
439 		else				f1 =  80000;
440 
441 		if (f1 < 80000 && mult > 1) {
442 			if (sym_verbose >= 2)
443 				printf ("%s: clock multiplier assumed\n",
444 					sym_name(np));
445 			np->multiplier	= mult;
446 		}
447 	} else {
448 		if	((scntl3 & 7) == 3)	f1 =  40000;
449 		else if	((scntl3 & 7) == 5)	f1 =  80000;
450 		else 				f1 = 160000;
451 
452 		f1 /= np->multiplier;
453 	}
454 
455 	/*
456 	 *  Compute controller synchronous parameters.
457 	 */
458 	f1		*= np->multiplier;
459 	np->clock_khz	= f1;
460 }
461 
462 /*
463  *  Get/probe PCI clock frequency
464  */
465 static int sym_getpciclock (struct sym_hcb *np)
466 {
467 	int f = 0;
468 
469 	/*
470 	 *  For now, we only need to know about the actual
471 	 *  PCI BUS clock frequency for C1010-66 chips.
472 	 */
473 #if 1
474 	if (np->features & FE_66MHZ) {
475 #else
476 	if (1) {
477 #endif
478 		OUTB(np, nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
479 		f = sym_getfreq(np);
480 		OUTB(np, nc_stest1, 0);
481 	}
482 	np->pciclk_khz = f;
483 
484 	return f;
485 }
486 
487 /*
488  *  SYMBIOS chip clock divisor table.
489  *
490  *  Divisors are multiplied by 10,000,000 in order to make
491  *  calculations more simple.
492  */
493 #define _5M 5000000
494 static u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
495 
496 /*
497  *  Get clock factor and sync divisor for a given
498  *  synchronous factor period.
499  */
500 static int
501 sym_getsync(struct sym_hcb *np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
502 {
503 	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
504 	int	div = np->clock_divn;	/* Number of divisors supported	*/
505 	u32	fak;			/* Sync factor in sxfer		*/
506 	u32	per;			/* Period in tenths of ns	*/
507 	u32	kpc;			/* (per * clk)			*/
508 	int	ret;
509 
510 	/*
511 	 *  Compute the synchronous period in tenths of nano-seconds
512 	 */
513 	if (dt && sfac <= 9)	per = 125;
514 	else if	(sfac <= 10)	per = 250;
515 	else if	(sfac == 11)	per = 303;
516 	else if	(sfac == 12)	per = 500;
517 	else			per = 40 * sfac;
518 	ret = per;
519 
520 	kpc = per * clk;
521 	if (dt)
522 		kpc <<= 1;
523 
524 	/*
525 	 *  For earliest C10 revision 0, we cannot use extra
526 	 *  clocks for the setting of the SCSI clocking.
527 	 *  Note that this limits the lowest sync data transfer
528 	 *  to 5 Mega-transfers per second and may result in
529 	 *  using higher clock divisors.
530 	 */
531 #if 1
532 	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
533 		/*
534 		 *  Look for the lowest clock divisor that allows an
535 		 *  output speed not faster than the period.
536 		 */
537 		while (div > 0) {
538 			--div;
539 			if (kpc > (div_10M[div] << 2)) {
540 				++div;
541 				break;
542 			}
543 		}
544 		fak = 0;			/* No extra clocks */
545 		if (div == np->clock_divn) {	/* Are we too fast ? */
546 			ret = -1;
547 		}
548 		*divp = div;
549 		*fakp = fak;
550 		return ret;
551 	}
552 #endif
553 
554 	/*
555 	 *  Look for the greatest clock divisor that allows an
556 	 *  input speed faster than the period.
557 	 */
558 	while (div-- > 0)
559 		if (kpc >= (div_10M[div] << 2)) break;
560 
561 	/*
562 	 *  Calculate the lowest clock factor that allows an output
563 	 *  speed not faster than the period, and the max output speed.
564 	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
565 	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
566 	 */
567 	if (dt) {
568 		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
569 		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
570 	} else {
571 		fak = (kpc - 1) / div_10M[div] + 1 - 4;
572 		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
573 	}
574 
575 	/*
576 	 *  Check against our hardware limits, or bugs :).
577 	 */
578 	if (fak > 2) {
579 		fak = 2;
580 		ret = -1;
581 	}
582 
583 	/*
584 	 *  Compute and return sync parameters.
585 	 */
586 	*divp = div;
587 	*fakp = fak;
588 
589 	return ret;
590 }
591 
592 /*
593  *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
594  *  128 transfers. All chips support at least 16 transfers
595  *  bursts. The 825A, 875 and 895 chips support bursts of up
596  *  to 128 transfers and the 895A and 896 support bursts of up
597  *  to 64 transfers. All other chips support up to 16
598  *  transfers bursts.
599  *
600  *  For PCI 32 bit data transfers each transfer is a DWORD.
601  *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
602  *
603  *  We use log base 2 (burst length) as internal code, with
604  *  value 0 meaning "burst disabled".
605  */
606 
607 /*
608  *  Burst length from burst code.
609  */
610 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
611 
612 /*
613  *  Burst code from io register bits.
614  */
615 #define burst_code(dmode, ctest4, ctest5) \
616 	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
617 
618 /*
619  *  Set initial io register bits from burst code.
620  */
621 static __inline void sym_init_burst(struct sym_hcb *np, u_char bc)
622 {
623 	np->rv_ctest4	&= ~0x80;
624 	np->rv_dmode	&= ~(0x3 << 6);
625 	np->rv_ctest5	&= ~0x4;
626 
627 	if (!bc) {
628 		np->rv_ctest4	|= 0x80;
629 	}
630 	else {
631 		--bc;
632 		np->rv_dmode	|= ((bc & 0x3) << 6);
633 		np->rv_ctest5	|= (bc & 0x4);
634 	}
635 }
636 
637 
638 /*
639  * Print out the list of targets that have some flag disabled by user.
640  */
641 static void sym_print_targets_flag(struct sym_hcb *np, int mask, char *msg)
642 {
643 	int cnt;
644 	int i;
645 
646 	for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
647 		if (i == np->myaddr)
648 			continue;
649 		if (np->target[i].usrflags & mask) {
650 			if (!cnt++)
651 				printf("%s: %s disabled for targets",
652 					sym_name(np), msg);
653 			printf(" %d", i);
654 		}
655 	}
656 	if (cnt)
657 		printf(".\n");
658 }
659 
660 /*
661  *  Save initial settings of some IO registers.
662  *  Assumed to have been set by BIOS.
663  *  We cannot reset the chip prior to reading the
664  *  IO registers, since informations will be lost.
665  *  Since the SCRIPTS processor may be running, this
666  *  is not safe on paper, but it seems to work quite
667  *  well. :)
668  */
669 static void sym_save_initial_setting (struct sym_hcb *np)
670 {
671 	np->sv_scntl0	= INB(np, nc_scntl0) & 0x0a;
672 	np->sv_scntl3	= INB(np, nc_scntl3) & 0x07;
673 	np->sv_dmode	= INB(np, nc_dmode)  & 0xce;
674 	np->sv_dcntl	= INB(np, nc_dcntl)  & 0xa8;
675 	np->sv_ctest3	= INB(np, nc_ctest3) & 0x01;
676 	np->sv_ctest4	= INB(np, nc_ctest4) & 0x80;
677 	np->sv_gpcntl	= INB(np, nc_gpcntl);
678 	np->sv_stest1	= INB(np, nc_stest1);
679 	np->sv_stest2	= INB(np, nc_stest2) & 0x20;
680 	np->sv_stest4	= INB(np, nc_stest4);
681 	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
682 		np->sv_scntl4	= INB(np, nc_scntl4);
683 		np->sv_ctest5	= INB(np, nc_ctest5) & 0x04;
684 	}
685 	else
686 		np->sv_ctest5	= INB(np, nc_ctest5) & 0x24;
687 }
688 
689 /*
690  *  Prepare io register values used by sym_start_up()
691  *  according to selected and supported features.
692  */
693 static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram)
694 {
695 	u_char	burst_max;
696 	u32	period;
697 	int i;
698 
699 	/*
700 	 *  Wide ?
701 	 */
702 	np->maxwide	= (np->features & FE_WIDE)? 1 : 0;
703 
704 	/*
705 	 *  Guess the frequency of the chip's clock.
706 	 */
707 	if	(np->features & (FE_ULTRA3 | FE_ULTRA2))
708 		np->clock_khz = 160000;
709 	else if	(np->features & FE_ULTRA)
710 		np->clock_khz = 80000;
711 	else
712 		np->clock_khz = 40000;
713 
714 	/*
715 	 *  Get the clock multiplier factor.
716  	 */
717 	if	(np->features & FE_QUAD)
718 		np->multiplier	= 4;
719 	else if	(np->features & FE_DBLR)
720 		np->multiplier	= 2;
721 	else
722 		np->multiplier	= 1;
723 
724 	/*
725 	 *  Measure SCSI clock frequency for chips
726 	 *  it may vary from assumed one.
727 	 */
728 	if (np->features & FE_VARCLK)
729 		sym_getclock(np, np->multiplier);
730 
731 	/*
732 	 * Divisor to be used for async (timer pre-scaler).
733 	 */
734 	i = np->clock_divn - 1;
735 	while (--i >= 0) {
736 		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
737 			++i;
738 			break;
739 		}
740 	}
741 	np->rv_scntl3 = i+1;
742 
743 	/*
744 	 * The C1010 uses hardwired divisors for async.
745 	 * So, we just throw away, the async. divisor.:-)
746 	 */
747 	if (np->features & FE_C10)
748 		np->rv_scntl3 = 0;
749 
750 	/*
751 	 * Minimum synchronous period factor supported by the chip.
752 	 * Btw, 'period' is in tenths of nanoseconds.
753 	 */
754 	period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
755 
756 	if	(period <= 250)		np->minsync = 10;
757 	else if	(period <= 303)		np->minsync = 11;
758 	else if	(period <= 500)		np->minsync = 12;
759 	else				np->minsync = (period + 40 - 1) / 40;
760 
761 	/*
762 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
763 	 */
764 	if	(np->minsync < 25 &&
765 		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
766 		np->minsync = 25;
767 	else if	(np->minsync < 12 &&
768 		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
769 		np->minsync = 12;
770 
771 	/*
772 	 * Maximum synchronous period factor supported by the chip.
773 	 */
774 	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
775 	np->maxsync = period > 2540 ? 254 : period / 10;
776 
777 	/*
778 	 * If chip is a C1010, guess the sync limits in DT mode.
779 	 */
780 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
781 		if (np->clock_khz == 160000) {
782 			np->minsync_dt = 9;
783 			np->maxsync_dt = 50;
784 			np->maxoffs_dt = nvram->type ? 62 : 31;
785 		}
786 	}
787 
788 	/*
789 	 *  64 bit addressing  (895A/896/1010) ?
790 	 */
791 	if (np->features & FE_DAC) {
792 #if   SYM_CONF_DMA_ADDRESSING_MODE == 0
793 		np->rv_ccntl1	|= (DDAC);
794 #elif SYM_CONF_DMA_ADDRESSING_MODE == 1
795 		if (!np->use_dac)
796 			np->rv_ccntl1	|= (DDAC);
797 		else
798 			np->rv_ccntl1	|= (XTIMOD | EXTIBMV);
799 #elif SYM_CONF_DMA_ADDRESSING_MODE == 2
800 		if (!np->use_dac)
801 			np->rv_ccntl1	|= (DDAC);
802 		else
803 			np->rv_ccntl1	|= (0 | EXTIBMV);
804 #endif
805 	}
806 
807 	/*
808 	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
809   	 */
810 	if (np->features & FE_NOPM)
811 		np->rv_ccntl0	|= (ENPMJ);
812 
813  	/*
814 	 *  C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed.
815 	 *  In dual channel mode, contention occurs if internal cycles
816 	 *  are used. Disable internal cycles.
817 	 */
818 	if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_33 &&
819 	    np->revision_id < 0x1)
820 		np->rv_ccntl0	|=  DILS;
821 
822 	/*
823 	 *  Select burst length (dwords)
824 	 */
825 	burst_max	= SYM_SETUP_BURST_ORDER;
826 	if (burst_max == 255)
827 		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
828 				       np->sv_ctest5);
829 	if (burst_max > 7)
830 		burst_max = 7;
831 	if (burst_max > np->maxburst)
832 		burst_max = np->maxburst;
833 
834 	/*
835 	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
836 	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
837 	 *  based transactions on LOAD/STORE instructions. So we have
838 	 *  to prevent these chips from using such PCI transactions in
839 	 *  this driver. The generic ncr driver that does not use
840 	 *  LOAD/STORE instructions does not need this work-around.
841 	 */
842 	if ((np->device_id == PCI_DEVICE_ID_NCR_53C810 &&
843 	     np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
844 	    (np->device_id == PCI_DEVICE_ID_NCR_53C860 &&
845 	     np->revision_id <= 0x1))
846 		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
847 
848 	/*
849 	 *  Select all supported special features.
850 	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
851 	 *  does not help, but burst op fetch (BOF) does.
852 	 *  Disabling PFEN makes sure BOF will be used.
853 	 */
854 	if (np->features & FE_ERL)
855 		np->rv_dmode	|= ERL;		/* Enable Read Line */
856 	if (np->features & FE_BOF)
857 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
858 	if (np->features & FE_ERMP)
859 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
860 #if 1
861 	if ((np->features & FE_PFEN) && !np->ram_ba)
862 #else
863 	if (np->features & FE_PFEN)
864 #endif
865 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
866 	if (np->features & FE_CLSE)
867 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
868 	if (np->features & FE_WRIE)
869 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
870 	if (np->features & FE_DFS)
871 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
872 
873 	/*
874 	 *  Select some other
875 	 */
876 	np->rv_ctest4	|= MPEE; /* Master parity checking */
877 	np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
878 
879 	/*
880 	 *  Get parity checking, host ID and verbose mode from NVRAM
881 	 */
882 	np->myaddr = 255;
883 	sym_nvram_setup_host(shost, np, nvram);
884 
885 	/*
886 	 *  Get SCSI addr of host adapter (set by bios?).
887 	 */
888 	if (np->myaddr == 255) {
889 		np->myaddr = INB(np, nc_scid) & 0x07;
890 		if (!np->myaddr)
891 			np->myaddr = SYM_SETUP_HOST_ID;
892 	}
893 
894 	/*
895 	 *  Prepare initial io register bits for burst length
896 	 */
897 	sym_init_burst(np, burst_max);
898 
899 	/*
900 	 *  Set SCSI BUS mode.
901 	 *  - LVD capable chips (895/895A/896/1010) report the
902 	 *    current BUS mode through the STEST4 IO register.
903 	 *  - For previous generation chips (825/825A/875),
904 	 *    user has to tell us how to check against HVD,
905 	 *    since a 100% safe algorithm is not possible.
906 	 */
907 	np->scsi_mode = SMODE_SE;
908 	if (np->features & (FE_ULTRA2|FE_ULTRA3))
909 		np->scsi_mode = (np->sv_stest4 & SMODE);
910 	else if	(np->features & FE_DIFF) {
911 		if (SYM_SETUP_SCSI_DIFF == 1) {
912 			if (np->sv_scntl3) {
913 				if (np->sv_stest2 & 0x20)
914 					np->scsi_mode = SMODE_HVD;
915 			}
916 			else if (nvram->type == SYM_SYMBIOS_NVRAM) {
917 				if (!(INB(np, nc_gpreg) & 0x08))
918 					np->scsi_mode = SMODE_HVD;
919 			}
920 		}
921 		else if	(SYM_SETUP_SCSI_DIFF == 2)
922 			np->scsi_mode = SMODE_HVD;
923 	}
924 	if (np->scsi_mode == SMODE_HVD)
925 		np->rv_stest2 |= 0x20;
926 
927 	/*
928 	 *  Set LED support from SCRIPTS.
929 	 *  Ignore this feature for boards known to use a
930 	 *  specific GPIO wiring and for the 895A, 896
931 	 *  and 1010 that drive the LED directly.
932 	 */
933 	if ((SYM_SETUP_SCSI_LED ||
934 	     (nvram->type == SYM_SYMBIOS_NVRAM ||
935 	      (nvram->type == SYM_TEKRAM_NVRAM &&
936 	       np->device_id == PCI_DEVICE_ID_NCR_53C895))) &&
937 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
938 		np->features |= FE_LED0;
939 
940 	/*
941 	 *  Set irq mode.
942 	 */
943 	switch(SYM_SETUP_IRQ_MODE & 3) {
944 	case 2:
945 		np->rv_dcntl	|= IRQM;
946 		break;
947 	case 1:
948 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
949 		break;
950 	default:
951 		break;
952 	}
953 
954 	/*
955 	 *  Configure targets according to driver setup.
956 	 *  If NVRAM present get targets setup from NVRAM.
957 	 */
958 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
959 		struct sym_tcb *tp = &np->target[i];
960 
961 		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
962 		tp->usrtags = SYM_SETUP_MAX_TAG;
963 
964 		sym_nvram_setup_target(np, i, nvram);
965 
966 		if (!tp->usrtags)
967 			tp->usrflags &= ~SYM_TAGS_ENABLED;
968 	}
969 
970 	/*
971 	 *  Let user know about the settings.
972 	 */
973 	printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np),
974 		sym_nvram_type(nvram), np->myaddr,
975 		(np->features & FE_ULTRA3) ? 80 :
976 		(np->features & FE_ULTRA2) ? 40 :
977 		(np->features & FE_ULTRA)  ? 20 : 10,
978 		sym_scsi_bus_mode(np->scsi_mode),
979 		(np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
980 	/*
981 	 *  Tell him more on demand.
982 	 */
983 	if (sym_verbose) {
984 		printf("%s: %s IRQ line driver%s\n",
985 			sym_name(np),
986 			np->rv_dcntl & IRQM ? "totem pole" : "open drain",
987 			np->ram_ba ? ", using on-chip SRAM" : "");
988 		printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
989 		if (np->features & FE_NOPM)
990 			printf("%s: handling phase mismatch from SCRIPTS.\n",
991 			       sym_name(np));
992 	}
993 	/*
994 	 *  And still more.
995 	 */
996 	if (sym_verbose >= 2) {
997 		printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
998 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
999 			sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
1000 			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
1001 
1002 		printf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
1003 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
1004 			sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
1005 			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
1006 	}
1007 	/*
1008 	 *  Let user be aware of targets that have some disable flags set.
1009 	 */
1010 	sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
1011 	if (sym_verbose)
1012 		sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
1013 				       "SCAN FOR LUNS");
1014 
1015 	return 0;
1016 }
1017 
1018 /*
1019  *  Test the pci bus snoop logic :-(
1020  *
1021  *  Has to be called with interrupts disabled.
1022  */
1023 #ifndef CONFIG_SCSI_SYM53C8XX_IOMAPPED
1024 static int sym_regtest (struct sym_hcb *np)
1025 {
1026 	register volatile u32 data;
1027 	/*
1028 	 *  chip registers may NOT be cached.
1029 	 *  write 0xffffffff to a read only register area,
1030 	 *  and try to read it back.
1031 	 */
1032 	data = 0xffffffff;
1033 	OUTL(np, nc_dstat, data);
1034 	data = INL(np, nc_dstat);
1035 #if 1
1036 	if (data == 0xffffffff) {
1037 #else
1038 	if ((data & 0xe2f0fffd) != 0x02000080) {
1039 #endif
1040 		printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
1041 			(unsigned) data);
1042 		return (0x10);
1043 	}
1044 	return (0);
1045 }
1046 #endif
1047 
1048 static int sym_snooptest (struct sym_hcb *np)
1049 {
1050 	u32	sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
1051 	int	i, err=0;
1052 #ifndef CONFIG_SCSI_SYM53C8XX_IOMAPPED
1053 	err |= sym_regtest (np);
1054 	if (err) return (err);
1055 #endif
1056 restart_test:
1057 	/*
1058 	 *  Enable Master Parity Checking as we intend
1059 	 *  to enable it for normal operations.
1060 	 */
1061 	OUTB(np, nc_ctest4, (np->rv_ctest4 & MPEE));
1062 	/*
1063 	 *  init
1064 	 */
1065 	pc  = SCRIPTZ_BA(np, snooptest);
1066 	host_wr = 1;
1067 	sym_wr  = 2;
1068 	/*
1069 	 *  Set memory and register.
1070 	 */
1071 	np->scratch = cpu_to_scr(host_wr);
1072 	OUTL(np, nc_temp, sym_wr);
1073 	/*
1074 	 *  Start script (exchange values)
1075 	 */
1076 	OUTL(np, nc_dsa, np->hcb_ba);
1077 	OUTL_DSP(np, pc);
1078 	/*
1079 	 *  Wait 'til done (with timeout)
1080 	 */
1081 	for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
1082 		if (INB(np, nc_istat) & (INTF|SIP|DIP))
1083 			break;
1084 	if (i>=SYM_SNOOP_TIMEOUT) {
1085 		printf ("CACHE TEST FAILED: timeout.\n");
1086 		return (0x20);
1087 	}
1088 	/*
1089 	 *  Check for fatal DMA errors.
1090 	 */
1091 	dstat = INB(np, nc_dstat);
1092 #if 1	/* Band aiding for broken hardwares that fail PCI parity */
1093 	if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
1094 		printf ("%s: PCI DATA PARITY ERROR DETECTED - "
1095 			"DISABLING MASTER DATA PARITY CHECKING.\n",
1096 			sym_name(np));
1097 		np->rv_ctest4 &= ~MPEE;
1098 		goto restart_test;
1099 	}
1100 #endif
1101 	if (dstat & (MDPE|BF|IID)) {
1102 		printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
1103 		return (0x80);
1104 	}
1105 	/*
1106 	 *  Save termination position.
1107 	 */
1108 	pc = INL(np, nc_dsp);
1109 	/*
1110 	 *  Read memory and register.
1111 	 */
1112 	host_rd = scr_to_cpu(np->scratch);
1113 	sym_rd  = INL(np, nc_scratcha);
1114 	sym_bk  = INL(np, nc_temp);
1115 	/*
1116 	 *  Check termination position.
1117 	 */
1118 	if (pc != SCRIPTZ_BA(np, snoopend)+8) {
1119 		printf ("CACHE TEST FAILED: script execution failed.\n");
1120 		printf ("start=%08lx, pc=%08lx, end=%08lx\n",
1121 			(u_long) SCRIPTZ_BA(np, snooptest), (u_long) pc,
1122 			(u_long) SCRIPTZ_BA(np, snoopend) +8);
1123 		return (0x40);
1124 	}
1125 	/*
1126 	 *  Show results.
1127 	 */
1128 	if (host_wr != sym_rd) {
1129 		printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
1130 			(int) host_wr, (int) sym_rd);
1131 		err |= 1;
1132 	}
1133 	if (host_rd != sym_wr) {
1134 		printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
1135 			(int) sym_wr, (int) host_rd);
1136 		err |= 2;
1137 	}
1138 	if (sym_bk != sym_wr) {
1139 		printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
1140 			(int) sym_wr, (int) sym_bk);
1141 		err |= 4;
1142 	}
1143 
1144 	return (err);
1145 }
1146 
1147 /*
1148  *  log message for real hard errors
1149  *
1150  *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc).
1151  *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
1152  *
1153  *  exception register:
1154  *  	ds:	dstat
1155  *  	si:	sist
1156  *
1157  *  SCSI bus lines:
1158  *  	so:	control lines as driven by chip.
1159  *  	si:	control lines as seen by chip.
1160  *  	sd:	scsi data lines as seen by chip.
1161  *
1162  *  wide/fastmode:
1163  *  	sx:	sxfer  (see the manual)
1164  *  	s3:	scntl3 (see the manual)
1165  *  	s4:	scntl4 (see the manual)
1166  *
1167  *  current script command:
1168  *  	dsp:	script address (relative to start of script).
1169  *  	dbc:	first word of script command.
1170  *
1171  *  First 24 register of the chip:
1172  *  	r0..rf
1173  */
1174 static void sym_log_hard_error(struct sym_hcb *np, u_short sist, u_char dstat)
1175 {
1176 	u32	dsp;
1177 	int	script_ofs;
1178 	int	script_size;
1179 	char	*script_name;
1180 	u_char	*script_base;
1181 	int	i;
1182 
1183 	dsp	= INL(np, nc_dsp);
1184 
1185 	if	(dsp > np->scripta_ba &&
1186 		 dsp <= np->scripta_ba + np->scripta_sz) {
1187 		script_ofs	= dsp - np->scripta_ba;
1188 		script_size	= np->scripta_sz;
1189 		script_base	= (u_char *) np->scripta0;
1190 		script_name	= "scripta";
1191 	}
1192 	else if (np->scriptb_ba < dsp &&
1193 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
1194 		script_ofs	= dsp - np->scriptb_ba;
1195 		script_size	= np->scriptb_sz;
1196 		script_base	= (u_char *) np->scriptb0;
1197 		script_name	= "scriptb";
1198 	} else {
1199 		script_ofs	= dsp;
1200 		script_size	= 0;
1201 		script_base	= NULL;
1202 		script_name	= "mem";
1203 	}
1204 
1205 	printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n",
1206 		sym_name(np), (unsigned)INB(np, nc_sdid)&0x0f, dstat, sist,
1207 		(unsigned)INB(np, nc_socl), (unsigned)INB(np, nc_sbcl),
1208 		(unsigned)INB(np, nc_sbdl), (unsigned)INB(np, nc_sxfer),
1209 		(unsigned)INB(np, nc_scntl3),
1210 		(np->features & FE_C10) ?  (unsigned)INB(np, nc_scntl4) : 0,
1211 		script_name, script_ofs,   (unsigned)INL(np, nc_dbc));
1212 
1213 	if (((script_ofs & 3) == 0) &&
1214 	    (unsigned)script_ofs < script_size) {
1215 		printf ("%s: script cmd = %08x\n", sym_name(np),
1216 			scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
1217 	}
1218 
1219         printf ("%s: regdump:", sym_name(np));
1220         for (i=0; i<24;i++)
1221             printf (" %02x", (unsigned)INB_OFF(np, i));
1222         printf (".\n");
1223 
1224 	/*
1225 	 *  PCI BUS error.
1226 	 */
1227 	if (dstat & (MDPE|BF))
1228 		sym_log_bus_error(np);
1229 }
1230 
1231 static struct sym_chip sym_dev_table[] = {
1232  {PCI_DEVICE_ID_NCR_53C810, 0x0f, "810", 4, 8, 4, 64,
1233  FE_ERL}
1234  ,
1235 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1236  {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4,  8, 4, 1,
1237  FE_BOF}
1238  ,
1239 #else
1240  {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4,  8, 4, 1,
1241  FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
1242  ,
1243 #endif
1244  {PCI_DEVICE_ID_NCR_53C815, 0xff, "815", 4,  8, 4, 64,
1245  FE_BOF|FE_ERL}
1246  ,
1247  {PCI_DEVICE_ID_NCR_53C825, 0x0f, "825", 6,  8, 4, 64,
1248  FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
1249  ,
1250  {PCI_DEVICE_ID_NCR_53C825, 0xff, "825a", 6,  8, 4, 2,
1251  FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
1252  ,
1253  {PCI_DEVICE_ID_NCR_53C860, 0xff, "860", 4,  8, 5, 1,
1254  FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
1255  ,
1256  {PCI_DEVICE_ID_NCR_53C875, 0x01, "875", 6, 16, 5, 2,
1257  FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1258  FE_RAM|FE_DIFF|FE_VARCLK}
1259  ,
1260  {PCI_DEVICE_ID_NCR_53C875, 0xff, "875", 6, 16, 5, 2,
1261  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1262  FE_RAM|FE_DIFF|FE_VARCLK}
1263  ,
1264  {PCI_DEVICE_ID_NCR_53C875J, 0xff, "875J", 6, 16, 5, 2,
1265  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1266  FE_RAM|FE_DIFF|FE_VARCLK}
1267  ,
1268  {PCI_DEVICE_ID_NCR_53C885, 0xff, "885", 6, 16, 5, 2,
1269  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1270  FE_RAM|FE_DIFF|FE_VARCLK}
1271  ,
1272 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1273  {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1274  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
1275  FE_RAM|FE_LCKFRQ}
1276  ,
1277 #else
1278  {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1279  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1280  FE_RAM|FE_LCKFRQ}
1281  ,
1282 #endif
1283  {PCI_DEVICE_ID_NCR_53C896, 0xff, "896", 6, 31, 7, 4,
1284  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1285  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1286  ,
1287  {PCI_DEVICE_ID_LSI_53C895A, 0xff, "895a", 6, 31, 7, 4,
1288  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1289  FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1290  ,
1291  {PCI_DEVICE_ID_LSI_53C875A, 0xff, "875a", 6, 31, 7, 4,
1292  FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1293  FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1294  ,
1295  {PCI_DEVICE_ID_LSI_53C1010_33, 0x00, "1010-33", 6, 31, 7, 8,
1296  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1297  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1298  FE_C10}
1299  ,
1300  {PCI_DEVICE_ID_LSI_53C1010_33, 0xff, "1010-33", 6, 31, 7, 8,
1301  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1302  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1303  FE_C10|FE_U3EN}
1304  ,
1305  {PCI_DEVICE_ID_LSI_53C1010_66, 0xff, "1010-66", 6, 31, 7, 8,
1306  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1307  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
1308  FE_C10|FE_U3EN}
1309  ,
1310  {PCI_DEVICE_ID_LSI_53C1510, 0xff, "1510d", 6, 31, 7, 4,
1311  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1312  FE_RAM|FE_IO256|FE_LEDC}
1313 };
1314 
1315 #define sym_num_devs \
1316 	(sizeof(sym_dev_table) / sizeof(sym_dev_table[0]))
1317 
1318 /*
1319  *  Look up the chip table.
1320  *
1321  *  Return a pointer to the chip entry if found,
1322  *  zero otherwise.
1323  */
1324 struct sym_chip *
1325 sym_lookup_chip_table (u_short device_id, u_char revision)
1326 {
1327 	struct	sym_chip *chip;
1328 	int	i;
1329 
1330 	for (i = 0; i < sym_num_devs; i++) {
1331 		chip = &sym_dev_table[i];
1332 		if (device_id != chip->device_id)
1333 			continue;
1334 		if (revision > chip->revision_id)
1335 			continue;
1336 		return chip;
1337 	}
1338 
1339 	return NULL;
1340 }
1341 
1342 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1343 /*
1344  *  Lookup the 64 bit DMA segments map.
1345  *  This is only used if the direct mapping
1346  *  has been unsuccessful.
1347  */
1348 int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s)
1349 {
1350 	int i;
1351 
1352 	if (!np->use_dac)
1353 		goto weird;
1354 
1355 	/* Look up existing mappings */
1356 	for (i = SYM_DMAP_SIZE-1; i > 0; i--) {
1357 		if (h == np->dmap_bah[i])
1358 			return i;
1359 	}
1360 	/* If direct mapping is free, get it */
1361 	if (!np->dmap_bah[s])
1362 		goto new;
1363 	/* Collision -> lookup free mappings */
1364 	for (s = SYM_DMAP_SIZE-1; s > 0; s--) {
1365 		if (!np->dmap_bah[s])
1366 			goto new;
1367 	}
1368 weird:
1369 	panic("sym: ran out of 64 bit DMA segment registers");
1370 	return -1;
1371 new:
1372 	np->dmap_bah[s] = h;
1373 	np->dmap_dirty = 1;
1374 	return s;
1375 }
1376 
1377 /*
1378  *  Update IO registers scratch C..R so they will be
1379  *  in sync. with queued CCB expectations.
1380  */
1381 static void sym_update_dmap_regs(struct sym_hcb *np)
1382 {
1383 	int o, i;
1384 
1385 	if (!np->dmap_dirty)
1386 		return;
1387 	o = offsetof(struct sym_reg, nc_scrx[0]);
1388 	for (i = 0; i < SYM_DMAP_SIZE; i++) {
1389 		OUTL_OFF(np, o, np->dmap_bah[i]);
1390 		o += 4;
1391 	}
1392 	np->dmap_dirty = 0;
1393 }
1394 #endif
1395 
1396 /* Enforce all the fiddly SPI rules and the chip limitations */
1397 static void sym_check_goals(struct sym_hcb *np, struct scsi_target *starget,
1398 		struct sym_trans *goal)
1399 {
1400 	if (!spi_support_wide(starget))
1401 		goal->width = 0;
1402 
1403 	if (!spi_support_sync(starget)) {
1404 		goal->iu = 0;
1405 		goal->dt = 0;
1406 		goal->qas = 0;
1407 		goal->period = 0;
1408 		goal->offset = 0;
1409 		return;
1410 	}
1411 
1412 	if (spi_support_dt(starget)) {
1413 		if (spi_support_dt_only(starget))
1414 			goal->dt = 1;
1415 
1416 		if (goal->offset == 0)
1417 			goal->dt = 0;
1418 	} else {
1419 		goal->dt = 0;
1420 	}
1421 
1422 	/* Some targets fail to properly negotiate DT in SE mode */
1423 	if ((np->scsi_mode != SMODE_LVD) || !(np->features & FE_U3EN))
1424 		goal->dt = 0;
1425 
1426 	if (goal->dt) {
1427 		/* all DT transfers must be wide */
1428 		goal->width = 1;
1429 		if (goal->offset > np->maxoffs_dt)
1430 			goal->offset = np->maxoffs_dt;
1431 		if (goal->period < np->minsync_dt)
1432 			goal->period = np->minsync_dt;
1433 		if (goal->period > np->maxsync_dt)
1434 			goal->period = np->maxsync_dt;
1435 	} else {
1436 		goal->iu = goal->qas = 0;
1437 		if (goal->offset > np->maxoffs)
1438 			goal->offset = np->maxoffs;
1439 		if (goal->period < np->minsync)
1440 			goal->period = np->minsync;
1441 		if (goal->period > np->maxsync)
1442 			goal->period = np->maxsync;
1443 	}
1444 }
1445 
1446 /*
1447  *  Prepare the next negotiation message if needed.
1448  *
1449  *  Fill in the part of message buffer that contains the
1450  *  negotiation and the nego_status field of the CCB.
1451  *  Returns the size of the message in bytes.
1452  */
1453 static int sym_prepare_nego(struct sym_hcb *np, struct sym_ccb *cp, u_char *msgptr)
1454 {
1455 	struct sym_tcb *tp = &np->target[cp->target];
1456 	struct scsi_target *starget = tp->starget;
1457 	struct sym_trans *goal = &tp->tgoal;
1458 	int msglen = 0;
1459 	int nego;
1460 
1461 	sym_check_goals(np, starget, goal);
1462 
1463 	/*
1464 	 * Many devices implement PPR in a buggy way, so only use it if we
1465 	 * really want to.
1466 	 */
1467 	if (goal->iu || goal->dt || goal->qas || (goal->period < 0xa)) {
1468 		nego = NS_PPR;
1469 	} else if (spi_width(starget) != goal->width) {
1470 		nego = NS_WIDE;
1471 	} else if (spi_period(starget) != goal->period ||
1472 		   spi_offset(starget) != goal->offset) {
1473 		nego = NS_SYNC;
1474 	} else {
1475 		goal->check_nego = 0;
1476 		nego = 0;
1477 	}
1478 
1479 	switch (nego) {
1480 	case NS_SYNC:
1481 		msgptr[msglen++] = M_EXTENDED;
1482 		msgptr[msglen++] = 3;
1483 		msgptr[msglen++] = M_X_SYNC_REQ;
1484 		msgptr[msglen++] = goal->period;
1485 		msgptr[msglen++] = goal->offset;
1486 		break;
1487 	case NS_WIDE:
1488 		msgptr[msglen++] = M_EXTENDED;
1489 		msgptr[msglen++] = 2;
1490 		msgptr[msglen++] = M_X_WIDE_REQ;
1491 		msgptr[msglen++] = goal->width;
1492 		break;
1493 	case NS_PPR:
1494 		msgptr[msglen++] = M_EXTENDED;
1495 		msgptr[msglen++] = 6;
1496 		msgptr[msglen++] = M_X_PPR_REQ;
1497 		msgptr[msglen++] = goal->period;
1498 		msgptr[msglen++] = 0;
1499 		msgptr[msglen++] = goal->offset;
1500 		msgptr[msglen++] = goal->width;
1501 		msgptr[msglen++] = (goal->iu ? PPR_OPT_IU : 0) |
1502 					(goal->dt ? PPR_OPT_DT : 0) |
1503 					(goal->qas ? PPR_OPT_QAS : 0);
1504 		break;
1505 	}
1506 
1507 	cp->nego_status = nego;
1508 
1509 	if (nego) {
1510 		tp->nego_cp = cp; /* Keep track a nego will be performed */
1511 		if (DEBUG_FLAGS & DEBUG_NEGO) {
1512 			sym_print_nego_msg(np, cp->target,
1513 					  nego == NS_SYNC ? "sync msgout" :
1514 					  nego == NS_WIDE ? "wide msgout" :
1515 					  "ppr msgout", msgptr);
1516 		}
1517 	}
1518 
1519 	return msglen;
1520 }
1521 
1522 /*
1523  *  Insert a job into the start queue.
1524  */
1525 void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp)
1526 {
1527 	u_short	qidx;
1528 
1529 #ifdef SYM_CONF_IARB_SUPPORT
1530 	/*
1531 	 *  If the previously queued CCB is not yet done,
1532 	 *  set the IARB hint. The SCRIPTS will go with IARB
1533 	 *  for this job when starting the previous one.
1534 	 *  We leave devices a chance to win arbitration by
1535 	 *  not using more than 'iarb_max' consecutive
1536 	 *  immediate arbitrations.
1537 	 */
1538 	if (np->last_cp && np->iarb_count < np->iarb_max) {
1539 		np->last_cp->host_flags |= HF_HINT_IARB;
1540 		++np->iarb_count;
1541 	}
1542 	else
1543 		np->iarb_count = 0;
1544 	np->last_cp = cp;
1545 #endif
1546 
1547 #if   SYM_CONF_DMA_ADDRESSING_MODE == 2
1548 	/*
1549 	 *  Make SCRIPTS aware of the 64 bit DMA
1550 	 *  segment registers not being up-to-date.
1551 	 */
1552 	if (np->dmap_dirty)
1553 		cp->host_xflags |= HX_DMAP_DIRTY;
1554 #endif
1555 
1556 	/*
1557 	 *  Insert first the idle task and then our job.
1558 	 *  The MBs should ensure proper ordering.
1559 	 */
1560 	qidx = np->squeueput + 2;
1561 	if (qidx >= MAX_QUEUE*2) qidx = 0;
1562 
1563 	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
1564 	MEMORY_WRITE_BARRIER();
1565 	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
1566 
1567 	np->squeueput = qidx;
1568 
1569 	if (DEBUG_FLAGS & DEBUG_QUEUE)
1570 		printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
1571 
1572 	/*
1573 	 *  Script processor may be waiting for reselect.
1574 	 *  Wake it up.
1575 	 */
1576 	MEMORY_WRITE_BARRIER();
1577 	OUTB(np, nc_istat, SIGP|np->istat_sem);
1578 }
1579 
1580 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1581 /*
1582  *  Start next ready-to-start CCBs.
1583  */
1584 void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn)
1585 {
1586 	SYM_QUEHEAD *qp;
1587 	struct sym_ccb *cp;
1588 
1589 	/*
1590 	 *  Paranoia, as usual. :-)
1591 	 */
1592 	assert(!lp->started_tags || !lp->started_no_tag);
1593 
1594 	/*
1595 	 *  Try to start as many commands as asked by caller.
1596 	 *  Prevent from having both tagged and untagged
1597 	 *  commands queued to the device at the same time.
1598 	 */
1599 	while (maxn--) {
1600 		qp = sym_remque_head(&lp->waiting_ccbq);
1601 		if (!qp)
1602 			break;
1603 		cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq);
1604 		if (cp->tag != NO_TAG) {
1605 			if (lp->started_no_tag ||
1606 			    lp->started_tags >= lp->started_max) {
1607 				sym_insque_head(qp, &lp->waiting_ccbq);
1608 				break;
1609 			}
1610 			lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba);
1611 			lp->head.resel_sa =
1612 				cpu_to_scr(SCRIPTA_BA(np, resel_tag));
1613 			++lp->started_tags;
1614 		} else {
1615 			if (lp->started_no_tag || lp->started_tags) {
1616 				sym_insque_head(qp, &lp->waiting_ccbq);
1617 				break;
1618 			}
1619 			lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
1620 			lp->head.resel_sa =
1621 			      cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
1622 			++lp->started_no_tag;
1623 		}
1624 		cp->started = 1;
1625 		sym_insque_tail(qp, &lp->started_ccbq);
1626 		sym_put_start_queue(np, cp);
1627 	}
1628 }
1629 #endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */
1630 
1631 /*
1632  *  The chip may have completed jobs. Look at the DONE QUEUE.
1633  *
1634  *  On paper, memory read barriers may be needed here to
1635  *  prevent out of order LOADs by the CPU from having
1636  *  prefetched stale data prior to DMA having occurred.
1637  */
1638 static int sym_wakeup_done (struct sym_hcb *np)
1639 {
1640 	struct sym_ccb *cp;
1641 	int i, n;
1642 	u32 dsa;
1643 
1644 	n = 0;
1645 	i = np->dqueueget;
1646 
1647 	/* MEMORY_READ_BARRIER(); */
1648 	while (1) {
1649 		dsa = scr_to_cpu(np->dqueue[i]);
1650 		if (!dsa)
1651 			break;
1652 		np->dqueue[i] = 0;
1653 		if ((i = i+2) >= MAX_QUEUE*2)
1654 			i = 0;
1655 
1656 		cp = sym_ccb_from_dsa(np, dsa);
1657 		if (cp) {
1658 			MEMORY_READ_BARRIER();
1659 			sym_complete_ok (np, cp);
1660 			++n;
1661 		}
1662 		else
1663 			printf ("%s: bad DSA (%x) in done queue.\n",
1664 				sym_name(np), (u_int) dsa);
1665 	}
1666 	np->dqueueget = i;
1667 
1668 	return n;
1669 }
1670 
1671 /*
1672  *  Complete all CCBs queued to the COMP queue.
1673  *
1674  *  These CCBs are assumed:
1675  *  - Not to be referenced either by devices or
1676  *    SCRIPTS-related queues and datas.
1677  *  - To have to be completed with an error condition
1678  *    or requeued.
1679  *
1680  *  The device queue freeze count is incremented
1681  *  for each CCB that does not prevent this.
1682  *  This function is called when all CCBs involved
1683  *  in error handling/recovery have been reaped.
1684  */
1685 static void sym_flush_comp_queue(struct sym_hcb *np, int cam_status)
1686 {
1687 	SYM_QUEHEAD *qp;
1688 	struct sym_ccb *cp;
1689 
1690 	while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) {
1691 		struct scsi_cmnd *cmd;
1692 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
1693 		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
1694 		/* Leave quiet CCBs waiting for resources */
1695 		if (cp->host_status == HS_WAIT)
1696 			continue;
1697 		cmd = cp->cmd;
1698 		if (cam_status)
1699 			sym_set_cam_status(cmd, cam_status);
1700 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1701 		if (sym_get_cam_status(cmd) == DID_SOFT_ERROR) {
1702 			struct sym_tcb *tp = &np->target[cp->target];
1703 			struct sym_lcb *lp = sym_lp(tp, cp->lun);
1704 			if (lp) {
1705 				sym_remque(&cp->link2_ccbq);
1706 				sym_insque_tail(&cp->link2_ccbq,
1707 				                &lp->waiting_ccbq);
1708 				if (cp->started) {
1709 					if (cp->tag != NO_TAG)
1710 						--lp->started_tags;
1711 					else
1712 						--lp->started_no_tag;
1713 				}
1714 			}
1715 			cp->started = 0;
1716 			continue;
1717 		}
1718 #endif
1719 		sym_free_ccb(np, cp);
1720 		sym_xpt_done(np, cmd);
1721 	}
1722 }
1723 
1724 /*
1725  *  Complete all active CCBs with error.
1726  *  Used on CHIP/SCSI RESET.
1727  */
1728 static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status)
1729 {
1730 	/*
1731 	 *  Move all active CCBs to the COMP queue
1732 	 *  and flush this queue.
1733 	 */
1734 	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
1735 	sym_que_init(&np->busy_ccbq);
1736 	sym_flush_comp_queue(np, cam_status);
1737 }
1738 
1739 /*
1740  *  Start chip.
1741  *
1742  *  'reason' means:
1743  *     0: initialisation.
1744  *     1: SCSI BUS RESET delivered or received.
1745  *     2: SCSI BUS MODE changed.
1746  */
1747 void sym_start_up (struct sym_hcb *np, int reason)
1748 {
1749  	int	i;
1750 	u32	phys;
1751 
1752  	/*
1753 	 *  Reset chip if asked, otherwise just clear fifos.
1754  	 */
1755 	if (reason == 1)
1756 		sym_soft_reset(np);
1757 	else {
1758 		OUTB(np, nc_stest3, TE|CSF);
1759 		OUTONB(np, nc_ctest3, CLF);
1760 	}
1761 
1762 	/*
1763 	 *  Clear Start Queue
1764 	 */
1765 	phys = np->squeue_ba;
1766 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
1767 		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
1768 		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
1769 	}
1770 	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1771 
1772 	/*
1773 	 *  Start at first entry.
1774 	 */
1775 	np->squeueput = 0;
1776 
1777 	/*
1778 	 *  Clear Done Queue
1779 	 */
1780 	phys = np->dqueue_ba;
1781 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
1782 		np->dqueue[i]   = 0;
1783 		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
1784 	}
1785 	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1786 
1787 	/*
1788 	 *  Start at first entry.
1789 	 */
1790 	np->dqueueget = 0;
1791 
1792 	/*
1793 	 *  Install patches in scripts.
1794 	 *  This also let point to first position the start
1795 	 *  and done queue pointers used from SCRIPTS.
1796 	 */
1797 	np->fw_patch(np);
1798 
1799 	/*
1800 	 *  Wakeup all pending jobs.
1801 	 */
1802 	sym_flush_busy_queue(np, DID_RESET);
1803 
1804 	/*
1805 	 *  Init chip.
1806 	 */
1807 	OUTB(np, nc_istat,  0x00);			/*  Remove Reset, abort */
1808 	INB(np, nc_mbox1);
1809 	udelay(2000); /* The 895 needs time for the bus mode to settle */
1810 
1811 	OUTB(np, nc_scntl0, np->rv_scntl0 | 0xc0);
1812 					/*  full arb., ena parity, par->ATN  */
1813 	OUTB(np, nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
1814 
1815 	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
1816 
1817 	OUTB(np, nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
1818 	OUTW(np, nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
1819 	OUTB(np, nc_istat , SIGP	);		/*  Signal Process */
1820 	OUTB(np, nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
1821 	OUTB(np, nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
1822 
1823 	OUTB(np, nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
1824 	OUTB(np, nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
1825 	OUTB(np, nc_ctest4, np->rv_ctest4);	/* Master parity checking */
1826 
1827 	/* Extended Sreq/Sack filtering not supported on the C10 */
1828 	if (np->features & FE_C10)
1829 		OUTB(np, nc_stest2, np->rv_stest2);
1830 	else
1831 		OUTB(np, nc_stest2, EXT|np->rv_stest2);
1832 
1833 	OUTB(np, nc_stest3, TE);			/* TolerANT enable */
1834 	OUTB(np, nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
1835 
1836 	/*
1837 	 *  For now, disable AIP generation on C1010-66.
1838 	 */
1839 	if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_66)
1840 		OUTB(np, nc_aipcntl1, DISAIP);
1841 
1842 	/*
1843 	 *  C10101 rev. 0 errata.
1844 	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
1845 	 *  STEST1 register to disable SGE. We probably should do
1846 	 *  that from SCRIPTS for each selection/reselection, but
1847 	 *  I just don't want. :)
1848 	 */
1849 	if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_33 &&
1850 	    np->revision_id < 1)
1851 		OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30);
1852 
1853 	/*
1854 	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
1855 	 *  Disable overlapped arbitration for some dual function devices,
1856 	 *  regardless revision id (kind of post-chip-design feature. ;-))
1857 	 */
1858 	if (np->device_id == PCI_DEVICE_ID_NCR_53C875)
1859 		OUTB(np, nc_ctest0, (1<<5));
1860 	else if (np->device_id == PCI_DEVICE_ID_NCR_53C896)
1861 		np->rv_ccntl0 |= DPR;
1862 
1863 	/*
1864 	 *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
1865 	 *  and/or hardware phase mismatch, since only such chips
1866 	 *  seem to support those IO registers.
1867 	 */
1868 	if (np->features & (FE_DAC|FE_NOPM)) {
1869 		OUTB(np, nc_ccntl0, np->rv_ccntl0);
1870 		OUTB(np, nc_ccntl1, np->rv_ccntl1);
1871 	}
1872 
1873 #if	SYM_CONF_DMA_ADDRESSING_MODE == 2
1874 	/*
1875 	 *  Set up scratch C and DRS IO registers to map the 32 bit
1876 	 *  DMA address range our data structures are located in.
1877 	 */
1878 	if (np->use_dac) {
1879 		np->dmap_bah[0] = 0;	/* ??? */
1880 		OUTL(np, nc_scrx[0], np->dmap_bah[0]);
1881 		OUTL(np, nc_drs, np->dmap_bah[0]);
1882 	}
1883 #endif
1884 
1885 	/*
1886 	 *  If phase mismatch handled by scripts (895A/896/1010),
1887 	 *  set PM jump addresses.
1888 	 */
1889 	if (np->features & FE_NOPM) {
1890 		OUTL(np, nc_pmjad1, SCRIPTB_BA(np, pm_handle));
1891 		OUTL(np, nc_pmjad2, SCRIPTB_BA(np, pm_handle));
1892 	}
1893 
1894 	/*
1895 	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
1896 	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
1897 	 */
1898 	if (np->features & FE_LED0)
1899 		OUTB(np, nc_gpcntl, INB(np, nc_gpcntl) & ~0x01);
1900 	else if (np->features & FE_LEDC)
1901 		OUTB(np, nc_gpcntl, (INB(np, nc_gpcntl) & ~0x41) | 0x20);
1902 
1903 	/*
1904 	 *      enable ints
1905 	 */
1906 	OUTW(np, nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
1907 	OUTB(np, nc_dien , MDPE|BF|SSI|SIR|IID);
1908 
1909 	/*
1910 	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
1911 	 *  Try to eat the spurious SBMC interrupt that may occur when
1912 	 *  we reset the chip but not the SCSI BUS (at initialization).
1913 	 */
1914 	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
1915 		OUTONW(np, nc_sien, SBMC);
1916 		if (reason == 0) {
1917 			INB(np, nc_mbox1);
1918 			mdelay(100);
1919 			INW(np, nc_sist);
1920 		}
1921 		np->scsi_mode = INB(np, nc_stest4) & SMODE;
1922 	}
1923 
1924 	/*
1925 	 *  Fill in target structure.
1926 	 *  Reinitialize usrsync.
1927 	 *  Reinitialize usrwide.
1928 	 *  Prepare sync negotiation according to actual SCSI bus mode.
1929 	 */
1930 	for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
1931 		struct sym_tcb *tp = &np->target[i];
1932 
1933 		tp->to_reset  = 0;
1934 		tp->head.sval = 0;
1935 		tp->head.wval = np->rv_scntl3;
1936 		tp->head.uval = 0;
1937 	}
1938 
1939 	/*
1940 	 *  Download SCSI SCRIPTS to on-chip RAM if present,
1941 	 *  and start script processor.
1942 	 *  We do the download preferently from the CPU.
1943 	 *  For platforms that may not support PCI memory mapping,
1944 	 *  we use simple SCRIPTS that performs MEMORY MOVEs.
1945 	 */
1946 	phys = SCRIPTA_BA(np, init);
1947 	if (np->ram_ba) {
1948 		if (sym_verbose >= 2)
1949 			printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np));
1950 		memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz);
1951 		if (np->ram_ws == 8192) {
1952 			memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz);
1953 			phys = scr_to_cpu(np->scr_ram_seg);
1954 			OUTL(np, nc_mmws, phys);
1955 			OUTL(np, nc_mmrs, phys);
1956 			OUTL(np, nc_sfs,  phys);
1957 			phys = SCRIPTB_BA(np, start64);
1958 		}
1959 	}
1960 
1961 	np->istat_sem = 0;
1962 
1963 	OUTL(np, nc_dsa, np->hcb_ba);
1964 	OUTL_DSP(np, phys);
1965 
1966 	/*
1967 	 *  Notify the XPT about the RESET condition.
1968 	 */
1969 	if (reason != 0)
1970 		sym_xpt_async_bus_reset(np);
1971 }
1972 
1973 /*
1974  *  Switch trans mode for current job and its target.
1975  */
1976 static void sym_settrans(struct sym_hcb *np, int target, u_char opts, u_char ofs,
1977 			 u_char per, u_char wide, u_char div, u_char fak)
1978 {
1979 	SYM_QUEHEAD *qp;
1980 	u_char sval, wval, uval;
1981 	struct sym_tcb *tp = &np->target[target];
1982 
1983 	assert(target == (INB(np, nc_sdid) & 0x0f));
1984 
1985 	sval = tp->head.sval;
1986 	wval = tp->head.wval;
1987 	uval = tp->head.uval;
1988 
1989 #if 0
1990 	printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
1991 		sval, wval, uval, np->rv_scntl3);
1992 #endif
1993 	/*
1994 	 *  Set the offset.
1995 	 */
1996 	if (!(np->features & FE_C10))
1997 		sval = (sval & ~0x1f) | ofs;
1998 	else
1999 		sval = (sval & ~0x3f) | ofs;
2000 
2001 	/*
2002 	 *  Set the sync divisor and extra clock factor.
2003 	 */
2004 	if (ofs != 0) {
2005 		wval = (wval & ~0x70) | ((div+1) << 4);
2006 		if (!(np->features & FE_C10))
2007 			sval = (sval & ~0xe0) | (fak << 5);
2008 		else {
2009 			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
2010 			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
2011 			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
2012 		}
2013 	}
2014 
2015 	/*
2016 	 *  Set the bus width.
2017 	 */
2018 	wval = wval & ~EWS;
2019 	if (wide != 0)
2020 		wval |= EWS;
2021 
2022 	/*
2023 	 *  Set misc. ultra enable bits.
2024 	 */
2025 	if (np->features & FE_C10) {
2026 		uval = uval & ~(U3EN|AIPCKEN);
2027 		if (opts)	{
2028 			assert(np->features & FE_U3EN);
2029 			uval |= U3EN;
2030 		}
2031 	} else {
2032 		wval = wval & ~ULTRA;
2033 		if (per <= 12)	wval |= ULTRA;
2034 	}
2035 
2036 	/*
2037 	 *   Stop there if sync parameters are unchanged.
2038 	 */
2039 	if (tp->head.sval == sval &&
2040 	    tp->head.wval == wval &&
2041 	    tp->head.uval == uval)
2042 		return;
2043 	tp->head.sval = sval;
2044 	tp->head.wval = wval;
2045 	tp->head.uval = uval;
2046 
2047 	/*
2048 	 *  Disable extended Sreq/Sack filtering if per < 50.
2049 	 *  Not supported on the C1010.
2050 	 */
2051 	if (per < 50 && !(np->features & FE_C10))
2052 		OUTOFFB(np, nc_stest2, EXT);
2053 
2054 	/*
2055 	 *  set actual value and sync_status
2056 	 */
2057 	OUTB(np, nc_sxfer,  tp->head.sval);
2058 	OUTB(np, nc_scntl3, tp->head.wval);
2059 
2060 	if (np->features & FE_C10) {
2061 		OUTB(np, nc_scntl4, tp->head.uval);
2062 	}
2063 
2064 	/*
2065 	 *  patch ALL busy ccbs of this target.
2066 	 */
2067 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
2068 		struct sym_ccb *cp;
2069 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
2070 		if (cp->target != target)
2071 			continue;
2072 		cp->phys.select.sel_scntl3 = tp->head.wval;
2073 		cp->phys.select.sel_sxfer  = tp->head.sval;
2074 		if (np->features & FE_C10) {
2075 			cp->phys.select.sel_scntl4 = tp->head.uval;
2076 		}
2077 	}
2078 }
2079 
2080 /*
2081  *  We received a WDTR.
2082  *  Let everything be aware of the changes.
2083  */
2084 static void sym_setwide(struct sym_hcb *np, int target, u_char wide)
2085 {
2086 	struct sym_tcb *tp = &np->target[target];
2087 	struct scsi_target *starget = tp->starget;
2088 
2089 	if (spi_width(starget) == wide)
2090 		return;
2091 
2092 	sym_settrans(np, target, 0, 0, 0, wide, 0, 0);
2093 
2094 	tp->tgoal.width = wide;
2095 	spi_offset(starget) = 0;
2096 	spi_period(starget) = 0;
2097 	spi_width(starget) = wide;
2098 	spi_iu(starget) = 0;
2099 	spi_dt(starget) = 0;
2100 	spi_qas(starget) = 0;
2101 
2102 	if (sym_verbose >= 3)
2103 		spi_display_xfer_agreement(starget);
2104 }
2105 
2106 /*
2107  *  We received a SDTR.
2108  *  Let everything be aware of the changes.
2109  */
2110 static void
2111 sym_setsync(struct sym_hcb *np, int target,
2112             u_char ofs, u_char per, u_char div, u_char fak)
2113 {
2114 	struct sym_tcb *tp = &np->target[target];
2115 	struct scsi_target *starget = tp->starget;
2116 	u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT;
2117 
2118 	sym_settrans(np, target, 0, ofs, per, wide, div, fak);
2119 
2120 	spi_period(starget) = per;
2121 	spi_offset(starget) = ofs;
2122 	spi_iu(starget) = spi_dt(starget) = spi_qas(starget) = 0;
2123 
2124 	if (!tp->tgoal.dt && !tp->tgoal.iu && !tp->tgoal.qas) {
2125 		tp->tgoal.period = per;
2126 		tp->tgoal.offset = ofs;
2127 		tp->tgoal.check_nego = 0;
2128 	}
2129 
2130 	spi_display_xfer_agreement(starget);
2131 }
2132 
2133 /*
2134  *  We received a PPR.
2135  *  Let everything be aware of the changes.
2136  */
2137 static void
2138 sym_setpprot(struct sym_hcb *np, int target, u_char opts, u_char ofs,
2139              u_char per, u_char wide, u_char div, u_char fak)
2140 {
2141 	struct sym_tcb *tp = &np->target[target];
2142 	struct scsi_target *starget = tp->starget;
2143 
2144 	sym_settrans(np, target, opts, ofs, per, wide, div, fak);
2145 
2146 	spi_width(starget) = tp->tgoal.width = wide;
2147 	spi_period(starget) = tp->tgoal.period = per;
2148 	spi_offset(starget) = tp->tgoal.offset = ofs;
2149 	spi_iu(starget) = tp->tgoal.iu = !!(opts & PPR_OPT_IU);
2150 	spi_dt(starget) = tp->tgoal.dt = !!(opts & PPR_OPT_DT);
2151 	spi_qas(starget) = tp->tgoal.qas = !!(opts & PPR_OPT_QAS);
2152 	tp->tgoal.check_nego = 0;
2153 
2154 	spi_display_xfer_agreement(starget);
2155 }
2156 
2157 /*
2158  *  generic recovery from scsi interrupt
2159  *
2160  *  The doc says that when the chip gets an SCSI interrupt,
2161  *  it tries to stop in an orderly fashion, by completing
2162  *  an instruction fetch that had started or by flushing
2163  *  the DMA fifo for a write to memory that was executing.
2164  *  Such a fashion is not enough to know if the instruction
2165  *  that was just before the current DSP value has been
2166  *  executed or not.
2167  *
2168  *  There are some small SCRIPTS sections that deal with
2169  *  the start queue and the done queue that may break any
2170  *  assomption from the C code if we are interrupted
2171  *  inside, so we reset if this happens. Btw, since these
2172  *  SCRIPTS sections are executed while the SCRIPTS hasn't
2173  *  started SCSI operations, it is very unlikely to happen.
2174  *
2175  *  All the driver data structures are supposed to be
2176  *  allocated from the same 4 GB memory window, so there
2177  *  is a 1 to 1 relationship between DSA and driver data
2178  *  structures. Since we are careful :) to invalidate the
2179  *  DSA when we complete a command or when the SCRIPTS
2180  *  pushes a DSA into a queue, we can trust it when it
2181  *  points to a CCB.
2182  */
2183 static void sym_recover_scsi_int (struct sym_hcb *np, u_char hsts)
2184 {
2185 	u32	dsp	= INL(np, nc_dsp);
2186 	u32	dsa	= INL(np, nc_dsa);
2187 	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
2188 
2189 	/*
2190 	 *  If we haven't been interrupted inside the SCRIPTS
2191 	 *  critical pathes, we can safely restart the SCRIPTS
2192 	 *  and trust the DSA value if it matches a CCB.
2193 	 */
2194 	if ((!(dsp > SCRIPTA_BA(np, getjob_begin) &&
2195 	       dsp < SCRIPTA_BA(np, getjob_end) + 1)) &&
2196 	    (!(dsp > SCRIPTA_BA(np, ungetjob) &&
2197 	       dsp < SCRIPTA_BA(np, reselect) + 1)) &&
2198 	    (!(dsp > SCRIPTB_BA(np, sel_for_abort) &&
2199 	       dsp < SCRIPTB_BA(np, sel_for_abort_1) + 1)) &&
2200 	    (!(dsp > SCRIPTA_BA(np, done) &&
2201 	       dsp < SCRIPTA_BA(np, done_end) + 1))) {
2202 		OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo  */
2203 		OUTB(np, nc_stest3, TE|CSF);		/* clear scsi fifo */
2204 		/*
2205 		 *  If we have a CCB, let the SCRIPTS call us back for
2206 		 *  the handling of the error with SCRATCHA filled with
2207 		 *  STARTPOS. This way, we will be able to freeze the
2208 		 *  device queue and requeue awaiting IOs.
2209 		 */
2210 		if (cp) {
2211 			cp->host_status = hsts;
2212 			OUTL_DSP(np, SCRIPTA_BA(np, complete_error));
2213 		}
2214 		/*
2215 		 *  Otherwise just restart the SCRIPTS.
2216 		 */
2217 		else {
2218 			OUTL(np, nc_dsa, 0xffffff);
2219 			OUTL_DSP(np, SCRIPTA_BA(np, start));
2220 		}
2221 	}
2222 	else
2223 		goto reset_all;
2224 
2225 	return;
2226 
2227 reset_all:
2228 	sym_start_reset(np);
2229 }
2230 
2231 /*
2232  *  chip exception handler for selection timeout
2233  */
2234 static void sym_int_sto (struct sym_hcb *np)
2235 {
2236 	u32 dsp	= INL(np, nc_dsp);
2237 
2238 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
2239 
2240 	if (dsp == SCRIPTA_BA(np, wf_sel_done) + 8)
2241 		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
2242 	else
2243 		sym_start_reset(np);
2244 }
2245 
2246 /*
2247  *  chip exception handler for unexpected disconnect
2248  */
2249 static void sym_int_udc (struct sym_hcb *np)
2250 {
2251 	printf ("%s: unexpected disconnect\n", sym_name(np));
2252 	sym_recover_scsi_int(np, HS_UNEXPECTED);
2253 }
2254 
2255 /*
2256  *  chip exception handler for SCSI bus mode change
2257  *
2258  *  spi2-r12 11.2.3 says a transceiver mode change must
2259  *  generate a reset event and a device that detects a reset
2260  *  event shall initiate a hard reset. It says also that a
2261  *  device that detects a mode change shall set data transfer
2262  *  mode to eight bit asynchronous, etc...
2263  *  So, just reinitializing all except chip should be enough.
2264  */
2265 static void sym_int_sbmc (struct sym_hcb *np)
2266 {
2267 	u_char scsi_mode = INB(np, nc_stest4) & SMODE;
2268 
2269 	/*
2270 	 *  Notify user.
2271 	 */
2272 	printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np),
2273 		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
2274 
2275 	/*
2276 	 *  Should suspend command processing for a few seconds and
2277 	 *  reinitialize all except the chip.
2278 	 */
2279 	sym_start_up (np, 2);
2280 }
2281 
2282 /*
2283  *  chip exception handler for SCSI parity error.
2284  *
2285  *  When the chip detects a SCSI parity error and is
2286  *  currently executing a (CH)MOV instruction, it does
2287  *  not interrupt immediately, but tries to finish the
2288  *  transfer of the current scatter entry before
2289  *  interrupting. The following situations may occur:
2290  *
2291  *  - The complete scatter entry has been transferred
2292  *    without the device having changed phase.
2293  *    The chip will then interrupt with the DSP pointing
2294  *    to the instruction that follows the MOV.
2295  *
2296  *  - A phase mismatch occurs before the MOV finished
2297  *    and phase errors are to be handled by the C code.
2298  *    The chip will then interrupt with both PAR and MA
2299  *    conditions set.
2300  *
2301  *  - A phase mismatch occurs before the MOV finished and
2302  *    phase errors are to be handled by SCRIPTS.
2303  *    The chip will load the DSP with the phase mismatch
2304  *    JUMP address and interrupt the host processor.
2305  */
2306 static void sym_int_par (struct sym_hcb *np, u_short sist)
2307 {
2308 	u_char	hsts	= INB(np, HS_PRT);
2309 	u32	dsp	= INL(np, nc_dsp);
2310 	u32	dbc	= INL(np, nc_dbc);
2311 	u32	dsa	= INL(np, nc_dsa);
2312 	u_char	sbcl	= INB(np, nc_sbcl);
2313 	u_char	cmd	= dbc >> 24;
2314 	int phase	= cmd & 7;
2315 	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
2316 
2317 	printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
2318 		sym_name(np), hsts, dbc, sbcl);
2319 
2320 	/*
2321 	 *  Check that the chip is connected to the SCSI BUS.
2322 	 */
2323 	if (!(INB(np, nc_scntl1) & ISCON)) {
2324 		sym_recover_scsi_int(np, HS_UNEXPECTED);
2325 		return;
2326 	}
2327 
2328 	/*
2329 	 *  If the nexus is not clearly identified, reset the bus.
2330 	 *  We will try to do better later.
2331 	 */
2332 	if (!cp)
2333 		goto reset_all;
2334 
2335 	/*
2336 	 *  Check instruction was a MOV, direction was INPUT and
2337 	 *  ATN is asserted.
2338 	 */
2339 	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
2340 		goto reset_all;
2341 
2342 	/*
2343 	 *  Keep track of the parity error.
2344 	 */
2345 	OUTONB(np, HF_PRT, HF_EXT_ERR);
2346 	cp->xerr_status |= XE_PARITY_ERR;
2347 
2348 	/*
2349 	 *  Prepare the message to send to the device.
2350 	 */
2351 	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
2352 
2353 	/*
2354 	 *  If the old phase was DATA IN phase, we have to deal with
2355 	 *  the 3 situations described above.
2356 	 *  For other input phases (MSG IN and STATUS), the device
2357 	 *  must resend the whole thing that failed parity checking
2358 	 *  or signal error. So, jumping to dispatcher should be OK.
2359 	 */
2360 	if (phase == 1 || phase == 5) {
2361 		/* Phase mismatch handled by SCRIPTS */
2362 		if (dsp == SCRIPTB_BA(np, pm_handle))
2363 			OUTL_DSP(np, dsp);
2364 		/* Phase mismatch handled by the C code */
2365 		else if (sist & MA)
2366 			sym_int_ma (np);
2367 		/* No phase mismatch occurred */
2368 		else {
2369 			sym_set_script_dp (np, cp, dsp);
2370 			OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2371 		}
2372 	}
2373 	else if (phase == 7)	/* We definitely cannot handle parity errors */
2374 #if 1				/* in message-in phase due to the relection  */
2375 		goto reset_all; /* path and various message anticipations.   */
2376 #else
2377 		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
2378 #endif
2379 	else
2380 		OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2381 	return;
2382 
2383 reset_all:
2384 	sym_start_reset(np);
2385 	return;
2386 }
2387 
2388 /*
2389  *  chip exception handler for phase errors.
2390  *
2391  *  We have to construct a new transfer descriptor,
2392  *  to transfer the rest of the current block.
2393  */
2394 static void sym_int_ma (struct sym_hcb *np)
2395 {
2396 	u32	dbc;
2397 	u32	rest;
2398 	u32	dsp;
2399 	u32	dsa;
2400 	u32	nxtdsp;
2401 	u32	*vdsp;
2402 	u32	oadr, olen;
2403 	u32	*tblp;
2404         u32	newcmd;
2405 	u_int	delta;
2406 	u_char	cmd;
2407 	u_char	hflags, hflags0;
2408 	struct	sym_pmc *pm;
2409 	struct sym_ccb *cp;
2410 
2411 	dsp	= INL(np, nc_dsp);
2412 	dbc	= INL(np, nc_dbc);
2413 	dsa	= INL(np, nc_dsa);
2414 
2415 	cmd	= dbc >> 24;
2416 	rest	= dbc & 0xffffff;
2417 	delta	= 0;
2418 
2419 	/*
2420 	 *  locate matching cp if any.
2421 	 */
2422 	cp = sym_ccb_from_dsa(np, dsa);
2423 
2424 	/*
2425 	 *  Donnot take into account dma fifo and various buffers in
2426 	 *  INPUT phase since the chip flushes everything before
2427 	 *  raising the MA interrupt for interrupted INPUT phases.
2428 	 *  For DATA IN phase, we will check for the SWIDE later.
2429 	 */
2430 	if ((cmd & 7) != 1 && (cmd & 7) != 5) {
2431 		u_char ss0, ss2;
2432 
2433 		if (np->features & FE_DFBC)
2434 			delta = INW(np, nc_dfbc);
2435 		else {
2436 			u32 dfifo;
2437 
2438 			/*
2439 			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
2440 			 */
2441 			dfifo = INL(np, nc_dfifo);
2442 
2443 			/*
2444 			 *  Calculate remaining bytes in DMA fifo.
2445 			 *  (CTEST5 = dfifo >> 16)
2446 			 */
2447 			if (dfifo & (DFS << 16))
2448 				delta = ((((dfifo >> 8) & 0x300) |
2449 				          (dfifo & 0xff)) - rest) & 0x3ff;
2450 			else
2451 				delta = ((dfifo & 0xff) - rest) & 0x7f;
2452 		}
2453 
2454 		/*
2455 		 *  The data in the dma fifo has not been transfered to
2456 		 *  the target -> add the amount to the rest
2457 		 *  and clear the data.
2458 		 *  Check the sstat2 register in case of wide transfer.
2459 		 */
2460 		rest += delta;
2461 		ss0  = INB(np, nc_sstat0);
2462 		if (ss0 & OLF) rest++;
2463 		if (!(np->features & FE_C10))
2464 			if (ss0 & ORF) rest++;
2465 		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
2466 			ss2 = INB(np, nc_sstat2);
2467 			if (ss2 & OLF1) rest++;
2468 			if (!(np->features & FE_C10))
2469 				if (ss2 & ORF1) rest++;
2470 		}
2471 
2472 		/*
2473 		 *  Clear fifos.
2474 		 */
2475 		OUTB(np, nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
2476 		OUTB(np, nc_stest3, TE|CSF);		/* scsi fifo */
2477 	}
2478 
2479 	/*
2480 	 *  log the information
2481 	 */
2482 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
2483 		printf ("P%x%x RL=%d D=%d ", cmd&7, INB(np, nc_sbcl)&7,
2484 			(unsigned) rest, (unsigned) delta);
2485 
2486 	/*
2487 	 *  try to find the interrupted script command,
2488 	 *  and the address at which to continue.
2489 	 */
2490 	vdsp	= NULL;
2491 	nxtdsp	= 0;
2492 	if	(dsp >  np->scripta_ba &&
2493 		 dsp <= np->scripta_ba + np->scripta_sz) {
2494 		vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
2495 		nxtdsp = dsp;
2496 	}
2497 	else if	(dsp >  np->scriptb_ba &&
2498 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
2499 		vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
2500 		nxtdsp = dsp;
2501 	}
2502 
2503 	/*
2504 	 *  log the information
2505 	 */
2506 	if (DEBUG_FLAGS & DEBUG_PHASE) {
2507 		printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
2508 			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
2509 	}
2510 
2511 	if (!vdsp) {
2512 		printf ("%s: interrupted SCRIPT address not found.\n",
2513 			sym_name (np));
2514 		goto reset_all;
2515 	}
2516 
2517 	if (!cp) {
2518 		printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
2519 			sym_name (np));
2520 		goto reset_all;
2521 	}
2522 
2523 	/*
2524 	 *  get old startaddress and old length.
2525 	 */
2526 	oadr = scr_to_cpu(vdsp[1]);
2527 
2528 	if (cmd & 0x10) {	/* Table indirect */
2529 		tblp = (u32 *) ((char*) &cp->phys + oadr);
2530 		olen = scr_to_cpu(tblp[0]);
2531 		oadr = scr_to_cpu(tblp[1]);
2532 	} else {
2533 		tblp = (u32 *) 0;
2534 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
2535 	}
2536 
2537 	if (DEBUG_FLAGS & DEBUG_PHASE) {
2538 		printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
2539 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
2540 			tblp,
2541 			(unsigned) olen,
2542 			(unsigned) oadr);
2543 	}
2544 
2545 	/*
2546 	 *  check cmd against assumed interrupted script command.
2547 	 *  If dt data phase, the MOVE instruction hasn't bit 4 of
2548 	 *  the phase.
2549 	 */
2550 	if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
2551 		sym_print_addr(cp->cmd,
2552 			"internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
2553 			cmd, scr_to_cpu(vdsp[0]) >> 24);
2554 
2555 		goto reset_all;
2556 	}
2557 
2558 	/*
2559 	 *  if old phase not dataphase, leave here.
2560 	 */
2561 	if (cmd & 2) {
2562 		sym_print_addr(cp->cmd,
2563 			"phase change %x-%x %d@%08x resid=%d.\n",
2564 			cmd&7, INB(np, nc_sbcl)&7, (unsigned)olen,
2565 			(unsigned)oadr, (unsigned)rest);
2566 		goto unexpected_phase;
2567 	}
2568 
2569 	/*
2570 	 *  Choose the correct PM save area.
2571 	 *
2572 	 *  Look at the PM_SAVE SCRIPT if you want to understand
2573 	 *  this stuff. The equivalent code is implemented in
2574 	 *  SCRIPTS for the 895A, 896 and 1010 that are able to
2575 	 *  handle PM from the SCRIPTS processor.
2576 	 */
2577 	hflags0 = INB(np, HF_PRT);
2578 	hflags = hflags0;
2579 
2580 	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
2581 		if (hflags & HF_IN_PM0)
2582 			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
2583 		else if	(hflags & HF_IN_PM1)
2584 			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
2585 
2586 		if (hflags & HF_DP_SAVED)
2587 			hflags ^= HF_ACT_PM;
2588 	}
2589 
2590 	if (!(hflags & HF_ACT_PM)) {
2591 		pm = &cp->phys.pm0;
2592 		newcmd = SCRIPTA_BA(np, pm0_data);
2593 	}
2594 	else {
2595 		pm = &cp->phys.pm1;
2596 		newcmd = SCRIPTA_BA(np, pm1_data);
2597 	}
2598 
2599 	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
2600 	if (hflags != hflags0)
2601 		OUTB(np, HF_PRT, hflags);
2602 
2603 	/*
2604 	 *  fillin the phase mismatch context
2605 	 */
2606 	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
2607 	pm->sg.size = cpu_to_scr(rest);
2608 	pm->ret     = cpu_to_scr(nxtdsp);
2609 
2610 	/*
2611 	 *  If we have a SWIDE,
2612 	 *  - prepare the address to write the SWIDE from SCRIPTS,
2613 	 *  - compute the SCRIPTS address to restart from,
2614 	 *  - move current data pointer context by one byte.
2615 	 */
2616 	nxtdsp = SCRIPTA_BA(np, dispatch);
2617 	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
2618 	    (INB(np, nc_scntl2) & WSR)) {
2619 		u32 tmp;
2620 
2621 		/*
2622 		 *  Set up the table indirect for the MOVE
2623 		 *  of the residual byte and adjust the data
2624 		 *  pointer context.
2625 		 */
2626 		tmp = scr_to_cpu(pm->sg.addr);
2627 		cp->phys.wresid.addr = cpu_to_scr(tmp);
2628 		pm->sg.addr = cpu_to_scr(tmp + 1);
2629 		tmp = scr_to_cpu(pm->sg.size);
2630 		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
2631 		pm->sg.size = cpu_to_scr(tmp - 1);
2632 
2633 		/*
2634 		 *  If only the residual byte is to be moved,
2635 		 *  no PM context is needed.
2636 		 */
2637 		if ((tmp&0xffffff) == 1)
2638 			newcmd = pm->ret;
2639 
2640 		/*
2641 		 *  Prepare the address of SCRIPTS that will
2642 		 *  move the residual byte to memory.
2643 		 */
2644 		nxtdsp = SCRIPTB_BA(np, wsr_ma_helper);
2645 	}
2646 
2647 	if (DEBUG_FLAGS & DEBUG_PHASE) {
2648 		sym_print_addr(cp->cmd, "PM %x %x %x / %x %x %x.\n",
2649 			hflags0, hflags, newcmd,
2650 			(unsigned)scr_to_cpu(pm->sg.addr),
2651 			(unsigned)scr_to_cpu(pm->sg.size),
2652 			(unsigned)scr_to_cpu(pm->ret));
2653 	}
2654 
2655 	/*
2656 	 *  Restart the SCRIPTS processor.
2657 	 */
2658 	sym_set_script_dp (np, cp, newcmd);
2659 	OUTL_DSP(np, nxtdsp);
2660 	return;
2661 
2662 	/*
2663 	 *  Unexpected phase changes that occurs when the current phase
2664 	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
2665 	 *  Such event may only happen when the SCRIPTS is using a
2666 	 *  multibyte SCSI MOVE.
2667 	 *
2668 	 *  Phase change		Some possible cause
2669 	 *
2670 	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
2671 	 *  COMMAND  --> STATUS	Bad command or refused by target.
2672 	 *  MSG OUT  --> MSG IN     Message rejected by target.
2673 	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
2674 	 *  			negotiation messages.
2675 	 *
2676 	 *  The code below does not care of the new phase and so
2677 	 *  trusts the target. Why to annoy it ?
2678 	 *  If the interrupted phase is COMMAND phase, we restart at
2679 	 *  dispatcher.
2680 	 *  If a target does not get all the messages after selection,
2681 	 *  the code assumes blindly that the target discards extended
2682 	 *  messages and clears the negotiation status.
2683 	 *  If the target does not want all our response to negotiation,
2684 	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
2685 	 *  bloat for such a should_not_happen situation).
2686 	 *  In all other situation, we reset the BUS.
2687 	 *  Are these assumptions reasonnable ? (Wait and see ...)
2688 	 */
2689 unexpected_phase:
2690 	dsp -= 8;
2691 	nxtdsp = 0;
2692 
2693 	switch (cmd & 7) {
2694 	case 2:	/* COMMAND phase */
2695 		nxtdsp = SCRIPTA_BA(np, dispatch);
2696 		break;
2697 #if 0
2698 	case 3:	/* STATUS  phase */
2699 		nxtdsp = SCRIPTA_BA(np, dispatch);
2700 		break;
2701 #endif
2702 	case 6:	/* MSG OUT phase */
2703 		/*
2704 		 *  If the device may want to use untagged when we want
2705 		 *  tagged, we prepare an IDENTIFY without disc. granted,
2706 		 *  since we will not be able to handle reselect.
2707 		 *  Otherwise, we just don't care.
2708 		 */
2709 		if	(dsp == SCRIPTA_BA(np, send_ident)) {
2710 			if (cp->tag != NO_TAG && olen - rest <= 3) {
2711 				cp->host_status = HS_BUSY;
2712 				np->msgout[0] = IDENTIFY(0, cp->lun);
2713 				nxtdsp = SCRIPTB_BA(np, ident_break_atn);
2714 			}
2715 			else
2716 				nxtdsp = SCRIPTB_BA(np, ident_break);
2717 		}
2718 		else if	(dsp == SCRIPTB_BA(np, send_wdtr) ||
2719 			 dsp == SCRIPTB_BA(np, send_sdtr) ||
2720 			 dsp == SCRIPTB_BA(np, send_ppr)) {
2721 			nxtdsp = SCRIPTB_BA(np, nego_bad_phase);
2722 			if (dsp == SCRIPTB_BA(np, send_ppr)) {
2723 				struct scsi_device *dev = cp->cmd->device;
2724 				dev->ppr = 0;
2725 			}
2726 		}
2727 		break;
2728 #if 0
2729 	case 7:	/* MSG IN  phase */
2730 		nxtdsp = SCRIPTA_BA(np, clrack);
2731 		break;
2732 #endif
2733 	}
2734 
2735 	if (nxtdsp) {
2736 		OUTL_DSP(np, nxtdsp);
2737 		return;
2738 	}
2739 
2740 reset_all:
2741 	sym_start_reset(np);
2742 }
2743 
2744 /*
2745  *  chip interrupt handler
2746  *
2747  *  In normal situations, interrupt conditions occur one at
2748  *  a time. But when something bad happens on the SCSI BUS,
2749  *  the chip may raise several interrupt flags before
2750  *  stopping and interrupting the CPU. The additionnal
2751  *  interrupt flags are stacked in some extra registers
2752  *  after the SIP and/or DIP flag has been raised in the
2753  *  ISTAT. After the CPU has read the interrupt condition
2754  *  flag from SIST or DSTAT, the chip unstacks the other
2755  *  interrupt flags and sets the corresponding bits in
2756  *  SIST or DSTAT. Since the chip starts stacking once the
2757  *  SIP or DIP flag is set, there is a small window of time
2758  *  where the stacking does not occur.
2759  *
2760  *  Typically, multiple interrupt conditions may happen in
2761  *  the following situations:
2762  *
2763  *  - SCSI parity error + Phase mismatch  (PAR|MA)
2764  *    When an parity error is detected in input phase
2765  *    and the device switches to msg-in phase inside a
2766  *    block MOV.
2767  *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
2768  *    When a stupid device does not want to handle the
2769  *    recovery of an SCSI parity error.
2770  *  - Some combinations of STO, PAR, UDC, ...
2771  *    When using non compliant SCSI stuff, when user is
2772  *    doing non compliant hot tampering on the BUS, when
2773  *    something really bad happens to a device, etc ...
2774  *
2775  *  The heuristic suggested by SYMBIOS to handle
2776  *  multiple interrupts is to try unstacking all
2777  *  interrupts conditions and to handle them on some
2778  *  priority based on error severity.
2779  *  This will work when the unstacking has been
2780  *  successful, but we cannot be 100 % sure of that,
2781  *  since the CPU may have been faster to unstack than
2782  *  the chip is able to stack. Hmmm ... But it seems that
2783  *  such a situation is very unlikely to happen.
2784  *
2785  *  If this happen, for example STO caught by the CPU
2786  *  then UDC happenning before the CPU have restarted
2787  *  the SCRIPTS, the driver may wrongly complete the
2788  *  same command on UDC, since the SCRIPTS didn't restart
2789  *  and the DSA still points to the same command.
2790  *  We avoid this situation by setting the DSA to an
2791  *  invalid value when the CCB is completed and before
2792  *  restarting the SCRIPTS.
2793  *
2794  *  Another issue is that we need some section of our
2795  *  recovery procedures to be somehow uninterruptible but
2796  *  the SCRIPTS processor does not provides such a
2797  *  feature. For this reason, we handle recovery preferently
2798  *  from the C code and check against some SCRIPTS critical
2799  *  sections from the C code.
2800  *
2801  *  Hopefully, the interrupt handling of the driver is now
2802  *  able to resist to weird BUS error conditions, but donnot
2803  *  ask me for any guarantee that it will never fail. :-)
2804  *  Use at your own decision and risk.
2805  */
2806 
2807 void sym_interrupt (struct sym_hcb *np)
2808 {
2809 	u_char	istat, istatc;
2810 	u_char	dstat;
2811 	u_short	sist;
2812 
2813 	/*
2814 	 *  interrupt on the fly ?
2815 	 *  (SCRIPTS may still be running)
2816 	 *
2817 	 *  A `dummy read' is needed to ensure that the
2818 	 *  clear of the INTF flag reaches the device
2819 	 *  and that posted writes are flushed to memory
2820 	 *  before the scanning of the DONE queue.
2821 	 *  Note that SCRIPTS also (dummy) read to memory
2822 	 *  prior to deliver the INTF interrupt condition.
2823 	 */
2824 	istat = INB(np, nc_istat);
2825 	if (istat & INTF) {
2826 		OUTB(np, nc_istat, (istat & SIGP) | INTF | np->istat_sem);
2827 		istat = INB(np, nc_istat);		/* DUMMY READ */
2828 		if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
2829 		sym_wakeup_done(np);
2830 	}
2831 
2832 	if (!(istat & (SIP|DIP)))
2833 		return;
2834 
2835 #if 0	/* We should never get this one */
2836 	if (istat & CABRT)
2837 		OUTB(np, nc_istat, CABRT);
2838 #endif
2839 
2840 	/*
2841 	 *  PAR and MA interrupts may occur at the same time,
2842 	 *  and we need to know of both in order to handle
2843 	 *  this situation properly. We try to unstack SCSI
2844 	 *  interrupts for that reason. BTW, I dislike a LOT
2845 	 *  such a loop inside the interrupt routine.
2846 	 *  Even if DMA interrupt stacking is very unlikely to
2847 	 *  happen, we also try unstacking these ones, since
2848 	 *  this has no performance impact.
2849 	 */
2850 	sist	= 0;
2851 	dstat	= 0;
2852 	istatc	= istat;
2853 	do {
2854 		if (istatc & SIP)
2855 			sist  |= INW(np, nc_sist);
2856 		if (istatc & DIP)
2857 			dstat |= INB(np, nc_dstat);
2858 		istatc = INB(np, nc_istat);
2859 		istat |= istatc;
2860 	} while (istatc & (SIP|DIP));
2861 
2862 	if (DEBUG_FLAGS & DEBUG_TINY)
2863 		printf ("<%d|%x:%x|%x:%x>",
2864 			(int)INB(np, nc_scr0),
2865 			dstat,sist,
2866 			(unsigned)INL(np, nc_dsp),
2867 			(unsigned)INL(np, nc_dbc));
2868 	/*
2869 	 *  On paper, a memory read barrier may be needed here to
2870 	 *  prevent out of order LOADs by the CPU from having
2871 	 *  prefetched stale data prior to DMA having occurred.
2872 	 *  And since we are paranoid ... :)
2873 	 */
2874 	MEMORY_READ_BARRIER();
2875 
2876 	/*
2877 	 *  First, interrupts we want to service cleanly.
2878 	 *
2879 	 *  Phase mismatch (MA) is the most frequent interrupt
2880 	 *  for chip earlier than the 896 and so we have to service
2881 	 *  it as quickly as possible.
2882 	 *  A SCSI parity error (PAR) may be combined with a phase
2883 	 *  mismatch condition (MA).
2884 	 *  Programmed interrupts (SIR) are used to call the C code
2885 	 *  from SCRIPTS.
2886 	 *  The single step interrupt (SSI) is not used in this
2887 	 *  driver.
2888 	 */
2889 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
2890 	    !(dstat & (MDPE|BF|ABRT|IID))) {
2891 		if	(sist & PAR)	sym_int_par (np, sist);
2892 		else if (sist & MA)	sym_int_ma (np);
2893 		else if (dstat & SIR)	sym_int_sir (np);
2894 		else if (dstat & SSI)	OUTONB_STD();
2895 		else			goto unknown_int;
2896 		return;
2897 	}
2898 
2899 	/*
2900 	 *  Now, interrupts that donnot happen in normal
2901 	 *  situations and that we may need to recover from.
2902 	 *
2903 	 *  On SCSI RESET (RST), we reset everything.
2904 	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
2905 	 *  active CCBs with RESET status, prepare all devices
2906 	 *  for negotiating again and restart the SCRIPTS.
2907 	 *  On STO and UDC, we complete the CCB with the corres-
2908 	 *  ponding status and restart the SCRIPTS.
2909 	 */
2910 	if (sist & RST) {
2911 		printf("%s: SCSI BUS reset detected.\n", sym_name(np));
2912 		sym_start_up (np, 1);
2913 		return;
2914 	}
2915 
2916 	OUTB(np, nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
2917 	OUTB(np, nc_stest3, TE|CSF);		/* clear scsi fifo */
2918 
2919 	if (!(sist  & (GEN|HTH|SGE)) &&
2920 	    !(dstat & (MDPE|BF|ABRT|IID))) {
2921 		if	(sist & SBMC)	sym_int_sbmc (np);
2922 		else if (sist & STO)	sym_int_sto (np);
2923 		else if (sist & UDC)	sym_int_udc (np);
2924 		else			goto unknown_int;
2925 		return;
2926 	}
2927 
2928 	/*
2929 	 *  Now, interrupts we are not able to recover cleanly.
2930 	 *
2931 	 *  Log message for hard errors.
2932 	 *  Reset everything.
2933 	 */
2934 
2935 	sym_log_hard_error(np, sist, dstat);
2936 
2937 	if ((sist & (GEN|HTH|SGE)) ||
2938 		(dstat & (MDPE|BF|ABRT|IID))) {
2939 		sym_start_reset(np);
2940 		return;
2941 	}
2942 
2943 unknown_int:
2944 	/*
2945 	 *  We just miss the cause of the interrupt. :(
2946 	 *  Print a message. The timeout will do the real work.
2947 	 */
2948 	printf(	"%s: unknown interrupt(s) ignored, "
2949 		"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
2950 		sym_name(np), istat, dstat, sist);
2951 }
2952 
2953 /*
2954  *  Dequeue from the START queue all CCBs that match
2955  *  a given target/lun/task condition (-1 means all),
2956  *  and move them from the BUSY queue to the COMP queue
2957  *  with DID_SOFT_ERROR status condition.
2958  *  This function is used during error handling/recovery.
2959  *  It is called with SCRIPTS not running.
2960  */
2961 static int
2962 sym_dequeue_from_squeue(struct sym_hcb *np, int i, int target, int lun, int task)
2963 {
2964 	int j;
2965 	struct sym_ccb *cp;
2966 
2967 	/*
2968 	 *  Make sure the starting index is within range.
2969 	 */
2970 	assert((i >= 0) && (i < 2*MAX_QUEUE));
2971 
2972 	/*
2973 	 *  Walk until end of START queue and dequeue every job
2974 	 *  that matches the target/lun/task condition.
2975 	 */
2976 	j = i;
2977 	while (i != np->squeueput) {
2978 		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
2979 		assert(cp);
2980 #ifdef SYM_CONF_IARB_SUPPORT
2981 		/* Forget hints for IARB, they may be no longer relevant */
2982 		cp->host_flags &= ~HF_HINT_IARB;
2983 #endif
2984 		if ((target == -1 || cp->target == target) &&
2985 		    (lun    == -1 || cp->lun    == lun)    &&
2986 		    (task   == -1 || cp->tag    == task)) {
2987 			sym_set_cam_status(cp->cmd, DID_SOFT_ERROR);
2988 			sym_remque(&cp->link_ccbq);
2989 			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
2990 		}
2991 		else {
2992 			if (i != j)
2993 				np->squeue[j] = np->squeue[i];
2994 			if ((j += 2) >= MAX_QUEUE*2) j = 0;
2995 		}
2996 		if ((i += 2) >= MAX_QUEUE*2) i = 0;
2997 	}
2998 	if (i != j)		/* Copy back the idle task if needed */
2999 		np->squeue[j] = np->squeue[i];
3000 	np->squeueput = j;	/* Update our current start queue pointer */
3001 
3002 	return (i - j) / 2;
3003 }
3004 
3005 /*
3006  *  chip handler for bad SCSI status condition
3007  *
3008  *  In case of bad SCSI status, we unqueue all the tasks
3009  *  currently queued to the controller but not yet started
3010  *  and then restart the SCRIPTS processor immediately.
3011  *
3012  *  QUEUE FULL and BUSY conditions are handled the same way.
3013  *  Basically all the not yet started tasks are requeued in
3014  *  device queue and the queue is frozen until a completion.
3015  *
3016  *  For CHECK CONDITION and COMMAND TERMINATED status, we use
3017  *  the CCB of the failed command to prepare a REQUEST SENSE
3018  *  SCSI command and queue it to the controller queue.
3019  *
3020  *  SCRATCHA is assumed to have been loaded with STARTPOS
3021  *  before the SCRIPTS called the C code.
3022  */
3023 static void sym_sir_bad_scsi_status(struct sym_hcb *np, int num, struct sym_ccb *cp)
3024 {
3025 	u32		startp;
3026 	u_char		s_status = cp->ssss_status;
3027 	u_char		h_flags  = cp->host_flags;
3028 	int		msglen;
3029 	int		i;
3030 
3031 	/*
3032 	 *  Compute the index of the next job to start from SCRIPTS.
3033 	 */
3034 	i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3035 
3036 	/*
3037 	 *  The last CCB queued used for IARB hint may be
3038 	 *  no longer relevant. Forget it.
3039 	 */
3040 #ifdef SYM_CONF_IARB_SUPPORT
3041 	if (np->last_cp)
3042 		np->last_cp = 0;
3043 #endif
3044 
3045 	/*
3046 	 *  Now deal with the SCSI status.
3047 	 */
3048 	switch(s_status) {
3049 	case S_BUSY:
3050 	case S_QUEUE_FULL:
3051 		if (sym_verbose >= 2) {
3052 			sym_print_addr(cp->cmd, "%s\n",
3053 			        s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
3054 		}
3055 	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
3056 		sym_complete_error (np, cp);
3057 		break;
3058 	case S_TERMINATED:
3059 	case S_CHECK_COND:
3060 		/*
3061 		 *  If we get an SCSI error when requesting sense, give up.
3062 		 */
3063 		if (h_flags & HF_SENSE) {
3064 			sym_complete_error (np, cp);
3065 			break;
3066 		}
3067 
3068 		/*
3069 		 *  Dequeue all queued CCBs for that device not yet started,
3070 		 *  and restart the SCRIPTS processor immediately.
3071 		 */
3072 		sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3073 		OUTL_DSP(np, SCRIPTA_BA(np, start));
3074 
3075  		/*
3076 		 *  Save some info of the actual IO.
3077 		 *  Compute the data residual.
3078 		 */
3079 		cp->sv_scsi_status = cp->ssss_status;
3080 		cp->sv_xerr_status = cp->xerr_status;
3081 		cp->sv_resid = sym_compute_residual(np, cp);
3082 
3083 		/*
3084 		 *  Prepare all needed data structures for
3085 		 *  requesting sense data.
3086 		 */
3087 
3088 		cp->scsi_smsg2[0] = IDENTIFY(0, cp->lun);
3089 		msglen = 1;
3090 
3091 		/*
3092 		 *  If we are currently using anything different from
3093 		 *  async. 8 bit data transfers with that target,
3094 		 *  start a negotiation, since the device may want
3095 		 *  to report us a UNIT ATTENTION condition due to
3096 		 *  a cause we currently ignore, and we donnot want
3097 		 *  to be stuck with WIDE and/or SYNC data transfer.
3098 		 *
3099 		 *  cp->nego_status is filled by sym_prepare_nego().
3100 		 */
3101 		cp->nego_status = 0;
3102 		msglen += sym_prepare_nego(np, cp, &cp->scsi_smsg2[msglen]);
3103 		/*
3104 		 *  Message table indirect structure.
3105 		 */
3106 		cp->phys.smsg.addr	= CCB_BA(cp, scsi_smsg2);
3107 		cp->phys.smsg.size	= cpu_to_scr(msglen);
3108 
3109 		/*
3110 		 *  sense command
3111 		 */
3112 		cp->phys.cmd.addr	= CCB_BA(cp, sensecmd);
3113 		cp->phys.cmd.size	= cpu_to_scr(6);
3114 
3115 		/*
3116 		 *  patch requested size into sense command
3117 		 */
3118 		cp->sensecmd[0]		= REQUEST_SENSE;
3119 		cp->sensecmd[1]		= 0;
3120 		if (cp->cmd->device->scsi_level <= SCSI_2 && cp->lun <= 7)
3121 			cp->sensecmd[1]	= cp->lun << 5;
3122 		cp->sensecmd[4]		= SYM_SNS_BBUF_LEN;
3123 		cp->data_len		= SYM_SNS_BBUF_LEN;
3124 
3125 		/*
3126 		 *  sense data
3127 		 */
3128 		memset(cp->sns_bbuf, 0, SYM_SNS_BBUF_LEN);
3129 		cp->phys.sense.addr	= CCB_BA(cp, sns_bbuf);
3130 		cp->phys.sense.size	= cpu_to_scr(SYM_SNS_BBUF_LEN);
3131 
3132 		/*
3133 		 *  requeue the command.
3134 		 */
3135 		startp = SCRIPTB_BA(np, sdata_in);
3136 
3137 		cp->phys.head.savep	= cpu_to_scr(startp);
3138 		cp->phys.head.lastp	= cpu_to_scr(startp);
3139 		cp->startp		= cpu_to_scr(startp);
3140 		cp->goalp		= cpu_to_scr(startp + 16);
3141 
3142 		cp->host_xflags = 0;
3143 		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
3144 		cp->ssss_status = S_ILLEGAL;
3145 		cp->host_flags	= (HF_SENSE|HF_DATA_IN);
3146 		cp->xerr_status = 0;
3147 		cp->extra_bytes = 0;
3148 
3149 		cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
3150 
3151 		/*
3152 		 *  Requeue the command.
3153 		 */
3154 		sym_put_start_queue(np, cp);
3155 
3156 		/*
3157 		 *  Give back to upper layer everything we have dequeued.
3158 		 */
3159 		sym_flush_comp_queue(np, 0);
3160 		break;
3161 	}
3162 }
3163 
3164 /*
3165  *  After a device has accepted some management message
3166  *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
3167  *  a device signals a UNIT ATTENTION condition, some
3168  *  tasks are thrown away by the device. We are required
3169  *  to reflect that on our tasks list since the device
3170  *  will never complete these tasks.
3171  *
3172  *  This function move from the BUSY queue to the COMP
3173  *  queue all disconnected CCBs for a given target that
3174  *  match the following criteria:
3175  *  - lun=-1  means any logical UNIT otherwise a given one.
3176  *  - task=-1 means any task, otherwise a given one.
3177  */
3178 int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task)
3179 {
3180 	SYM_QUEHEAD qtmp, *qp;
3181 	int i = 0;
3182 	struct sym_ccb *cp;
3183 
3184 	/*
3185 	 *  Move the entire BUSY queue to our temporary queue.
3186 	 */
3187 	sym_que_init(&qtmp);
3188 	sym_que_splice(&np->busy_ccbq, &qtmp);
3189 	sym_que_init(&np->busy_ccbq);
3190 
3191 	/*
3192 	 *  Put all CCBs that matches our criteria into
3193 	 *  the COMP queue and put back other ones into
3194 	 *  the BUSY queue.
3195 	 */
3196 	while ((qp = sym_remque_head(&qtmp)) != 0) {
3197 		struct scsi_cmnd *cmd;
3198 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3199 		cmd = cp->cmd;
3200 		if (cp->host_status != HS_DISCONNECT ||
3201 		    cp->target != target	     ||
3202 		    (lun  != -1 && cp->lun != lun)   ||
3203 		    (task != -1 &&
3204 			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
3205 			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
3206 			continue;
3207 		}
3208 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3209 
3210 		/* Preserve the software timeout condition */
3211 		if (sym_get_cam_status(cmd) != DID_TIME_OUT)
3212 			sym_set_cam_status(cmd, cam_status);
3213 		++i;
3214 #if 0
3215 printf("XXXX TASK @%p CLEARED\n", cp);
3216 #endif
3217 	}
3218 	return i;
3219 }
3220 
3221 /*
3222  *  chip handler for TASKS recovery
3223  *
3224  *  We cannot safely abort a command, while the SCRIPTS
3225  *  processor is running, since we just would be in race
3226  *  with it.
3227  *
3228  *  As long as we have tasks to abort, we keep the SEM
3229  *  bit set in the ISTAT. When this bit is set, the
3230  *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
3231  *  each time it enters the scheduler.
3232  *
3233  *  If we have to reset a target, clear tasks of a unit,
3234  *  or to perform the abort of a disconnected job, we
3235  *  restart the SCRIPTS for selecting the target. Once
3236  *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
3237  *  If it loses arbitration, the SCRIPTS will interrupt again
3238  *  the next time it will enter its scheduler, and so on ...
3239  *
3240  *  On SIR_TARGET_SELECTED, we scan for the more
3241  *  appropriate thing to do:
3242  *
3243  *  - If nothing, we just sent a M_ABORT message to the
3244  *    target to get rid of the useless SCSI bus ownership.
3245  *    According to the specs, no tasks shall be affected.
3246  *  - If the target is to be reset, we send it a M_RESET
3247  *    message.
3248  *  - If a logical UNIT is to be cleared , we send the
3249  *    IDENTIFY(lun) + M_ABORT.
3250  *  - If an untagged task is to be aborted, we send the
3251  *    IDENTIFY(lun) + M_ABORT.
3252  *  - If a tagged task is to be aborted, we send the
3253  *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
3254  *
3255  *  Once our 'kiss of death' :) message has been accepted
3256  *  by the target, the SCRIPTS interrupts again
3257  *  (SIR_ABORT_SENT). On this interrupt, we complete
3258  *  all the CCBs that should have been aborted by the
3259  *  target according to our message.
3260  */
3261 static void sym_sir_task_recovery(struct sym_hcb *np, int num)
3262 {
3263 	SYM_QUEHEAD *qp;
3264 	struct sym_ccb *cp;
3265 	struct sym_tcb *tp = NULL; /* gcc isn't quite smart enough yet */
3266 	struct scsi_target *starget;
3267 	int target=-1, lun=-1, task;
3268 	int i, k;
3269 
3270 	switch(num) {
3271 	/*
3272 	 *  The SCRIPTS processor stopped before starting
3273 	 *  the next command in order to allow us to perform
3274 	 *  some task recovery.
3275 	 */
3276 	case SIR_SCRIPT_STOPPED:
3277 		/*
3278 		 *  Do we have any target to reset or unit to clear ?
3279 		 */
3280 		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
3281 			tp = &np->target[i];
3282 			if (tp->to_reset ||
3283 			    (tp->lun0p && tp->lun0p->to_clear)) {
3284 				target = i;
3285 				break;
3286 			}
3287 			if (!tp->lunmp)
3288 				continue;
3289 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3290 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3291 					target	= i;
3292 					break;
3293 				}
3294 			}
3295 			if (target != -1)
3296 				break;
3297 		}
3298 
3299 		/*
3300 		 *  If not, walk the busy queue for any
3301 		 *  disconnected CCB to be aborted.
3302 		 */
3303 		if (target == -1) {
3304 			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3305 				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
3306 				if (cp->host_status != HS_DISCONNECT)
3307 					continue;
3308 				if (cp->to_abort) {
3309 					target = cp->target;
3310 					break;
3311 				}
3312 			}
3313 		}
3314 
3315 		/*
3316 		 *  If some target is to be selected,
3317 		 *  prepare and start the selection.
3318 		 */
3319 		if (target != -1) {
3320 			tp = &np->target[target];
3321 			np->abrt_sel.sel_id	= target;
3322 			np->abrt_sel.sel_scntl3 = tp->head.wval;
3323 			np->abrt_sel.sel_sxfer  = tp->head.sval;
3324 			OUTL(np, nc_dsa, np->hcb_ba);
3325 			OUTL_DSP(np, SCRIPTB_BA(np, sel_for_abort));
3326 			return;
3327 		}
3328 
3329 		/*
3330 		 *  Now look for a CCB to abort that haven't started yet.
3331 		 *  Btw, the SCRIPTS processor is still stopped, so
3332 		 *  we are not in race.
3333 		 */
3334 		i = 0;
3335 		cp = NULL;
3336 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3337 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3338 			if (cp->host_status != HS_BUSY &&
3339 			    cp->host_status != HS_NEGOTIATE)
3340 				continue;
3341 			if (!cp->to_abort)
3342 				continue;
3343 #ifdef SYM_CONF_IARB_SUPPORT
3344 			/*
3345 			 *    If we are using IMMEDIATE ARBITRATION, we donnot
3346 			 *    want to cancel the last queued CCB, since the
3347 			 *    SCRIPTS may have anticipated the selection.
3348 			 */
3349 			if (cp == np->last_cp) {
3350 				cp->to_abort = 0;
3351 				continue;
3352 			}
3353 #endif
3354 			i = 1;	/* Means we have found some */
3355 			break;
3356 		}
3357 		if (!i) {
3358 			/*
3359 			 *  We are done, so we donnot need
3360 			 *  to synchronize with the SCRIPTS anylonger.
3361 			 *  Remove the SEM flag from the ISTAT.
3362 			 */
3363 			np->istat_sem = 0;
3364 			OUTB(np, nc_istat, SIGP);
3365 			break;
3366 		}
3367 		/*
3368 		 *  Compute index of next position in the start
3369 		 *  queue the SCRIPTS intends to start and dequeue
3370 		 *  all CCBs for that device that haven't been started.
3371 		 */
3372 		i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3373 		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3374 
3375 		/*
3376 		 *  Make sure at least our IO to abort has been dequeued.
3377 		 */
3378 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
3379 		assert(i && sym_get_cam_status(cp->cmd) == DID_SOFT_ERROR);
3380 #else
3381 		sym_remque(&cp->link_ccbq);
3382 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3383 #endif
3384 		/*
3385 		 *  Keep track in cam status of the reason of the abort.
3386 		 */
3387 		if (cp->to_abort == 2)
3388 			sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3389 		else
3390 			sym_set_cam_status(cp->cmd, DID_ABORT);
3391 
3392 		/*
3393 		 *  Complete with error everything that we have dequeued.
3394 	 	 */
3395 		sym_flush_comp_queue(np, 0);
3396 		break;
3397 	/*
3398 	 *  The SCRIPTS processor has selected a target
3399 	 *  we may have some manual recovery to perform for.
3400 	 */
3401 	case SIR_TARGET_SELECTED:
3402 		target = INB(np, nc_sdid) & 0xf;
3403 		tp = &np->target[target];
3404 
3405 		np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
3406 
3407 		/*
3408 		 *  If the target is to be reset, prepare a
3409 		 *  M_RESET message and clear the to_reset flag
3410 		 *  since we donnot expect this operation to fail.
3411 		 */
3412 		if (tp->to_reset) {
3413 			np->abrt_msg[0] = M_RESET;
3414 			np->abrt_tbl.size = 1;
3415 			tp->to_reset = 0;
3416 			break;
3417 		}
3418 
3419 		/*
3420 		 *  Otherwise, look for some logical unit to be cleared.
3421 		 */
3422 		if (tp->lun0p && tp->lun0p->to_clear)
3423 			lun = 0;
3424 		else if (tp->lunmp) {
3425 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3426 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3427 					lun = k;
3428 					break;
3429 				}
3430 			}
3431 		}
3432 
3433 		/*
3434 		 *  If a logical unit is to be cleared, prepare
3435 		 *  an IDENTIFY(lun) + ABORT MESSAGE.
3436 		 */
3437 		if (lun != -1) {
3438 			struct sym_lcb *lp = sym_lp(tp, lun);
3439 			lp->to_clear = 0; /* We don't expect to fail here */
3440 			np->abrt_msg[0] = IDENTIFY(0, lun);
3441 			np->abrt_msg[1] = M_ABORT;
3442 			np->abrt_tbl.size = 2;
3443 			break;
3444 		}
3445 
3446 		/*
3447 		 *  Otherwise, look for some disconnected job to
3448 		 *  abort for this target.
3449 		 */
3450 		i = 0;
3451 		cp = NULL;
3452 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3453 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3454 			if (cp->host_status != HS_DISCONNECT)
3455 				continue;
3456 			if (cp->target != target)
3457 				continue;
3458 			if (!cp->to_abort)
3459 				continue;
3460 			i = 1;	/* Means we have some */
3461 			break;
3462 		}
3463 
3464 		/*
3465 		 *  If we have none, probably since the device has
3466 		 *  completed the command before we won abitration,
3467 		 *  send a M_ABORT message without IDENTIFY.
3468 		 *  According to the specs, the device must just
3469 		 *  disconnect the BUS and not abort any task.
3470 		 */
3471 		if (!i) {
3472 			np->abrt_msg[0] = M_ABORT;
3473 			np->abrt_tbl.size = 1;
3474 			break;
3475 		}
3476 
3477 		/*
3478 		 *  We have some task to abort.
3479 		 *  Set the IDENTIFY(lun)
3480 		 */
3481 		np->abrt_msg[0] = IDENTIFY(0, cp->lun);
3482 
3483 		/*
3484 		 *  If we want to abort an untagged command, we
3485 		 *  will send a IDENTIFY + M_ABORT.
3486 		 *  Otherwise (tagged command), we will send
3487 		 *  a IDENTITFY + task attributes + ABORT TAG.
3488 		 */
3489 		if (cp->tag == NO_TAG) {
3490 			np->abrt_msg[1] = M_ABORT;
3491 			np->abrt_tbl.size = 2;
3492 		} else {
3493 			np->abrt_msg[1] = cp->scsi_smsg[1];
3494 			np->abrt_msg[2] = cp->scsi_smsg[2];
3495 			np->abrt_msg[3] = M_ABORT_TAG;
3496 			np->abrt_tbl.size = 4;
3497 		}
3498 		/*
3499 		 *  Keep track of software timeout condition, since the
3500 		 *  peripheral driver may not count retries on abort
3501 		 *  conditions not due to timeout.
3502 		 */
3503 		if (cp->to_abort == 2)
3504 			sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3505 		cp->to_abort = 0; /* We donnot expect to fail here */
3506 		break;
3507 
3508 	/*
3509 	 *  The target has accepted our message and switched
3510 	 *  to BUS FREE phase as we expected.
3511 	 */
3512 	case SIR_ABORT_SENT:
3513 		target = INB(np, nc_sdid) & 0xf;
3514 		tp = &np->target[target];
3515 		starget = tp->starget;
3516 
3517 		/*
3518 		**  If we didn't abort anything, leave here.
3519 		*/
3520 		if (np->abrt_msg[0] == M_ABORT)
3521 			break;
3522 
3523 		/*
3524 		 *  If we sent a M_RESET, then a hardware reset has
3525 		 *  been performed by the target.
3526 		 *  - Reset everything to async 8 bit
3527 		 *  - Tell ourself to negotiate next time :-)
3528 		 *  - Prepare to clear all disconnected CCBs for
3529 		 *    this target from our task list (lun=task=-1)
3530 		 */
3531 		lun = -1;
3532 		task = -1;
3533 		if (np->abrt_msg[0] == M_RESET) {
3534 			tp->head.sval = 0;
3535 			tp->head.wval = np->rv_scntl3;
3536 			tp->head.uval = 0;
3537 			spi_period(starget) = 0;
3538 			spi_offset(starget) = 0;
3539 			spi_width(starget) = 0;
3540 			spi_iu(starget) = 0;
3541 			spi_dt(starget) = 0;
3542 			spi_qas(starget) = 0;
3543 			tp->tgoal.check_nego = 1;
3544 		}
3545 
3546 		/*
3547 		 *  Otherwise, check for the LUN and TASK(s)
3548 		 *  concerned by the cancelation.
3549 		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
3550 		 *  or an ABORT message :-)
3551 		 */
3552 		else {
3553 			lun = np->abrt_msg[0] & 0x3f;
3554 			if (np->abrt_msg[1] == M_ABORT_TAG)
3555 				task = np->abrt_msg[2];
3556 		}
3557 
3558 		/*
3559 		 *  Complete all the CCBs the device should have
3560 		 *  aborted due to our 'kiss of death' message.
3561 		 */
3562 		i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3563 		sym_dequeue_from_squeue(np, i, target, lun, -1);
3564 		sym_clear_tasks(np, DID_ABORT, target, lun, task);
3565 		sym_flush_comp_queue(np, 0);
3566 
3567  		/*
3568 		 *  If we sent a BDR, make upper layer aware of that.
3569  		 */
3570 		if (np->abrt_msg[0] == M_RESET)
3571 			sym_xpt_async_sent_bdr(np, target);
3572 		break;
3573 	}
3574 
3575 	/*
3576 	 *  Print to the log the message we intend to send.
3577 	 */
3578 	if (num == SIR_TARGET_SELECTED) {
3579 		dev_info(&tp->starget->dev, "control msgout:");
3580 		sym_printl_hex(np->abrt_msg, np->abrt_tbl.size);
3581 		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
3582 	}
3583 
3584 	/*
3585 	 *  Let the SCRIPTS processor continue.
3586 	 */
3587 	OUTONB_STD();
3588 }
3589 
3590 /*
3591  *  Gerard's alchemy:) that deals with with the data
3592  *  pointer for both MDP and the residual calculation.
3593  *
3594  *  I didn't want to bloat the code by more than 200
3595  *  lines for the handling of both MDP and the residual.
3596  *  This has been achieved by using a data pointer
3597  *  representation consisting in an index in the data
3598  *  array (dp_sg) and a negative offset (dp_ofs) that
3599  *  have the following meaning:
3600  *
3601  *  - dp_sg = SYM_CONF_MAX_SG
3602  *    we are at the end of the data script.
3603  *  - dp_sg < SYM_CONF_MAX_SG
3604  *    dp_sg points to the next entry of the scatter array
3605  *    we want to transfer.
3606  *  - dp_ofs < 0
3607  *    dp_ofs represents the residual of bytes of the
3608  *    previous entry scatter entry we will send first.
3609  *  - dp_ofs = 0
3610  *    no residual to send first.
3611  *
3612  *  The function sym_evaluate_dp() accepts an arbitray
3613  *  offset (basically from the MDP message) and returns
3614  *  the corresponding values of dp_sg and dp_ofs.
3615  */
3616 
3617 static int sym_evaluate_dp(struct sym_hcb *np, struct sym_ccb *cp, u32 scr, int *ofs)
3618 {
3619 	u32	dp_scr;
3620 	int	dp_ofs, dp_sg, dp_sgmin;
3621 	int	tmp;
3622 	struct sym_pmc *pm;
3623 
3624 	/*
3625 	 *  Compute the resulted data pointer in term of a script
3626 	 *  address within some DATA script and a signed byte offset.
3627 	 */
3628 	dp_scr = scr;
3629 	dp_ofs = *ofs;
3630 	if	(dp_scr == SCRIPTA_BA(np, pm0_data))
3631 		pm = &cp->phys.pm0;
3632 	else if (dp_scr == SCRIPTA_BA(np, pm1_data))
3633 		pm = &cp->phys.pm1;
3634 	else
3635 		pm = NULL;
3636 
3637 	if (pm) {
3638 		dp_scr  = scr_to_cpu(pm->ret);
3639 		dp_ofs -= scr_to_cpu(pm->sg.size);
3640 	}
3641 
3642 	/*
3643 	 *  If we are auto-sensing, then we are done.
3644 	 */
3645 	if (cp->host_flags & HF_SENSE) {
3646 		*ofs = dp_ofs;
3647 		return 0;
3648 	}
3649 
3650 	/*
3651 	 *  Deduce the index of the sg entry.
3652 	 *  Keep track of the index of the first valid entry.
3653 	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
3654 	 *  end of the data.
3655 	 */
3656 	tmp = scr_to_cpu(sym_goalp(cp));
3657 	dp_sg = SYM_CONF_MAX_SG;
3658 	if (dp_scr != tmp)
3659 		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
3660 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3661 
3662 	/*
3663 	 *  Move to the sg entry the data pointer belongs to.
3664 	 *
3665 	 *  If we are inside the data area, we expect result to be:
3666 	 *
3667 	 *  Either,
3668 	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
3669 	 *      the data pointer belongs to (or the end of the data)
3670 	 *  Or,
3671 	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
3672 	 *      the data pointer belongs to + 1.
3673 	 */
3674 	if (dp_ofs < 0) {
3675 		int n;
3676 		while (dp_sg > dp_sgmin) {
3677 			--dp_sg;
3678 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3679 			n = dp_ofs + (tmp & 0xffffff);
3680 			if (n > 0) {
3681 				++dp_sg;
3682 				break;
3683 			}
3684 			dp_ofs = n;
3685 		}
3686 	}
3687 	else if (dp_ofs > 0) {
3688 		while (dp_sg < SYM_CONF_MAX_SG) {
3689 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3690 			dp_ofs -= (tmp & 0xffffff);
3691 			++dp_sg;
3692 			if (dp_ofs <= 0)
3693 				break;
3694 		}
3695 	}
3696 
3697 	/*
3698 	 *  Make sure the data pointer is inside the data area.
3699 	 *  If not, return some error.
3700 	 */
3701 	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
3702 		goto out_err;
3703 	else if	(dp_sg > SYM_CONF_MAX_SG ||
3704 		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
3705 		goto out_err;
3706 
3707 	/*
3708 	 *  Save the extreme pointer if needed.
3709 	 */
3710 	if (dp_sg > cp->ext_sg ||
3711             (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
3712 		cp->ext_sg  = dp_sg;
3713 		cp->ext_ofs = dp_ofs;
3714 	}
3715 
3716 	/*
3717 	 *  Return data.
3718 	 */
3719 	*ofs = dp_ofs;
3720 	return dp_sg;
3721 
3722 out_err:
3723 	return -1;
3724 }
3725 
3726 /*
3727  *  chip handler for MODIFY DATA POINTER MESSAGE
3728  *
3729  *  We also call this function on IGNORE WIDE RESIDUE
3730  *  messages that do not match a SWIDE full condition.
3731  *  Btw, we assume in that situation that such a message
3732  *  is equivalent to a MODIFY DATA POINTER (offset=-1).
3733  */
3734 
3735 static void sym_modify_dp(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp, int ofs)
3736 {
3737 	int dp_ofs	= ofs;
3738 	u32	dp_scr	= sym_get_script_dp (np, cp);
3739 	u32	dp_ret;
3740 	u32	tmp;
3741 	u_char	hflags;
3742 	int	dp_sg;
3743 	struct	sym_pmc *pm;
3744 
3745 	/*
3746 	 *  Not supported for auto-sense.
3747 	 */
3748 	if (cp->host_flags & HF_SENSE)
3749 		goto out_reject;
3750 
3751 	/*
3752 	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
3753 	 *  to the resulted data pointer.
3754 	 */
3755 	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
3756 	if (dp_sg < 0)
3757 		goto out_reject;
3758 
3759 	/*
3760 	 *  And our alchemy:) allows to easily calculate the data
3761 	 *  script address we want to return for the next data phase.
3762 	 */
3763 	dp_ret = cpu_to_scr(sym_goalp(cp));
3764 	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
3765 
3766 	/*
3767 	 *  If offset / scatter entry is zero we donnot need
3768 	 *  a context for the new current data pointer.
3769 	 */
3770 	if (dp_ofs == 0) {
3771 		dp_scr = dp_ret;
3772 		goto out_ok;
3773 	}
3774 
3775 	/*
3776 	 *  Get a context for the new current data pointer.
3777 	 */
3778 	hflags = INB(np, HF_PRT);
3779 
3780 	if (hflags & HF_DP_SAVED)
3781 		hflags ^= HF_ACT_PM;
3782 
3783 	if (!(hflags & HF_ACT_PM)) {
3784 		pm  = &cp->phys.pm0;
3785 		dp_scr = SCRIPTA_BA(np, pm0_data);
3786 	}
3787 	else {
3788 		pm = &cp->phys.pm1;
3789 		dp_scr = SCRIPTA_BA(np, pm1_data);
3790 	}
3791 
3792 	hflags &= ~(HF_DP_SAVED);
3793 
3794 	OUTB(np, HF_PRT, hflags);
3795 
3796 	/*
3797 	 *  Set up the new current data pointer.
3798 	 *  ofs < 0 there, and for the next data phase, we
3799 	 *  want to transfer part of the data of the sg entry
3800 	 *  corresponding to index dp_sg-1 prior to returning
3801 	 *  to the main data script.
3802 	 */
3803 	pm->ret = cpu_to_scr(dp_ret);
3804 	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
3805 	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
3806 	pm->sg.addr = cpu_to_scr(tmp);
3807 	pm->sg.size = cpu_to_scr(-dp_ofs);
3808 
3809 out_ok:
3810 	sym_set_script_dp (np, cp, dp_scr);
3811 	OUTL_DSP(np, SCRIPTA_BA(np, clrack));
3812 	return;
3813 
3814 out_reject:
3815 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
3816 }
3817 
3818 
3819 /*
3820  *  chip calculation of the data residual.
3821  *
3822  *  As I used to say, the requirement of data residual
3823  *  in SCSI is broken, useless and cannot be achieved
3824  *  without huge complexity.
3825  *  But most OSes and even the official CAM require it.
3826  *  When stupidity happens to be so widely spread inside
3827  *  a community, it gets hard to convince.
3828  *
3829  *  Anyway, I don't care, since I am not going to use
3830  *  any software that considers this data residual as
3831  *  a relevant information. :)
3832  */
3833 
3834 int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp)
3835 {
3836 	int dp_sg, dp_sgmin, resid = 0;
3837 	int dp_ofs = 0;
3838 
3839 	/*
3840 	 *  Check for some data lost or just thrown away.
3841 	 *  We are not required to be quite accurate in this
3842 	 *  situation. Btw, if we are odd for output and the
3843 	 *  device claims some more data, it may well happen
3844 	 *  than our residual be zero. :-)
3845 	 */
3846 	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
3847 		if (cp->xerr_status & XE_EXTRA_DATA)
3848 			resid -= cp->extra_bytes;
3849 		if (cp->xerr_status & XE_SODL_UNRUN)
3850 			++resid;
3851 		if (cp->xerr_status & XE_SWIDE_OVRUN)
3852 			--resid;
3853 	}
3854 
3855 	/*
3856 	 *  If all data has been transferred,
3857 	 *  there is no residual.
3858 	 */
3859 	if (cp->phys.head.lastp == sym_goalp(cp))
3860 		return resid;
3861 
3862 	/*
3863 	 *  If no data transfer occurs, or if the data
3864 	 *  pointer is weird, return full residual.
3865 	 */
3866 	if (cp->startp == cp->phys.head.lastp ||
3867 	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
3868 			    &dp_ofs) < 0) {
3869 		return cp->data_len;
3870 	}
3871 
3872 	/*
3873 	 *  If we were auto-sensing, then we are done.
3874 	 */
3875 	if (cp->host_flags & HF_SENSE) {
3876 		return -dp_ofs;
3877 	}
3878 
3879 	/*
3880 	 *  We are now full comfortable in the computation
3881 	 *  of the data residual (2's complement).
3882 	 */
3883 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3884 	resid = -cp->ext_ofs;
3885 	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
3886 		u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3887 		resid += (tmp & 0xffffff);
3888 	}
3889 
3890 	resid -= cp->odd_byte_adjustment;
3891 
3892 	/*
3893 	 *  Hopefully, the result is not too wrong.
3894 	 */
3895 	return resid;
3896 }
3897 
3898 /*
3899  *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
3900  *
3901  *  When we try to negotiate, we append the negotiation message
3902  *  to the identify and (maybe) simple tag message.
3903  *  The host status field is set to HS_NEGOTIATE to mark this
3904  *  situation.
3905  *
3906  *  If the target doesn't answer this message immediately
3907  *  (as required by the standard), the SIR_NEGO_FAILED interrupt
3908  *  will be raised eventually.
3909  *  The handler removes the HS_NEGOTIATE status, and sets the
3910  *  negotiated value to the default (async / nowide).
3911  *
3912  *  If we receive a matching answer immediately, we check it
3913  *  for validity, and set the values.
3914  *
3915  *  If we receive a Reject message immediately, we assume the
3916  *  negotiation has failed, and fall back to standard values.
3917  *
3918  *  If we receive a negotiation message while not in HS_NEGOTIATE
3919  *  state, it's a target initiated negotiation. We prepare a
3920  *  (hopefully) valid answer, set our parameters, and send back
3921  *  this answer to the target.
3922  *
3923  *  If the target doesn't fetch the answer (no message out phase),
3924  *  we assume the negotiation has failed, and fall back to default
3925  *  settings (SIR_NEGO_PROTO interrupt).
3926  *
3927  *  When we set the values, we adjust them in all ccbs belonging
3928  *  to this target, in the controller's register, and in the "phys"
3929  *  field of the controller's struct sym_hcb.
3930  */
3931 
3932 /*
3933  *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
3934  */
3935 static int
3936 sym_sync_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
3937 {
3938 	int target = cp->target;
3939 	u_char	chg, ofs, per, fak, div;
3940 
3941 	if (DEBUG_FLAGS & DEBUG_NEGO) {
3942 		sym_print_nego_msg(np, target, "sync msgin", np->msgin);
3943 	}
3944 
3945 	/*
3946 	 *  Get requested values.
3947 	 */
3948 	chg = 0;
3949 	per = np->msgin[3];
3950 	ofs = np->msgin[4];
3951 
3952 	/*
3953 	 *  Check values against our limits.
3954 	 */
3955 	if (ofs) {
3956 		if (ofs > np->maxoffs)
3957 			{chg = 1; ofs = np->maxoffs;}
3958 	}
3959 
3960 	if (ofs) {
3961 		if (per < np->minsync)
3962 			{chg = 1; per = np->minsync;}
3963 	}
3964 
3965 	/*
3966 	 *  Get new chip synchronous parameters value.
3967 	 */
3968 	div = fak = 0;
3969 	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
3970 		goto reject_it;
3971 
3972 	if (DEBUG_FLAGS & DEBUG_NEGO) {
3973 		sym_print_addr(cp->cmd,
3974 				"sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
3975 				ofs, per, div, fak, chg);
3976 	}
3977 
3978 	/*
3979 	 *  If it was an answer we want to change,
3980 	 *  then it isn't acceptable. Reject it.
3981 	 */
3982 	if (!req && chg)
3983 		goto reject_it;
3984 
3985 	/*
3986 	 *  Apply new values.
3987 	 */
3988 	sym_setsync (np, target, ofs, per, div, fak);
3989 
3990 	/*
3991 	 *  It was an answer. We are done.
3992 	 */
3993 	if (!req)
3994 		return 0;
3995 
3996 	/*
3997 	 *  It was a request. Prepare an answer message.
3998 	 */
3999 	np->msgout[0] = M_EXTENDED;
4000 	np->msgout[1] = 3;
4001 	np->msgout[2] = M_X_SYNC_REQ;
4002 	np->msgout[3] = per;
4003 	np->msgout[4] = ofs;
4004 
4005 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4006 		sym_print_nego_msg(np, target, "sync msgout", np->msgout);
4007 	}
4008 
4009 	np->msgin [0] = M_NOOP;
4010 
4011 	return 0;
4012 
4013 reject_it:
4014 	sym_setsync (np, target, 0, 0, 0, 0);
4015 	return -1;
4016 }
4017 
4018 static void sym_sync_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4019 {
4020 	int req = 1;
4021 	int result;
4022 
4023 	/*
4024 	 *  Request or answer ?
4025 	 */
4026 	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4027 		OUTB(np, HS_PRT, HS_BUSY);
4028 		if (cp->nego_status && cp->nego_status != NS_SYNC)
4029 			goto reject_it;
4030 		req = 0;
4031 	}
4032 
4033 	/*
4034 	 *  Check and apply new values.
4035 	 */
4036 	result = sym_sync_nego_check(np, req, cp);
4037 	if (result)	/* Not acceptable, reject it */
4038 		goto reject_it;
4039 	if (req) {	/* Was a request, send response. */
4040 		cp->nego_status = NS_SYNC;
4041 		OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4042 	}
4043 	else		/* Was a response, we are done. */
4044 		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4045 	return;
4046 
4047 reject_it:
4048 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4049 }
4050 
4051 /*
4052  *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
4053  */
4054 static int
4055 sym_ppr_nego_check(struct sym_hcb *np, int req, int target)
4056 {
4057 	struct sym_tcb *tp = &np->target[target];
4058 	unsigned char fak, div;
4059 	int dt, chg = 0;
4060 
4061 	unsigned char per = np->msgin[3];
4062 	unsigned char ofs = np->msgin[5];
4063 	unsigned char wide = np->msgin[6];
4064 	unsigned char opts = np->msgin[7] & PPR_OPT_MASK;
4065 
4066 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4067 		sym_print_nego_msg(np, target, "ppr msgin", np->msgin);
4068 	}
4069 
4070 	/*
4071 	 *  Check values against our limits.
4072 	 */
4073 	if (wide > np->maxwide) {
4074 		chg = 1;
4075 		wide = np->maxwide;
4076 	}
4077 	if (!wide || !(np->features & FE_U3EN))
4078 		opts = 0;
4079 
4080 	if (opts != (np->msgin[7] & PPR_OPT_MASK))
4081 		chg = 1;
4082 
4083 	dt = opts & PPR_OPT_DT;
4084 
4085 	if (ofs) {
4086 		unsigned char maxoffs = dt ? np->maxoffs_dt : np->maxoffs;
4087 		if (ofs > maxoffs) {
4088 			chg = 1;
4089 			ofs = maxoffs;
4090 		}
4091 	}
4092 
4093 	if (ofs) {
4094 		unsigned char minsync = dt ? np->minsync_dt : np->minsync;
4095 		if (per < minsync) {
4096 			chg = 1;
4097 			per = minsync;
4098 		}
4099 	}
4100 
4101 	/*
4102 	 *  Get new chip synchronous parameters value.
4103 	 */
4104 	div = fak = 0;
4105 	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
4106 		goto reject_it;
4107 
4108 	/*
4109 	 *  If it was an answer we want to change,
4110 	 *  then it isn't acceptable. Reject it.
4111 	 */
4112 	if (!req && chg)
4113 		goto reject_it;
4114 
4115 	/*
4116 	 *  Apply new values.
4117 	 */
4118 	sym_setpprot(np, target, opts, ofs, per, wide, div, fak);
4119 
4120 	/*
4121 	 *  It was an answer. We are done.
4122 	 */
4123 	if (!req)
4124 		return 0;
4125 
4126 	/*
4127 	 *  It was a request. Prepare an answer message.
4128 	 */
4129 	np->msgout[0] = M_EXTENDED;
4130 	np->msgout[1] = 6;
4131 	np->msgout[2] = M_X_PPR_REQ;
4132 	np->msgout[3] = per;
4133 	np->msgout[4] = 0;
4134 	np->msgout[5] = ofs;
4135 	np->msgout[6] = wide;
4136 	np->msgout[7] = opts;
4137 
4138 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4139 		sym_print_nego_msg(np, target, "ppr msgout", np->msgout);
4140 	}
4141 
4142 	np->msgin [0] = M_NOOP;
4143 
4144 	return 0;
4145 
4146 reject_it:
4147 	sym_setpprot (np, target, 0, 0, 0, 0, 0, 0);
4148 	/*
4149 	 *  If it is a device response that should result in
4150 	 *  ST, we may want to try a legacy negotiation later.
4151 	 */
4152 	if (!req && !opts) {
4153 		tp->tgoal.period = per;
4154 		tp->tgoal.offset = ofs;
4155 		tp->tgoal.width = wide;
4156 		tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4157 		tp->tgoal.check_nego = 1;
4158 	}
4159 	return -1;
4160 }
4161 
4162 static void sym_ppr_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4163 {
4164 	int req = 1;
4165 	int result;
4166 
4167 	/*
4168 	 *  Request or answer ?
4169 	 */
4170 	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4171 		OUTB(np, HS_PRT, HS_BUSY);
4172 		if (cp->nego_status && cp->nego_status != NS_PPR)
4173 			goto reject_it;
4174 		req = 0;
4175 	}
4176 
4177 	/*
4178 	 *  Check and apply new values.
4179 	 */
4180 	result = sym_ppr_nego_check(np, req, cp->target);
4181 	if (result)	/* Not acceptable, reject it */
4182 		goto reject_it;
4183 	if (req) {	/* Was a request, send response. */
4184 		cp->nego_status = NS_PPR;
4185 		OUTL_DSP(np, SCRIPTB_BA(np, ppr_resp));
4186 	}
4187 	else		/* Was a response, we are done. */
4188 		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4189 	return;
4190 
4191 reject_it:
4192 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4193 }
4194 
4195 /*
4196  *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
4197  */
4198 static int
4199 sym_wide_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
4200 {
4201 	int target = cp->target;
4202 	u_char	chg, wide;
4203 
4204 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4205 		sym_print_nego_msg(np, target, "wide msgin", np->msgin);
4206 	}
4207 
4208 	/*
4209 	 *  Get requested values.
4210 	 */
4211 	chg  = 0;
4212 	wide = np->msgin[3];
4213 
4214 	/*
4215 	 *  Check values against our limits.
4216 	 */
4217 	if (wide > np->maxwide) {
4218 		chg = 1;
4219 		wide = np->maxwide;
4220 	}
4221 
4222 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4223 		sym_print_addr(cp->cmd, "wdtr: wide=%d chg=%d.\n",
4224 				wide, chg);
4225 	}
4226 
4227 	/*
4228 	 *  If it was an answer we want to change,
4229 	 *  then it isn't acceptable. Reject it.
4230 	 */
4231 	if (!req && chg)
4232 		goto reject_it;
4233 
4234 	/*
4235 	 *  Apply new values.
4236 	 */
4237 	sym_setwide (np, target, wide);
4238 
4239 	/*
4240 	 *  It was an answer. We are done.
4241 	 */
4242 	if (!req)
4243 		return 0;
4244 
4245 	/*
4246 	 *  It was a request. Prepare an answer message.
4247 	 */
4248 	np->msgout[0] = M_EXTENDED;
4249 	np->msgout[1] = 2;
4250 	np->msgout[2] = M_X_WIDE_REQ;
4251 	np->msgout[3] = wide;
4252 
4253 	np->msgin [0] = M_NOOP;
4254 
4255 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4256 		sym_print_nego_msg(np, target, "wide msgout", np->msgout);
4257 	}
4258 
4259 	return 0;
4260 
4261 reject_it:
4262 	return -1;
4263 }
4264 
4265 static void sym_wide_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4266 {
4267 	int req = 1;
4268 	int result;
4269 
4270 	/*
4271 	 *  Request or answer ?
4272 	 */
4273 	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4274 		OUTB(np, HS_PRT, HS_BUSY);
4275 		if (cp->nego_status && cp->nego_status != NS_WIDE)
4276 			goto reject_it;
4277 		req = 0;
4278 	}
4279 
4280 	/*
4281 	 *  Check and apply new values.
4282 	 */
4283 	result = sym_wide_nego_check(np, req, cp);
4284 	if (result)	/* Not acceptable, reject it */
4285 		goto reject_it;
4286 	if (req) {	/* Was a request, send response. */
4287 		cp->nego_status = NS_WIDE;
4288 		OUTL_DSP(np, SCRIPTB_BA(np, wdtr_resp));
4289 	} else {		/* Was a response. */
4290 		/*
4291 		 * Negotiate for SYNC immediately after WIDE response.
4292 		 * This allows to negotiate for both WIDE and SYNC on
4293 		 * a single SCSI command (Suggested by Justin Gibbs).
4294 		 */
4295 		if (tp->tgoal.offset) {
4296 			np->msgout[0] = M_EXTENDED;
4297 			np->msgout[1] = 3;
4298 			np->msgout[2] = M_X_SYNC_REQ;
4299 			np->msgout[3] = tp->tgoal.period;
4300 			np->msgout[4] = tp->tgoal.offset;
4301 
4302 			if (DEBUG_FLAGS & DEBUG_NEGO) {
4303 				sym_print_nego_msg(np, cp->target,
4304 				                   "sync msgout", np->msgout);
4305 			}
4306 
4307 			cp->nego_status = NS_SYNC;
4308 			OUTB(np, HS_PRT, HS_NEGOTIATE);
4309 			OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4310 			return;
4311 		} else
4312 			OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4313 	}
4314 
4315 	return;
4316 
4317 reject_it:
4318 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4319 }
4320 
4321 /*
4322  *  Reset DT, SYNC or WIDE to default settings.
4323  *
4324  *  Called when a negotiation does not succeed either
4325  *  on rejection or on protocol error.
4326  *
4327  *  A target that understands a PPR message should never
4328  *  reject it, and messing with it is very unlikely.
4329  *  So, if a PPR makes problems, we may just want to
4330  *  try a legacy negotiation later.
4331  */
4332 static void sym_nego_default(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4333 {
4334 	switch (cp->nego_status) {
4335 	case NS_PPR:
4336 #if 0
4337 		sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0);
4338 #else
4339 		if (tp->tgoal.period < np->minsync)
4340 			tp->tgoal.period = np->minsync;
4341 		if (tp->tgoal.offset > np->maxoffs)
4342 			tp->tgoal.offset = np->maxoffs;
4343 		tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4344 		tp->tgoal.check_nego = 1;
4345 #endif
4346 		break;
4347 	case NS_SYNC:
4348 		sym_setsync (np, cp->target, 0, 0, 0, 0);
4349 		break;
4350 	case NS_WIDE:
4351 		sym_setwide (np, cp->target, 0);
4352 		break;
4353 	}
4354 	np->msgin [0] = M_NOOP;
4355 	np->msgout[0] = M_NOOP;
4356 	cp->nego_status = 0;
4357 }
4358 
4359 /*
4360  *  chip handler for MESSAGE REJECT received in response to
4361  *  PPR, WIDE or SYNCHRONOUS negotiation.
4362  */
4363 static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4364 {
4365 	sym_nego_default(np, tp, cp);
4366 	OUTB(np, HS_PRT, HS_BUSY);
4367 }
4368 
4369 /*
4370  *  chip exception handler for programmed interrupts.
4371  */
4372 static void sym_int_sir (struct sym_hcb *np)
4373 {
4374 	u_char	num	= INB(np, nc_dsps);
4375 	u32	dsa	= INL(np, nc_dsa);
4376 	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
4377 	u_char	target	= INB(np, nc_sdid) & 0x0f;
4378 	struct sym_tcb *tp	= &np->target[target];
4379 	int	tmp;
4380 
4381 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
4382 
4383 	switch (num) {
4384 #if   SYM_CONF_DMA_ADDRESSING_MODE == 2
4385 	/*
4386 	 *  SCRIPTS tell us that we may have to update
4387 	 *  64 bit DMA segment registers.
4388 	 */
4389 	case SIR_DMAP_DIRTY:
4390 		sym_update_dmap_regs(np);
4391 		goto out;
4392 #endif
4393 	/*
4394 	 *  Command has been completed with error condition
4395 	 *  or has been auto-sensed.
4396 	 */
4397 	case SIR_COMPLETE_ERROR:
4398 		sym_complete_error(np, cp);
4399 		return;
4400 	/*
4401 	 *  The C code is currently trying to recover from something.
4402 	 *  Typically, user want to abort some command.
4403 	 */
4404 	case SIR_SCRIPT_STOPPED:
4405 	case SIR_TARGET_SELECTED:
4406 	case SIR_ABORT_SENT:
4407 		sym_sir_task_recovery(np, num);
4408 		return;
4409 	/*
4410 	 *  The device didn't go to MSG OUT phase after having
4411 	 *  been selected with ATN. We donnot want to handle
4412 	 *  that.
4413 	 */
4414 	case SIR_SEL_ATN_NO_MSG_OUT:
4415 		printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
4416 			sym_name (np), target);
4417 		goto out_stuck;
4418 	/*
4419 	 *  The device didn't switch to MSG IN phase after
4420 	 *  having reseleted the initiator.
4421 	 */
4422 	case SIR_RESEL_NO_MSG_IN:
4423 		printf ("%s:%d: No MSG IN phase after reselection.\n",
4424 			sym_name (np), target);
4425 		goto out_stuck;
4426 	/*
4427 	 *  After reselection, the device sent a message that wasn't
4428 	 *  an IDENTIFY.
4429 	 */
4430 	case SIR_RESEL_NO_IDENTIFY:
4431 		printf ("%s:%d: No IDENTIFY after reselection.\n",
4432 			sym_name (np), target);
4433 		goto out_stuck;
4434 	/*
4435 	 *  The device reselected a LUN we donnot know about.
4436 	 */
4437 	case SIR_RESEL_BAD_LUN:
4438 		np->msgout[0] = M_RESET;
4439 		goto out;
4440 	/*
4441 	 *  The device reselected for an untagged nexus and we
4442 	 *  haven't any.
4443 	 */
4444 	case SIR_RESEL_BAD_I_T_L:
4445 		np->msgout[0] = M_ABORT;
4446 		goto out;
4447 	/*
4448 	 *  The device reselected for a tagged nexus that we donnot
4449 	 *  have.
4450 	 */
4451 	case SIR_RESEL_BAD_I_T_L_Q:
4452 		np->msgout[0] = M_ABORT_TAG;
4453 		goto out;
4454 	/*
4455 	 *  The SCRIPTS let us know that the device has grabbed
4456 	 *  our message and will abort the job.
4457 	 */
4458 	case SIR_RESEL_ABORTED:
4459 		np->lastmsg = np->msgout[0];
4460 		np->msgout[0] = M_NOOP;
4461 		printf ("%s:%d: message %x sent on bad reselection.\n",
4462 			sym_name (np), target, np->lastmsg);
4463 		goto out;
4464 	/*
4465 	 *  The SCRIPTS let us know that a message has been
4466 	 *  successfully sent to the device.
4467 	 */
4468 	case SIR_MSG_OUT_DONE:
4469 		np->lastmsg = np->msgout[0];
4470 		np->msgout[0] = M_NOOP;
4471 		/* Should we really care of that */
4472 		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
4473 			if (cp) {
4474 				cp->xerr_status &= ~XE_PARITY_ERR;
4475 				if (!cp->xerr_status)
4476 					OUTOFFB(np, HF_PRT, HF_EXT_ERR);
4477 			}
4478 		}
4479 		goto out;
4480 	/*
4481 	 *  The device didn't send a GOOD SCSI status.
4482 	 *  We may have some work to do prior to allow
4483 	 *  the SCRIPTS processor to continue.
4484 	 */
4485 	case SIR_BAD_SCSI_STATUS:
4486 		if (!cp)
4487 			goto out;
4488 		sym_sir_bad_scsi_status(np, num, cp);
4489 		return;
4490 	/*
4491 	 *  We are asked by the SCRIPTS to prepare a
4492 	 *  REJECT message.
4493 	 */
4494 	case SIR_REJECT_TO_SEND:
4495 		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
4496 		np->msgout[0] = M_REJECT;
4497 		goto out;
4498 	/*
4499 	 *  We have been ODD at the end of a DATA IN
4500 	 *  transfer and the device didn't send a
4501 	 *  IGNORE WIDE RESIDUE message.
4502 	 *  It is a data overrun condition.
4503 	 */
4504 	case SIR_SWIDE_OVERRUN:
4505 		if (cp) {
4506 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4507 			cp->xerr_status |= XE_SWIDE_OVRUN;
4508 		}
4509 		goto out;
4510 	/*
4511 	 *  We have been ODD at the end of a DATA OUT
4512 	 *  transfer.
4513 	 *  It is a data underrun condition.
4514 	 */
4515 	case SIR_SODL_UNDERRUN:
4516 		if (cp) {
4517 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4518 			cp->xerr_status |= XE_SODL_UNRUN;
4519 		}
4520 		goto out;
4521 	/*
4522 	 *  The device wants us to tranfer more data than
4523 	 *  expected or in the wrong direction.
4524 	 *  The number of extra bytes is in scratcha.
4525 	 *  It is a data overrun condition.
4526 	 */
4527 	case SIR_DATA_OVERRUN:
4528 		if (cp) {
4529 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4530 			cp->xerr_status |= XE_EXTRA_DATA;
4531 			cp->extra_bytes += INL(np, nc_scratcha);
4532 		}
4533 		goto out;
4534 	/*
4535 	 *  The device switched to an illegal phase (4/5).
4536 	 */
4537 	case SIR_BAD_PHASE:
4538 		if (cp) {
4539 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4540 			cp->xerr_status |= XE_BAD_PHASE;
4541 		}
4542 		goto out;
4543 	/*
4544 	 *  We received a message.
4545 	 */
4546 	case SIR_MSG_RECEIVED:
4547 		if (!cp)
4548 			goto out_stuck;
4549 		switch (np->msgin [0]) {
4550 		/*
4551 		 *  We received an extended message.
4552 		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
4553 		 *  and reject all other extended messages.
4554 		 */
4555 		case M_EXTENDED:
4556 			switch (np->msgin [2]) {
4557 			case M_X_MODIFY_DP:
4558 				if (DEBUG_FLAGS & DEBUG_POINTER)
4559 					sym_print_msg(cp,"modify DP",np->msgin);
4560 				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
4561 				      (np->msgin[5]<<8)  + (np->msgin[6]);
4562 				sym_modify_dp(np, tp, cp, tmp);
4563 				return;
4564 			case M_X_SYNC_REQ:
4565 				sym_sync_nego(np, tp, cp);
4566 				return;
4567 			case M_X_PPR_REQ:
4568 				sym_ppr_nego(np, tp, cp);
4569 				return;
4570 			case M_X_WIDE_REQ:
4571 				sym_wide_nego(np, tp, cp);
4572 				return;
4573 			default:
4574 				goto out_reject;
4575 			}
4576 			break;
4577 		/*
4578 		 *  We received a 1/2 byte message not handled from SCRIPTS.
4579 		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
4580 		 *  RESIDUE messages that haven't been anticipated by
4581 		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
4582 		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
4583 		 */
4584 		case M_IGN_RESIDUE:
4585 			if (DEBUG_FLAGS & DEBUG_POINTER)
4586 				sym_print_msg(cp,"ign wide residue", np->msgin);
4587 			if (cp->host_flags & HF_SENSE)
4588 				OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4589 			else
4590 				sym_modify_dp(np, tp, cp, -1);
4591 			return;
4592 		case M_REJECT:
4593 			if (INB(np, HS_PRT) == HS_NEGOTIATE)
4594 				sym_nego_rejected(np, tp, cp);
4595 			else {
4596 				sym_print_addr(cp->cmd,
4597 					"M_REJECT received (%x:%x).\n",
4598 					scr_to_cpu(np->lastmsg), np->msgout[0]);
4599 			}
4600 			goto out_clrack;
4601 			break;
4602 		default:
4603 			goto out_reject;
4604 		}
4605 		break;
4606 	/*
4607 	 *  We received an unknown message.
4608 	 *  Ignore all MSG IN phases and reject it.
4609 	 */
4610 	case SIR_MSG_WEIRD:
4611 		sym_print_msg(cp, "WEIRD message received", np->msgin);
4612 		OUTL_DSP(np, SCRIPTB_BA(np, msg_weird));
4613 		return;
4614 	/*
4615 	 *  Negotiation failed.
4616 	 *  Target does not send us the reply.
4617 	 *  Remove the HS_NEGOTIATE status.
4618 	 */
4619 	case SIR_NEGO_FAILED:
4620 		OUTB(np, HS_PRT, HS_BUSY);
4621 	/*
4622 	 *  Negotiation failed.
4623 	 *  Target does not want answer message.
4624 	 */
4625 	case SIR_NEGO_PROTO:
4626 		sym_nego_default(np, tp, cp);
4627 		goto out;
4628 	}
4629 
4630 out:
4631 	OUTONB_STD();
4632 	return;
4633 out_reject:
4634 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4635 	return;
4636 out_clrack:
4637 	OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4638 	return;
4639 out_stuck:
4640 	return;
4641 }
4642 
4643 /*
4644  *  Acquire a control block
4645  */
4646 struct sym_ccb *sym_get_ccb (struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order)
4647 {
4648 	u_char tn = cmd->device->id;
4649 	u_char ln = cmd->device->lun;
4650 	struct sym_tcb *tp = &np->target[tn];
4651 	struct sym_lcb *lp = sym_lp(tp, ln);
4652 	u_short tag = NO_TAG;
4653 	SYM_QUEHEAD *qp;
4654 	struct sym_ccb *cp = NULL;
4655 
4656 	/*
4657 	 *  Look for a free CCB
4658 	 */
4659 	if (sym_que_empty(&np->free_ccbq))
4660 		sym_alloc_ccb(np);
4661 	qp = sym_remque_head(&np->free_ccbq);
4662 	if (!qp)
4663 		goto out;
4664 	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4665 
4666 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4667 	/*
4668 	 *  If the LCB is not yet available and the LUN
4669 	 *  has been probed ok, try to allocate the LCB.
4670 	 */
4671 	if (!lp && sym_is_bit(tp->lun_map, ln)) {
4672 		lp = sym_alloc_lcb(np, tn, ln);
4673 		if (!lp)
4674 			goto out_free;
4675 	}
4676 #endif
4677 
4678 	/*
4679 	 *  If the LCB is not available here, then the
4680 	 *  logical unit is not yet discovered. For those
4681 	 *  ones only accept 1 SCSI IO per logical unit,
4682 	 *  since we cannot allow disconnections.
4683 	 */
4684 	if (!lp) {
4685 		if (!sym_is_bit(tp->busy0_map, ln))
4686 			sym_set_bit(tp->busy0_map, ln);
4687 		else
4688 			goto out_free;
4689 	} else {
4690 		/*
4691 		 *  If we have been asked for a tagged command.
4692 		 */
4693 		if (tag_order) {
4694 			/*
4695 			 *  Debugging purpose.
4696 			 */
4697 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4698 			assert(lp->busy_itl == 0);
4699 #endif
4700 			/*
4701 			 *  Allocate resources for tags if not yet.
4702 			 */
4703 			if (!lp->cb_tags) {
4704 				sym_alloc_lcb_tags(np, tn, ln);
4705 				if (!lp->cb_tags)
4706 					goto out_free;
4707 			}
4708 			/*
4709 			 *  Get a tag for this SCSI IO and set up
4710 			 *  the CCB bus address for reselection,
4711 			 *  and count it for this LUN.
4712 			 *  Toggle reselect path to tagged.
4713 			 */
4714 			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
4715 				tag = lp->cb_tags[lp->ia_tag];
4716 				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
4717 					lp->ia_tag = 0;
4718 				++lp->busy_itlq;
4719 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4720 				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
4721 				lp->head.resel_sa =
4722 					cpu_to_scr(SCRIPTA_BA(np, resel_tag));
4723 #endif
4724 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4725 				cp->tags_si = lp->tags_si;
4726 				++lp->tags_sum[cp->tags_si];
4727 				++lp->tags_since;
4728 #endif
4729 			}
4730 			else
4731 				goto out_free;
4732 		}
4733 		/*
4734 		 *  This command will not be tagged.
4735 		 *  If we already have either a tagged or untagged
4736 		 *  one, refuse to overlap this untagged one.
4737 		 */
4738 		else {
4739 			/*
4740 			 *  Debugging purpose.
4741 			 */
4742 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4743 			assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
4744 #endif
4745 			/*
4746 			 *  Count this nexus for this LUN.
4747 			 *  Set up the CCB bus address for reselection.
4748 			 *  Toggle reselect path to untagged.
4749 			 */
4750 			++lp->busy_itl;
4751 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4752 			if (lp->busy_itl == 1) {
4753 				lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
4754 				lp->head.resel_sa =
4755 				      cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
4756 			}
4757 			else
4758 				goto out_free;
4759 #endif
4760 		}
4761 	}
4762 	/*
4763 	 *  Put the CCB into the busy queue.
4764 	 */
4765 	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4766 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4767 	if (lp) {
4768 		sym_remque(&cp->link2_ccbq);
4769 		sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq);
4770 	}
4771 
4772 #endif
4773 	cp->to_abort = 0;
4774 	cp->odd_byte_adjustment = 0;
4775 	cp->tag	   = tag;
4776 	cp->order  = tag_order;
4777 	cp->target = tn;
4778 	cp->lun    = ln;
4779 
4780 	if (DEBUG_FLAGS & DEBUG_TAGS) {
4781 		sym_print_addr(cmd, "ccb @%p using tag %d.\n", cp, tag);
4782 	}
4783 
4784 out:
4785 	return cp;
4786 out_free:
4787 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4788 	return NULL;
4789 }
4790 
4791 /*
4792  *  Release one control block
4793  */
4794 void sym_free_ccb (struct sym_hcb *np, struct sym_ccb *cp)
4795 {
4796 	struct sym_tcb *tp = &np->target[cp->target];
4797 	struct sym_lcb *lp = sym_lp(tp, cp->lun);
4798 
4799 	if (DEBUG_FLAGS & DEBUG_TAGS) {
4800 		sym_print_addr(cp->cmd, "ccb @%p freeing tag %d.\n",
4801 				cp, cp->tag);
4802 	}
4803 
4804 	/*
4805 	 *  If LCB available,
4806 	 */
4807 	if (lp) {
4808 		/*
4809 		 *  If tagged, release the tag, set the relect path
4810 		 */
4811 		if (cp->tag != NO_TAG) {
4812 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4813 			--lp->tags_sum[cp->tags_si];
4814 #endif
4815 			/*
4816 			 *  Free the tag value.
4817 			 */
4818 			lp->cb_tags[lp->if_tag] = cp->tag;
4819 			if (++lp->if_tag == SYM_CONF_MAX_TASK)
4820 				lp->if_tag = 0;
4821 			/*
4822 			 *  Make the reselect path invalid,
4823 			 *  and uncount this CCB.
4824 			 */
4825 			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
4826 			--lp->busy_itlq;
4827 		} else {	/* Untagged */
4828 			/*
4829 			 *  Make the reselect path invalid,
4830 			 *  and uncount this CCB.
4831 			 */
4832 			lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
4833 			--lp->busy_itl;
4834 		}
4835 		/*
4836 		 *  If no JOB active, make the LUN reselect path invalid.
4837 		 */
4838 		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
4839 			lp->head.resel_sa =
4840 				cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
4841 	}
4842 	/*
4843 	 *  Otherwise, we only accept 1 IO per LUN.
4844 	 *  Clear the bit that keeps track of this IO.
4845 	 */
4846 	else
4847 		sym_clr_bit(tp->busy0_map, cp->lun);
4848 
4849 	/*
4850 	 *  We donnot queue more than 1 ccb per target
4851 	 *  with negotiation at any time. If this ccb was
4852 	 *  used for negotiation, clear this info in the tcb.
4853 	 */
4854 	if (cp == tp->nego_cp)
4855 		tp->nego_cp = NULL;
4856 
4857 #ifdef SYM_CONF_IARB_SUPPORT
4858 	/*
4859 	 *  If we just complete the last queued CCB,
4860 	 *  clear this info that is no longer relevant.
4861 	 */
4862 	if (cp == np->last_cp)
4863 		np->last_cp = 0;
4864 #endif
4865 
4866 	/*
4867 	 *  Make this CCB available.
4868 	 */
4869 	cp->cmd = NULL;
4870 	cp->host_status = HS_IDLE;
4871 	sym_remque(&cp->link_ccbq);
4872 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4873 
4874 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4875 	if (lp) {
4876 		sym_remque(&cp->link2_ccbq);
4877 		sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq);
4878 		if (cp->started) {
4879 			if (cp->tag != NO_TAG)
4880 				--lp->started_tags;
4881 			else
4882 				--lp->started_no_tag;
4883 		}
4884 	}
4885 	cp->started = 0;
4886 #endif
4887 }
4888 
4889 /*
4890  *  Allocate a CCB from memory and initialize its fixed part.
4891  */
4892 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np)
4893 {
4894 	struct sym_ccb *cp = NULL;
4895 	int hcode;
4896 
4897 	/*
4898 	 *  Prevent from allocating more CCBs than we can
4899 	 *  queue to the controller.
4900 	 */
4901 	if (np->actccbs >= SYM_CONF_MAX_START)
4902 		return NULL;
4903 
4904 	/*
4905 	 *  Allocate memory for this CCB.
4906 	 */
4907 	cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
4908 	if (!cp)
4909 		goto out_free;
4910 
4911 	/*
4912 	 *  Count it.
4913 	 */
4914 	np->actccbs++;
4915 
4916 	/*
4917 	 *  Compute the bus address of this ccb.
4918 	 */
4919 	cp->ccb_ba = vtobus(cp);
4920 
4921 	/*
4922 	 *  Insert this ccb into the hashed list.
4923 	 */
4924 	hcode = CCB_HASH_CODE(cp->ccb_ba);
4925 	cp->link_ccbh = np->ccbh[hcode];
4926 	np->ccbh[hcode] = cp;
4927 
4928 	/*
4929 	 *  Initialyze the start and restart actions.
4930 	 */
4931 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA(np, idle));
4932 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
4933 
4934  	/*
4935 	 *  Initilialyze some other fields.
4936 	 */
4937 	cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
4938 
4939 	/*
4940 	 *  Chain into free ccb queue.
4941 	 */
4942 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4943 
4944 	/*
4945 	 *  Chain into optionnal lists.
4946 	 */
4947 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4948 	sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq);
4949 #endif
4950 	return cp;
4951 out_free:
4952 	if (cp)
4953 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
4954 	return NULL;
4955 }
4956 
4957 /*
4958  *  Look up a CCB from a DSA value.
4959  */
4960 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa)
4961 {
4962 	int hcode;
4963 	struct sym_ccb *cp;
4964 
4965 	hcode = CCB_HASH_CODE(dsa);
4966 	cp = np->ccbh[hcode];
4967 	while (cp) {
4968 		if (cp->ccb_ba == dsa)
4969 			break;
4970 		cp = cp->link_ccbh;
4971 	}
4972 
4973 	return cp;
4974 }
4975 
4976 /*
4977  *  Target control block initialisation.
4978  *  Nothing important to do at the moment.
4979  */
4980 static void sym_init_tcb (struct sym_hcb *np, u_char tn)
4981 {
4982 #if 0	/*  Hmmm... this checking looks paranoid. */
4983 	/*
4984 	 *  Check some alignments required by the chip.
4985 	 */
4986 	assert (((offsetof(struct sym_reg, nc_sxfer) ^
4987 		offsetof(struct sym_tcb, head.sval)) &3) == 0);
4988 	assert (((offsetof(struct sym_reg, nc_scntl3) ^
4989 		offsetof(struct sym_tcb, head.wval)) &3) == 0);
4990 #endif
4991 }
4992 
4993 /*
4994  *  Lun control block allocation and initialization.
4995  */
4996 struct sym_lcb *sym_alloc_lcb (struct sym_hcb *np, u_char tn, u_char ln)
4997 {
4998 	struct sym_tcb *tp = &np->target[tn];
4999 	struct sym_lcb *lp = sym_lp(tp, ln);
5000 
5001 	/*
5002 	 *  Already done, just return.
5003 	 */
5004 	if (lp)
5005 		return lp;
5006 
5007 	/*
5008 	 *  Donnot allow LUN control block
5009 	 *  allocation for not probed LUNs.
5010 	 */
5011 	if (!sym_is_bit(tp->lun_map, ln))
5012 		return NULL;
5013 
5014 	/*
5015 	 *  Initialize the target control block if not yet.
5016 	 */
5017 	sym_init_tcb (np, tn);
5018 
5019 	/*
5020 	 *  Allocate the LCB bus address array.
5021 	 *  Compute the bus address of this table.
5022 	 */
5023 	if (ln && !tp->luntbl) {
5024 		int i;
5025 
5026 		tp->luntbl = sym_calloc_dma(256, "LUNTBL");
5027 		if (!tp->luntbl)
5028 			goto fail;
5029 		for (i = 0 ; i < 64 ; i++)
5030 			tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
5031 		tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
5032 	}
5033 
5034 	/*
5035 	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
5036 	 */
5037 	if (ln && !tp->lunmp) {
5038 		tp->lunmp = kcalloc(SYM_CONF_MAX_LUN, sizeof(struct sym_lcb *),
5039 				GFP_KERNEL);
5040 		if (!tp->lunmp)
5041 			goto fail;
5042 	}
5043 
5044 	/*
5045 	 *  Allocate the lcb.
5046 	 *  Make it available to the chip.
5047 	 */
5048 	lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
5049 	if (!lp)
5050 		goto fail;
5051 	if (ln) {
5052 		tp->lunmp[ln] = lp;
5053 		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
5054 	}
5055 	else {
5056 		tp->lun0p = lp;
5057 		tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
5058 	}
5059 
5060 	/*
5061 	 *  Let the itl task point to error handling.
5062 	 */
5063 	lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
5064 
5065 	/*
5066 	 *  Set the reselect pattern to our default. :)
5067 	 */
5068 	lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5069 
5070 	/*
5071 	 *  Set user capabilities.
5072 	 */
5073 	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
5074 
5075 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5076 	/*
5077 	 *  Initialize device queueing.
5078 	 */
5079 	sym_que_init(&lp->waiting_ccbq);
5080 	sym_que_init(&lp->started_ccbq);
5081 	lp->started_max   = SYM_CONF_MAX_TASK;
5082 	lp->started_limit = SYM_CONF_MAX_TASK;
5083 #endif
5084 	/*
5085 	 *  If we are busy, count the IO.
5086 	 */
5087 	if (sym_is_bit(tp->busy0_map, ln)) {
5088 		lp->busy_itl = 1;
5089 		sym_clr_bit(tp->busy0_map, ln);
5090 	}
5091 fail:
5092 	return lp;
5093 }
5094 
5095 /*
5096  *  Allocate LCB resources for tagged command queuing.
5097  */
5098 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln)
5099 {
5100 	struct sym_tcb *tp = &np->target[tn];
5101 	struct sym_lcb *lp = sym_lp(tp, ln);
5102 	int i;
5103 
5104 	/*
5105 	 *  If LCB not available, try to allocate it.
5106 	 */
5107 	if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
5108 		goto fail;
5109 
5110 	/*
5111 	 *  Allocate the task table and and the tag allocation
5112 	 *  circular buffer. We want both or none.
5113 	 */
5114 	lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5115 	if (!lp->itlq_tbl)
5116 		goto fail;
5117 	lp->cb_tags = kcalloc(SYM_CONF_MAX_TASK, 1, GFP_ATOMIC);
5118 	if (!lp->cb_tags) {
5119 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5120 		lp->itlq_tbl = NULL;
5121 		goto fail;
5122 	}
5123 
5124 	/*
5125 	 *  Initialize the task table with invalid entries.
5126 	 */
5127 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5128 		lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
5129 
5130 	/*
5131 	 *  Fill up the tag buffer with tag numbers.
5132 	 */
5133 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5134 		lp->cb_tags[i] = i;
5135 
5136 	/*
5137 	 *  Make the task table available to SCRIPTS,
5138 	 *  And accept tagged commands now.
5139 	 */
5140 	lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
5141 
5142 	return;
5143 fail:
5144 	return;
5145 }
5146 
5147 /*
5148  *  Queue a SCSI IO to the controller.
5149  */
5150 int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
5151 {
5152 	struct scsi_device *sdev = cmd->device;
5153 	struct sym_tcb *tp;
5154 	struct sym_lcb *lp;
5155 	u_char	*msgptr;
5156 	u_int   msglen;
5157 	int can_disconnect;
5158 
5159 	/*
5160 	 *  Keep track of the IO in our CCB.
5161 	 */
5162 	cp->cmd = cmd;
5163 
5164 	/*
5165 	 *  Retrieve the target descriptor.
5166 	 */
5167 	tp = &np->target[cp->target];
5168 
5169 	/*
5170 	 *  Retrieve the lun descriptor.
5171 	 */
5172 	lp = sym_lp(tp, sdev->lun);
5173 
5174 	can_disconnect = (cp->tag != NO_TAG) ||
5175 		(lp && (lp->curr_flags & SYM_DISC_ENABLED));
5176 
5177 	msgptr = cp->scsi_smsg;
5178 	msglen = 0;
5179 	msgptr[msglen++] = IDENTIFY(can_disconnect, sdev->lun);
5180 
5181 	/*
5182 	 *  Build the tag message if present.
5183 	 */
5184 	if (cp->tag != NO_TAG) {
5185 		u_char order = cp->order;
5186 
5187 		switch(order) {
5188 		case M_ORDERED_TAG:
5189 			break;
5190 		case M_HEAD_TAG:
5191 			break;
5192 		default:
5193 			order = M_SIMPLE_TAG;
5194 		}
5195 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
5196 		/*
5197 		 *  Avoid too much reordering of SCSI commands.
5198 		 *  The algorithm tries to prevent completion of any
5199 		 *  tagged command from being delayed against more
5200 		 *  than 3 times the max number of queued commands.
5201 		 */
5202 		if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) {
5203 			lp->tags_si = !(lp->tags_si);
5204 			if (lp->tags_sum[lp->tags_si]) {
5205 				order = M_ORDERED_TAG;
5206 				if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) {
5207 					sym_print_addr(cmd,
5208 						"ordered tag forced.\n");
5209 				}
5210 			}
5211 			lp->tags_since = 0;
5212 		}
5213 #endif
5214 		msgptr[msglen++] = order;
5215 
5216 		/*
5217 		 *  For less than 128 tags, actual tags are numbered
5218 		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
5219 		 *  with devices that have problems with #TAG 0 or too
5220 		 *  great #TAG numbers. For more tags (up to 256),
5221 		 *  we use directly our tag number.
5222 		 */
5223 #if SYM_CONF_MAX_TASK > (512/4)
5224 		msgptr[msglen++] = cp->tag;
5225 #else
5226 		msgptr[msglen++] = (cp->tag << 1) + 1;
5227 #endif
5228 	}
5229 
5230 	/*
5231 	 *  Build a negotiation message if needed.
5232 	 *  (nego_status is filled by sym_prepare_nego())
5233 	 */
5234 	cp->nego_status = 0;
5235 	if (tp->tgoal.check_nego && !tp->nego_cp && lp) {
5236 		msglen += sym_prepare_nego(np, cp, msgptr + msglen);
5237 	}
5238 
5239 	/*
5240 	 *  Startqueue
5241 	 */
5242 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA(np, select));
5243 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA(np, resel_dsa));
5244 
5245 	/*
5246 	 *  select
5247 	 */
5248 	cp->phys.select.sel_id		= cp->target;
5249 	cp->phys.select.sel_scntl3	= tp->head.wval;
5250 	cp->phys.select.sel_sxfer	= tp->head.sval;
5251 	cp->phys.select.sel_scntl4	= tp->head.uval;
5252 
5253 	/*
5254 	 *  message
5255 	 */
5256 	cp->phys.smsg.addr	= CCB_BA(cp, scsi_smsg);
5257 	cp->phys.smsg.size	= cpu_to_scr(msglen);
5258 
5259 	/*
5260 	 *  status
5261 	 */
5262 	cp->host_xflags		= 0;
5263 	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
5264 	cp->ssss_status		= S_ILLEGAL;
5265 	cp->xerr_status		= 0;
5266 	cp->host_flags		= 0;
5267 	cp->extra_bytes		= 0;
5268 
5269 	/*
5270 	 *  extreme data pointer.
5271 	 *  shall be positive, so -1 is lower than lowest.:)
5272 	 */
5273 	cp->ext_sg  = -1;
5274 	cp->ext_ofs = 0;
5275 
5276 	/*
5277 	 *  Build the CDB and DATA descriptor block
5278 	 *  and start the IO.
5279 	 */
5280 	return sym_setup_data_and_start(np, cmd, cp);
5281 }
5282 
5283 /*
5284  *  Reset a SCSI target (all LUNs of this target).
5285  */
5286 int sym_reset_scsi_target(struct sym_hcb *np, int target)
5287 {
5288 	struct sym_tcb *tp;
5289 
5290 	if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET)
5291 		return -1;
5292 
5293 	tp = &np->target[target];
5294 	tp->to_reset = 1;
5295 
5296 	np->istat_sem = SEM;
5297 	OUTB(np, nc_istat, SIGP|SEM);
5298 
5299 	return 0;
5300 }
5301 
5302 /*
5303  *  Abort a SCSI IO.
5304  */
5305 static int sym_abort_ccb(struct sym_hcb *np, struct sym_ccb *cp, int timed_out)
5306 {
5307 	/*
5308 	 *  Check that the IO is active.
5309 	 */
5310 	if (!cp || !cp->host_status || cp->host_status == HS_WAIT)
5311 		return -1;
5312 
5313 	/*
5314 	 *  If a previous abort didn't succeed in time,
5315 	 *  perform a BUS reset.
5316 	 */
5317 	if (cp->to_abort) {
5318 		sym_reset_scsi_bus(np, 1);
5319 		return 0;
5320 	}
5321 
5322 	/*
5323 	 *  Mark the CCB for abort and allow time for.
5324 	 */
5325 	cp->to_abort = timed_out ? 2 : 1;
5326 
5327 	/*
5328 	 *  Tell the SCRIPTS processor to stop and synchronize with us.
5329 	 */
5330 	np->istat_sem = SEM;
5331 	OUTB(np, nc_istat, SIGP|SEM);
5332 	return 0;
5333 }
5334 
5335 int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, int timed_out)
5336 {
5337 	struct sym_ccb *cp;
5338 	SYM_QUEHEAD *qp;
5339 
5340 	/*
5341 	 *  Look up our CCB control block.
5342 	 */
5343 	cp = NULL;
5344 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5345 		struct sym_ccb *cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5346 		if (cp2->cmd == cmd) {
5347 			cp = cp2;
5348 			break;
5349 		}
5350 	}
5351 
5352 	return sym_abort_ccb(np, cp, timed_out);
5353 }
5354 
5355 /*
5356  *  Complete execution of a SCSI command with extended
5357  *  error, SCSI status error, or having been auto-sensed.
5358  *
5359  *  The SCRIPTS processor is not running there, so we
5360  *  can safely access IO registers and remove JOBs from
5361  *  the START queue.
5362  *  SCRATCHA is assumed to have been loaded with STARTPOS
5363  *  before the SCRIPTS called the C code.
5364  */
5365 void sym_complete_error(struct sym_hcb *np, struct sym_ccb *cp)
5366 {
5367 	struct scsi_device *sdev;
5368 	struct scsi_cmnd *cmd;
5369 	struct sym_tcb *tp;
5370 	struct sym_lcb *lp;
5371 	int resid;
5372 	int i;
5373 
5374 	/*
5375 	 *  Paranoid check. :)
5376 	 */
5377 	if (!cp || !cp->cmd)
5378 		return;
5379 
5380 	cmd = cp->cmd;
5381 	sdev = cmd->device;
5382 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
5383 		dev_info(&sdev->sdev_gendev, "CCB=%p STAT=%x/%x/%x\n", cp,
5384 			cp->host_status, cp->ssss_status, cp->host_flags);
5385 	}
5386 
5387 	/*
5388 	 *  Get target and lun pointers.
5389 	 */
5390 	tp = &np->target[cp->target];
5391 	lp = sym_lp(tp, sdev->lun);
5392 
5393 	/*
5394 	 *  Check for extended errors.
5395 	 */
5396 	if (cp->xerr_status) {
5397 		if (sym_verbose)
5398 			sym_print_xerr(cmd, cp->xerr_status);
5399 		if (cp->host_status == HS_COMPLETE)
5400 			cp->host_status = HS_COMP_ERR;
5401 	}
5402 
5403 	/*
5404 	 *  Calculate the residual.
5405 	 */
5406 	resid = sym_compute_residual(np, cp);
5407 
5408 	if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */
5409 		resid  = 0;		 /* throw them away. :)		    */
5410 		cp->sv_resid = 0;
5411 	}
5412 #ifdef DEBUG_2_0_X
5413 if (resid)
5414 	printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5415 #endif
5416 
5417 	/*
5418 	 *  Dequeue all queued CCBs for that device
5419 	 *  not yet started by SCRIPTS.
5420 	 */
5421 	i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
5422 	i = sym_dequeue_from_squeue(np, i, cp->target, sdev->lun, -1);
5423 
5424 	/*
5425 	 *  Restart the SCRIPTS processor.
5426 	 */
5427 	OUTL_DSP(np, SCRIPTA_BA(np, start));
5428 
5429 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5430 	if (cp->host_status == HS_COMPLETE &&
5431 	    cp->ssss_status == S_QUEUE_FULL) {
5432 		if (!lp || lp->started_tags - i < 2)
5433 			goto weirdness;
5434 		/*
5435 		 *  Decrease queue depth as needed.
5436 		 */
5437 		lp->started_max = lp->started_tags - i - 1;
5438 		lp->num_sgood = 0;
5439 
5440 		if (sym_verbose >= 2) {
5441 			sym_print_addr(cmd, " queue depth is now %d\n",
5442 					lp->started_max);
5443 		}
5444 
5445 		/*
5446 		 *  Repair the CCB.
5447 		 */
5448 		cp->host_status = HS_BUSY;
5449 		cp->ssss_status = S_ILLEGAL;
5450 
5451 		/*
5452 		 *  Let's requeue it to device.
5453 		 */
5454 		sym_set_cam_status(cmd, DID_SOFT_ERROR);
5455 		goto finish;
5456 	}
5457 weirdness:
5458 #endif
5459 	/*
5460 	 *  Build result in CAM ccb.
5461 	 */
5462 	sym_set_cam_result_error(np, cp, resid);
5463 
5464 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5465 finish:
5466 #endif
5467 	/*
5468 	 *  Add this one to the COMP queue.
5469 	 */
5470 	sym_remque(&cp->link_ccbq);
5471 	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
5472 
5473 	/*
5474 	 *  Complete all those commands with either error
5475 	 *  or requeue condition.
5476 	 */
5477 	sym_flush_comp_queue(np, 0);
5478 
5479 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5480 	/*
5481 	 *  Donnot start more than 1 command after an error.
5482 	 */
5483 	if (lp)
5484 		sym_start_next_ccbs(np, lp, 1);
5485 #endif
5486 }
5487 
5488 /*
5489  *  Complete execution of a successful SCSI command.
5490  *
5491  *  Only successful commands go to the DONE queue,
5492  *  since we need to have the SCRIPTS processor
5493  *  stopped on any error condition.
5494  *  The SCRIPTS processor is running while we are
5495  *  completing successful commands.
5496  */
5497 void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp)
5498 {
5499 	struct sym_tcb *tp;
5500 	struct sym_lcb *lp;
5501 	struct scsi_cmnd *cmd;
5502 	int resid;
5503 
5504 	/*
5505 	 *  Paranoid check. :)
5506 	 */
5507 	if (!cp || !cp->cmd)
5508 		return;
5509 	assert (cp->host_status == HS_COMPLETE);
5510 
5511 	/*
5512 	 *  Get user command.
5513 	 */
5514 	cmd = cp->cmd;
5515 
5516 	/*
5517 	 *  Get target and lun pointers.
5518 	 */
5519 	tp = &np->target[cp->target];
5520 	lp = sym_lp(tp, cp->lun);
5521 
5522 	/*
5523 	 *  Assume device discovered on first success.
5524 	 */
5525 	if (!lp)
5526 		sym_set_bit(tp->lun_map, cp->lun);
5527 
5528 	/*
5529 	 *  If all data have been transferred, given than no
5530 	 *  extended error did occur, there is no residual.
5531 	 */
5532 	resid = 0;
5533 	if (cp->phys.head.lastp != sym_goalp(cp))
5534 		resid = sym_compute_residual(np, cp);
5535 
5536 	/*
5537 	 *  Wrong transfer residuals may be worse than just always
5538 	 *  returning zero. User can disable this feature in
5539 	 *  sym53c8xx.h. Residual support is enabled by default.
5540 	 */
5541 	if (!SYM_SETUP_RESIDUAL_SUPPORT)
5542 		resid  = 0;
5543 #ifdef DEBUG_2_0_X
5544 if (resid)
5545 	printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5546 #endif
5547 
5548 	/*
5549 	 *  Build result in CAM ccb.
5550 	 */
5551 	sym_set_cam_result_ok(cp, cmd, resid);
5552 
5553 #ifdef	SYM_OPT_SNIFF_INQUIRY
5554 	/*
5555 	 *  On standard INQUIRY response (EVPD and CmDt
5556 	 *  not set), sniff out device capabilities.
5557 	 */
5558 	if (cp->cdb_buf[0] == INQUIRY && !(cp->cdb_buf[1] & 0x3))
5559 		sym_sniff_inquiry(np, cmd, resid);
5560 #endif
5561 
5562 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5563 	/*
5564 	 *  If max number of started ccbs had been reduced,
5565 	 *  increase it if 200 good status received.
5566 	 */
5567 	if (lp && lp->started_max < lp->started_limit) {
5568 		++lp->num_sgood;
5569 		if (lp->num_sgood >= 200) {
5570 			lp->num_sgood = 0;
5571 			++lp->started_max;
5572 			if (sym_verbose >= 2) {
5573 				sym_print_addr(cmd, " queue depth is now %d\n",
5574 				       lp->started_max);
5575 			}
5576 		}
5577 	}
5578 #endif
5579 
5580 	/*
5581 	 *  Free our CCB.
5582 	 */
5583 	sym_free_ccb (np, cp);
5584 
5585 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5586 	/*
5587 	 *  Requeue a couple of awaiting scsi commands.
5588 	 */
5589 	if (lp && !sym_que_empty(&lp->waiting_ccbq))
5590 		sym_start_next_ccbs(np, lp, 2);
5591 #endif
5592 	/*
5593 	 *  Complete the command.
5594 	 */
5595 	sym_xpt_done(np, cmd);
5596 }
5597 
5598 /*
5599  *  Soft-attach the controller.
5600  */
5601 int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram)
5602 {
5603 	struct sym_hcb *np = sym_get_hcb(shost);
5604 	int i;
5605 
5606 	/*
5607 	 *  Get some info about the firmware.
5608 	 */
5609 	np->scripta_sz	 = fw->a_size;
5610 	np->scriptb_sz	 = fw->b_size;
5611 	np->scriptz_sz	 = fw->z_size;
5612 	np->fw_setup	 = fw->setup;
5613 	np->fw_patch	 = fw->patch;
5614 	np->fw_name	 = fw->name;
5615 
5616 	/*
5617 	 *  Save setting of some IO registers, so we will
5618 	 *  be able to probe specific implementations.
5619 	 */
5620 	sym_save_initial_setting (np);
5621 
5622 	/*
5623 	 *  Reset the chip now, since it has been reported
5624 	 *  that SCSI clock calibration may not work properly
5625 	 *  if the chip is currently active.
5626 	 */
5627 	sym_chip_reset(np);
5628 
5629 	/*
5630 	 *  Prepare controller and devices settings, according
5631 	 *  to chip features, user set-up and driver set-up.
5632 	 */
5633 	sym_prepare_setting(shost, np, nvram);
5634 
5635 	/*
5636 	 *  Check the PCI clock frequency.
5637 	 *  Must be performed after prepare_setting since it destroys
5638 	 *  STEST1 that is used to probe for the clock doubler.
5639 	 */
5640 	i = sym_getpciclock(np);
5641 	if (i > 37000 && !(np->features & FE_66MHZ))
5642 		printf("%s: PCI BUS clock seems too high: %u KHz.\n",
5643 			sym_name(np), i);
5644 
5645 	/*
5646 	 *  Allocate the start queue.
5647 	 */
5648 	np->squeue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
5649 	if (!np->squeue)
5650 		goto attach_failed;
5651 	np->squeue_ba = vtobus(np->squeue);
5652 
5653 	/*
5654 	 *  Allocate the done queue.
5655 	 */
5656 	np->dqueue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
5657 	if (!np->dqueue)
5658 		goto attach_failed;
5659 	np->dqueue_ba = vtobus(np->dqueue);
5660 
5661 	/*
5662 	 *  Allocate the target bus address array.
5663 	 */
5664 	np->targtbl = sym_calloc_dma(256, "TARGTBL");
5665 	if (!np->targtbl)
5666 		goto attach_failed;
5667 	np->targtbl_ba = vtobus(np->targtbl);
5668 
5669 	/*
5670 	 *  Allocate SCRIPTS areas.
5671 	 */
5672 	np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
5673 	np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
5674 	np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0");
5675 	if (!np->scripta0 || !np->scriptb0 || !np->scriptz0)
5676 		goto attach_failed;
5677 
5678 	/*
5679 	 *  Allocate the array of lists of CCBs hashed by DSA.
5680 	 */
5681 	np->ccbh = kcalloc(sizeof(struct sym_ccb **), CCB_HASH_SIZE, GFP_KERNEL);
5682 	if (!np->ccbh)
5683 		goto attach_failed;
5684 
5685 	/*
5686 	 *  Initialyze the CCB free and busy queues.
5687 	 */
5688 	sym_que_init(&np->free_ccbq);
5689 	sym_que_init(&np->busy_ccbq);
5690 	sym_que_init(&np->comp_ccbq);
5691 
5692 	/*
5693 	 *  Initialization for optional handling
5694 	 *  of device queueing.
5695 	 */
5696 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5697 	sym_que_init(&np->dummy_ccbq);
5698 #endif
5699 	/*
5700 	 *  Allocate some CCB. We need at least ONE.
5701 	 */
5702 	if (!sym_alloc_ccb(np))
5703 		goto attach_failed;
5704 
5705 	/*
5706 	 *  Calculate BUS addresses where we are going
5707 	 *  to load the SCRIPTS.
5708 	 */
5709 	np->scripta_ba	= vtobus(np->scripta0);
5710 	np->scriptb_ba	= vtobus(np->scriptb0);
5711 	np->scriptz_ba	= vtobus(np->scriptz0);
5712 
5713 	if (np->ram_ba) {
5714 		np->scripta_ba	= np->ram_ba;
5715 		if (np->features & FE_RAM8K) {
5716 			np->ram_ws = 8192;
5717 			np->scriptb_ba = np->scripta_ba + 4096;
5718 #if 0	/* May get useful for 64 BIT PCI addressing */
5719 			np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
5720 #endif
5721 		}
5722 		else
5723 			np->ram_ws = 4096;
5724 	}
5725 
5726 	/*
5727 	 *  Copy scripts to controller instance.
5728 	 */
5729 	memcpy(np->scripta0, fw->a_base, np->scripta_sz);
5730 	memcpy(np->scriptb0, fw->b_base, np->scriptb_sz);
5731 	memcpy(np->scriptz0, fw->z_base, np->scriptz_sz);
5732 
5733 	/*
5734 	 *  Setup variable parts in scripts and compute
5735 	 *  scripts bus addresses used from the C code.
5736 	 */
5737 	np->fw_setup(np, fw);
5738 
5739 	/*
5740 	 *  Bind SCRIPTS with physical addresses usable by the
5741 	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
5742 	 */
5743 	sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
5744 	sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
5745 	sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz);
5746 
5747 #ifdef SYM_CONF_IARB_SUPPORT
5748 	/*
5749 	 *    If user wants IARB to be set when we win arbitration
5750 	 *    and have other jobs, compute the max number of consecutive
5751 	 *    settings of IARB hints before we leave devices a chance to
5752 	 *    arbitrate for reselection.
5753 	 */
5754 #ifdef	SYM_SETUP_IARB_MAX
5755 	np->iarb_max = SYM_SETUP_IARB_MAX;
5756 #else
5757 	np->iarb_max = 4;
5758 #endif
5759 #endif
5760 
5761 	/*
5762 	 *  Prepare the idle and invalid task actions.
5763 	 */
5764 	np->idletask.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5765 	np->idletask.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5766 	np->idletask_ba		= vtobus(&np->idletask);
5767 
5768 	np->notask.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5769 	np->notask.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5770 	np->notask_ba		= vtobus(&np->notask);
5771 
5772 	np->bad_itl.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5773 	np->bad_itl.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5774 	np->bad_itl_ba		= vtobus(&np->bad_itl);
5775 
5776 	np->bad_itlq.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5777 	np->bad_itlq.restart	= cpu_to_scr(SCRIPTB_BA(np,bad_i_t_l_q));
5778 	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
5779 
5780 	/*
5781 	 *  Allocate and prepare the lun JUMP table that is used
5782 	 *  for a target prior the probing of devices (bad lun table).
5783 	 *  A private table will be allocated for the target on the
5784 	 *  first INQUIRY response received.
5785 	 */
5786 	np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
5787 	if (!np->badluntbl)
5788 		goto attach_failed;
5789 
5790 	np->badlun_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5791 	for (i = 0 ; i < 64 ; i++)	/* 64 luns/target, no less */
5792 		np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
5793 
5794 	/*
5795 	 *  Prepare the bus address array that contains the bus
5796 	 *  address of each target control block.
5797 	 *  For now, assume all logical units are wrong. :)
5798 	 */
5799 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
5800 		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
5801 		np->target[i].head.luntbl_sa =
5802 				cpu_to_scr(vtobus(np->badluntbl));
5803 		np->target[i].head.lun0_sa =
5804 				cpu_to_scr(vtobus(&np->badlun_sa));
5805 	}
5806 
5807 	/*
5808 	 *  Now check the cache handling of the pci chipset.
5809 	 */
5810 	if (sym_snooptest (np)) {
5811 		printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
5812 		goto attach_failed;
5813 	}
5814 
5815 	/*
5816 	 *  Sigh! we are done.
5817 	 */
5818 	return 0;
5819 
5820 attach_failed:
5821 	return -ENXIO;
5822 }
5823 
5824 /*
5825  *  Free everything that has been allocated for this device.
5826  */
5827 void sym_hcb_free(struct sym_hcb *np)
5828 {
5829 	SYM_QUEHEAD *qp;
5830 	struct sym_ccb *cp;
5831 	struct sym_tcb *tp;
5832 	struct sym_lcb *lp;
5833 	int target, lun;
5834 
5835 	if (np->scriptz0)
5836 		sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0");
5837 	if (np->scriptb0)
5838 		sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
5839 	if (np->scripta0)
5840 		sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
5841 	if (np->squeue)
5842 		sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
5843 	if (np->dqueue)
5844 		sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
5845 
5846 	if (np->actccbs) {
5847 		while ((qp = sym_remque_head(&np->free_ccbq)) != 0) {
5848 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5849 			sym_mfree_dma(cp, sizeof(*cp), "CCB");
5850 		}
5851 	}
5852 	kfree(np->ccbh);
5853 
5854 	if (np->badluntbl)
5855 		sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
5856 
5857 	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
5858 		tp = &np->target[target];
5859 		for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
5860 			lp = sym_lp(tp, lun);
5861 			if (!lp)
5862 				continue;
5863 			if (lp->itlq_tbl)
5864 				sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
5865 				       "ITLQ_TBL");
5866 			kfree(lp->cb_tags);
5867 			sym_mfree_dma(lp, sizeof(*lp), "LCB");
5868 		}
5869 #if SYM_CONF_MAX_LUN > 1
5870 		kfree(tp->lunmp);
5871 #endif
5872 	}
5873 	if (np->targtbl)
5874 		sym_mfree_dma(np->targtbl, 256, "TARGTBL");
5875 }
5876