xref: /linux/drivers/scsi/sym53c8xx_2/sym_hipd.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
4  * of PCI-SCSI IO processors.
5  *
6  * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
7  * Copyright (c) 2003-2005  Matthew Wilcox <matthew@wil.cx>
8  *
9  * This driver is derived from the Linux sym53c8xx driver.
10  * Copyright (C) 1998-2000  Gerard Roudier
11  *
12  * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
13  * a port of the FreeBSD ncr driver to Linux-1.2.13.
14  *
15  * The original ncr driver has been written for 386bsd and FreeBSD by
16  *         Wolfgang Stanglmeier        <wolf@cologne.de>
17  *         Stefan Esser                <se@mi.Uni-Koeln.de>
18  * Copyright (C) 1994  Wolfgang Stanglmeier
19  *
20  * Other major contributions:
21  *
22  * NVRAM detection and reading.
23  * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
24  *
25  *-----------------------------------------------------------------------------
26  */
27 
28 #include <linux/slab.h>
29 #include <asm/param.h>		/* for timeouts in units of HZ */
30 
31 #include "sym_glue.h"
32 #include "sym_nvram.h"
33 
34 #if 0
35 #define SYM_DEBUG_GENERIC_SUPPORT
36 #endif
37 
38 /*
39  *  Needed function prototypes.
40  */
41 static void sym_int_ma (struct sym_hcb *np);
42 static void sym_int_sir(struct sym_hcb *);
43 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np);
44 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa);
45 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln);
46 static void sym_complete_error (struct sym_hcb *np, struct sym_ccb *cp);
47 static void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp);
48 static int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp);
49 
50 /*
51  *  Print a buffer in hexadecimal format with a ".\n" at end.
52  */
53 static void sym_printl_hex(u_char *p, int n)
54 {
55 	while (n-- > 0)
56 		printf (" %x", *p++);
57 	printf (".\n");
58 }
59 
60 static void sym_print_msg(struct sym_ccb *cp, char *label, u_char *msg)
61 {
62 	sym_print_addr(cp->cmd, "%s: ", label);
63 
64 	spi_print_msg(msg);
65 	printf("\n");
66 }
67 
68 static void sym_print_nego_msg(struct sym_hcb *np, int target, char *label, u_char *msg)
69 {
70 	struct sym_tcb *tp = &np->target[target];
71 	dev_info(&tp->starget->dev, "%s: ", label);
72 
73 	spi_print_msg(msg);
74 	printf("\n");
75 }
76 
77 /*
78  *  Print something that tells about extended errors.
79  */
80 void sym_print_xerr(struct scsi_cmnd *cmd, int x_status)
81 {
82 	if (x_status & XE_PARITY_ERR) {
83 		sym_print_addr(cmd, "unrecovered SCSI parity error.\n");
84 	}
85 	if (x_status & XE_EXTRA_DATA) {
86 		sym_print_addr(cmd, "extraneous data discarded.\n");
87 	}
88 	if (x_status & XE_BAD_PHASE) {
89 		sym_print_addr(cmd, "illegal scsi phase (4/5).\n");
90 	}
91 	if (x_status & XE_SODL_UNRUN) {
92 		sym_print_addr(cmd, "ODD transfer in DATA OUT phase.\n");
93 	}
94 	if (x_status & XE_SWIDE_OVRUN) {
95 		sym_print_addr(cmd, "ODD transfer in DATA IN phase.\n");
96 	}
97 }
98 
99 /*
100  *  Return a string for SCSI BUS mode.
101  */
102 static char *sym_scsi_bus_mode(int mode)
103 {
104 	switch(mode) {
105 	case SMODE_HVD:	return "HVD";
106 	case SMODE_SE:	return "SE";
107 	case SMODE_LVD: return "LVD";
108 	}
109 	return "??";
110 }
111 
112 /*
113  *  Soft reset the chip.
114  *
115  *  Raising SRST when the chip is running may cause
116  *  problems on dual function chips (see below).
117  *  On the other hand, LVD devices need some delay
118  *  to settle and report actual BUS mode in STEST4.
119  */
120 static void sym_chip_reset (struct sym_hcb *np)
121 {
122 	OUTB(np, nc_istat, SRST);
123 	INB(np, nc_mbox1);
124 	udelay(10);
125 	OUTB(np, nc_istat, 0);
126 	INB(np, nc_mbox1);
127 	udelay(2000);	/* For BUS MODE to settle */
128 }
129 
130 /*
131  *  Really soft reset the chip.:)
132  *
133  *  Some 896 and 876 chip revisions may hang-up if we set
134  *  the SRST (soft reset) bit at the wrong time when SCRIPTS
135  *  are running.
136  *  So, we need to abort the current operation prior to
137  *  soft resetting the chip.
138  */
139 static void sym_soft_reset (struct sym_hcb *np)
140 {
141 	u_char istat = 0;
142 	int i;
143 
144 	if (!(np->features & FE_ISTAT1) || !(INB(np, nc_istat1) & SCRUN))
145 		goto do_chip_reset;
146 
147 	OUTB(np, nc_istat, CABRT);
148 	for (i = 100000 ; i ; --i) {
149 		istat = INB(np, nc_istat);
150 		if (istat & SIP) {
151 			INW(np, nc_sist);
152 		}
153 		else if (istat & DIP) {
154 			if (INB(np, nc_dstat) & ABRT)
155 				break;
156 		}
157 		udelay(5);
158 	}
159 	OUTB(np, nc_istat, 0);
160 	if (!i)
161 		printf("%s: unable to abort current chip operation, "
162 		       "ISTAT=0x%02x.\n", sym_name(np), istat);
163 do_chip_reset:
164 	sym_chip_reset(np);
165 }
166 
167 /*
168  *  Start reset process.
169  *
170  *  The interrupt handler will reinitialize the chip.
171  */
172 static void sym_start_reset(struct sym_hcb *np)
173 {
174 	sym_reset_scsi_bus(np, 1);
175 }
176 
177 int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int)
178 {
179 	u32 term;
180 	int retv = 0;
181 
182 	sym_soft_reset(np);	/* Soft reset the chip */
183 	if (enab_int)
184 		OUTW(np, nc_sien, RST);
185 	/*
186 	 *  Enable Tolerant, reset IRQD if present and
187 	 *  properly set IRQ mode, prior to resetting the bus.
188 	 */
189 	OUTB(np, nc_stest3, TE);
190 	OUTB(np, nc_dcntl, (np->rv_dcntl & IRQM));
191 	OUTB(np, nc_scntl1, CRST);
192 	INB(np, nc_mbox1);
193 	udelay(200);
194 
195 	if (!SYM_SETUP_SCSI_BUS_CHECK)
196 		goto out;
197 	/*
198 	 *  Check for no terminators or SCSI bus shorts to ground.
199 	 *  Read SCSI data bus, data parity bits and control signals.
200 	 *  We are expecting RESET to be TRUE and other signals to be
201 	 *  FALSE.
202 	 */
203 	term =	INB(np, nc_sstat0);
204 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
205 	term |= ((INB(np, nc_sstat2) & 0x01) << 26) |	/* sdp1     */
206 		((INW(np, nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
207 		((INW(np, nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
208 		INB(np, nc_sbcl);	/* req ack bsy sel atn msg cd io    */
209 
210 	if (!np->maxwide)
211 		term &= 0x3ffff;
212 
213 	if (term != (2<<7)) {
214 		printf("%s: suspicious SCSI data while resetting the BUS.\n",
215 			sym_name(np));
216 		printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
217 			"0x%lx, expecting 0x%lx\n",
218 			sym_name(np),
219 			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
220 			(u_long)term, (u_long)(2<<7));
221 		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
222 			retv = 1;
223 	}
224 out:
225 	OUTB(np, nc_scntl1, 0);
226 	return retv;
227 }
228 
229 /*
230  *  Select SCSI clock frequency
231  */
232 static void sym_selectclock(struct sym_hcb *np, u_char scntl3)
233 {
234 	/*
235 	 *  If multiplier not present or not selected, leave here.
236 	 */
237 	if (np->multiplier <= 1) {
238 		OUTB(np, nc_scntl3, scntl3);
239 		return;
240 	}
241 
242 	if (sym_verbose >= 2)
243 		printf ("%s: enabling clock multiplier\n", sym_name(np));
244 
245 	OUTB(np, nc_stest1, DBLEN);	   /* Enable clock multiplier */
246 	/*
247 	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
248 	 *  Otherwise wait 50 micro-seconds (at least).
249 	 */
250 	if (np->features & FE_LCKFRQ) {
251 		int i = 20;
252 		while (!(INB(np, nc_stest4) & LCKFRQ) && --i > 0)
253 			udelay(20);
254 		if (!i)
255 			printf("%s: the chip cannot lock the frequency\n",
256 				sym_name(np));
257 	} else {
258 		INB(np, nc_mbox1);
259 		udelay(50+10);
260 	}
261 	OUTB(np, nc_stest3, HSC);		/* Halt the scsi clock	*/
262 	OUTB(np, nc_scntl3, scntl3);
263 	OUTB(np, nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
264 	OUTB(np, nc_stest3, 0x00);		/* Restart scsi clock 	*/
265 }
266 
267 
268 /*
269  *  Determine the chip's clock frequency.
270  *
271  *  This is essential for the negotiation of the synchronous
272  *  transfer rate.
273  *
274  *  Note: we have to return the correct value.
275  *  THERE IS NO SAFE DEFAULT VALUE.
276  *
277  *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
278  *  53C860 and 53C875 rev. 1 support fast20 transfers but
279  *  do not have a clock doubler and so are provided with a
280  *  80 MHz clock. All other fast20 boards incorporate a doubler
281  *  and so should be delivered with a 40 MHz clock.
282  *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
283  *  clock and provide a clock quadrupler (160 Mhz).
284  */
285 
286 /*
287  *  calculate SCSI clock frequency (in KHz)
288  */
289 static unsigned getfreq (struct sym_hcb *np, int gen)
290 {
291 	unsigned int ms = 0;
292 	unsigned int f;
293 
294 	/*
295 	 * Measure GEN timer delay in order
296 	 * to calculate SCSI clock frequency
297 	 *
298 	 * This code will never execute too
299 	 * many loop iterations (if DELAY is
300 	 * reasonably correct). It could get
301 	 * too low a delay (too high a freq.)
302 	 * if the CPU is slow executing the
303 	 * loop for some reason (an NMI, for
304 	 * example). For this reason we will
305 	 * if multiple measurements are to be
306 	 * performed trust the higher delay
307 	 * (lower frequency returned).
308 	 */
309 	OUTW(np, nc_sien, 0);	/* mask all scsi interrupts */
310 	INW(np, nc_sist);	/* clear pending scsi interrupt */
311 	OUTB(np, nc_dien, 0);	/* mask all dma interrupts */
312 	INW(np, nc_sist);	/* another one, just to be sure :) */
313 	/*
314 	 * The C1010-33 core does not report GEN in SIST,
315 	 * if this interrupt is masked in SIEN.
316 	 * I don't know yet if the C1010-66 behaves the same way.
317 	 */
318 	if (np->features & FE_C10) {
319 		OUTW(np, nc_sien, GEN);
320 		OUTB(np, nc_istat1, SIRQD);
321 	}
322 	OUTB(np, nc_scntl3, 4);	   /* set pre-scaler to divide by 3 */
323 	OUTB(np, nc_stime1, 0);	   /* disable general purpose timer */
324 	OUTB(np, nc_stime1, gen);  /* set to nominal delay of 1<<gen * 125us */
325 	while (!(INW(np, nc_sist) & GEN) && ms++ < 100000)
326 		udelay(1000/4);    /* count in 1/4 of ms */
327 	OUTB(np, nc_stime1, 0);    /* disable general purpose timer */
328 	/*
329 	 * Undo C1010-33 specific settings.
330 	 */
331 	if (np->features & FE_C10) {
332 		OUTW(np, nc_sien, 0);
333 		OUTB(np, nc_istat1, 0);
334 	}
335  	/*
336  	 * set prescaler to divide by whatever 0 means
337  	 * 0 ought to choose divide by 2, but appears
338  	 * to set divide by 3.5 mode in my 53c810 ...
339  	 */
340  	OUTB(np, nc_scntl3, 0);
341 
342   	/*
343  	 * adjust for prescaler, and convert into KHz
344   	 */
345 	f = ms ? ((1 << gen) * (4340*4)) / ms : 0;
346 
347 	/*
348 	 * The C1010-33 result is biased by a factor
349 	 * of 2/3 compared to earlier chips.
350 	 */
351 	if (np->features & FE_C10)
352 		f = (f * 2) / 3;
353 
354 	if (sym_verbose >= 2)
355 		printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
356 			sym_name(np), gen, ms/4, f);
357 
358 	return f;
359 }
360 
361 static unsigned sym_getfreq (struct sym_hcb *np)
362 {
363 	u_int f1, f2;
364 	int gen = 8;
365 
366 	getfreq (np, gen);	/* throw away first result */
367 	f1 = getfreq (np, gen);
368 	f2 = getfreq (np, gen);
369 	if (f1 > f2) f1 = f2;		/* trust lower result	*/
370 	return f1;
371 }
372 
373 /*
374  *  Get/probe chip SCSI clock frequency
375  */
376 static void sym_getclock (struct sym_hcb *np, int mult)
377 {
378 	unsigned char scntl3 = np->sv_scntl3;
379 	unsigned char stest1 = np->sv_stest1;
380 	unsigned f1;
381 
382 	np->multiplier = 1;
383 	f1 = 40000;
384 	/*
385 	 *  True with 875/895/896/895A with clock multiplier selected
386 	 */
387 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
388 		if (sym_verbose >= 2)
389 			printf ("%s: clock multiplier found\n", sym_name(np));
390 		np->multiplier = mult;
391 	}
392 
393 	/*
394 	 *  If multiplier not found or scntl3 not 7,5,3,
395 	 *  reset chip and get frequency from general purpose timer.
396 	 *  Otherwise trust scntl3 BIOS setting.
397 	 */
398 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
399 		OUTB(np, nc_stest1, 0);		/* make sure doubler is OFF */
400 		f1 = sym_getfreq (np);
401 
402 		if (sym_verbose)
403 			printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
404 
405 		if	(f1 <	45000)		f1 =  40000;
406 		else if (f1 <	55000)		f1 =  50000;
407 		else				f1 =  80000;
408 
409 		if (f1 < 80000 && mult > 1) {
410 			if (sym_verbose >= 2)
411 				printf ("%s: clock multiplier assumed\n",
412 					sym_name(np));
413 			np->multiplier	= mult;
414 		}
415 	} else {
416 		if	((scntl3 & 7) == 3)	f1 =  40000;
417 		else if	((scntl3 & 7) == 5)	f1 =  80000;
418 		else 				f1 = 160000;
419 
420 		f1 /= np->multiplier;
421 	}
422 
423 	/*
424 	 *  Compute controller synchronous parameters.
425 	 */
426 	f1		*= np->multiplier;
427 	np->clock_khz	= f1;
428 }
429 
430 /*
431  *  Get/probe PCI clock frequency
432  */
433 static int sym_getpciclock (struct sym_hcb *np)
434 {
435 	int f = 0;
436 
437 	/*
438 	 *  For now, we only need to know about the actual
439 	 *  PCI BUS clock frequency for C1010-66 chips.
440 	 */
441 #if 1
442 	if (np->features & FE_66MHZ) {
443 #else
444 	if (1) {
445 #endif
446 		OUTB(np, nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
447 		f = sym_getfreq(np);
448 		OUTB(np, nc_stest1, 0);
449 	}
450 	np->pciclk_khz = f;
451 
452 	return f;
453 }
454 
455 /*
456  *  SYMBIOS chip clock divisor table.
457  *
458  *  Divisors are multiplied by 10,000,000 in order to make
459  *  calculations more simple.
460  */
461 #define _5M 5000000
462 static const u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
463 
464 /*
465  *  Get clock factor and sync divisor for a given
466  *  synchronous factor period.
467  */
468 static int
469 sym_getsync(struct sym_hcb *np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
470 {
471 	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
472 	int	div = np->clock_divn;	/* Number of divisors supported	*/
473 	u32	fak;			/* Sync factor in sxfer		*/
474 	u32	per;			/* Period in tenths of ns	*/
475 	u32	kpc;			/* (per * clk)			*/
476 	int	ret;
477 
478 	/*
479 	 *  Compute the synchronous period in tenths of nano-seconds
480 	 */
481 	if (dt && sfac <= 9)	per = 125;
482 	else if	(sfac <= 10)	per = 250;
483 	else if	(sfac == 11)	per = 303;
484 	else if	(sfac == 12)	per = 500;
485 	else			per = 40 * sfac;
486 	ret = per;
487 
488 	kpc = per * clk;
489 	if (dt)
490 		kpc <<= 1;
491 
492 	/*
493 	 *  For earliest C10 revision 0, we cannot use extra
494 	 *  clocks for the setting of the SCSI clocking.
495 	 *  Note that this limits the lowest sync data transfer
496 	 *  to 5 Mega-transfers per second and may result in
497 	 *  using higher clock divisors.
498 	 */
499 #if 1
500 	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
501 		/*
502 		 *  Look for the lowest clock divisor that allows an
503 		 *  output speed not faster than the period.
504 		 */
505 		while (div > 0) {
506 			--div;
507 			if (kpc > (div_10M[div] << 2)) {
508 				++div;
509 				break;
510 			}
511 		}
512 		fak = 0;			/* No extra clocks */
513 		if (div == np->clock_divn) {	/* Are we too fast ? */
514 			ret = -1;
515 		}
516 		*divp = div;
517 		*fakp = fak;
518 		return ret;
519 	}
520 #endif
521 
522 	/*
523 	 *  Look for the greatest clock divisor that allows an
524 	 *  input speed faster than the period.
525 	 */
526 	while (--div > 0)
527 		if (kpc >= (div_10M[div] << 2)) break;
528 
529 	/*
530 	 *  Calculate the lowest clock factor that allows an output
531 	 *  speed not faster than the period, and the max output speed.
532 	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
533 	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
534 	 */
535 	if (dt) {
536 		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
537 		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
538 	} else {
539 		fak = (kpc - 1) / div_10M[div] + 1 - 4;
540 		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
541 	}
542 
543 	/*
544 	 *  Check against our hardware limits, or bugs :).
545 	 */
546 	if (fak > 2) {
547 		fak = 2;
548 		ret = -1;
549 	}
550 
551 	/*
552 	 *  Compute and return sync parameters.
553 	 */
554 	*divp = div;
555 	*fakp = fak;
556 
557 	return ret;
558 }
559 
560 /*
561  *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
562  *  128 transfers. All chips support at least 16 transfers
563  *  bursts. The 825A, 875 and 895 chips support bursts of up
564  *  to 128 transfers and the 895A and 896 support bursts of up
565  *  to 64 transfers. All other chips support up to 16
566  *  transfers bursts.
567  *
568  *  For PCI 32 bit data transfers each transfer is a DWORD.
569  *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
570  *
571  *  We use log base 2 (burst length) as internal code, with
572  *  value 0 meaning "burst disabled".
573  */
574 
575 /*
576  *  Burst length from burst code.
577  */
578 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
579 
580 /*
581  *  Burst code from io register bits.
582  */
583 #define burst_code(dmode, ctest4, ctest5) \
584 	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
585 
586 /*
587  *  Set initial io register bits from burst code.
588  */
589 static inline void sym_init_burst(struct sym_hcb *np, u_char bc)
590 {
591 	np->rv_ctest4	&= ~0x80;
592 	np->rv_dmode	&= ~(0x3 << 6);
593 	np->rv_ctest5	&= ~0x4;
594 
595 	if (!bc) {
596 		np->rv_ctest4	|= 0x80;
597 	}
598 	else {
599 		--bc;
600 		np->rv_dmode	|= ((bc & 0x3) << 6);
601 		np->rv_ctest5	|= (bc & 0x4);
602 	}
603 }
604 
605 /*
606  *  Save initial settings of some IO registers.
607  *  Assumed to have been set by BIOS.
608  *  We cannot reset the chip prior to reading the
609  *  IO registers, since informations will be lost.
610  *  Since the SCRIPTS processor may be running, this
611  *  is not safe on paper, but it seems to work quite
612  *  well. :)
613  */
614 static void sym_save_initial_setting (struct sym_hcb *np)
615 {
616 	np->sv_scntl0	= INB(np, nc_scntl0) & 0x0a;
617 	np->sv_scntl3	= INB(np, nc_scntl3) & 0x07;
618 	np->sv_dmode	= INB(np, nc_dmode)  & 0xce;
619 	np->sv_dcntl	= INB(np, nc_dcntl)  & 0xa8;
620 	np->sv_ctest3	= INB(np, nc_ctest3) & 0x01;
621 	np->sv_ctest4	= INB(np, nc_ctest4) & 0x80;
622 	np->sv_gpcntl	= INB(np, nc_gpcntl);
623 	np->sv_stest1	= INB(np, nc_stest1);
624 	np->sv_stest2	= INB(np, nc_stest2) & 0x20;
625 	np->sv_stest4	= INB(np, nc_stest4);
626 	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
627 		np->sv_scntl4	= INB(np, nc_scntl4);
628 		np->sv_ctest5	= INB(np, nc_ctest5) & 0x04;
629 	}
630 	else
631 		np->sv_ctest5	= INB(np, nc_ctest5) & 0x24;
632 }
633 
634 /*
635  *  Set SCSI BUS mode.
636  *  - LVD capable chips (895/895A/896/1010) report the current BUS mode
637  *    through the STEST4 IO register.
638  *  - For previous generation chips (825/825A/875), the user has to tell us
639  *    how to check against HVD, since a 100% safe algorithm is not possible.
640  */
641 static void sym_set_bus_mode(struct sym_hcb *np, struct sym_nvram *nvram)
642 {
643 	if (np->scsi_mode)
644 		return;
645 
646 	np->scsi_mode = SMODE_SE;
647 	if (np->features & (FE_ULTRA2|FE_ULTRA3))
648 		np->scsi_mode = (np->sv_stest4 & SMODE);
649 	else if	(np->features & FE_DIFF) {
650 		if (SYM_SETUP_SCSI_DIFF == 1) {
651 			if (np->sv_scntl3) {
652 				if (np->sv_stest2 & 0x20)
653 					np->scsi_mode = SMODE_HVD;
654 			} else if (nvram->type == SYM_SYMBIOS_NVRAM) {
655 				if (!(INB(np, nc_gpreg) & 0x08))
656 					np->scsi_mode = SMODE_HVD;
657 			}
658 		} else if (SYM_SETUP_SCSI_DIFF == 2)
659 			np->scsi_mode = SMODE_HVD;
660 	}
661 	if (np->scsi_mode == SMODE_HVD)
662 		np->rv_stest2 |= 0x20;
663 }
664 
665 /*
666  *  Prepare io register values used by sym_start_up()
667  *  according to selected and supported features.
668  */
669 static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram)
670 {
671 	struct sym_data *sym_data = shost_priv(shost);
672 	struct pci_dev *pdev = sym_data->pdev;
673 	u_char	burst_max;
674 	u32	period;
675 	int i;
676 
677 	np->maxwide = (np->features & FE_WIDE) ? 1 : 0;
678 
679 	/*
680 	 *  Guess the frequency of the chip's clock.
681 	 */
682 	if	(np->features & (FE_ULTRA3 | FE_ULTRA2))
683 		np->clock_khz = 160000;
684 	else if	(np->features & FE_ULTRA)
685 		np->clock_khz = 80000;
686 	else
687 		np->clock_khz = 40000;
688 
689 	/*
690 	 *  Get the clock multiplier factor.
691  	 */
692 	if	(np->features & FE_QUAD)
693 		np->multiplier	= 4;
694 	else if	(np->features & FE_DBLR)
695 		np->multiplier	= 2;
696 	else
697 		np->multiplier	= 1;
698 
699 	/*
700 	 *  Measure SCSI clock frequency for chips
701 	 *  it may vary from assumed one.
702 	 */
703 	if (np->features & FE_VARCLK)
704 		sym_getclock(np, np->multiplier);
705 
706 	/*
707 	 * Divisor to be used for async (timer pre-scaler).
708 	 */
709 	i = np->clock_divn - 1;
710 	while (--i >= 0) {
711 		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
712 			++i;
713 			break;
714 		}
715 	}
716 	np->rv_scntl3 = i+1;
717 
718 	/*
719 	 * The C1010 uses hardwired divisors for async.
720 	 * So, we just throw away, the async. divisor.:-)
721 	 */
722 	if (np->features & FE_C10)
723 		np->rv_scntl3 = 0;
724 
725 	/*
726 	 * Minimum synchronous period factor supported by the chip.
727 	 * Btw, 'period' is in tenths of nanoseconds.
728 	 */
729 	period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
730 
731 	if	(period <= 250)		np->minsync = 10;
732 	else if	(period <= 303)		np->minsync = 11;
733 	else if	(period <= 500)		np->minsync = 12;
734 	else				np->minsync = (period + 40 - 1) / 40;
735 
736 	/*
737 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
738 	 */
739 	if	(np->minsync < 25 &&
740 		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
741 		np->minsync = 25;
742 	else if	(np->minsync < 12 &&
743 		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
744 		np->minsync = 12;
745 
746 	/*
747 	 * Maximum synchronous period factor supported by the chip.
748 	 */
749 	period = div64_ul(11 * div_10M[np->clock_divn - 1], 4 * np->clock_khz);
750 	np->maxsync = period > 2540 ? 254 : period / 10;
751 
752 	/*
753 	 * If chip is a C1010, guess the sync limits in DT mode.
754 	 */
755 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
756 		if (np->clock_khz == 160000) {
757 			np->minsync_dt = 9;
758 			np->maxsync_dt = 50;
759 			np->maxoffs_dt = nvram->type ? 62 : 31;
760 		}
761 	}
762 
763 	/*
764 	 *  64 bit addressing  (895A/896/1010) ?
765 	 */
766 	if (np->features & FE_DAC) {
767 		if (!use_dac(np))
768 			np->rv_ccntl1 |= (DDAC);
769 		else if (SYM_CONF_DMA_ADDRESSING_MODE == 1)
770 			np->rv_ccntl1 |= (XTIMOD | EXTIBMV);
771 		else if (SYM_CONF_DMA_ADDRESSING_MODE == 2)
772 			np->rv_ccntl1 |= (0 | EXTIBMV);
773 	}
774 
775 	/*
776 	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
777   	 */
778 	if (np->features & FE_NOPM)
779 		np->rv_ccntl0	|= (ENPMJ);
780 
781  	/*
782 	 *  C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed.
783 	 *  In dual channel mode, contention occurs if internal cycles
784 	 *  are used. Disable internal cycles.
785 	 */
786 	if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 &&
787 	    pdev->revision < 0x1)
788 		np->rv_ccntl0	|=  DILS;
789 
790 	/*
791 	 *  Select burst length (dwords)
792 	 */
793 	burst_max	= SYM_SETUP_BURST_ORDER;
794 	if (burst_max == 255)
795 		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
796 				       np->sv_ctest5);
797 	if (burst_max > 7)
798 		burst_max = 7;
799 	if (burst_max > np->maxburst)
800 		burst_max = np->maxburst;
801 
802 	/*
803 	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
804 	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
805 	 *  based transactions on LOAD/STORE instructions. So we have
806 	 *  to prevent these chips from using such PCI transactions in
807 	 *  this driver. The generic ncr driver that does not use
808 	 *  LOAD/STORE instructions does not need this work-around.
809 	 */
810 	if ((pdev->device == PCI_DEVICE_ID_NCR_53C810 &&
811 	     pdev->revision >= 0x10 && pdev->revision <= 0x11) ||
812 	    (pdev->device == PCI_DEVICE_ID_NCR_53C860 &&
813 	     pdev->revision <= 0x1))
814 		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
815 
816 	/*
817 	 *  Select all supported special features.
818 	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
819 	 *  does not help, but burst op fetch (BOF) does.
820 	 *  Disabling PFEN makes sure BOF will be used.
821 	 */
822 	if (np->features & FE_ERL)
823 		np->rv_dmode	|= ERL;		/* Enable Read Line */
824 	if (np->features & FE_BOF)
825 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
826 	if (np->features & FE_ERMP)
827 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
828 #if 1
829 	if ((np->features & FE_PFEN) && !np->ram_ba)
830 #else
831 	if (np->features & FE_PFEN)
832 #endif
833 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
834 	if (np->features & FE_CLSE)
835 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
836 	if (np->features & FE_WRIE)
837 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
838 	if (np->features & FE_DFS)
839 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
840 
841 	/*
842 	 *  Select some other
843 	 */
844 	np->rv_ctest4	|= MPEE; /* Master parity checking */
845 	np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
846 
847 	/*
848 	 *  Get parity checking, host ID and verbose mode from NVRAM
849 	 */
850 	np->myaddr = 255;
851 	np->scsi_mode = 0;
852 	sym_nvram_setup_host(shost, np, nvram);
853 
854 	/*
855 	 *  Get SCSI addr of host adapter (set by bios?).
856 	 */
857 	if (np->myaddr == 255) {
858 		np->myaddr = INB(np, nc_scid) & 0x07;
859 		if (!np->myaddr)
860 			np->myaddr = SYM_SETUP_HOST_ID;
861 	}
862 
863 	/*
864 	 *  Prepare initial io register bits for burst length
865 	 */
866 	sym_init_burst(np, burst_max);
867 
868 	sym_set_bus_mode(np, nvram);
869 
870 	/*
871 	 *  Set LED support from SCRIPTS.
872 	 *  Ignore this feature for boards known to use a
873 	 *  specific GPIO wiring and for the 895A, 896
874 	 *  and 1010 that drive the LED directly.
875 	 */
876 	if ((SYM_SETUP_SCSI_LED ||
877 	     (nvram->type == SYM_SYMBIOS_NVRAM ||
878 	      (nvram->type == SYM_TEKRAM_NVRAM &&
879 	       pdev->device == PCI_DEVICE_ID_NCR_53C895))) &&
880 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
881 		np->features |= FE_LED0;
882 
883 	/*
884 	 *  Set irq mode.
885 	 */
886 	switch(SYM_SETUP_IRQ_MODE & 3) {
887 	case 2:
888 		np->rv_dcntl	|= IRQM;
889 		break;
890 	case 1:
891 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
892 		break;
893 	default:
894 		break;
895 	}
896 
897 	/*
898 	 *  Configure targets according to driver setup.
899 	 *  If NVRAM present get targets setup from NVRAM.
900 	 */
901 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
902 		struct sym_tcb *tp = &np->target[i];
903 
904 		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
905 		tp->usrtags = SYM_SETUP_MAX_TAG;
906 		tp->usr_width = np->maxwide;
907 		tp->usr_period = 9;
908 
909 		sym_nvram_setup_target(tp, i, nvram);
910 
911 		if (!tp->usrtags)
912 			tp->usrflags &= ~SYM_TAGS_ENABLED;
913 	}
914 
915 	/*
916 	 *  Let user know about the settings.
917 	 */
918 	printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np),
919 		sym_nvram_type(nvram), np->myaddr,
920 		(np->features & FE_ULTRA3) ? 80 :
921 		(np->features & FE_ULTRA2) ? 40 :
922 		(np->features & FE_ULTRA)  ? 20 : 10,
923 		sym_scsi_bus_mode(np->scsi_mode),
924 		(np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
925 	/*
926 	 *  Tell him more on demand.
927 	 */
928 	if (sym_verbose) {
929 		printf("%s: %s IRQ line driver%s\n",
930 			sym_name(np),
931 			np->rv_dcntl & IRQM ? "totem pole" : "open drain",
932 			np->ram_ba ? ", using on-chip SRAM" : "");
933 		printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
934 		if (np->features & FE_NOPM)
935 			printf("%s: handling phase mismatch from SCRIPTS.\n",
936 			       sym_name(np));
937 	}
938 	/*
939 	 *  And still more.
940 	 */
941 	if (sym_verbose >= 2) {
942 		printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
943 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
944 			sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
945 			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
946 
947 		printf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
948 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
949 			sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
950 			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
951 	}
952 
953 	return 0;
954 }
955 
956 /*
957  *  Test the pci bus snoop logic :-(
958  *
959  *  Has to be called with interrupts disabled.
960  */
961 #ifdef CONFIG_SCSI_SYM53C8XX_MMIO
962 static int sym_regtest(struct sym_hcb *np)
963 {
964 	register volatile u32 data;
965 	/*
966 	 *  chip registers may NOT be cached.
967 	 *  write 0xffffffff to a read only register area,
968 	 *  and try to read it back.
969 	 */
970 	data = 0xffffffff;
971 	OUTL(np, nc_dstat, data);
972 	data = INL(np, nc_dstat);
973 #if 1
974 	if (data == 0xffffffff) {
975 #else
976 	if ((data & 0xe2f0fffd) != 0x02000080) {
977 #endif
978 		printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
979 			(unsigned) data);
980 		return 0x10;
981 	}
982 	return 0;
983 }
984 #else
985 static inline int sym_regtest(struct sym_hcb *np)
986 {
987 	return 0;
988 }
989 #endif
990 
991 static int sym_snooptest(struct sym_hcb *np)
992 {
993 	u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
994 	int i, err;
995 
996 	err = sym_regtest(np);
997 	if (err)
998 		return err;
999 restart_test:
1000 	/*
1001 	 *  Enable Master Parity Checking as we intend
1002 	 *  to enable it for normal operations.
1003 	 */
1004 	OUTB(np, nc_ctest4, (np->rv_ctest4 & MPEE));
1005 	/*
1006 	 *  init
1007 	 */
1008 	pc  = SCRIPTZ_BA(np, snooptest);
1009 	host_wr = 1;
1010 	sym_wr  = 2;
1011 	/*
1012 	 *  Set memory and register.
1013 	 */
1014 	np->scratch = cpu_to_scr(host_wr);
1015 	OUTL(np, nc_temp, sym_wr);
1016 	/*
1017 	 *  Start script (exchange values)
1018 	 */
1019 	OUTL(np, nc_dsa, np->hcb_ba);
1020 	OUTL_DSP(np, pc);
1021 	/*
1022 	 *  Wait 'til done (with timeout)
1023 	 */
1024 	for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
1025 		if (INB(np, nc_istat) & (INTF|SIP|DIP))
1026 			break;
1027 	if (i>=SYM_SNOOP_TIMEOUT) {
1028 		printf ("CACHE TEST FAILED: timeout.\n");
1029 		return (0x20);
1030 	}
1031 	/*
1032 	 *  Check for fatal DMA errors.
1033 	 */
1034 	dstat = INB(np, nc_dstat);
1035 #if 1	/* Band aiding for broken hardwares that fail PCI parity */
1036 	if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
1037 		printf ("%s: PCI DATA PARITY ERROR DETECTED - "
1038 			"DISABLING MASTER DATA PARITY CHECKING.\n",
1039 			sym_name(np));
1040 		np->rv_ctest4 &= ~MPEE;
1041 		goto restart_test;
1042 	}
1043 #endif
1044 	if (dstat & (MDPE|BF|IID)) {
1045 		printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
1046 		return (0x80);
1047 	}
1048 	/*
1049 	 *  Save termination position.
1050 	 */
1051 	pc = INL(np, nc_dsp);
1052 	/*
1053 	 *  Read memory and register.
1054 	 */
1055 	host_rd = scr_to_cpu(np->scratch);
1056 	sym_rd  = INL(np, nc_scratcha);
1057 	sym_bk  = INL(np, nc_temp);
1058 	/*
1059 	 *  Check termination position.
1060 	 */
1061 	if (pc != SCRIPTZ_BA(np, snoopend)+8) {
1062 		printf ("CACHE TEST FAILED: script execution failed.\n");
1063 		printf ("start=%08lx, pc=%08lx, end=%08lx\n",
1064 			(u_long) SCRIPTZ_BA(np, snooptest), (u_long) pc,
1065 			(u_long) SCRIPTZ_BA(np, snoopend) +8);
1066 		return (0x40);
1067 	}
1068 	/*
1069 	 *  Show results.
1070 	 */
1071 	if (host_wr != sym_rd) {
1072 		printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
1073 			(int) host_wr, (int) sym_rd);
1074 		err |= 1;
1075 	}
1076 	if (host_rd != sym_wr) {
1077 		printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
1078 			(int) sym_wr, (int) host_rd);
1079 		err |= 2;
1080 	}
1081 	if (sym_bk != sym_wr) {
1082 		printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
1083 			(int) sym_wr, (int) sym_bk);
1084 		err |= 4;
1085 	}
1086 
1087 	return err;
1088 }
1089 
1090 /*
1091  *  log message for real hard errors
1092  *
1093  *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc).
1094  *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
1095  *
1096  *  exception register:
1097  *  	ds:	dstat
1098  *  	si:	sist
1099  *
1100  *  SCSI bus lines:
1101  *  	so:	control lines as driven by chip.
1102  *  	si:	control lines as seen by chip.
1103  *  	sd:	scsi data lines as seen by chip.
1104  *
1105  *  wide/fastmode:
1106  *  	sx:	sxfer  (see the manual)
1107  *  	s3:	scntl3 (see the manual)
1108  *  	s4:	scntl4 (see the manual)
1109  *
1110  *  current script command:
1111  *  	dsp:	script address (relative to start of script).
1112  *  	dbc:	first word of script command.
1113  *
1114  *  First 24 register of the chip:
1115  *  	r0..rf
1116  */
1117 static void sym_log_hard_error(struct Scsi_Host *shost, u_short sist, u_char dstat)
1118 {
1119 	struct sym_hcb *np = sym_get_hcb(shost);
1120 	u32	dsp;
1121 	int	script_ofs;
1122 	int	script_size;
1123 	char	*script_name;
1124 	u_char	*script_base;
1125 	int	i;
1126 
1127 	dsp	= INL(np, nc_dsp);
1128 
1129 	if	(dsp > np->scripta_ba &&
1130 		 dsp <= np->scripta_ba + np->scripta_sz) {
1131 		script_ofs	= dsp - np->scripta_ba;
1132 		script_size	= np->scripta_sz;
1133 		script_base	= (u_char *) np->scripta0;
1134 		script_name	= "scripta";
1135 	}
1136 	else if (np->scriptb_ba < dsp &&
1137 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
1138 		script_ofs	= dsp - np->scriptb_ba;
1139 		script_size	= np->scriptb_sz;
1140 		script_base	= (u_char *) np->scriptb0;
1141 		script_name	= "scriptb";
1142 	} else {
1143 		script_ofs	= dsp;
1144 		script_size	= 0;
1145 		script_base	= NULL;
1146 		script_name	= "mem";
1147 	}
1148 
1149 	printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n",
1150 		sym_name(np), (unsigned)INB(np, nc_sdid)&0x0f, dstat, sist,
1151 		(unsigned)INB(np, nc_socl), (unsigned)INB(np, nc_sbcl),
1152 		(unsigned)INB(np, nc_sbdl), (unsigned)INB(np, nc_sxfer),
1153 		(unsigned)INB(np, nc_scntl3),
1154 		(np->features & FE_C10) ?  (unsigned)INB(np, nc_scntl4) : 0,
1155 		script_name, script_ofs,   (unsigned)INL(np, nc_dbc));
1156 
1157 	if (((script_ofs & 3) == 0) &&
1158 	    (unsigned)script_ofs < script_size) {
1159 		printf ("%s: script cmd = %08x\n", sym_name(np),
1160 			scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
1161 	}
1162 
1163 	printf("%s: regdump:", sym_name(np));
1164 	for (i = 0; i < 24; i++)
1165 		printf(" %02x", (unsigned)INB_OFF(np, i));
1166 	printf(".\n");
1167 
1168 	/*
1169 	 *  PCI BUS error.
1170 	 */
1171 	if (dstat & (MDPE|BF))
1172 		sym_log_bus_error(shost);
1173 }
1174 
1175 void sym_dump_registers(struct Scsi_Host *shost)
1176 {
1177 	struct sym_hcb *np = sym_get_hcb(shost);
1178 	u_short sist;
1179 	u_char dstat;
1180 
1181 	sist = INW(np, nc_sist);
1182 	dstat = INB(np, nc_dstat);
1183 	sym_log_hard_error(shost, sist, dstat);
1184 }
1185 
1186 static struct sym_chip sym_dev_table[] = {
1187  {PCI_DEVICE_ID_NCR_53C810, 0x0f, "810", 4, 8, 4, 64,
1188  FE_ERL}
1189  ,
1190 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1191  {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4,  8, 4, 1,
1192  FE_BOF}
1193  ,
1194 #else
1195  {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4,  8, 4, 1,
1196  FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
1197  ,
1198 #endif
1199  {PCI_DEVICE_ID_NCR_53C815, 0xff, "815", 4,  8, 4, 64,
1200  FE_BOF|FE_ERL}
1201  ,
1202  {PCI_DEVICE_ID_NCR_53C825, 0x0f, "825", 6,  8, 4, 64,
1203  FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
1204  ,
1205  {PCI_DEVICE_ID_NCR_53C825, 0xff, "825a", 6,  8, 4, 2,
1206  FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
1207  ,
1208  {PCI_DEVICE_ID_NCR_53C860, 0xff, "860", 4,  8, 5, 1,
1209  FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
1210  ,
1211  {PCI_DEVICE_ID_NCR_53C875, 0x01, "875", 6, 16, 5, 2,
1212  FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1213  FE_RAM|FE_DIFF|FE_VARCLK}
1214  ,
1215  {PCI_DEVICE_ID_NCR_53C875, 0xff, "875", 6, 16, 5, 2,
1216  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1217  FE_RAM|FE_DIFF|FE_VARCLK}
1218  ,
1219  {PCI_DEVICE_ID_NCR_53C875J, 0xff, "875J", 6, 16, 5, 2,
1220  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1221  FE_RAM|FE_DIFF|FE_VARCLK}
1222  ,
1223  {PCI_DEVICE_ID_NCR_53C885, 0xff, "885", 6, 16, 5, 2,
1224  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1225  FE_RAM|FE_DIFF|FE_VARCLK}
1226  ,
1227 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1228  {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1229  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
1230  FE_RAM|FE_LCKFRQ}
1231  ,
1232 #else
1233  {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1234  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1235  FE_RAM|FE_LCKFRQ}
1236  ,
1237 #endif
1238  {PCI_DEVICE_ID_NCR_53C896, 0xff, "896", 6, 31, 7, 4,
1239  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1240  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1241  ,
1242  {PCI_DEVICE_ID_LSI_53C895A, 0xff, "895a", 6, 31, 7, 4,
1243  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1244  FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1245  ,
1246  {PCI_DEVICE_ID_LSI_53C875A, 0xff, "875a", 6, 31, 7, 4,
1247  FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1248  FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1249  ,
1250  {PCI_DEVICE_ID_LSI_53C1010_33, 0x00, "1010-33", 6, 31, 7, 8,
1251  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1252  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1253  FE_C10}
1254  ,
1255  {PCI_DEVICE_ID_LSI_53C1010_33, 0xff, "1010-33", 6, 31, 7, 8,
1256  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1257  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1258  FE_C10|FE_U3EN}
1259  ,
1260  {PCI_DEVICE_ID_LSI_53C1010_66, 0xff, "1010-66", 6, 31, 7, 8,
1261  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1262  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
1263  FE_C10|FE_U3EN}
1264  ,
1265  {PCI_DEVICE_ID_LSI_53C1510, 0xff, "1510d", 6, 31, 7, 4,
1266  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1267  FE_RAM|FE_IO256|FE_LEDC}
1268 };
1269 
1270 #define sym_num_devs (ARRAY_SIZE(sym_dev_table))
1271 
1272 /*
1273  *  Look up the chip table.
1274  *
1275  *  Return a pointer to the chip entry if found,
1276  *  zero otherwise.
1277  */
1278 struct sym_chip *
1279 sym_lookup_chip_table (u_short device_id, u_char revision)
1280 {
1281 	struct	sym_chip *chip;
1282 	int	i;
1283 
1284 	for (i = 0; i < sym_num_devs; i++) {
1285 		chip = &sym_dev_table[i];
1286 		if (device_id != chip->device_id)
1287 			continue;
1288 		if (revision > chip->revision_id)
1289 			continue;
1290 		return chip;
1291 	}
1292 
1293 	return NULL;
1294 }
1295 
1296 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1297 /*
1298  *  Lookup the 64 bit DMA segments map.
1299  *  This is only used if the direct mapping
1300  *  has been unsuccessful.
1301  */
1302 int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s)
1303 {
1304 	int i;
1305 
1306 	if (!use_dac(np))
1307 		goto weird;
1308 
1309 	/* Look up existing mappings */
1310 	for (i = SYM_DMAP_SIZE-1; i > 0; i--) {
1311 		if (h == np->dmap_bah[i])
1312 			return i;
1313 	}
1314 	/* If direct mapping is free, get it */
1315 	if (!np->dmap_bah[s])
1316 		goto new;
1317 	/* Collision -> lookup free mappings */
1318 	for (s = SYM_DMAP_SIZE-1; s > 0; s--) {
1319 		if (!np->dmap_bah[s])
1320 			goto new;
1321 	}
1322 weird:
1323 	panic("sym: ran out of 64 bit DMA segment registers");
1324 	return -1;
1325 new:
1326 	np->dmap_bah[s] = h;
1327 	np->dmap_dirty = 1;
1328 	return s;
1329 }
1330 
1331 /*
1332  *  Update IO registers scratch C..R so they will be
1333  *  in sync. with queued CCB expectations.
1334  */
1335 static void sym_update_dmap_regs(struct sym_hcb *np)
1336 {
1337 	int o, i;
1338 
1339 	if (!np->dmap_dirty)
1340 		return;
1341 	o = offsetof(struct sym_reg, nc_scrx[0]);
1342 	for (i = 0; i < SYM_DMAP_SIZE; i++) {
1343 		OUTL_OFF(np, o, np->dmap_bah[i]);
1344 		o += 4;
1345 	}
1346 	np->dmap_dirty = 0;
1347 }
1348 #endif
1349 
1350 /* Enforce all the fiddly SPI rules and the chip limitations */
1351 static void sym_check_goals(struct sym_hcb *np, struct scsi_target *starget,
1352 		struct sym_trans *goal)
1353 {
1354 	if (!spi_support_wide(starget))
1355 		goal->width = 0;
1356 
1357 	if (!spi_support_sync(starget)) {
1358 		goal->iu = 0;
1359 		goal->dt = 0;
1360 		goal->qas = 0;
1361 		goal->offset = 0;
1362 		return;
1363 	}
1364 
1365 	if (spi_support_dt(starget)) {
1366 		if (spi_support_dt_only(starget))
1367 			goal->dt = 1;
1368 
1369 		if (goal->offset == 0)
1370 			goal->dt = 0;
1371 	} else {
1372 		goal->dt = 0;
1373 	}
1374 
1375 	/* Some targets fail to properly negotiate DT in SE mode */
1376 	if ((np->scsi_mode != SMODE_LVD) || !(np->features & FE_U3EN))
1377 		goal->dt = 0;
1378 
1379 	if (goal->dt) {
1380 		/* all DT transfers must be wide */
1381 		goal->width = 1;
1382 		if (goal->offset > np->maxoffs_dt)
1383 			goal->offset = np->maxoffs_dt;
1384 		if (goal->period < np->minsync_dt)
1385 			goal->period = np->minsync_dt;
1386 		if (goal->period > np->maxsync_dt)
1387 			goal->period = np->maxsync_dt;
1388 	} else {
1389 		goal->iu = goal->qas = 0;
1390 		if (goal->offset > np->maxoffs)
1391 			goal->offset = np->maxoffs;
1392 		if (goal->period < np->minsync)
1393 			goal->period = np->minsync;
1394 		if (goal->period > np->maxsync)
1395 			goal->period = np->maxsync;
1396 	}
1397 }
1398 
1399 /*
1400  *  Prepare the next negotiation message if needed.
1401  *
1402  *  Fill in the part of message buffer that contains the
1403  *  negotiation and the nego_status field of the CCB.
1404  *  Returns the size of the message in bytes.
1405  */
1406 static int sym_prepare_nego(struct sym_hcb *np, struct sym_ccb *cp, u_char *msgptr)
1407 {
1408 	struct sym_tcb *tp = &np->target[cp->target];
1409 	struct scsi_target *starget = tp->starget;
1410 	struct sym_trans *goal = &tp->tgoal;
1411 	int msglen = 0;
1412 	int nego;
1413 
1414 	sym_check_goals(np, starget, goal);
1415 
1416 	/*
1417 	 * Many devices implement PPR in a buggy way, so only use it if we
1418 	 * really want to.
1419 	 */
1420 	if (goal->renego == NS_PPR || (goal->offset &&
1421 	    (goal->iu || goal->dt || goal->qas || (goal->period < 0xa)))) {
1422 		nego = NS_PPR;
1423 	} else if (goal->renego == NS_WIDE || goal->width) {
1424 		nego = NS_WIDE;
1425 	} else if (goal->renego == NS_SYNC || goal->offset) {
1426 		nego = NS_SYNC;
1427 	} else {
1428 		goal->check_nego = 0;
1429 		nego = 0;
1430 	}
1431 
1432 	switch (nego) {
1433 	case NS_SYNC:
1434 		msglen += spi_populate_sync_msg(msgptr + msglen, goal->period,
1435 				goal->offset);
1436 		break;
1437 	case NS_WIDE:
1438 		msglen += spi_populate_width_msg(msgptr + msglen, goal->width);
1439 		break;
1440 	case NS_PPR:
1441 		msglen += spi_populate_ppr_msg(msgptr + msglen, goal->period,
1442 				goal->offset, goal->width,
1443 				(goal->iu ? PPR_OPT_IU : 0) |
1444 					(goal->dt ? PPR_OPT_DT : 0) |
1445 					(goal->qas ? PPR_OPT_QAS : 0));
1446 		break;
1447 	}
1448 
1449 	cp->nego_status = nego;
1450 
1451 	if (nego) {
1452 		tp->nego_cp = cp; /* Keep track a nego will be performed */
1453 		if (DEBUG_FLAGS & DEBUG_NEGO) {
1454 			sym_print_nego_msg(np, cp->target,
1455 					  nego == NS_SYNC ? "sync msgout" :
1456 					  nego == NS_WIDE ? "wide msgout" :
1457 					  "ppr msgout", msgptr);
1458 		}
1459 	}
1460 
1461 	return msglen;
1462 }
1463 
1464 /*
1465  *  Insert a job into the start queue.
1466  */
1467 void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp)
1468 {
1469 	u_short	qidx;
1470 
1471 #ifdef SYM_CONF_IARB_SUPPORT
1472 	/*
1473 	 *  If the previously queued CCB is not yet done,
1474 	 *  set the IARB hint. The SCRIPTS will go with IARB
1475 	 *  for this job when starting the previous one.
1476 	 *  We leave devices a chance to win arbitration by
1477 	 *  not using more than 'iarb_max' consecutive
1478 	 *  immediate arbitrations.
1479 	 */
1480 	if (np->last_cp && np->iarb_count < np->iarb_max) {
1481 		np->last_cp->host_flags |= HF_HINT_IARB;
1482 		++np->iarb_count;
1483 	}
1484 	else
1485 		np->iarb_count = 0;
1486 	np->last_cp = cp;
1487 #endif
1488 
1489 #if   SYM_CONF_DMA_ADDRESSING_MODE == 2
1490 	/*
1491 	 *  Make SCRIPTS aware of the 64 bit DMA
1492 	 *  segment registers not being up-to-date.
1493 	 */
1494 	if (np->dmap_dirty)
1495 		cp->host_xflags |= HX_DMAP_DIRTY;
1496 #endif
1497 
1498 	/*
1499 	 *  Insert first the idle task and then our job.
1500 	 *  The MBs should ensure proper ordering.
1501 	 */
1502 	qidx = np->squeueput + 2;
1503 	if (qidx >= MAX_QUEUE*2) qidx = 0;
1504 
1505 	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
1506 	MEMORY_WRITE_BARRIER();
1507 	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
1508 
1509 	np->squeueput = qidx;
1510 
1511 	if (DEBUG_FLAGS & DEBUG_QUEUE)
1512 		scmd_printk(KERN_DEBUG, cp->cmd, "queuepos=%d\n",
1513 							np->squeueput);
1514 
1515 	/*
1516 	 *  Script processor may be waiting for reselect.
1517 	 *  Wake it up.
1518 	 */
1519 	MEMORY_WRITE_BARRIER();
1520 	OUTB(np, nc_istat, SIGP|np->istat_sem);
1521 }
1522 
1523 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1524 /*
1525  *  Start next ready-to-start CCBs.
1526  */
1527 void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn)
1528 {
1529 	SYM_QUEHEAD *qp;
1530 	struct sym_ccb *cp;
1531 
1532 	/*
1533 	 *  Paranoia, as usual. :-)
1534 	 */
1535 	assert(!lp->started_tags || !lp->started_no_tag);
1536 
1537 	/*
1538 	 *  Try to start as many commands as asked by caller.
1539 	 *  Prevent from having both tagged and untagged
1540 	 *  commands queued to the device at the same time.
1541 	 */
1542 	while (maxn--) {
1543 		qp = sym_remque_head(&lp->waiting_ccbq);
1544 		if (!qp)
1545 			break;
1546 		cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq);
1547 		if (cp->tag != NO_TAG) {
1548 			if (lp->started_no_tag ||
1549 			    lp->started_tags >= lp->started_max) {
1550 				sym_insque_head(qp, &lp->waiting_ccbq);
1551 				break;
1552 			}
1553 			lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba);
1554 			lp->head.resel_sa =
1555 				cpu_to_scr(SCRIPTA_BA(np, resel_tag));
1556 			++lp->started_tags;
1557 		} else {
1558 			if (lp->started_no_tag || lp->started_tags) {
1559 				sym_insque_head(qp, &lp->waiting_ccbq);
1560 				break;
1561 			}
1562 			lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
1563 			lp->head.resel_sa =
1564 			      cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
1565 			++lp->started_no_tag;
1566 		}
1567 		cp->started = 1;
1568 		sym_insque_tail(qp, &lp->started_ccbq);
1569 		sym_put_start_queue(np, cp);
1570 	}
1571 }
1572 #endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */
1573 
1574 /*
1575  *  The chip may have completed jobs. Look at the DONE QUEUE.
1576  *
1577  *  On paper, memory read barriers may be needed here to
1578  *  prevent out of order LOADs by the CPU from having
1579  *  prefetched stale data prior to DMA having occurred.
1580  */
1581 static int sym_wakeup_done (struct sym_hcb *np)
1582 {
1583 	struct sym_ccb *cp;
1584 	int i, n;
1585 	u32 dsa;
1586 
1587 	n = 0;
1588 	i = np->dqueueget;
1589 
1590 	/* MEMORY_READ_BARRIER(); */
1591 	while (1) {
1592 		dsa = scr_to_cpu(np->dqueue[i]);
1593 		if (!dsa)
1594 			break;
1595 		np->dqueue[i] = 0;
1596 		if ((i = i+2) >= MAX_QUEUE*2)
1597 			i = 0;
1598 
1599 		cp = sym_ccb_from_dsa(np, dsa);
1600 		if (cp) {
1601 			MEMORY_READ_BARRIER();
1602 			sym_complete_ok (np, cp);
1603 			++n;
1604 		}
1605 		else
1606 			printf ("%s: bad DSA (%x) in done queue.\n",
1607 				sym_name(np), (u_int) dsa);
1608 	}
1609 	np->dqueueget = i;
1610 
1611 	return n;
1612 }
1613 
1614 /*
1615  *  Complete all CCBs queued to the COMP queue.
1616  *
1617  *  These CCBs are assumed:
1618  *  - Not to be referenced either by devices or
1619  *    SCRIPTS-related queues and datas.
1620  *  - To have to be completed with an error condition
1621  *    or requeued.
1622  *
1623  *  The device queue freeze count is incremented
1624  *  for each CCB that does not prevent this.
1625  *  This function is called when all CCBs involved
1626  *  in error handling/recovery have been reaped.
1627  */
1628 static void sym_flush_comp_queue(struct sym_hcb *np, int cam_status)
1629 {
1630 	SYM_QUEHEAD *qp;
1631 	struct sym_ccb *cp;
1632 
1633 	while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) {
1634 		struct scsi_cmnd *cmd;
1635 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
1636 		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
1637 		/* Leave quiet CCBs waiting for resources */
1638 		if (cp->host_status == HS_WAIT)
1639 			continue;
1640 		cmd = cp->cmd;
1641 		if (cam_status)
1642 			sym_set_cam_status(cmd, cam_status);
1643 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1644 		if (sym_get_cam_status(cmd) == DID_SOFT_ERROR) {
1645 			struct sym_tcb *tp = &np->target[cp->target];
1646 			struct sym_lcb *lp = sym_lp(tp, cp->lun);
1647 			if (lp) {
1648 				sym_remque(&cp->link2_ccbq);
1649 				sym_insque_tail(&cp->link2_ccbq,
1650 				                &lp->waiting_ccbq);
1651 				if (cp->started) {
1652 					if (cp->tag != NO_TAG)
1653 						--lp->started_tags;
1654 					else
1655 						--lp->started_no_tag;
1656 				}
1657 			}
1658 			cp->started = 0;
1659 			continue;
1660 		}
1661 #endif
1662 		sym_free_ccb(np, cp);
1663 		sym_xpt_done(np, cmd);
1664 	}
1665 }
1666 
1667 /*
1668  *  Complete all active CCBs with error.
1669  *  Used on CHIP/SCSI RESET.
1670  */
1671 static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status)
1672 {
1673 	/*
1674 	 *  Move all active CCBs to the COMP queue
1675 	 *  and flush this queue.
1676 	 */
1677 	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
1678 	sym_que_init(&np->busy_ccbq);
1679 	sym_flush_comp_queue(np, cam_status);
1680 }
1681 
1682 /*
1683  *  Start chip.
1684  *
1685  *  'reason' means:
1686  *     0: initialisation.
1687  *     1: SCSI BUS RESET delivered or received.
1688  *     2: SCSI BUS MODE changed.
1689  */
1690 void sym_start_up(struct Scsi_Host *shost, int reason)
1691 {
1692 	struct sym_data *sym_data = shost_priv(shost);
1693 	struct pci_dev *pdev = sym_data->pdev;
1694 	struct sym_hcb *np = sym_data->ncb;
1695  	int	i;
1696 	u32	phys;
1697 
1698  	/*
1699 	 *  Reset chip if asked, otherwise just clear fifos.
1700  	 */
1701 	if (reason == 1)
1702 		sym_soft_reset(np);
1703 	else {
1704 		OUTB(np, nc_stest3, TE|CSF);
1705 		OUTONB(np, nc_ctest3, CLF);
1706 	}
1707 
1708 	/*
1709 	 *  Clear Start Queue
1710 	 */
1711 	phys = np->squeue_ba;
1712 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
1713 		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
1714 		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
1715 	}
1716 	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1717 
1718 	/*
1719 	 *  Start at first entry.
1720 	 */
1721 	np->squeueput = 0;
1722 
1723 	/*
1724 	 *  Clear Done Queue
1725 	 */
1726 	phys = np->dqueue_ba;
1727 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
1728 		np->dqueue[i]   = 0;
1729 		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
1730 	}
1731 	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1732 
1733 	/*
1734 	 *  Start at first entry.
1735 	 */
1736 	np->dqueueget = 0;
1737 
1738 	/*
1739 	 *  Install patches in scripts.
1740 	 *  This also let point to first position the start
1741 	 *  and done queue pointers used from SCRIPTS.
1742 	 */
1743 	np->fw_patch(shost);
1744 
1745 	/*
1746 	 *  Wakeup all pending jobs.
1747 	 */
1748 	sym_flush_busy_queue(np, DID_RESET);
1749 
1750 	/*
1751 	 *  Init chip.
1752 	 */
1753 	OUTB(np, nc_istat,  0x00);			/*  Remove Reset, abort */
1754 	INB(np, nc_mbox1);
1755 	udelay(2000); /* The 895 needs time for the bus mode to settle */
1756 
1757 	OUTB(np, nc_scntl0, np->rv_scntl0 | 0xc0);
1758 					/*  full arb., ena parity, par->ATN  */
1759 	OUTB(np, nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
1760 
1761 	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
1762 
1763 	OUTB(np, nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
1764 	OUTW(np, nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
1765 	OUTB(np, nc_istat , SIGP	);		/*  Signal Process */
1766 	OUTB(np, nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
1767 	OUTB(np, nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
1768 
1769 	OUTB(np, nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
1770 	OUTB(np, nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
1771 	OUTB(np, nc_ctest4, np->rv_ctest4);	/* Master parity checking */
1772 
1773 	/* Extended Sreq/Sack filtering not supported on the C10 */
1774 	if (np->features & FE_C10)
1775 		OUTB(np, nc_stest2, np->rv_stest2);
1776 	else
1777 		OUTB(np, nc_stest2, EXT|np->rv_stest2);
1778 
1779 	OUTB(np, nc_stest3, TE);			/* TolerANT enable */
1780 	OUTB(np, nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
1781 
1782 	/*
1783 	 *  For now, disable AIP generation on C1010-66.
1784 	 */
1785 	if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_66)
1786 		OUTB(np, nc_aipcntl1, DISAIP);
1787 
1788 	/*
1789 	 *  C10101 rev. 0 errata.
1790 	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
1791 	 *  STEST1 register to disable SGE. We probably should do
1792 	 *  that from SCRIPTS for each selection/reselection, but
1793 	 *  I just don't want. :)
1794 	 */
1795 	if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 &&
1796 	    pdev->revision < 1)
1797 		OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30);
1798 
1799 	/*
1800 	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
1801 	 *  Disable overlapped arbitration for some dual function devices,
1802 	 *  regardless revision id (kind of post-chip-design feature. ;-))
1803 	 */
1804 	if (pdev->device == PCI_DEVICE_ID_NCR_53C875)
1805 		OUTB(np, nc_ctest0, (1<<5));
1806 	else if (pdev->device == PCI_DEVICE_ID_NCR_53C896)
1807 		np->rv_ccntl0 |= DPR;
1808 
1809 	/*
1810 	 *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
1811 	 *  and/or hardware phase mismatch, since only such chips
1812 	 *  seem to support those IO registers.
1813 	 */
1814 	if (np->features & (FE_DAC|FE_NOPM)) {
1815 		OUTB(np, nc_ccntl0, np->rv_ccntl0);
1816 		OUTB(np, nc_ccntl1, np->rv_ccntl1);
1817 	}
1818 
1819 #if	SYM_CONF_DMA_ADDRESSING_MODE == 2
1820 	/*
1821 	 *  Set up scratch C and DRS IO registers to map the 32 bit
1822 	 *  DMA address range our data structures are located in.
1823 	 */
1824 	if (use_dac(np)) {
1825 		np->dmap_bah[0] = 0;	/* ??? */
1826 		OUTL(np, nc_scrx[0], np->dmap_bah[0]);
1827 		OUTL(np, nc_drs, np->dmap_bah[0]);
1828 	}
1829 #endif
1830 
1831 	/*
1832 	 *  If phase mismatch handled by scripts (895A/896/1010),
1833 	 *  set PM jump addresses.
1834 	 */
1835 	if (np->features & FE_NOPM) {
1836 		OUTL(np, nc_pmjad1, SCRIPTB_BA(np, pm_handle));
1837 		OUTL(np, nc_pmjad2, SCRIPTB_BA(np, pm_handle));
1838 	}
1839 
1840 	/*
1841 	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
1842 	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
1843 	 */
1844 	if (np->features & FE_LED0)
1845 		OUTB(np, nc_gpcntl, INB(np, nc_gpcntl) & ~0x01);
1846 	else if (np->features & FE_LEDC)
1847 		OUTB(np, nc_gpcntl, (INB(np, nc_gpcntl) & ~0x41) | 0x20);
1848 
1849 	/*
1850 	 *      enable ints
1851 	 */
1852 	OUTW(np, nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
1853 	OUTB(np, nc_dien , MDPE|BF|SSI|SIR|IID);
1854 
1855 	/*
1856 	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
1857 	 *  Try to eat the spurious SBMC interrupt that may occur when
1858 	 *  we reset the chip but not the SCSI BUS (at initialization).
1859 	 */
1860 	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
1861 		OUTONW(np, nc_sien, SBMC);
1862 		if (reason == 0) {
1863 			INB(np, nc_mbox1);
1864 			mdelay(100);
1865 			INW(np, nc_sist);
1866 		}
1867 		np->scsi_mode = INB(np, nc_stest4) & SMODE;
1868 	}
1869 
1870 	/*
1871 	 *  Fill in target structure.
1872 	 *  Reinitialize usrsync.
1873 	 *  Reinitialize usrwide.
1874 	 *  Prepare sync negotiation according to actual SCSI bus mode.
1875 	 */
1876 	for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
1877 		struct sym_tcb *tp = &np->target[i];
1878 
1879 		tp->to_reset  = 0;
1880 		tp->head.sval = 0;
1881 		tp->head.wval = np->rv_scntl3;
1882 		tp->head.uval = 0;
1883 		if (tp->lun0p)
1884 			tp->lun0p->to_clear = 0;
1885 		if (tp->lunmp) {
1886 			int ln;
1887 
1888 			for (ln = 1; ln < SYM_CONF_MAX_LUN; ln++)
1889 				if (tp->lunmp[ln])
1890 					tp->lunmp[ln]->to_clear = 0;
1891 		}
1892 	}
1893 
1894 	/*
1895 	 *  Download SCSI SCRIPTS to on-chip RAM if present,
1896 	 *  and start script processor.
1897 	 *  We do the download preferently from the CPU.
1898 	 *  For platforms that may not support PCI memory mapping,
1899 	 *  we use simple SCRIPTS that performs MEMORY MOVEs.
1900 	 */
1901 	phys = SCRIPTA_BA(np, init);
1902 	if (np->ram_ba) {
1903 		if (sym_verbose >= 2)
1904 			printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np));
1905 		memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz);
1906 		if (np->features & FE_RAM8K) {
1907 			memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz);
1908 			phys = scr_to_cpu(np->scr_ram_seg);
1909 			OUTL(np, nc_mmws, phys);
1910 			OUTL(np, nc_mmrs, phys);
1911 			OUTL(np, nc_sfs,  phys);
1912 			phys = SCRIPTB_BA(np, start64);
1913 		}
1914 	}
1915 
1916 	np->istat_sem = 0;
1917 
1918 	OUTL(np, nc_dsa, np->hcb_ba);
1919 	OUTL_DSP(np, phys);
1920 
1921 	/*
1922 	 *  Notify the XPT about the RESET condition.
1923 	 */
1924 	if (reason != 0)
1925 		sym_xpt_async_bus_reset(np);
1926 }
1927 
1928 /*
1929  *  Switch trans mode for current job and its target.
1930  */
1931 static void sym_settrans(struct sym_hcb *np, int target, u_char opts, u_char ofs,
1932 			 u_char per, u_char wide, u_char div, u_char fak)
1933 {
1934 	SYM_QUEHEAD *qp;
1935 	u_char sval, wval, uval;
1936 	struct sym_tcb *tp = &np->target[target];
1937 
1938 	assert(target == (INB(np, nc_sdid) & 0x0f));
1939 
1940 	sval = tp->head.sval;
1941 	wval = tp->head.wval;
1942 	uval = tp->head.uval;
1943 
1944 #if 0
1945 	printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
1946 		sval, wval, uval, np->rv_scntl3);
1947 #endif
1948 	/*
1949 	 *  Set the offset.
1950 	 */
1951 	if (!(np->features & FE_C10))
1952 		sval = (sval & ~0x1f) | ofs;
1953 	else
1954 		sval = (sval & ~0x3f) | ofs;
1955 
1956 	/*
1957 	 *  Set the sync divisor and extra clock factor.
1958 	 */
1959 	if (ofs != 0) {
1960 		wval = (wval & ~0x70) | ((div+1) << 4);
1961 		if (!(np->features & FE_C10))
1962 			sval = (sval & ~0xe0) | (fak << 5);
1963 		else {
1964 			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
1965 			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
1966 			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
1967 		}
1968 	}
1969 
1970 	/*
1971 	 *  Set the bus width.
1972 	 */
1973 	wval = wval & ~EWS;
1974 	if (wide != 0)
1975 		wval |= EWS;
1976 
1977 	/*
1978 	 *  Set misc. ultra enable bits.
1979 	 */
1980 	if (np->features & FE_C10) {
1981 		uval = uval & ~(U3EN|AIPCKEN);
1982 		if (opts)	{
1983 			assert(np->features & FE_U3EN);
1984 			uval |= U3EN;
1985 		}
1986 	} else {
1987 		wval = wval & ~ULTRA;
1988 		if (per <= 12)	wval |= ULTRA;
1989 	}
1990 
1991 	/*
1992 	 *   Stop there if sync parameters are unchanged.
1993 	 */
1994 	if (tp->head.sval == sval &&
1995 	    tp->head.wval == wval &&
1996 	    tp->head.uval == uval)
1997 		return;
1998 	tp->head.sval = sval;
1999 	tp->head.wval = wval;
2000 	tp->head.uval = uval;
2001 
2002 	/*
2003 	 *  Disable extended Sreq/Sack filtering if per < 50.
2004 	 *  Not supported on the C1010.
2005 	 */
2006 	if (per < 50 && !(np->features & FE_C10))
2007 		OUTOFFB(np, nc_stest2, EXT);
2008 
2009 	/*
2010 	 *  set actual value and sync_status
2011 	 */
2012 	OUTB(np, nc_sxfer,  tp->head.sval);
2013 	OUTB(np, nc_scntl3, tp->head.wval);
2014 
2015 	if (np->features & FE_C10) {
2016 		OUTB(np, nc_scntl4, tp->head.uval);
2017 	}
2018 
2019 	/*
2020 	 *  patch ALL busy ccbs of this target.
2021 	 */
2022 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
2023 		struct sym_ccb *cp;
2024 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
2025 		if (cp->target != target)
2026 			continue;
2027 		cp->phys.select.sel_scntl3 = tp->head.wval;
2028 		cp->phys.select.sel_sxfer  = tp->head.sval;
2029 		if (np->features & FE_C10) {
2030 			cp->phys.select.sel_scntl4 = tp->head.uval;
2031 		}
2032 	}
2033 }
2034 
2035 static void sym_announce_transfer_rate(struct sym_tcb *tp)
2036 {
2037 	struct scsi_target *starget = tp->starget;
2038 
2039 	if (tp->tprint.period != spi_period(starget) ||
2040 	    tp->tprint.offset != spi_offset(starget) ||
2041 	    tp->tprint.width != spi_width(starget) ||
2042 	    tp->tprint.iu != spi_iu(starget) ||
2043 	    tp->tprint.dt != spi_dt(starget) ||
2044 	    tp->tprint.qas != spi_qas(starget) ||
2045 	    !tp->tprint.check_nego) {
2046 		tp->tprint.period = spi_period(starget);
2047 		tp->tprint.offset = spi_offset(starget);
2048 		tp->tprint.width = spi_width(starget);
2049 		tp->tprint.iu = spi_iu(starget);
2050 		tp->tprint.dt = spi_dt(starget);
2051 		tp->tprint.qas = spi_qas(starget);
2052 		tp->tprint.check_nego = 1;
2053 
2054 		spi_display_xfer_agreement(starget);
2055 	}
2056 }
2057 
2058 /*
2059  *  We received a WDTR.
2060  *  Let everything be aware of the changes.
2061  */
2062 static void sym_setwide(struct sym_hcb *np, int target, u_char wide)
2063 {
2064 	struct sym_tcb *tp = &np->target[target];
2065 	struct scsi_target *starget = tp->starget;
2066 
2067 	sym_settrans(np, target, 0, 0, 0, wide, 0, 0);
2068 
2069 	if (wide)
2070 		tp->tgoal.renego = NS_WIDE;
2071 	else
2072 		tp->tgoal.renego = 0;
2073 	tp->tgoal.check_nego = 0;
2074 	tp->tgoal.width = wide;
2075 	spi_offset(starget) = 0;
2076 	spi_period(starget) = 0;
2077 	spi_width(starget) = wide;
2078 	spi_iu(starget) = 0;
2079 	spi_dt(starget) = 0;
2080 	spi_qas(starget) = 0;
2081 
2082 	if (sym_verbose >= 3)
2083 		sym_announce_transfer_rate(tp);
2084 }
2085 
2086 /*
2087  *  We received a SDTR.
2088  *  Let everything be aware of the changes.
2089  */
2090 static void
2091 sym_setsync(struct sym_hcb *np, int target,
2092             u_char ofs, u_char per, u_char div, u_char fak)
2093 {
2094 	struct sym_tcb *tp = &np->target[target];
2095 	struct scsi_target *starget = tp->starget;
2096 	u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT;
2097 
2098 	sym_settrans(np, target, 0, ofs, per, wide, div, fak);
2099 
2100 	if (wide)
2101 		tp->tgoal.renego = NS_WIDE;
2102 	else if (ofs)
2103 		tp->tgoal.renego = NS_SYNC;
2104 	else
2105 		tp->tgoal.renego = 0;
2106 	spi_period(starget) = per;
2107 	spi_offset(starget) = ofs;
2108 	spi_iu(starget) = spi_dt(starget) = spi_qas(starget) = 0;
2109 
2110 	if (!tp->tgoal.dt && !tp->tgoal.iu && !tp->tgoal.qas) {
2111 		tp->tgoal.period = per;
2112 		tp->tgoal.offset = ofs;
2113 		tp->tgoal.check_nego = 0;
2114 	}
2115 
2116 	sym_announce_transfer_rate(tp);
2117 }
2118 
2119 /*
2120  *  We received a PPR.
2121  *  Let everything be aware of the changes.
2122  */
2123 static void
2124 sym_setpprot(struct sym_hcb *np, int target, u_char opts, u_char ofs,
2125              u_char per, u_char wide, u_char div, u_char fak)
2126 {
2127 	struct sym_tcb *tp = &np->target[target];
2128 	struct scsi_target *starget = tp->starget;
2129 
2130 	sym_settrans(np, target, opts, ofs, per, wide, div, fak);
2131 
2132 	if (wide || ofs)
2133 		tp->tgoal.renego = NS_PPR;
2134 	else
2135 		tp->tgoal.renego = 0;
2136 	spi_width(starget) = tp->tgoal.width = wide;
2137 	spi_period(starget) = tp->tgoal.period = per;
2138 	spi_offset(starget) = tp->tgoal.offset = ofs;
2139 	spi_iu(starget) = tp->tgoal.iu = !!(opts & PPR_OPT_IU);
2140 	spi_dt(starget) = tp->tgoal.dt = !!(opts & PPR_OPT_DT);
2141 	spi_qas(starget) = tp->tgoal.qas = !!(opts & PPR_OPT_QAS);
2142 	tp->tgoal.check_nego = 0;
2143 
2144 	sym_announce_transfer_rate(tp);
2145 }
2146 
2147 /*
2148  *  generic recovery from scsi interrupt
2149  *
2150  *  The doc says that when the chip gets an SCSI interrupt,
2151  *  it tries to stop in an orderly fashion, by completing
2152  *  an instruction fetch that had started or by flushing
2153  *  the DMA fifo for a write to memory that was executing.
2154  *  Such a fashion is not enough to know if the instruction
2155  *  that was just before the current DSP value has been
2156  *  executed or not.
2157  *
2158  *  There are some small SCRIPTS sections that deal with
2159  *  the start queue and the done queue that may break any
2160  *  assomption from the C code if we are interrupted
2161  *  inside, so we reset if this happens. Btw, since these
2162  *  SCRIPTS sections are executed while the SCRIPTS hasn't
2163  *  started SCSI operations, it is very unlikely to happen.
2164  *
2165  *  All the driver data structures are supposed to be
2166  *  allocated from the same 4 GB memory window, so there
2167  *  is a 1 to 1 relationship between DSA and driver data
2168  *  structures. Since we are careful :) to invalidate the
2169  *  DSA when we complete a command or when the SCRIPTS
2170  *  pushes a DSA into a queue, we can trust it when it
2171  *  points to a CCB.
2172  */
2173 static void sym_recover_scsi_int (struct sym_hcb *np, u_char hsts)
2174 {
2175 	u32	dsp	= INL(np, nc_dsp);
2176 	u32	dsa	= INL(np, nc_dsa);
2177 	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
2178 
2179 	/*
2180 	 *  If we haven't been interrupted inside the SCRIPTS
2181 	 *  critical pathes, we can safely restart the SCRIPTS
2182 	 *  and trust the DSA value if it matches a CCB.
2183 	 */
2184 	if ((!(dsp > SCRIPTA_BA(np, getjob_begin) &&
2185 	       dsp < SCRIPTA_BA(np, getjob_end) + 1)) &&
2186 	    (!(dsp > SCRIPTA_BA(np, ungetjob) &&
2187 	       dsp < SCRIPTA_BA(np, reselect) + 1)) &&
2188 	    (!(dsp > SCRIPTB_BA(np, sel_for_abort) &&
2189 	       dsp < SCRIPTB_BA(np, sel_for_abort_1) + 1)) &&
2190 	    (!(dsp > SCRIPTA_BA(np, done) &&
2191 	       dsp < SCRIPTA_BA(np, done_end) + 1))) {
2192 		OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo  */
2193 		OUTB(np, nc_stest3, TE|CSF);		/* clear scsi fifo */
2194 		/*
2195 		 *  If we have a CCB, let the SCRIPTS call us back for
2196 		 *  the handling of the error with SCRATCHA filled with
2197 		 *  STARTPOS. This way, we will be able to freeze the
2198 		 *  device queue and requeue awaiting IOs.
2199 		 */
2200 		if (cp) {
2201 			cp->host_status = hsts;
2202 			OUTL_DSP(np, SCRIPTA_BA(np, complete_error));
2203 		}
2204 		/*
2205 		 *  Otherwise just restart the SCRIPTS.
2206 		 */
2207 		else {
2208 			OUTL(np, nc_dsa, 0xffffff);
2209 			OUTL_DSP(np, SCRIPTA_BA(np, start));
2210 		}
2211 	}
2212 	else
2213 		goto reset_all;
2214 
2215 	return;
2216 
2217 reset_all:
2218 	sym_start_reset(np);
2219 }
2220 
2221 /*
2222  *  chip exception handler for selection timeout
2223  */
2224 static void sym_int_sto (struct sym_hcb *np)
2225 {
2226 	u32 dsp	= INL(np, nc_dsp);
2227 
2228 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
2229 
2230 	if (dsp == SCRIPTA_BA(np, wf_sel_done) + 8)
2231 		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
2232 	else
2233 		sym_start_reset(np);
2234 }
2235 
2236 /*
2237  *  chip exception handler for unexpected disconnect
2238  */
2239 static void sym_int_udc (struct sym_hcb *np)
2240 {
2241 	printf ("%s: unexpected disconnect\n", sym_name(np));
2242 	sym_recover_scsi_int(np, HS_UNEXPECTED);
2243 }
2244 
2245 /*
2246  *  chip exception handler for SCSI bus mode change
2247  *
2248  *  spi2-r12 11.2.3 says a transceiver mode change must
2249  *  generate a reset event and a device that detects a reset
2250  *  event shall initiate a hard reset. It says also that a
2251  *  device that detects a mode change shall set data transfer
2252  *  mode to eight bit asynchronous, etc...
2253  *  So, just reinitializing all except chip should be enough.
2254  */
2255 static void sym_int_sbmc(struct Scsi_Host *shost)
2256 {
2257 	struct sym_hcb *np = sym_get_hcb(shost);
2258 	u_char scsi_mode = INB(np, nc_stest4) & SMODE;
2259 
2260 	/*
2261 	 *  Notify user.
2262 	 */
2263 	printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np),
2264 		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
2265 
2266 	/*
2267 	 *  Should suspend command processing for a few seconds and
2268 	 *  reinitialize all except the chip.
2269 	 */
2270 	sym_start_up(shost, 2);
2271 }
2272 
2273 /*
2274  *  chip exception handler for SCSI parity error.
2275  *
2276  *  When the chip detects a SCSI parity error and is
2277  *  currently executing a (CH)MOV instruction, it does
2278  *  not interrupt immediately, but tries to finish the
2279  *  transfer of the current scatter entry before
2280  *  interrupting. The following situations may occur:
2281  *
2282  *  - The complete scatter entry has been transferred
2283  *    without the device having changed phase.
2284  *    The chip will then interrupt with the DSP pointing
2285  *    to the instruction that follows the MOV.
2286  *
2287  *  - A phase mismatch occurs before the MOV finished
2288  *    and phase errors are to be handled by the C code.
2289  *    The chip will then interrupt with both PAR and MA
2290  *    conditions set.
2291  *
2292  *  - A phase mismatch occurs before the MOV finished and
2293  *    phase errors are to be handled by SCRIPTS.
2294  *    The chip will load the DSP with the phase mismatch
2295  *    JUMP address and interrupt the host processor.
2296  */
2297 static void sym_int_par (struct sym_hcb *np, u_short sist)
2298 {
2299 	u_char	hsts	= INB(np, HS_PRT);
2300 	u32	dsp	= INL(np, nc_dsp);
2301 	u32	dbc	= INL(np, nc_dbc);
2302 	u32	dsa	= INL(np, nc_dsa);
2303 	u_char	sbcl	= INB(np, nc_sbcl);
2304 	u_char	cmd	= dbc >> 24;
2305 	int phase	= cmd & 7;
2306 	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
2307 
2308 	if (printk_ratelimit())
2309 		printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
2310 			sym_name(np), hsts, dbc, sbcl);
2311 
2312 	/*
2313 	 *  Check that the chip is connected to the SCSI BUS.
2314 	 */
2315 	if (!(INB(np, nc_scntl1) & ISCON)) {
2316 		sym_recover_scsi_int(np, HS_UNEXPECTED);
2317 		return;
2318 	}
2319 
2320 	/*
2321 	 *  If the nexus is not clearly identified, reset the bus.
2322 	 *  We will try to do better later.
2323 	 */
2324 	if (!cp)
2325 		goto reset_all;
2326 
2327 	/*
2328 	 *  Check instruction was a MOV, direction was INPUT and
2329 	 *  ATN is asserted.
2330 	 */
2331 	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
2332 		goto reset_all;
2333 
2334 	/*
2335 	 *  Keep track of the parity error.
2336 	 */
2337 	OUTONB(np, HF_PRT, HF_EXT_ERR);
2338 	cp->xerr_status |= XE_PARITY_ERR;
2339 
2340 	/*
2341 	 *  Prepare the message to send to the device.
2342 	 */
2343 	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
2344 
2345 	/*
2346 	 *  If the old phase was DATA IN phase, we have to deal with
2347 	 *  the 3 situations described above.
2348 	 *  For other input phases (MSG IN and STATUS), the device
2349 	 *  must resend the whole thing that failed parity checking
2350 	 *  or signal error. So, jumping to dispatcher should be OK.
2351 	 */
2352 	if (phase == 1 || phase == 5) {
2353 		/* Phase mismatch handled by SCRIPTS */
2354 		if (dsp == SCRIPTB_BA(np, pm_handle))
2355 			OUTL_DSP(np, dsp);
2356 		/* Phase mismatch handled by the C code */
2357 		else if (sist & MA)
2358 			sym_int_ma (np);
2359 		/* No phase mismatch occurred */
2360 		else {
2361 			sym_set_script_dp (np, cp, dsp);
2362 			OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2363 		}
2364 	}
2365 	else if (phase == 7)	/* We definitely cannot handle parity errors */
2366 #if 1				/* in message-in phase due to the relection  */
2367 		goto reset_all; /* path and various message anticipations.   */
2368 #else
2369 		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
2370 #endif
2371 	else
2372 		OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2373 	return;
2374 
2375 reset_all:
2376 	sym_start_reset(np);
2377 	return;
2378 }
2379 
2380 /*
2381  *  chip exception handler for phase errors.
2382  *
2383  *  We have to construct a new transfer descriptor,
2384  *  to transfer the rest of the current block.
2385  */
2386 static void sym_int_ma (struct sym_hcb *np)
2387 {
2388 	u32	dbc;
2389 	u32	rest;
2390 	u32	dsp;
2391 	u32	dsa;
2392 	u32	nxtdsp;
2393 	u32	*vdsp;
2394 	u32	oadr, olen;
2395 	u32	*tblp;
2396         u32	newcmd;
2397 	u_int	delta;
2398 	u_char	cmd;
2399 	u_char	hflags, hflags0;
2400 	struct	sym_pmc *pm;
2401 	struct sym_ccb *cp;
2402 
2403 	dsp	= INL(np, nc_dsp);
2404 	dbc	= INL(np, nc_dbc);
2405 	dsa	= INL(np, nc_dsa);
2406 
2407 	cmd	= dbc >> 24;
2408 	rest	= dbc & 0xffffff;
2409 	delta	= 0;
2410 
2411 	/*
2412 	 *  locate matching cp if any.
2413 	 */
2414 	cp = sym_ccb_from_dsa(np, dsa);
2415 
2416 	/*
2417 	 *  Donnot take into account dma fifo and various buffers in
2418 	 *  INPUT phase since the chip flushes everything before
2419 	 *  raising the MA interrupt for interrupted INPUT phases.
2420 	 *  For DATA IN phase, we will check for the SWIDE later.
2421 	 */
2422 	if ((cmd & 7) != 1 && (cmd & 7) != 5) {
2423 		u_char ss0, ss2;
2424 
2425 		if (np->features & FE_DFBC)
2426 			delta = INW(np, nc_dfbc);
2427 		else {
2428 			u32 dfifo;
2429 
2430 			/*
2431 			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
2432 			 */
2433 			dfifo = INL(np, nc_dfifo);
2434 
2435 			/*
2436 			 *  Calculate remaining bytes in DMA fifo.
2437 			 *  (CTEST5 = dfifo >> 16)
2438 			 */
2439 			if (dfifo & (DFS << 16))
2440 				delta = ((((dfifo >> 8) & 0x300) |
2441 				          (dfifo & 0xff)) - rest) & 0x3ff;
2442 			else
2443 				delta = ((dfifo & 0xff) - rest) & 0x7f;
2444 		}
2445 
2446 		/*
2447 		 *  The data in the dma fifo has not been transferred to
2448 		 *  the target -> add the amount to the rest
2449 		 *  and clear the data.
2450 		 *  Check the sstat2 register in case of wide transfer.
2451 		 */
2452 		rest += delta;
2453 		ss0  = INB(np, nc_sstat0);
2454 		if (ss0 & OLF) rest++;
2455 		if (!(np->features & FE_C10))
2456 			if (ss0 & ORF) rest++;
2457 		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
2458 			ss2 = INB(np, nc_sstat2);
2459 			if (ss2 & OLF1) rest++;
2460 			if (!(np->features & FE_C10))
2461 				if (ss2 & ORF1) rest++;
2462 		}
2463 
2464 		/*
2465 		 *  Clear fifos.
2466 		 */
2467 		OUTB(np, nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
2468 		OUTB(np, nc_stest3, TE|CSF);		/* scsi fifo */
2469 	}
2470 
2471 	/*
2472 	 *  log the information
2473 	 */
2474 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
2475 		printf ("P%x%x RL=%d D=%d ", cmd&7, INB(np, nc_sbcl)&7,
2476 			(unsigned) rest, (unsigned) delta);
2477 
2478 	/*
2479 	 *  try to find the interrupted script command,
2480 	 *  and the address at which to continue.
2481 	 */
2482 	vdsp	= NULL;
2483 	nxtdsp	= 0;
2484 	if	(dsp >  np->scripta_ba &&
2485 		 dsp <= np->scripta_ba + np->scripta_sz) {
2486 		vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
2487 		nxtdsp = dsp;
2488 	}
2489 	else if	(dsp >  np->scriptb_ba &&
2490 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
2491 		vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
2492 		nxtdsp = dsp;
2493 	}
2494 
2495 	/*
2496 	 *  log the information
2497 	 */
2498 	if (DEBUG_FLAGS & DEBUG_PHASE) {
2499 		printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
2500 			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
2501 	}
2502 
2503 	if (!vdsp) {
2504 		printf ("%s: interrupted SCRIPT address not found.\n",
2505 			sym_name (np));
2506 		goto reset_all;
2507 	}
2508 
2509 	if (!cp) {
2510 		printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
2511 			sym_name (np));
2512 		goto reset_all;
2513 	}
2514 
2515 	/*
2516 	 *  get old startaddress and old length.
2517 	 */
2518 	oadr = scr_to_cpu(vdsp[1]);
2519 
2520 	if (cmd & 0x10) {	/* Table indirect */
2521 		tblp = (u32 *) ((char*) &cp->phys + oadr);
2522 		olen = scr_to_cpu(tblp[0]);
2523 		oadr = scr_to_cpu(tblp[1]);
2524 	} else {
2525 		tblp = (u32 *) 0;
2526 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
2527 	}
2528 
2529 	if (DEBUG_FLAGS & DEBUG_PHASE) {
2530 		printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
2531 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
2532 			tblp,
2533 			(unsigned) olen,
2534 			(unsigned) oadr);
2535 	}
2536 
2537 	/*
2538 	 *  check cmd against assumed interrupted script command.
2539 	 *  If dt data phase, the MOVE instruction hasn't bit 4 of
2540 	 *  the phase.
2541 	 */
2542 	if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
2543 		sym_print_addr(cp->cmd,
2544 			"internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
2545 			cmd, scr_to_cpu(vdsp[0]) >> 24);
2546 
2547 		goto reset_all;
2548 	}
2549 
2550 	/*
2551 	 *  if old phase not dataphase, leave here.
2552 	 */
2553 	if (cmd & 2) {
2554 		sym_print_addr(cp->cmd,
2555 			"phase change %x-%x %d@%08x resid=%d.\n",
2556 			cmd&7, INB(np, nc_sbcl)&7, (unsigned)olen,
2557 			(unsigned)oadr, (unsigned)rest);
2558 		goto unexpected_phase;
2559 	}
2560 
2561 	/*
2562 	 *  Choose the correct PM save area.
2563 	 *
2564 	 *  Look at the PM_SAVE SCRIPT if you want to understand
2565 	 *  this stuff. The equivalent code is implemented in
2566 	 *  SCRIPTS for the 895A, 896 and 1010 that are able to
2567 	 *  handle PM from the SCRIPTS processor.
2568 	 */
2569 	hflags0 = INB(np, HF_PRT);
2570 	hflags = hflags0;
2571 
2572 	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
2573 		if (hflags & HF_IN_PM0)
2574 			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
2575 		else if	(hflags & HF_IN_PM1)
2576 			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
2577 
2578 		if (hflags & HF_DP_SAVED)
2579 			hflags ^= HF_ACT_PM;
2580 	}
2581 
2582 	if (!(hflags & HF_ACT_PM)) {
2583 		pm = &cp->phys.pm0;
2584 		newcmd = SCRIPTA_BA(np, pm0_data);
2585 	}
2586 	else {
2587 		pm = &cp->phys.pm1;
2588 		newcmd = SCRIPTA_BA(np, pm1_data);
2589 	}
2590 
2591 	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
2592 	if (hflags != hflags0)
2593 		OUTB(np, HF_PRT, hflags);
2594 
2595 	/*
2596 	 *  fillin the phase mismatch context
2597 	 */
2598 	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
2599 	pm->sg.size = cpu_to_scr(rest);
2600 	pm->ret     = cpu_to_scr(nxtdsp);
2601 
2602 	/*
2603 	 *  If we have a SWIDE,
2604 	 *  - prepare the address to write the SWIDE from SCRIPTS,
2605 	 *  - compute the SCRIPTS address to restart from,
2606 	 *  - move current data pointer context by one byte.
2607 	 */
2608 	nxtdsp = SCRIPTA_BA(np, dispatch);
2609 	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
2610 	    (INB(np, nc_scntl2) & WSR)) {
2611 		u32 tmp;
2612 
2613 		/*
2614 		 *  Set up the table indirect for the MOVE
2615 		 *  of the residual byte and adjust the data
2616 		 *  pointer context.
2617 		 */
2618 		tmp = scr_to_cpu(pm->sg.addr);
2619 		cp->phys.wresid.addr = cpu_to_scr(tmp);
2620 		pm->sg.addr = cpu_to_scr(tmp + 1);
2621 		tmp = scr_to_cpu(pm->sg.size);
2622 		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
2623 		pm->sg.size = cpu_to_scr(tmp - 1);
2624 
2625 		/*
2626 		 *  If only the residual byte is to be moved,
2627 		 *  no PM context is needed.
2628 		 */
2629 		if ((tmp&0xffffff) == 1)
2630 			newcmd = pm->ret;
2631 
2632 		/*
2633 		 *  Prepare the address of SCRIPTS that will
2634 		 *  move the residual byte to memory.
2635 		 */
2636 		nxtdsp = SCRIPTB_BA(np, wsr_ma_helper);
2637 	}
2638 
2639 	if (DEBUG_FLAGS & DEBUG_PHASE) {
2640 		sym_print_addr(cp->cmd, "PM %x %x %x / %x %x %x.\n",
2641 			hflags0, hflags, newcmd,
2642 			(unsigned)scr_to_cpu(pm->sg.addr),
2643 			(unsigned)scr_to_cpu(pm->sg.size),
2644 			(unsigned)scr_to_cpu(pm->ret));
2645 	}
2646 
2647 	/*
2648 	 *  Restart the SCRIPTS processor.
2649 	 */
2650 	sym_set_script_dp (np, cp, newcmd);
2651 	OUTL_DSP(np, nxtdsp);
2652 	return;
2653 
2654 	/*
2655 	 *  Unexpected phase changes that occurs when the current phase
2656 	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
2657 	 *  Such event may only happen when the SCRIPTS is using a
2658 	 *  multibyte SCSI MOVE.
2659 	 *
2660 	 *  Phase change		Some possible cause
2661 	 *
2662 	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
2663 	 *  COMMAND  --> STATUS	Bad command or refused by target.
2664 	 *  MSG OUT  --> MSG IN     Message rejected by target.
2665 	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
2666 	 *  			negotiation messages.
2667 	 *
2668 	 *  The code below does not care of the new phase and so
2669 	 *  trusts the target. Why to annoy it ?
2670 	 *  If the interrupted phase is COMMAND phase, we restart at
2671 	 *  dispatcher.
2672 	 *  If a target does not get all the messages after selection,
2673 	 *  the code assumes blindly that the target discards extended
2674 	 *  messages and clears the negotiation status.
2675 	 *  If the target does not want all our response to negotiation,
2676 	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
2677 	 *  bloat for such a should_not_happen situation).
2678 	 *  In all other situation, we reset the BUS.
2679 	 *  Are these assumptions reasonable ? (Wait and see ...)
2680 	 */
2681 unexpected_phase:
2682 	dsp -= 8;
2683 	nxtdsp = 0;
2684 
2685 	switch (cmd & 7) {
2686 	case 2:	/* COMMAND phase */
2687 		nxtdsp = SCRIPTA_BA(np, dispatch);
2688 		break;
2689 #if 0
2690 	case 3:	/* STATUS  phase */
2691 		nxtdsp = SCRIPTA_BA(np, dispatch);
2692 		break;
2693 #endif
2694 	case 6:	/* MSG OUT phase */
2695 		/*
2696 		 *  If the device may want to use untagged when we want
2697 		 *  tagged, we prepare an IDENTIFY without disc. granted,
2698 		 *  since we will not be able to handle reselect.
2699 		 *  Otherwise, we just don't care.
2700 		 */
2701 		if	(dsp == SCRIPTA_BA(np, send_ident)) {
2702 			if (cp->tag != NO_TAG && olen - rest <= 3) {
2703 				cp->host_status = HS_BUSY;
2704 				np->msgout[0] = IDENTIFY(0, cp->lun);
2705 				nxtdsp = SCRIPTB_BA(np, ident_break_atn);
2706 			}
2707 			else
2708 				nxtdsp = SCRIPTB_BA(np, ident_break);
2709 		}
2710 		else if	(dsp == SCRIPTB_BA(np, send_wdtr) ||
2711 			 dsp == SCRIPTB_BA(np, send_sdtr) ||
2712 			 dsp == SCRIPTB_BA(np, send_ppr)) {
2713 			nxtdsp = SCRIPTB_BA(np, nego_bad_phase);
2714 			if (dsp == SCRIPTB_BA(np, send_ppr)) {
2715 				struct scsi_device *dev = cp->cmd->device;
2716 				dev->ppr = 0;
2717 			}
2718 		}
2719 		break;
2720 #if 0
2721 	case 7:	/* MSG IN  phase */
2722 		nxtdsp = SCRIPTA_BA(np, clrack);
2723 		break;
2724 #endif
2725 	}
2726 
2727 	if (nxtdsp) {
2728 		OUTL_DSP(np, nxtdsp);
2729 		return;
2730 	}
2731 
2732 reset_all:
2733 	sym_start_reset(np);
2734 }
2735 
2736 /*
2737  *  chip interrupt handler
2738  *
2739  *  In normal situations, interrupt conditions occur one at
2740  *  a time. But when something bad happens on the SCSI BUS,
2741  *  the chip may raise several interrupt flags before
2742  *  stopping and interrupting the CPU. The additionnal
2743  *  interrupt flags are stacked in some extra registers
2744  *  after the SIP and/or DIP flag has been raised in the
2745  *  ISTAT. After the CPU has read the interrupt condition
2746  *  flag from SIST or DSTAT, the chip unstacks the other
2747  *  interrupt flags and sets the corresponding bits in
2748  *  SIST or DSTAT. Since the chip starts stacking once the
2749  *  SIP or DIP flag is set, there is a small window of time
2750  *  where the stacking does not occur.
2751  *
2752  *  Typically, multiple interrupt conditions may happen in
2753  *  the following situations:
2754  *
2755  *  - SCSI parity error + Phase mismatch  (PAR|MA)
2756  *    When an parity error is detected in input phase
2757  *    and the device switches to msg-in phase inside a
2758  *    block MOV.
2759  *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
2760  *    When a stupid device does not want to handle the
2761  *    recovery of an SCSI parity error.
2762  *  - Some combinations of STO, PAR, UDC, ...
2763  *    When using non compliant SCSI stuff, when user is
2764  *    doing non compliant hot tampering on the BUS, when
2765  *    something really bad happens to a device, etc ...
2766  *
2767  *  The heuristic suggested by SYMBIOS to handle
2768  *  multiple interrupts is to try unstacking all
2769  *  interrupts conditions and to handle them on some
2770  *  priority based on error severity.
2771  *  This will work when the unstacking has been
2772  *  successful, but we cannot be 100 % sure of that,
2773  *  since the CPU may have been faster to unstack than
2774  *  the chip is able to stack. Hmmm ... But it seems that
2775  *  such a situation is very unlikely to happen.
2776  *
2777  *  If this happen, for example STO caught by the CPU
2778  *  then UDC happenning before the CPU have restarted
2779  *  the SCRIPTS, the driver may wrongly complete the
2780  *  same command on UDC, since the SCRIPTS didn't restart
2781  *  and the DSA still points to the same command.
2782  *  We avoid this situation by setting the DSA to an
2783  *  invalid value when the CCB is completed and before
2784  *  restarting the SCRIPTS.
2785  *
2786  *  Another issue is that we need some section of our
2787  *  recovery procedures to be somehow uninterruptible but
2788  *  the SCRIPTS processor does not provides such a
2789  *  feature. For this reason, we handle recovery preferently
2790  *  from the C code and check against some SCRIPTS critical
2791  *  sections from the C code.
2792  *
2793  *  Hopefully, the interrupt handling of the driver is now
2794  *  able to resist to weird BUS error conditions, but donnot
2795  *  ask me for any guarantee that it will never fail. :-)
2796  *  Use at your own decision and risk.
2797  */
2798 
2799 irqreturn_t sym_interrupt(struct Scsi_Host *shost)
2800 {
2801 	struct sym_data *sym_data = shost_priv(shost);
2802 	struct sym_hcb *np = sym_data->ncb;
2803 	struct pci_dev *pdev = sym_data->pdev;
2804 	u_char	istat, istatc;
2805 	u_char	dstat;
2806 	u_short	sist;
2807 
2808 	/*
2809 	 *  interrupt on the fly ?
2810 	 *  (SCRIPTS may still be running)
2811 	 *
2812 	 *  A `dummy read' is needed to ensure that the
2813 	 *  clear of the INTF flag reaches the device
2814 	 *  and that posted writes are flushed to memory
2815 	 *  before the scanning of the DONE queue.
2816 	 *  Note that SCRIPTS also (dummy) read to memory
2817 	 *  prior to deliver the INTF interrupt condition.
2818 	 */
2819 	istat = INB(np, nc_istat);
2820 	if (istat & INTF) {
2821 		OUTB(np, nc_istat, (istat & SIGP) | INTF | np->istat_sem);
2822 		istat |= INB(np, nc_istat);		/* DUMMY READ */
2823 		if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
2824 		sym_wakeup_done(np);
2825 	}
2826 
2827 	if (!(istat & (SIP|DIP)))
2828 		return (istat & INTF) ? IRQ_HANDLED : IRQ_NONE;
2829 
2830 #if 0	/* We should never get this one */
2831 	if (istat & CABRT)
2832 		OUTB(np, nc_istat, CABRT);
2833 #endif
2834 
2835 	/*
2836 	 *  PAR and MA interrupts may occur at the same time,
2837 	 *  and we need to know of both in order to handle
2838 	 *  this situation properly. We try to unstack SCSI
2839 	 *  interrupts for that reason. BTW, I dislike a LOT
2840 	 *  such a loop inside the interrupt routine.
2841 	 *  Even if DMA interrupt stacking is very unlikely to
2842 	 *  happen, we also try unstacking these ones, since
2843 	 *  this has no performance impact.
2844 	 */
2845 	sist	= 0;
2846 	dstat	= 0;
2847 	istatc	= istat;
2848 	do {
2849 		if (istatc & SIP)
2850 			sist  |= INW(np, nc_sist);
2851 		if (istatc & DIP)
2852 			dstat |= INB(np, nc_dstat);
2853 		istatc = INB(np, nc_istat);
2854 		istat |= istatc;
2855 
2856 		/* Prevent deadlock waiting on a condition that may
2857 		 * never clear. */
2858 		if (unlikely(sist == 0xffff && dstat == 0xff)) {
2859 			if (pci_channel_offline(pdev))
2860 				return IRQ_NONE;
2861 		}
2862 	} while (istatc & (SIP|DIP));
2863 
2864 	if (DEBUG_FLAGS & DEBUG_TINY)
2865 		printf ("<%d|%x:%x|%x:%x>",
2866 			(int)INB(np, nc_scr0),
2867 			dstat,sist,
2868 			(unsigned)INL(np, nc_dsp),
2869 			(unsigned)INL(np, nc_dbc));
2870 	/*
2871 	 *  On paper, a memory read barrier may be needed here to
2872 	 *  prevent out of order LOADs by the CPU from having
2873 	 *  prefetched stale data prior to DMA having occurred.
2874 	 *  And since we are paranoid ... :)
2875 	 */
2876 	MEMORY_READ_BARRIER();
2877 
2878 	/*
2879 	 *  First, interrupts we want to service cleanly.
2880 	 *
2881 	 *  Phase mismatch (MA) is the most frequent interrupt
2882 	 *  for chip earlier than the 896 and so we have to service
2883 	 *  it as quickly as possible.
2884 	 *  A SCSI parity error (PAR) may be combined with a phase
2885 	 *  mismatch condition (MA).
2886 	 *  Programmed interrupts (SIR) are used to call the C code
2887 	 *  from SCRIPTS.
2888 	 *  The single step interrupt (SSI) is not used in this
2889 	 *  driver.
2890 	 */
2891 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
2892 	    !(dstat & (MDPE|BF|ABRT|IID))) {
2893 		if	(sist & PAR)	sym_int_par (np, sist);
2894 		else if (sist & MA)	sym_int_ma (np);
2895 		else if (dstat & SIR)	sym_int_sir(np);
2896 		else if (dstat & SSI)	OUTONB_STD();
2897 		else			goto unknown_int;
2898 		return IRQ_HANDLED;
2899 	}
2900 
2901 	/*
2902 	 *  Now, interrupts that donnot happen in normal
2903 	 *  situations and that we may need to recover from.
2904 	 *
2905 	 *  On SCSI RESET (RST), we reset everything.
2906 	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
2907 	 *  active CCBs with RESET status, prepare all devices
2908 	 *  for negotiating again and restart the SCRIPTS.
2909 	 *  On STO and UDC, we complete the CCB with the corres-
2910 	 *  ponding status and restart the SCRIPTS.
2911 	 */
2912 	if (sist & RST) {
2913 		printf("%s: SCSI BUS reset detected.\n", sym_name(np));
2914 		sym_start_up(shost, 1);
2915 		return IRQ_HANDLED;
2916 	}
2917 
2918 	OUTB(np, nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
2919 	OUTB(np, nc_stest3, TE|CSF);		/* clear scsi fifo */
2920 
2921 	if (!(sist  & (GEN|HTH|SGE)) &&
2922 	    !(dstat & (MDPE|BF|ABRT|IID))) {
2923 		if	(sist & SBMC)	sym_int_sbmc(shost);
2924 		else if (sist & STO)	sym_int_sto (np);
2925 		else if (sist & UDC)	sym_int_udc (np);
2926 		else			goto unknown_int;
2927 		return IRQ_HANDLED;
2928 	}
2929 
2930 	/*
2931 	 *  Now, interrupts we are not able to recover cleanly.
2932 	 *
2933 	 *  Log message for hard errors.
2934 	 *  Reset everything.
2935 	 */
2936 
2937 	sym_log_hard_error(shost, sist, dstat);
2938 
2939 	if ((sist & (GEN|HTH|SGE)) ||
2940 		(dstat & (MDPE|BF|ABRT|IID))) {
2941 		sym_start_reset(np);
2942 		return IRQ_HANDLED;
2943 	}
2944 
2945 unknown_int:
2946 	/*
2947 	 *  We just miss the cause of the interrupt. :(
2948 	 *  Print a message. The timeout will do the real work.
2949 	 */
2950 	printf(	"%s: unknown interrupt(s) ignored, "
2951 		"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
2952 		sym_name(np), istat, dstat, sist);
2953 	return IRQ_NONE;
2954 }
2955 
2956 /*
2957  *  Dequeue from the START queue all CCBs that match
2958  *  a given target/lun/task condition (-1 means all),
2959  *  and move them from the BUSY queue to the COMP queue
2960  *  with DID_SOFT_ERROR status condition.
2961  *  This function is used during error handling/recovery.
2962  *  It is called with SCRIPTS not running.
2963  */
2964 static int
2965 sym_dequeue_from_squeue(struct sym_hcb *np, int i, int target, int lun, int task)
2966 {
2967 	int j;
2968 	struct sym_ccb *cp;
2969 
2970 	/*
2971 	 *  Make sure the starting index is within range.
2972 	 */
2973 	assert((i >= 0) && (i < 2*MAX_QUEUE));
2974 
2975 	/*
2976 	 *  Walk until end of START queue and dequeue every job
2977 	 *  that matches the target/lun/task condition.
2978 	 */
2979 	j = i;
2980 	while (i != np->squeueput) {
2981 		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
2982 		assert(cp);
2983 #ifdef SYM_CONF_IARB_SUPPORT
2984 		/* Forget hints for IARB, they may be no longer relevant */
2985 		cp->host_flags &= ~HF_HINT_IARB;
2986 #endif
2987 		if ((target == -1 || cp->target == target) &&
2988 		    (lun    == -1 || cp->lun    == lun)    &&
2989 		    (task   == -1 || cp->tag    == task)) {
2990 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
2991 			sym_set_cam_status(cp->cmd, DID_SOFT_ERROR);
2992 #else
2993 			sym_set_cam_status(cp->cmd, DID_REQUEUE);
2994 #endif
2995 			sym_remque(&cp->link_ccbq);
2996 			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
2997 		}
2998 		else {
2999 			if (i != j)
3000 				np->squeue[j] = np->squeue[i];
3001 			if ((j += 2) >= MAX_QUEUE*2) j = 0;
3002 		}
3003 		if ((i += 2) >= MAX_QUEUE*2) i = 0;
3004 	}
3005 	if (i != j)		/* Copy back the idle task if needed */
3006 		np->squeue[j] = np->squeue[i];
3007 	np->squeueput = j;	/* Update our current start queue pointer */
3008 
3009 	return (i - j) / 2;
3010 }
3011 
3012 /*
3013  *  chip handler for bad SCSI status condition
3014  *
3015  *  In case of bad SCSI status, we unqueue all the tasks
3016  *  currently queued to the controller but not yet started
3017  *  and then restart the SCRIPTS processor immediately.
3018  *
3019  *  QUEUE FULL and BUSY conditions are handled the same way.
3020  *  Basically all the not yet started tasks are requeued in
3021  *  device queue and the queue is frozen until a completion.
3022  *
3023  *  For CHECK CONDITION and COMMAND TERMINATED status, we use
3024  *  the CCB of the failed command to prepare a REQUEST SENSE
3025  *  SCSI command and queue it to the controller queue.
3026  *
3027  *  SCRATCHA is assumed to have been loaded with STARTPOS
3028  *  before the SCRIPTS called the C code.
3029  */
3030 static void sym_sir_bad_scsi_status(struct sym_hcb *np, int num, struct sym_ccb *cp)
3031 {
3032 	u32		startp;
3033 	u_char		s_status = cp->ssss_status;
3034 	u_char		h_flags  = cp->host_flags;
3035 	int		msglen;
3036 	int		i;
3037 
3038 	/*
3039 	 *  Compute the index of the next job to start from SCRIPTS.
3040 	 */
3041 	i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3042 
3043 	/*
3044 	 *  The last CCB queued used for IARB hint may be
3045 	 *  no longer relevant. Forget it.
3046 	 */
3047 #ifdef SYM_CONF_IARB_SUPPORT
3048 	if (np->last_cp)
3049 		np->last_cp = 0;
3050 #endif
3051 
3052 	/*
3053 	 *  Now deal with the SCSI status.
3054 	 */
3055 	switch(s_status) {
3056 	case S_BUSY:
3057 	case S_QUEUE_FULL:
3058 		if (sym_verbose >= 2) {
3059 			sym_print_addr(cp->cmd, "%s\n",
3060 			        s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
3061 		}
3062 		fallthrough;
3063 	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
3064 		sym_complete_error (np, cp);
3065 		break;
3066 	case S_TERMINATED:
3067 	case S_CHECK_COND:
3068 		/*
3069 		 *  If we get an SCSI error when requesting sense, give up.
3070 		 */
3071 		if (h_flags & HF_SENSE) {
3072 			sym_complete_error (np, cp);
3073 			break;
3074 		}
3075 
3076 		/*
3077 		 *  Dequeue all queued CCBs for that device not yet started,
3078 		 *  and restart the SCRIPTS processor immediately.
3079 		 */
3080 		sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3081 		OUTL_DSP(np, SCRIPTA_BA(np, start));
3082 
3083  		/*
3084 		 *  Save some info of the actual IO.
3085 		 *  Compute the data residual.
3086 		 */
3087 		cp->sv_scsi_status = cp->ssss_status;
3088 		cp->sv_xerr_status = cp->xerr_status;
3089 		cp->sv_resid = sym_compute_residual(np, cp);
3090 
3091 		/*
3092 		 *  Prepare all needed data structures for
3093 		 *  requesting sense data.
3094 		 */
3095 
3096 		cp->scsi_smsg2[0] = IDENTIFY(0, cp->lun);
3097 		msglen = 1;
3098 
3099 		/*
3100 		 *  If we are currently using anything different from
3101 		 *  async. 8 bit data transfers with that target,
3102 		 *  start a negotiation, since the device may want
3103 		 *  to report us a UNIT ATTENTION condition due to
3104 		 *  a cause we currently ignore, and we donnot want
3105 		 *  to be stuck with WIDE and/or SYNC data transfer.
3106 		 *
3107 		 *  cp->nego_status is filled by sym_prepare_nego().
3108 		 */
3109 		cp->nego_status = 0;
3110 		msglen += sym_prepare_nego(np, cp, &cp->scsi_smsg2[msglen]);
3111 		/*
3112 		 *  Message table indirect structure.
3113 		 */
3114 		cp->phys.smsg.addr	= CCB_BA(cp, scsi_smsg2);
3115 		cp->phys.smsg.size	= cpu_to_scr(msglen);
3116 
3117 		/*
3118 		 *  sense command
3119 		 */
3120 		cp->phys.cmd.addr	= CCB_BA(cp, sensecmd);
3121 		cp->phys.cmd.size	= cpu_to_scr(6);
3122 
3123 		/*
3124 		 *  patch requested size into sense command
3125 		 */
3126 		cp->sensecmd[0]		= REQUEST_SENSE;
3127 		cp->sensecmd[1]		= 0;
3128 		if (cp->cmd->device->scsi_level <= SCSI_2 && cp->lun <= 7)
3129 			cp->sensecmd[1]	= cp->lun << 5;
3130 		cp->sensecmd[4]		= SYM_SNS_BBUF_LEN;
3131 		cp->data_len		= SYM_SNS_BBUF_LEN;
3132 
3133 		/*
3134 		 *  sense data
3135 		 */
3136 		memset(cp->sns_bbuf, 0, SYM_SNS_BBUF_LEN);
3137 		cp->phys.sense.addr	= CCB_BA(cp, sns_bbuf);
3138 		cp->phys.sense.size	= cpu_to_scr(SYM_SNS_BBUF_LEN);
3139 
3140 		/*
3141 		 *  requeue the command.
3142 		 */
3143 		startp = SCRIPTB_BA(np, sdata_in);
3144 
3145 		cp->phys.head.savep	= cpu_to_scr(startp);
3146 		cp->phys.head.lastp	= cpu_to_scr(startp);
3147 		cp->startp		= cpu_to_scr(startp);
3148 		cp->goalp		= cpu_to_scr(startp + 16);
3149 
3150 		cp->host_xflags = 0;
3151 		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
3152 		cp->ssss_status = S_ILLEGAL;
3153 		cp->host_flags	= (HF_SENSE|HF_DATA_IN);
3154 		cp->xerr_status = 0;
3155 		cp->extra_bytes = 0;
3156 
3157 		cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
3158 
3159 		/*
3160 		 *  Requeue the command.
3161 		 */
3162 		sym_put_start_queue(np, cp);
3163 
3164 		/*
3165 		 *  Give back to upper layer everything we have dequeued.
3166 		 */
3167 		sym_flush_comp_queue(np, 0);
3168 		break;
3169 	}
3170 }
3171 
3172 /*
3173  *  After a device has accepted some management message
3174  *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
3175  *  a device signals a UNIT ATTENTION condition, some
3176  *  tasks are thrown away by the device. We are required
3177  *  to reflect that on our tasks list since the device
3178  *  will never complete these tasks.
3179  *
3180  *  This function move from the BUSY queue to the COMP
3181  *  queue all disconnected CCBs for a given target that
3182  *  match the following criteria:
3183  *  - lun=-1  means any logical UNIT otherwise a given one.
3184  *  - task=-1 means any task, otherwise a given one.
3185  */
3186 int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task)
3187 {
3188 	SYM_QUEHEAD qtmp, *qp;
3189 	int i = 0;
3190 	struct sym_ccb *cp;
3191 
3192 	/*
3193 	 *  Move the entire BUSY queue to our temporary queue.
3194 	 */
3195 	sym_que_init(&qtmp);
3196 	sym_que_splice(&np->busy_ccbq, &qtmp);
3197 	sym_que_init(&np->busy_ccbq);
3198 
3199 	/*
3200 	 *  Put all CCBs that matches our criteria into
3201 	 *  the COMP queue and put back other ones into
3202 	 *  the BUSY queue.
3203 	 */
3204 	while ((qp = sym_remque_head(&qtmp)) != NULL) {
3205 		struct scsi_cmnd *cmd;
3206 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3207 		cmd = cp->cmd;
3208 		if (cp->host_status != HS_DISCONNECT ||
3209 		    cp->target != target	     ||
3210 		    (lun  != -1 && cp->lun != lun)   ||
3211 		    (task != -1 &&
3212 			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
3213 			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
3214 			continue;
3215 		}
3216 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3217 
3218 		/* Preserve the software timeout condition */
3219 		if (sym_get_cam_status(cmd) != DID_TIME_OUT)
3220 			sym_set_cam_status(cmd, cam_status);
3221 		++i;
3222 #if 0
3223 printf("XXXX TASK @%p CLEARED\n", cp);
3224 #endif
3225 	}
3226 	return i;
3227 }
3228 
3229 /*
3230  *  chip handler for TASKS recovery
3231  *
3232  *  We cannot safely abort a command, while the SCRIPTS
3233  *  processor is running, since we just would be in race
3234  *  with it.
3235  *
3236  *  As long as we have tasks to abort, we keep the SEM
3237  *  bit set in the ISTAT. When this bit is set, the
3238  *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
3239  *  each time it enters the scheduler.
3240  *
3241  *  If we have to reset a target, clear tasks of a unit,
3242  *  or to perform the abort of a disconnected job, we
3243  *  restart the SCRIPTS for selecting the target. Once
3244  *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
3245  *  If it loses arbitration, the SCRIPTS will interrupt again
3246  *  the next time it will enter its scheduler, and so on ...
3247  *
3248  *  On SIR_TARGET_SELECTED, we scan for the more
3249  *  appropriate thing to do:
3250  *
3251  *  - If nothing, we just sent a M_ABORT message to the
3252  *    target to get rid of the useless SCSI bus ownership.
3253  *    According to the specs, no tasks shall be affected.
3254  *  - If the target is to be reset, we send it a M_RESET
3255  *    message.
3256  *  - If a logical UNIT is to be cleared , we send the
3257  *    IDENTIFY(lun) + M_ABORT.
3258  *  - If an untagged task is to be aborted, we send the
3259  *    IDENTIFY(lun) + M_ABORT.
3260  *  - If a tagged task is to be aborted, we send the
3261  *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
3262  *
3263  *  Once our 'kiss of death' :) message has been accepted
3264  *  by the target, the SCRIPTS interrupts again
3265  *  (SIR_ABORT_SENT). On this interrupt, we complete
3266  *  all the CCBs that should have been aborted by the
3267  *  target according to our message.
3268  */
3269 static void sym_sir_task_recovery(struct sym_hcb *np, int num)
3270 {
3271 	SYM_QUEHEAD *qp;
3272 	struct sym_ccb *cp;
3273 	struct sym_tcb *tp = NULL; /* gcc isn't quite smart enough yet */
3274 	struct scsi_target *starget;
3275 	int target=-1, lun=-1, task;
3276 	int i, k;
3277 
3278 	switch(num) {
3279 	/*
3280 	 *  The SCRIPTS processor stopped before starting
3281 	 *  the next command in order to allow us to perform
3282 	 *  some task recovery.
3283 	 */
3284 	case SIR_SCRIPT_STOPPED:
3285 		/*
3286 		 *  Do we have any target to reset or unit to clear ?
3287 		 */
3288 		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
3289 			tp = &np->target[i];
3290 			if (tp->to_reset ||
3291 			    (tp->lun0p && tp->lun0p->to_clear)) {
3292 				target = i;
3293 				break;
3294 			}
3295 			if (!tp->lunmp)
3296 				continue;
3297 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3298 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3299 					target	= i;
3300 					break;
3301 				}
3302 			}
3303 			if (target != -1)
3304 				break;
3305 		}
3306 
3307 		/*
3308 		 *  If not, walk the busy queue for any
3309 		 *  disconnected CCB to be aborted.
3310 		 */
3311 		if (target == -1) {
3312 			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3313 				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
3314 				if (cp->host_status != HS_DISCONNECT)
3315 					continue;
3316 				if (cp->to_abort) {
3317 					target = cp->target;
3318 					break;
3319 				}
3320 			}
3321 		}
3322 
3323 		/*
3324 		 *  If some target is to be selected,
3325 		 *  prepare and start the selection.
3326 		 */
3327 		if (target != -1) {
3328 			tp = &np->target[target];
3329 			np->abrt_sel.sel_id	= target;
3330 			np->abrt_sel.sel_scntl3 = tp->head.wval;
3331 			np->abrt_sel.sel_sxfer  = tp->head.sval;
3332 			OUTL(np, nc_dsa, np->hcb_ba);
3333 			OUTL_DSP(np, SCRIPTB_BA(np, sel_for_abort));
3334 			return;
3335 		}
3336 
3337 		/*
3338 		 *  Now look for a CCB to abort that haven't started yet.
3339 		 *  Btw, the SCRIPTS processor is still stopped, so
3340 		 *  we are not in race.
3341 		 */
3342 		i = 0;
3343 		cp = NULL;
3344 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3345 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3346 			if (cp->host_status != HS_BUSY &&
3347 			    cp->host_status != HS_NEGOTIATE)
3348 				continue;
3349 			if (!cp->to_abort)
3350 				continue;
3351 #ifdef SYM_CONF_IARB_SUPPORT
3352 			/*
3353 			 *    If we are using IMMEDIATE ARBITRATION, we donnot
3354 			 *    want to cancel the last queued CCB, since the
3355 			 *    SCRIPTS may have anticipated the selection.
3356 			 */
3357 			if (cp == np->last_cp) {
3358 				cp->to_abort = 0;
3359 				continue;
3360 			}
3361 #endif
3362 			i = 1;	/* Means we have found some */
3363 			break;
3364 		}
3365 		if (!i) {
3366 			/*
3367 			 *  We are done, so we donnot need
3368 			 *  to synchronize with the SCRIPTS anylonger.
3369 			 *  Remove the SEM flag from the ISTAT.
3370 			 */
3371 			np->istat_sem = 0;
3372 			OUTB(np, nc_istat, SIGP);
3373 			break;
3374 		}
3375 		/*
3376 		 *  Compute index of next position in the start
3377 		 *  queue the SCRIPTS intends to start and dequeue
3378 		 *  all CCBs for that device that haven't been started.
3379 		 */
3380 		i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3381 		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3382 
3383 		/*
3384 		 *  Make sure at least our IO to abort has been dequeued.
3385 		 */
3386 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
3387 		assert(i && sym_get_cam_status(cp->cmd) == DID_SOFT_ERROR);
3388 #else
3389 		sym_remque(&cp->link_ccbq);
3390 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3391 #endif
3392 		/*
3393 		 *  Keep track in cam status of the reason of the abort.
3394 		 */
3395 		if (cp->to_abort == 2)
3396 			sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3397 		else
3398 			sym_set_cam_status(cp->cmd, DID_ABORT);
3399 
3400 		/*
3401 		 *  Complete with error everything that we have dequeued.
3402 	 	 */
3403 		sym_flush_comp_queue(np, 0);
3404 		break;
3405 	/*
3406 	 *  The SCRIPTS processor has selected a target
3407 	 *  we may have some manual recovery to perform for.
3408 	 */
3409 	case SIR_TARGET_SELECTED:
3410 		target = INB(np, nc_sdid) & 0xf;
3411 		tp = &np->target[target];
3412 
3413 		np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
3414 
3415 		/*
3416 		 *  If the target is to be reset, prepare a
3417 		 *  M_RESET message and clear the to_reset flag
3418 		 *  since we donnot expect this operation to fail.
3419 		 */
3420 		if (tp->to_reset) {
3421 			np->abrt_msg[0] = M_RESET;
3422 			np->abrt_tbl.size = 1;
3423 			tp->to_reset = 0;
3424 			break;
3425 		}
3426 
3427 		/*
3428 		 *  Otherwise, look for some logical unit to be cleared.
3429 		 */
3430 		if (tp->lun0p && tp->lun0p->to_clear)
3431 			lun = 0;
3432 		else if (tp->lunmp) {
3433 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3434 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3435 					lun = k;
3436 					break;
3437 				}
3438 			}
3439 		}
3440 
3441 		/*
3442 		 *  If a logical unit is to be cleared, prepare
3443 		 *  an IDENTIFY(lun) + ABORT MESSAGE.
3444 		 */
3445 		if (lun != -1) {
3446 			struct sym_lcb *lp = sym_lp(tp, lun);
3447 			lp->to_clear = 0; /* We don't expect to fail here */
3448 			np->abrt_msg[0] = IDENTIFY(0, lun);
3449 			np->abrt_msg[1] = M_ABORT;
3450 			np->abrt_tbl.size = 2;
3451 			break;
3452 		}
3453 
3454 		/*
3455 		 *  Otherwise, look for some disconnected job to
3456 		 *  abort for this target.
3457 		 */
3458 		i = 0;
3459 		cp = NULL;
3460 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3461 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3462 			if (cp->host_status != HS_DISCONNECT)
3463 				continue;
3464 			if (cp->target != target)
3465 				continue;
3466 			if (!cp->to_abort)
3467 				continue;
3468 			i = 1;	/* Means we have some */
3469 			break;
3470 		}
3471 
3472 		/*
3473 		 *  If we have none, probably since the device has
3474 		 *  completed the command before we won abitration,
3475 		 *  send a M_ABORT message without IDENTIFY.
3476 		 *  According to the specs, the device must just
3477 		 *  disconnect the BUS and not abort any task.
3478 		 */
3479 		if (!i) {
3480 			np->abrt_msg[0] = M_ABORT;
3481 			np->abrt_tbl.size = 1;
3482 			break;
3483 		}
3484 
3485 		/*
3486 		 *  We have some task to abort.
3487 		 *  Set the IDENTIFY(lun)
3488 		 */
3489 		np->abrt_msg[0] = IDENTIFY(0, cp->lun);
3490 
3491 		/*
3492 		 *  If we want to abort an untagged command, we
3493 		 *  will send a IDENTIFY + M_ABORT.
3494 		 *  Otherwise (tagged command), we will send
3495 		 *  a IDENTITFY + task attributes + ABORT TAG.
3496 		 */
3497 		if (cp->tag == NO_TAG) {
3498 			np->abrt_msg[1] = M_ABORT;
3499 			np->abrt_tbl.size = 2;
3500 		} else {
3501 			np->abrt_msg[1] = cp->scsi_smsg[1];
3502 			np->abrt_msg[2] = cp->scsi_smsg[2];
3503 			np->abrt_msg[3] = M_ABORT_TAG;
3504 			np->abrt_tbl.size = 4;
3505 		}
3506 		/*
3507 		 *  Keep track of software timeout condition, since the
3508 		 *  peripheral driver may not count retries on abort
3509 		 *  conditions not due to timeout.
3510 		 */
3511 		if (cp->to_abort == 2)
3512 			sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3513 		cp->to_abort = 0; /* We donnot expect to fail here */
3514 		break;
3515 
3516 	/*
3517 	 *  The target has accepted our message and switched
3518 	 *  to BUS FREE phase as we expected.
3519 	 */
3520 	case SIR_ABORT_SENT:
3521 		target = INB(np, nc_sdid) & 0xf;
3522 		tp = &np->target[target];
3523 		starget = tp->starget;
3524 
3525 		/*
3526 		**  If we didn't abort anything, leave here.
3527 		*/
3528 		if (np->abrt_msg[0] == M_ABORT)
3529 			break;
3530 
3531 		/*
3532 		 *  If we sent a M_RESET, then a hardware reset has
3533 		 *  been performed by the target.
3534 		 *  - Reset everything to async 8 bit
3535 		 *  - Tell ourself to negotiate next time :-)
3536 		 *  - Prepare to clear all disconnected CCBs for
3537 		 *    this target from our task list (lun=task=-1)
3538 		 */
3539 		lun = -1;
3540 		task = -1;
3541 		if (np->abrt_msg[0] == M_RESET) {
3542 			tp->head.sval = 0;
3543 			tp->head.wval = np->rv_scntl3;
3544 			tp->head.uval = 0;
3545 			spi_period(starget) = 0;
3546 			spi_offset(starget) = 0;
3547 			spi_width(starget) = 0;
3548 			spi_iu(starget) = 0;
3549 			spi_dt(starget) = 0;
3550 			spi_qas(starget) = 0;
3551 			tp->tgoal.check_nego = 1;
3552 			tp->tgoal.renego = 0;
3553 		}
3554 
3555 		/*
3556 		 *  Otherwise, check for the LUN and TASK(s)
3557 		 *  concerned by the cancelation.
3558 		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
3559 		 *  or an ABORT message :-)
3560 		 */
3561 		else {
3562 			lun = np->abrt_msg[0] & 0x3f;
3563 			if (np->abrt_msg[1] == M_ABORT_TAG)
3564 				task = np->abrt_msg[2];
3565 		}
3566 
3567 		/*
3568 		 *  Complete all the CCBs the device should have
3569 		 *  aborted due to our 'kiss of death' message.
3570 		 */
3571 		i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3572 		sym_dequeue_from_squeue(np, i, target, lun, -1);
3573 		sym_clear_tasks(np, DID_ABORT, target, lun, task);
3574 		sym_flush_comp_queue(np, 0);
3575 
3576  		/*
3577 		 *  If we sent a BDR, make upper layer aware of that.
3578  		 */
3579 		if (np->abrt_msg[0] == M_RESET)
3580 			starget_printk(KERN_NOTICE, starget,
3581 							"has been reset\n");
3582 		break;
3583 	}
3584 
3585 	/*
3586 	 *  Print to the log the message we intend to send.
3587 	 */
3588 	if (num == SIR_TARGET_SELECTED) {
3589 		dev_info(&tp->starget->dev, "control msgout:");
3590 		sym_printl_hex(np->abrt_msg, np->abrt_tbl.size);
3591 		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
3592 	}
3593 
3594 	/*
3595 	 *  Let the SCRIPTS processor continue.
3596 	 */
3597 	OUTONB_STD();
3598 }
3599 
3600 /*
3601  *  Gerard's alchemy:) that deals with with the data
3602  *  pointer for both MDP and the residual calculation.
3603  *
3604  *  I didn't want to bloat the code by more than 200
3605  *  lines for the handling of both MDP and the residual.
3606  *  This has been achieved by using a data pointer
3607  *  representation consisting in an index in the data
3608  *  array (dp_sg) and a negative offset (dp_ofs) that
3609  *  have the following meaning:
3610  *
3611  *  - dp_sg = SYM_CONF_MAX_SG
3612  *    we are at the end of the data script.
3613  *  - dp_sg < SYM_CONF_MAX_SG
3614  *    dp_sg points to the next entry of the scatter array
3615  *    we want to transfer.
3616  *  - dp_ofs < 0
3617  *    dp_ofs represents the residual of bytes of the
3618  *    previous entry scatter entry we will send first.
3619  *  - dp_ofs = 0
3620  *    no residual to send first.
3621  *
3622  *  The function sym_evaluate_dp() accepts an arbitray
3623  *  offset (basically from the MDP message) and returns
3624  *  the corresponding values of dp_sg and dp_ofs.
3625  */
3626 
3627 static int sym_evaluate_dp(struct sym_hcb *np, struct sym_ccb *cp, u32 scr, int *ofs)
3628 {
3629 	u32	dp_scr;
3630 	int	dp_ofs, dp_sg, dp_sgmin;
3631 	int	tmp;
3632 	struct sym_pmc *pm;
3633 
3634 	/*
3635 	 *  Compute the resulted data pointer in term of a script
3636 	 *  address within some DATA script and a signed byte offset.
3637 	 */
3638 	dp_scr = scr;
3639 	dp_ofs = *ofs;
3640 	if	(dp_scr == SCRIPTA_BA(np, pm0_data))
3641 		pm = &cp->phys.pm0;
3642 	else if (dp_scr == SCRIPTA_BA(np, pm1_data))
3643 		pm = &cp->phys.pm1;
3644 	else
3645 		pm = NULL;
3646 
3647 	if (pm) {
3648 		dp_scr  = scr_to_cpu(pm->ret);
3649 		dp_ofs -= scr_to_cpu(pm->sg.size) & 0x00ffffff;
3650 	}
3651 
3652 	/*
3653 	 *  If we are auto-sensing, then we are done.
3654 	 */
3655 	if (cp->host_flags & HF_SENSE) {
3656 		*ofs = dp_ofs;
3657 		return 0;
3658 	}
3659 
3660 	/*
3661 	 *  Deduce the index of the sg entry.
3662 	 *  Keep track of the index of the first valid entry.
3663 	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
3664 	 *  end of the data.
3665 	 */
3666 	tmp = scr_to_cpu(cp->goalp);
3667 	dp_sg = SYM_CONF_MAX_SG;
3668 	if (dp_scr != tmp)
3669 		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
3670 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3671 
3672 	/*
3673 	 *  Move to the sg entry the data pointer belongs to.
3674 	 *
3675 	 *  If we are inside the data area, we expect result to be:
3676 	 *
3677 	 *  Either,
3678 	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
3679 	 *      the data pointer belongs to (or the end of the data)
3680 	 *  Or,
3681 	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
3682 	 *      the data pointer belongs to + 1.
3683 	 */
3684 	if (dp_ofs < 0) {
3685 		int n;
3686 		while (dp_sg > dp_sgmin) {
3687 			--dp_sg;
3688 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3689 			n = dp_ofs + (tmp & 0xffffff);
3690 			if (n > 0) {
3691 				++dp_sg;
3692 				break;
3693 			}
3694 			dp_ofs = n;
3695 		}
3696 	}
3697 	else if (dp_ofs > 0) {
3698 		while (dp_sg < SYM_CONF_MAX_SG) {
3699 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3700 			dp_ofs -= (tmp & 0xffffff);
3701 			++dp_sg;
3702 			if (dp_ofs <= 0)
3703 				break;
3704 		}
3705 	}
3706 
3707 	/*
3708 	 *  Make sure the data pointer is inside the data area.
3709 	 *  If not, return some error.
3710 	 */
3711 	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
3712 		goto out_err;
3713 	else if	(dp_sg > SYM_CONF_MAX_SG ||
3714 		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
3715 		goto out_err;
3716 
3717 	/*
3718 	 *  Save the extreme pointer if needed.
3719 	 */
3720 	if (dp_sg > cp->ext_sg ||
3721             (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
3722 		cp->ext_sg  = dp_sg;
3723 		cp->ext_ofs = dp_ofs;
3724 	}
3725 
3726 	/*
3727 	 *  Return data.
3728 	 */
3729 	*ofs = dp_ofs;
3730 	return dp_sg;
3731 
3732 out_err:
3733 	return -1;
3734 }
3735 
3736 /*
3737  *  chip handler for MODIFY DATA POINTER MESSAGE
3738  *
3739  *  We also call this function on IGNORE WIDE RESIDUE
3740  *  messages that do not match a SWIDE full condition.
3741  *  Btw, we assume in that situation that such a message
3742  *  is equivalent to a MODIFY DATA POINTER (offset=-1).
3743  */
3744 
3745 static void sym_modify_dp(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp, int ofs)
3746 {
3747 	int dp_ofs	= ofs;
3748 	u32	dp_scr	= sym_get_script_dp (np, cp);
3749 	u32	dp_ret;
3750 	u32	tmp;
3751 	u_char	hflags;
3752 	int	dp_sg;
3753 	struct	sym_pmc *pm;
3754 
3755 	/*
3756 	 *  Not supported for auto-sense.
3757 	 */
3758 	if (cp->host_flags & HF_SENSE)
3759 		goto out_reject;
3760 
3761 	/*
3762 	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
3763 	 *  to the resulted data pointer.
3764 	 */
3765 	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
3766 	if (dp_sg < 0)
3767 		goto out_reject;
3768 
3769 	/*
3770 	 *  And our alchemy:) allows to easily calculate the data
3771 	 *  script address we want to return for the next data phase.
3772 	 */
3773 	dp_ret = cpu_to_scr(cp->goalp);
3774 	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
3775 
3776 	/*
3777 	 *  If offset / scatter entry is zero we donnot need
3778 	 *  a context for the new current data pointer.
3779 	 */
3780 	if (dp_ofs == 0) {
3781 		dp_scr = dp_ret;
3782 		goto out_ok;
3783 	}
3784 
3785 	/*
3786 	 *  Get a context for the new current data pointer.
3787 	 */
3788 	hflags = INB(np, HF_PRT);
3789 
3790 	if (hflags & HF_DP_SAVED)
3791 		hflags ^= HF_ACT_PM;
3792 
3793 	if (!(hflags & HF_ACT_PM)) {
3794 		pm  = &cp->phys.pm0;
3795 		dp_scr = SCRIPTA_BA(np, pm0_data);
3796 	}
3797 	else {
3798 		pm = &cp->phys.pm1;
3799 		dp_scr = SCRIPTA_BA(np, pm1_data);
3800 	}
3801 
3802 	hflags &= ~(HF_DP_SAVED);
3803 
3804 	OUTB(np, HF_PRT, hflags);
3805 
3806 	/*
3807 	 *  Set up the new current data pointer.
3808 	 *  ofs < 0 there, and for the next data phase, we
3809 	 *  want to transfer part of the data of the sg entry
3810 	 *  corresponding to index dp_sg-1 prior to returning
3811 	 *  to the main data script.
3812 	 */
3813 	pm->ret = cpu_to_scr(dp_ret);
3814 	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
3815 	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
3816 	pm->sg.addr = cpu_to_scr(tmp);
3817 	pm->sg.size = cpu_to_scr(-dp_ofs);
3818 
3819 out_ok:
3820 	sym_set_script_dp (np, cp, dp_scr);
3821 	OUTL_DSP(np, SCRIPTA_BA(np, clrack));
3822 	return;
3823 
3824 out_reject:
3825 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
3826 }
3827 
3828 
3829 /*
3830  *  chip calculation of the data residual.
3831  *
3832  *  As I used to say, the requirement of data residual
3833  *  in SCSI is broken, useless and cannot be achieved
3834  *  without huge complexity.
3835  *  But most OSes and even the official CAM require it.
3836  *  When stupidity happens to be so widely spread inside
3837  *  a community, it gets hard to convince.
3838  *
3839  *  Anyway, I don't care, since I am not going to use
3840  *  any software that considers this data residual as
3841  *  a relevant information. :)
3842  */
3843 
3844 int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp)
3845 {
3846 	int dp_sg, resid = 0;
3847 	int dp_ofs = 0;
3848 
3849 	/*
3850 	 *  Check for some data lost or just thrown away.
3851 	 *  We are not required to be quite accurate in this
3852 	 *  situation. Btw, if we are odd for output and the
3853 	 *  device claims some more data, it may well happen
3854 	 *  than our residual be zero. :-)
3855 	 */
3856 	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
3857 		if (cp->xerr_status & XE_EXTRA_DATA)
3858 			resid -= cp->extra_bytes;
3859 		if (cp->xerr_status & XE_SODL_UNRUN)
3860 			++resid;
3861 		if (cp->xerr_status & XE_SWIDE_OVRUN)
3862 			--resid;
3863 	}
3864 
3865 	/*
3866 	 *  If all data has been transferred,
3867 	 *  there is no residual.
3868 	 */
3869 	if (cp->phys.head.lastp == cp->goalp)
3870 		return resid;
3871 
3872 	/*
3873 	 *  If no data transfer occurs, or if the data
3874 	 *  pointer is weird, return full residual.
3875 	 */
3876 	if (cp->startp == cp->phys.head.lastp ||
3877 	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
3878 			    &dp_ofs) < 0) {
3879 		return cp->data_len - cp->odd_byte_adjustment;
3880 	}
3881 
3882 	/*
3883 	 *  If we were auto-sensing, then we are done.
3884 	 */
3885 	if (cp->host_flags & HF_SENSE) {
3886 		return -dp_ofs;
3887 	}
3888 
3889 	/*
3890 	 *  We are now full comfortable in the computation
3891 	 *  of the data residual (2's complement).
3892 	 */
3893 	resid = -cp->ext_ofs;
3894 	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
3895 		u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3896 		resid += (tmp & 0xffffff);
3897 	}
3898 
3899 	resid -= cp->odd_byte_adjustment;
3900 
3901 	/*
3902 	 *  Hopefully, the result is not too wrong.
3903 	 */
3904 	return resid;
3905 }
3906 
3907 /*
3908  *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
3909  *
3910  *  When we try to negotiate, we append the negotiation message
3911  *  to the identify and (maybe) simple tag message.
3912  *  The host status field is set to HS_NEGOTIATE to mark this
3913  *  situation.
3914  *
3915  *  If the target doesn't answer this message immediately
3916  *  (as required by the standard), the SIR_NEGO_FAILED interrupt
3917  *  will be raised eventually.
3918  *  The handler removes the HS_NEGOTIATE status, and sets the
3919  *  negotiated value to the default (async / nowide).
3920  *
3921  *  If we receive a matching answer immediately, we check it
3922  *  for validity, and set the values.
3923  *
3924  *  If we receive a Reject message immediately, we assume the
3925  *  negotiation has failed, and fall back to standard values.
3926  *
3927  *  If we receive a negotiation message while not in HS_NEGOTIATE
3928  *  state, it's a target initiated negotiation. We prepare a
3929  *  (hopefully) valid answer, set our parameters, and send back
3930  *  this answer to the target.
3931  *
3932  *  If the target doesn't fetch the answer (no message out phase),
3933  *  we assume the negotiation has failed, and fall back to default
3934  *  settings (SIR_NEGO_PROTO interrupt).
3935  *
3936  *  When we set the values, we adjust them in all ccbs belonging
3937  *  to this target, in the controller's register, and in the "phys"
3938  *  field of the controller's struct sym_hcb.
3939  */
3940 
3941 /*
3942  *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
3943  */
3944 static int
3945 sym_sync_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
3946 {
3947 	int target = cp->target;
3948 	u_char	chg, ofs, per, fak, div;
3949 
3950 	if (DEBUG_FLAGS & DEBUG_NEGO) {
3951 		sym_print_nego_msg(np, target, "sync msgin", np->msgin);
3952 	}
3953 
3954 	/*
3955 	 *  Get requested values.
3956 	 */
3957 	chg = 0;
3958 	per = np->msgin[3];
3959 	ofs = np->msgin[4];
3960 
3961 	/*
3962 	 *  Check values against our limits.
3963 	 */
3964 	if (ofs) {
3965 		if (ofs > np->maxoffs)
3966 			{chg = 1; ofs = np->maxoffs;}
3967 	}
3968 
3969 	if (ofs) {
3970 		if (per < np->minsync)
3971 			{chg = 1; per = np->minsync;}
3972 	}
3973 
3974 	/*
3975 	 *  Get new chip synchronous parameters value.
3976 	 */
3977 	div = fak = 0;
3978 	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
3979 		goto reject_it;
3980 
3981 	if (DEBUG_FLAGS & DEBUG_NEGO) {
3982 		sym_print_addr(cp->cmd,
3983 				"sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
3984 				ofs, per, div, fak, chg);
3985 	}
3986 
3987 	/*
3988 	 *  If it was an answer we want to change,
3989 	 *  then it isn't acceptable. Reject it.
3990 	 */
3991 	if (!req && chg)
3992 		goto reject_it;
3993 
3994 	/*
3995 	 *  Apply new values.
3996 	 */
3997 	sym_setsync (np, target, ofs, per, div, fak);
3998 
3999 	/*
4000 	 *  It was an answer. We are done.
4001 	 */
4002 	if (!req)
4003 		return 0;
4004 
4005 	/*
4006 	 *  It was a request. Prepare an answer message.
4007 	 */
4008 	spi_populate_sync_msg(np->msgout, per, ofs);
4009 
4010 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4011 		sym_print_nego_msg(np, target, "sync msgout", np->msgout);
4012 	}
4013 
4014 	np->msgin [0] = M_NOOP;
4015 
4016 	return 0;
4017 
4018 reject_it:
4019 	sym_setsync (np, target, 0, 0, 0, 0);
4020 	return -1;
4021 }
4022 
4023 static void sym_sync_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4024 {
4025 	int req = 1;
4026 	int result;
4027 
4028 	/*
4029 	 *  Request or answer ?
4030 	 */
4031 	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4032 		OUTB(np, HS_PRT, HS_BUSY);
4033 		if (cp->nego_status && cp->nego_status != NS_SYNC)
4034 			goto reject_it;
4035 		req = 0;
4036 	}
4037 
4038 	/*
4039 	 *  Check and apply new values.
4040 	 */
4041 	result = sym_sync_nego_check(np, req, cp);
4042 	if (result)	/* Not acceptable, reject it */
4043 		goto reject_it;
4044 	if (req) {	/* Was a request, send response. */
4045 		cp->nego_status = NS_SYNC;
4046 		OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4047 	}
4048 	else		/* Was a response, we are done. */
4049 		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4050 	return;
4051 
4052 reject_it:
4053 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4054 }
4055 
4056 /*
4057  *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
4058  */
4059 static int
4060 sym_ppr_nego_check(struct sym_hcb *np, int req, int target)
4061 {
4062 	struct sym_tcb *tp = &np->target[target];
4063 	unsigned char fak, div;
4064 	int dt, chg = 0;
4065 
4066 	unsigned char per = np->msgin[3];
4067 	unsigned char ofs = np->msgin[5];
4068 	unsigned char wide = np->msgin[6];
4069 	unsigned char opts = np->msgin[7] & PPR_OPT_MASK;
4070 
4071 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4072 		sym_print_nego_msg(np, target, "ppr msgin", np->msgin);
4073 	}
4074 
4075 	/*
4076 	 *  Check values against our limits.
4077 	 */
4078 	if (wide > np->maxwide) {
4079 		chg = 1;
4080 		wide = np->maxwide;
4081 	}
4082 	if (!wide || !(np->features & FE_U3EN))
4083 		opts = 0;
4084 
4085 	if (opts != (np->msgin[7] & PPR_OPT_MASK))
4086 		chg = 1;
4087 
4088 	dt = opts & PPR_OPT_DT;
4089 
4090 	if (ofs) {
4091 		unsigned char maxoffs = dt ? np->maxoffs_dt : np->maxoffs;
4092 		if (ofs > maxoffs) {
4093 			chg = 1;
4094 			ofs = maxoffs;
4095 		}
4096 	}
4097 
4098 	if (ofs) {
4099 		unsigned char minsync = dt ? np->minsync_dt : np->minsync;
4100 		if (per < minsync) {
4101 			chg = 1;
4102 			per = minsync;
4103 		}
4104 	}
4105 
4106 	/*
4107 	 *  Get new chip synchronous parameters value.
4108 	 */
4109 	div = fak = 0;
4110 	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
4111 		goto reject_it;
4112 
4113 	/*
4114 	 *  If it was an answer we want to change,
4115 	 *  then it isn't acceptable. Reject it.
4116 	 */
4117 	if (!req && chg)
4118 		goto reject_it;
4119 
4120 	/*
4121 	 *  Apply new values.
4122 	 */
4123 	sym_setpprot(np, target, opts, ofs, per, wide, div, fak);
4124 
4125 	/*
4126 	 *  It was an answer. We are done.
4127 	 */
4128 	if (!req)
4129 		return 0;
4130 
4131 	/*
4132 	 *  It was a request. Prepare an answer message.
4133 	 */
4134 	spi_populate_ppr_msg(np->msgout, per, ofs, wide, opts);
4135 
4136 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4137 		sym_print_nego_msg(np, target, "ppr msgout", np->msgout);
4138 	}
4139 
4140 	np->msgin [0] = M_NOOP;
4141 
4142 	return 0;
4143 
4144 reject_it:
4145 	sym_setpprot (np, target, 0, 0, 0, 0, 0, 0);
4146 	/*
4147 	 *  If it is a device response that should result in
4148 	 *  ST, we may want to try a legacy negotiation later.
4149 	 */
4150 	if (!req && !opts) {
4151 		tp->tgoal.period = per;
4152 		tp->tgoal.offset = ofs;
4153 		tp->tgoal.width = wide;
4154 		tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4155 		tp->tgoal.check_nego = 1;
4156 	}
4157 	return -1;
4158 }
4159 
4160 static void sym_ppr_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4161 {
4162 	int req = 1;
4163 	int result;
4164 
4165 	/*
4166 	 *  Request or answer ?
4167 	 */
4168 	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4169 		OUTB(np, HS_PRT, HS_BUSY);
4170 		if (cp->nego_status && cp->nego_status != NS_PPR)
4171 			goto reject_it;
4172 		req = 0;
4173 	}
4174 
4175 	/*
4176 	 *  Check and apply new values.
4177 	 */
4178 	result = sym_ppr_nego_check(np, req, cp->target);
4179 	if (result)	/* Not acceptable, reject it */
4180 		goto reject_it;
4181 	if (req) {	/* Was a request, send response. */
4182 		cp->nego_status = NS_PPR;
4183 		OUTL_DSP(np, SCRIPTB_BA(np, ppr_resp));
4184 	}
4185 	else		/* Was a response, we are done. */
4186 		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4187 	return;
4188 
4189 reject_it:
4190 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4191 }
4192 
4193 /*
4194  *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
4195  */
4196 static int
4197 sym_wide_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
4198 {
4199 	int target = cp->target;
4200 	u_char	chg, wide;
4201 
4202 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4203 		sym_print_nego_msg(np, target, "wide msgin", np->msgin);
4204 	}
4205 
4206 	/*
4207 	 *  Get requested values.
4208 	 */
4209 	chg  = 0;
4210 	wide = np->msgin[3];
4211 
4212 	/*
4213 	 *  Check values against our limits.
4214 	 */
4215 	if (wide > np->maxwide) {
4216 		chg = 1;
4217 		wide = np->maxwide;
4218 	}
4219 
4220 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4221 		sym_print_addr(cp->cmd, "wdtr: wide=%d chg=%d.\n",
4222 				wide, chg);
4223 	}
4224 
4225 	/*
4226 	 *  If it was an answer we want to change,
4227 	 *  then it isn't acceptable. Reject it.
4228 	 */
4229 	if (!req && chg)
4230 		goto reject_it;
4231 
4232 	/*
4233 	 *  Apply new values.
4234 	 */
4235 	sym_setwide (np, target, wide);
4236 
4237 	/*
4238 	 *  It was an answer. We are done.
4239 	 */
4240 	if (!req)
4241 		return 0;
4242 
4243 	/*
4244 	 *  It was a request. Prepare an answer message.
4245 	 */
4246 	spi_populate_width_msg(np->msgout, wide);
4247 
4248 	np->msgin [0] = M_NOOP;
4249 
4250 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4251 		sym_print_nego_msg(np, target, "wide msgout", np->msgout);
4252 	}
4253 
4254 	return 0;
4255 
4256 reject_it:
4257 	return -1;
4258 }
4259 
4260 static void sym_wide_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4261 {
4262 	int req = 1;
4263 	int result;
4264 
4265 	/*
4266 	 *  Request or answer ?
4267 	 */
4268 	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4269 		OUTB(np, HS_PRT, HS_BUSY);
4270 		if (cp->nego_status && cp->nego_status != NS_WIDE)
4271 			goto reject_it;
4272 		req = 0;
4273 	}
4274 
4275 	/*
4276 	 *  Check and apply new values.
4277 	 */
4278 	result = sym_wide_nego_check(np, req, cp);
4279 	if (result)	/* Not acceptable, reject it */
4280 		goto reject_it;
4281 	if (req) {	/* Was a request, send response. */
4282 		cp->nego_status = NS_WIDE;
4283 		OUTL_DSP(np, SCRIPTB_BA(np, wdtr_resp));
4284 	} else {		/* Was a response. */
4285 		/*
4286 		 * Negotiate for SYNC immediately after WIDE response.
4287 		 * This allows to negotiate for both WIDE and SYNC on
4288 		 * a single SCSI command (Suggested by Justin Gibbs).
4289 		 */
4290 		if (tp->tgoal.offset) {
4291 			spi_populate_sync_msg(np->msgout, tp->tgoal.period,
4292 					tp->tgoal.offset);
4293 
4294 			if (DEBUG_FLAGS & DEBUG_NEGO) {
4295 				sym_print_nego_msg(np, cp->target,
4296 				                   "sync msgout", np->msgout);
4297 			}
4298 
4299 			cp->nego_status = NS_SYNC;
4300 			OUTB(np, HS_PRT, HS_NEGOTIATE);
4301 			OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4302 			return;
4303 		} else
4304 			OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4305 	}
4306 
4307 	return;
4308 
4309 reject_it:
4310 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4311 }
4312 
4313 /*
4314  *  Reset DT, SYNC or WIDE to default settings.
4315  *
4316  *  Called when a negotiation does not succeed either
4317  *  on rejection or on protocol error.
4318  *
4319  *  A target that understands a PPR message should never
4320  *  reject it, and messing with it is very unlikely.
4321  *  So, if a PPR makes problems, we may just want to
4322  *  try a legacy negotiation later.
4323  */
4324 static void sym_nego_default(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4325 {
4326 	switch (cp->nego_status) {
4327 	case NS_PPR:
4328 #if 0
4329 		sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0);
4330 #else
4331 		if (tp->tgoal.period < np->minsync)
4332 			tp->tgoal.period = np->minsync;
4333 		if (tp->tgoal.offset > np->maxoffs)
4334 			tp->tgoal.offset = np->maxoffs;
4335 		tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4336 		tp->tgoal.check_nego = 1;
4337 #endif
4338 		break;
4339 	case NS_SYNC:
4340 		sym_setsync (np, cp->target, 0, 0, 0, 0);
4341 		break;
4342 	case NS_WIDE:
4343 		sym_setwide (np, cp->target, 0);
4344 		break;
4345 	}
4346 	np->msgin [0] = M_NOOP;
4347 	np->msgout[0] = M_NOOP;
4348 	cp->nego_status = 0;
4349 }
4350 
4351 /*
4352  *  chip handler for MESSAGE REJECT received in response to
4353  *  PPR, WIDE or SYNCHRONOUS negotiation.
4354  */
4355 static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4356 {
4357 	sym_nego_default(np, tp, cp);
4358 	OUTB(np, HS_PRT, HS_BUSY);
4359 }
4360 
4361 #define sym_printk(lvl, tp, cp, fmt, v...) do { \
4362 	if (cp)							\
4363 		scmd_printk(lvl, cp->cmd, fmt, ##v);		\
4364 	else							\
4365 		starget_printk(lvl, tp->starget, fmt, ##v);	\
4366 } while (0)
4367 
4368 /*
4369  *  chip exception handler for programmed interrupts.
4370  */
4371 static void sym_int_sir(struct sym_hcb *np)
4372 {
4373 	u_char	num	= INB(np, nc_dsps);
4374 	u32	dsa	= INL(np, nc_dsa);
4375 	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
4376 	u_char	target	= INB(np, nc_sdid) & 0x0f;
4377 	struct sym_tcb *tp	= &np->target[target];
4378 	int	tmp;
4379 
4380 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
4381 
4382 	switch (num) {
4383 #if   SYM_CONF_DMA_ADDRESSING_MODE == 2
4384 	/*
4385 	 *  SCRIPTS tell us that we may have to update
4386 	 *  64 bit DMA segment registers.
4387 	 */
4388 	case SIR_DMAP_DIRTY:
4389 		sym_update_dmap_regs(np);
4390 		goto out;
4391 #endif
4392 	/*
4393 	 *  Command has been completed with error condition
4394 	 *  or has been auto-sensed.
4395 	 */
4396 	case SIR_COMPLETE_ERROR:
4397 		sym_complete_error(np, cp);
4398 		return;
4399 	/*
4400 	 *  The C code is currently trying to recover from something.
4401 	 *  Typically, user want to abort some command.
4402 	 */
4403 	case SIR_SCRIPT_STOPPED:
4404 	case SIR_TARGET_SELECTED:
4405 	case SIR_ABORT_SENT:
4406 		sym_sir_task_recovery(np, num);
4407 		return;
4408 	/*
4409 	 *  The device didn't go to MSG OUT phase after having
4410 	 *  been selected with ATN.  We do not want to handle that.
4411 	 */
4412 	case SIR_SEL_ATN_NO_MSG_OUT:
4413 		sym_printk(KERN_WARNING, tp, cp,
4414 				"No MSG OUT phase after selection with ATN\n");
4415 		goto out_stuck;
4416 	/*
4417 	 *  The device didn't switch to MSG IN phase after
4418 	 *  having reselected the initiator.
4419 	 */
4420 	case SIR_RESEL_NO_MSG_IN:
4421 		sym_printk(KERN_WARNING, tp, cp,
4422 				"No MSG IN phase after reselection\n");
4423 		goto out_stuck;
4424 	/*
4425 	 *  After reselection, the device sent a message that wasn't
4426 	 *  an IDENTIFY.
4427 	 */
4428 	case SIR_RESEL_NO_IDENTIFY:
4429 		sym_printk(KERN_WARNING, tp, cp,
4430 				"No IDENTIFY after reselection\n");
4431 		goto out_stuck;
4432 	/*
4433 	 *  The device reselected a LUN we do not know about.
4434 	 */
4435 	case SIR_RESEL_BAD_LUN:
4436 		np->msgout[0] = M_RESET;
4437 		goto out;
4438 	/*
4439 	 *  The device reselected for an untagged nexus and we
4440 	 *  haven't any.
4441 	 */
4442 	case SIR_RESEL_BAD_I_T_L:
4443 		np->msgout[0] = M_ABORT;
4444 		goto out;
4445 	/*
4446 	 * The device reselected for a tagged nexus that we do not have.
4447 	 */
4448 	case SIR_RESEL_BAD_I_T_L_Q:
4449 		np->msgout[0] = M_ABORT_TAG;
4450 		goto out;
4451 	/*
4452 	 *  The SCRIPTS let us know that the device has grabbed
4453 	 *  our message and will abort the job.
4454 	 */
4455 	case SIR_RESEL_ABORTED:
4456 		np->lastmsg = np->msgout[0];
4457 		np->msgout[0] = M_NOOP;
4458 		sym_printk(KERN_WARNING, tp, cp,
4459 			"message %x sent on bad reselection\n", np->lastmsg);
4460 		goto out;
4461 	/*
4462 	 *  The SCRIPTS let us know that a message has been
4463 	 *  successfully sent to the device.
4464 	 */
4465 	case SIR_MSG_OUT_DONE:
4466 		np->lastmsg = np->msgout[0];
4467 		np->msgout[0] = M_NOOP;
4468 		/* Should we really care of that */
4469 		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
4470 			if (cp) {
4471 				cp->xerr_status &= ~XE_PARITY_ERR;
4472 				if (!cp->xerr_status)
4473 					OUTOFFB(np, HF_PRT, HF_EXT_ERR);
4474 			}
4475 		}
4476 		goto out;
4477 	/*
4478 	 *  The device didn't send a GOOD SCSI status.
4479 	 *  We may have some work to do prior to allow
4480 	 *  the SCRIPTS processor to continue.
4481 	 */
4482 	case SIR_BAD_SCSI_STATUS:
4483 		if (!cp)
4484 			goto out;
4485 		sym_sir_bad_scsi_status(np, num, cp);
4486 		return;
4487 	/*
4488 	 *  We are asked by the SCRIPTS to prepare a
4489 	 *  REJECT message.
4490 	 */
4491 	case SIR_REJECT_TO_SEND:
4492 		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
4493 		np->msgout[0] = M_REJECT;
4494 		goto out;
4495 	/*
4496 	 *  We have been ODD at the end of a DATA IN
4497 	 *  transfer and the device didn't send a
4498 	 *  IGNORE WIDE RESIDUE message.
4499 	 *  It is a data overrun condition.
4500 	 */
4501 	case SIR_SWIDE_OVERRUN:
4502 		if (cp) {
4503 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4504 			cp->xerr_status |= XE_SWIDE_OVRUN;
4505 		}
4506 		goto out;
4507 	/*
4508 	 *  We have been ODD at the end of a DATA OUT
4509 	 *  transfer.
4510 	 *  It is a data underrun condition.
4511 	 */
4512 	case SIR_SODL_UNDERRUN:
4513 		if (cp) {
4514 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4515 			cp->xerr_status |= XE_SODL_UNRUN;
4516 		}
4517 		goto out;
4518 	/*
4519 	 *  The device wants us to tranfer more data than
4520 	 *  expected or in the wrong direction.
4521 	 *  The number of extra bytes is in scratcha.
4522 	 *  It is a data overrun condition.
4523 	 */
4524 	case SIR_DATA_OVERRUN:
4525 		if (cp) {
4526 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4527 			cp->xerr_status |= XE_EXTRA_DATA;
4528 			cp->extra_bytes += INL(np, nc_scratcha);
4529 		}
4530 		goto out;
4531 	/*
4532 	 *  The device switched to an illegal phase (4/5).
4533 	 */
4534 	case SIR_BAD_PHASE:
4535 		if (cp) {
4536 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4537 			cp->xerr_status |= XE_BAD_PHASE;
4538 		}
4539 		goto out;
4540 	/*
4541 	 *  We received a message.
4542 	 */
4543 	case SIR_MSG_RECEIVED:
4544 		if (!cp)
4545 			goto out_stuck;
4546 		switch (np->msgin [0]) {
4547 		/*
4548 		 *  We received an extended message.
4549 		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
4550 		 *  and reject all other extended messages.
4551 		 */
4552 		case M_EXTENDED:
4553 			switch (np->msgin [2]) {
4554 			case M_X_MODIFY_DP:
4555 				if (DEBUG_FLAGS & DEBUG_POINTER)
4556 					sym_print_msg(cp, "extended msg ",
4557 						      np->msgin);
4558 				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
4559 				      (np->msgin[5]<<8)  + (np->msgin[6]);
4560 				sym_modify_dp(np, tp, cp, tmp);
4561 				return;
4562 			case M_X_SYNC_REQ:
4563 				sym_sync_nego(np, tp, cp);
4564 				return;
4565 			case M_X_PPR_REQ:
4566 				sym_ppr_nego(np, tp, cp);
4567 				return;
4568 			case M_X_WIDE_REQ:
4569 				sym_wide_nego(np, tp, cp);
4570 				return;
4571 			default:
4572 				goto out_reject;
4573 			}
4574 			break;
4575 		/*
4576 		 *  We received a 1/2 byte message not handled from SCRIPTS.
4577 		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
4578 		 *  RESIDUE messages that haven't been anticipated by
4579 		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
4580 		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
4581 		 */
4582 		case M_IGN_RESIDUE:
4583 			if (DEBUG_FLAGS & DEBUG_POINTER)
4584 				sym_print_msg(cp, "1 or 2 byte ", np->msgin);
4585 			if (cp->host_flags & HF_SENSE)
4586 				OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4587 			else
4588 				sym_modify_dp(np, tp, cp, -1);
4589 			return;
4590 		case M_REJECT:
4591 			if (INB(np, HS_PRT) == HS_NEGOTIATE)
4592 				sym_nego_rejected(np, tp, cp);
4593 			else {
4594 				sym_print_addr(cp->cmd,
4595 					"M_REJECT received (%x:%x).\n",
4596 					scr_to_cpu(np->lastmsg), np->msgout[0]);
4597 			}
4598 			goto out_clrack;
4599 		default:
4600 			goto out_reject;
4601 		}
4602 		break;
4603 	/*
4604 	 *  We received an unknown message.
4605 	 *  Ignore all MSG IN phases and reject it.
4606 	 */
4607 	case SIR_MSG_WEIRD:
4608 		sym_print_msg(cp, "WEIRD message received", np->msgin);
4609 		OUTL_DSP(np, SCRIPTB_BA(np, msg_weird));
4610 		return;
4611 	/*
4612 	 *  Negotiation failed.
4613 	 *  Target does not send us the reply.
4614 	 *  Remove the HS_NEGOTIATE status.
4615 	 */
4616 	case SIR_NEGO_FAILED:
4617 		OUTB(np, HS_PRT, HS_BUSY);
4618 	/*
4619 	 *  Negotiation failed.
4620 	 *  Target does not want answer message.
4621 	 */
4622 		fallthrough;
4623 	case SIR_NEGO_PROTO:
4624 		sym_nego_default(np, tp, cp);
4625 		goto out;
4626 	}
4627 
4628 out:
4629 	OUTONB_STD();
4630 	return;
4631 out_reject:
4632 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4633 	return;
4634 out_clrack:
4635 	OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4636 	return;
4637 out_stuck:
4638 	return;
4639 }
4640 
4641 /*
4642  *  Acquire a control block
4643  */
4644 struct sym_ccb *sym_get_ccb (struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order)
4645 {
4646 	u_char tn = cmd->device->id;
4647 	u_char ln = cmd->device->lun;
4648 	struct sym_tcb *tp = &np->target[tn];
4649 	struct sym_lcb *lp = sym_lp(tp, ln);
4650 	u_short tag = NO_TAG;
4651 	SYM_QUEHEAD *qp;
4652 	struct sym_ccb *cp = NULL;
4653 
4654 	/*
4655 	 *  Look for a free CCB
4656 	 */
4657 	if (sym_que_empty(&np->free_ccbq))
4658 		sym_alloc_ccb(np);
4659 	qp = sym_remque_head(&np->free_ccbq);
4660 	if (!qp)
4661 		goto out;
4662 	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4663 
4664 	{
4665 		/*
4666 		 *  If we have been asked for a tagged command.
4667 		 */
4668 		if (tag_order) {
4669 			/*
4670 			 *  Debugging purpose.
4671 			 */
4672 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4673 			if (lp->busy_itl != 0)
4674 				goto out_free;
4675 #endif
4676 			/*
4677 			 *  Allocate resources for tags if not yet.
4678 			 */
4679 			if (!lp->cb_tags) {
4680 				sym_alloc_lcb_tags(np, tn, ln);
4681 				if (!lp->cb_tags)
4682 					goto out_free;
4683 			}
4684 			/*
4685 			 *  Get a tag for this SCSI IO and set up
4686 			 *  the CCB bus address for reselection,
4687 			 *  and count it for this LUN.
4688 			 *  Toggle reselect path to tagged.
4689 			 */
4690 			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
4691 				tag = lp->cb_tags[lp->ia_tag];
4692 				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
4693 					lp->ia_tag = 0;
4694 				++lp->busy_itlq;
4695 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4696 				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
4697 				lp->head.resel_sa =
4698 					cpu_to_scr(SCRIPTA_BA(np, resel_tag));
4699 #endif
4700 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4701 				cp->tags_si = lp->tags_si;
4702 				++lp->tags_sum[cp->tags_si];
4703 				++lp->tags_since;
4704 #endif
4705 			}
4706 			else
4707 				goto out_free;
4708 		}
4709 		/*
4710 		 *  This command will not be tagged.
4711 		 *  If we already have either a tagged or untagged
4712 		 *  one, refuse to overlap this untagged one.
4713 		 */
4714 		else {
4715 			/*
4716 			 *  Debugging purpose.
4717 			 */
4718 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4719 			if (lp->busy_itl != 0 || lp->busy_itlq != 0)
4720 				goto out_free;
4721 #endif
4722 			/*
4723 			 *  Count this nexus for this LUN.
4724 			 *  Set up the CCB bus address for reselection.
4725 			 *  Toggle reselect path to untagged.
4726 			 */
4727 			++lp->busy_itl;
4728 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4729 			if (lp->busy_itl == 1) {
4730 				lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
4731 				lp->head.resel_sa =
4732 				      cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
4733 			}
4734 			else
4735 				goto out_free;
4736 #endif
4737 		}
4738 	}
4739 	/*
4740 	 *  Put the CCB into the busy queue.
4741 	 */
4742 	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4743 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4744 	if (lp) {
4745 		sym_remque(&cp->link2_ccbq);
4746 		sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq);
4747 	}
4748 
4749 #endif
4750 	cp->to_abort = 0;
4751 	cp->odd_byte_adjustment = 0;
4752 	cp->tag	   = tag;
4753 	cp->order  = tag_order;
4754 	cp->target = tn;
4755 	cp->lun    = ln;
4756 
4757 	if (DEBUG_FLAGS & DEBUG_TAGS) {
4758 		sym_print_addr(cmd, "ccb @%p using tag %d.\n", cp, tag);
4759 	}
4760 
4761 out:
4762 	return cp;
4763 out_free:
4764 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4765 	return NULL;
4766 }
4767 
4768 /*
4769  *  Release one control block
4770  */
4771 void sym_free_ccb (struct sym_hcb *np, struct sym_ccb *cp)
4772 {
4773 	struct sym_tcb *tp = &np->target[cp->target];
4774 	struct sym_lcb *lp = sym_lp(tp, cp->lun);
4775 
4776 	if (DEBUG_FLAGS & DEBUG_TAGS) {
4777 		sym_print_addr(cp->cmd, "ccb @%p freeing tag %d.\n",
4778 				cp, cp->tag);
4779 	}
4780 
4781 	/*
4782 	 *  If LCB available,
4783 	 */
4784 	if (lp) {
4785 		/*
4786 		 *  If tagged, release the tag, set the relect path
4787 		 */
4788 		if (cp->tag != NO_TAG) {
4789 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4790 			--lp->tags_sum[cp->tags_si];
4791 #endif
4792 			/*
4793 			 *  Free the tag value.
4794 			 */
4795 			lp->cb_tags[lp->if_tag] = cp->tag;
4796 			if (++lp->if_tag == SYM_CONF_MAX_TASK)
4797 				lp->if_tag = 0;
4798 			/*
4799 			 *  Make the reselect path invalid,
4800 			 *  and uncount this CCB.
4801 			 */
4802 			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
4803 			--lp->busy_itlq;
4804 		} else {	/* Untagged */
4805 			/*
4806 			 *  Make the reselect path invalid,
4807 			 *  and uncount this CCB.
4808 			 */
4809 			lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
4810 			--lp->busy_itl;
4811 		}
4812 		/*
4813 		 *  If no JOB active, make the LUN reselect path invalid.
4814 		 */
4815 		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
4816 			lp->head.resel_sa =
4817 				cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
4818 	}
4819 
4820 	/*
4821 	 *  We donnot queue more than 1 ccb per target
4822 	 *  with negotiation at any time. If this ccb was
4823 	 *  used for negotiation, clear this info in the tcb.
4824 	 */
4825 	if (cp == tp->nego_cp)
4826 		tp->nego_cp = NULL;
4827 
4828 #ifdef SYM_CONF_IARB_SUPPORT
4829 	/*
4830 	 *  If we just complete the last queued CCB,
4831 	 *  clear this info that is no longer relevant.
4832 	 */
4833 	if (cp == np->last_cp)
4834 		np->last_cp = 0;
4835 #endif
4836 
4837 	/*
4838 	 *  Make this CCB available.
4839 	 */
4840 	cp->cmd = NULL;
4841 	cp->host_status = HS_IDLE;
4842 	sym_remque(&cp->link_ccbq);
4843 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4844 
4845 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4846 	if (lp) {
4847 		sym_remque(&cp->link2_ccbq);
4848 		sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq);
4849 		if (cp->started) {
4850 			if (cp->tag != NO_TAG)
4851 				--lp->started_tags;
4852 			else
4853 				--lp->started_no_tag;
4854 		}
4855 	}
4856 	cp->started = 0;
4857 #endif
4858 }
4859 
4860 /*
4861  *  Allocate a CCB from memory and initialize its fixed part.
4862  */
4863 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np)
4864 {
4865 	struct sym_ccb *cp = NULL;
4866 	int hcode;
4867 
4868 	/*
4869 	 *  Prevent from allocating more CCBs than we can
4870 	 *  queue to the controller.
4871 	 */
4872 	if (np->actccbs >= SYM_CONF_MAX_START)
4873 		return NULL;
4874 
4875 	/*
4876 	 *  Allocate memory for this CCB.
4877 	 */
4878 	cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
4879 	if (!cp)
4880 		goto out_free;
4881 
4882 	/*
4883 	 *  Count it.
4884 	 */
4885 	np->actccbs++;
4886 
4887 	/*
4888 	 *  Compute the bus address of this ccb.
4889 	 */
4890 	cp->ccb_ba = vtobus(cp);
4891 
4892 	/*
4893 	 *  Insert this ccb into the hashed list.
4894 	 */
4895 	hcode = CCB_HASH_CODE(cp->ccb_ba);
4896 	cp->link_ccbh = np->ccbh[hcode];
4897 	np->ccbh[hcode] = cp;
4898 
4899 	/*
4900 	 *  Initialyze the start and restart actions.
4901 	 */
4902 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA(np, idle));
4903 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
4904 
4905  	/*
4906 	 *  Initilialyze some other fields.
4907 	 */
4908 	cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
4909 
4910 	/*
4911 	 *  Chain into free ccb queue.
4912 	 */
4913 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4914 
4915 	/*
4916 	 *  Chain into optionnal lists.
4917 	 */
4918 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4919 	sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq);
4920 #endif
4921 	return cp;
4922 out_free:
4923 	if (cp)
4924 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
4925 	return NULL;
4926 }
4927 
4928 /*
4929  *  Look up a CCB from a DSA value.
4930  */
4931 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa)
4932 {
4933 	int hcode;
4934 	struct sym_ccb *cp;
4935 
4936 	hcode = CCB_HASH_CODE(dsa);
4937 	cp = np->ccbh[hcode];
4938 	while (cp) {
4939 		if (cp->ccb_ba == dsa)
4940 			break;
4941 		cp = cp->link_ccbh;
4942 	}
4943 
4944 	return cp;
4945 }
4946 
4947 /*
4948  *  Target control block initialisation.
4949  *  Nothing important to do at the moment.
4950  */
4951 static void sym_init_tcb (struct sym_hcb *np, u_char tn)
4952 {
4953 #if 0	/*  Hmmm... this checking looks paranoid. */
4954 	/*
4955 	 *  Check some alignments required by the chip.
4956 	 */
4957 	assert (((offsetof(struct sym_reg, nc_sxfer) ^
4958 		offsetof(struct sym_tcb, head.sval)) &3) == 0);
4959 	assert (((offsetof(struct sym_reg, nc_scntl3) ^
4960 		offsetof(struct sym_tcb, head.wval)) &3) == 0);
4961 #endif
4962 }
4963 
4964 /*
4965  *  Lun control block allocation and initialization.
4966  */
4967 struct sym_lcb *sym_alloc_lcb (struct sym_hcb *np, u_char tn, u_char ln)
4968 {
4969 	struct sym_tcb *tp = &np->target[tn];
4970 	struct sym_lcb *lp = NULL;
4971 
4972 	/*
4973 	 *  Initialize the target control block if not yet.
4974 	 */
4975 	sym_init_tcb (np, tn);
4976 
4977 	/*
4978 	 *  Allocate the LCB bus address array.
4979 	 *  Compute the bus address of this table.
4980 	 */
4981 	if (ln && !tp->luntbl) {
4982 		tp->luntbl = sym_calloc_dma(256, "LUNTBL");
4983 		if (!tp->luntbl)
4984 			goto fail;
4985 		memset32(tp->luntbl, cpu_to_scr(vtobus(&np->badlun_sa)), 64);
4986 		tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
4987 	}
4988 
4989 	/*
4990 	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
4991 	 */
4992 	if (ln && !tp->lunmp) {
4993 		tp->lunmp = kcalloc(SYM_CONF_MAX_LUN, sizeof(struct sym_lcb *),
4994 				GFP_ATOMIC);
4995 		if (!tp->lunmp)
4996 			goto fail;
4997 	}
4998 
4999 	/*
5000 	 *  Allocate the lcb.
5001 	 *  Make it available to the chip.
5002 	 */
5003 	lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
5004 	if (!lp)
5005 		goto fail;
5006 	if (ln) {
5007 		tp->lunmp[ln] = lp;
5008 		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
5009 	}
5010 	else {
5011 		tp->lun0p = lp;
5012 		tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
5013 	}
5014 	tp->nlcb++;
5015 
5016 	/*
5017 	 *  Let the itl task point to error handling.
5018 	 */
5019 	lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
5020 
5021 	/*
5022 	 *  Set the reselect pattern to our default. :)
5023 	 */
5024 	lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5025 
5026 	/*
5027 	 *  Set user capabilities.
5028 	 */
5029 	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
5030 
5031 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5032 	/*
5033 	 *  Initialize device queueing.
5034 	 */
5035 	sym_que_init(&lp->waiting_ccbq);
5036 	sym_que_init(&lp->started_ccbq);
5037 	lp->started_max   = SYM_CONF_MAX_TASK;
5038 	lp->started_limit = SYM_CONF_MAX_TASK;
5039 #endif
5040 
5041 fail:
5042 	return lp;
5043 }
5044 
5045 /*
5046  *  Allocate LCB resources for tagged command queuing.
5047  */
5048 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln)
5049 {
5050 	struct sym_tcb *tp = &np->target[tn];
5051 	struct sym_lcb *lp = sym_lp(tp, ln);
5052 	int i;
5053 
5054 	/*
5055 	 *  Allocate the task table and and the tag allocation
5056 	 *  circular buffer. We want both or none.
5057 	 */
5058 	lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5059 	if (!lp->itlq_tbl)
5060 		goto fail;
5061 	lp->cb_tags = kcalloc(SYM_CONF_MAX_TASK, 1, GFP_ATOMIC);
5062 	if (!lp->cb_tags) {
5063 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5064 		lp->itlq_tbl = NULL;
5065 		goto fail;
5066 	}
5067 
5068 	/*
5069 	 *  Initialize the task table with invalid entries.
5070 	 */
5071 	memset32(lp->itlq_tbl, cpu_to_scr(np->notask_ba), SYM_CONF_MAX_TASK);
5072 
5073 	/*
5074 	 *  Fill up the tag buffer with tag numbers.
5075 	 */
5076 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5077 		lp->cb_tags[i] = i;
5078 
5079 	/*
5080 	 *  Make the task table available to SCRIPTS,
5081 	 *  And accept tagged commands now.
5082 	 */
5083 	lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
5084 
5085 	return;
5086 fail:
5087 	return;
5088 }
5089 
5090 /*
5091  *  Lun control block deallocation. Returns the number of valid remaining LCBs
5092  *  for the target.
5093  */
5094 int sym_free_lcb(struct sym_hcb *np, u_char tn, u_char ln)
5095 {
5096 	struct sym_tcb *tp = &np->target[tn];
5097 	struct sym_lcb *lp = sym_lp(tp, ln);
5098 
5099 	tp->nlcb--;
5100 
5101 	if (ln) {
5102 		if (!tp->nlcb) {
5103 			kfree(tp->lunmp);
5104 			sym_mfree_dma(tp->luntbl, 256, "LUNTBL");
5105 			tp->lunmp = NULL;
5106 			tp->luntbl = NULL;
5107 			tp->head.luntbl_sa = cpu_to_scr(vtobus(np->badluntbl));
5108 		} else {
5109 			tp->luntbl[ln] = cpu_to_scr(vtobus(&np->badlun_sa));
5110 			tp->lunmp[ln] = NULL;
5111 		}
5112 	} else {
5113 		tp->lun0p = NULL;
5114 		tp->head.lun0_sa = cpu_to_scr(vtobus(&np->badlun_sa));
5115 	}
5116 
5117 	if (lp->itlq_tbl) {
5118 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5119 		kfree(lp->cb_tags);
5120 	}
5121 
5122 	sym_mfree_dma(lp, sizeof(*lp), "LCB");
5123 
5124 	return tp->nlcb;
5125 }
5126 
5127 /*
5128  *  Queue a SCSI IO to the controller.
5129  */
5130 int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
5131 {
5132 	struct scsi_device *sdev = cmd->device;
5133 	struct sym_tcb *tp;
5134 	struct sym_lcb *lp;
5135 	u_char	*msgptr;
5136 	u_int   msglen;
5137 	int can_disconnect;
5138 
5139 	/*
5140 	 *  Keep track of the IO in our CCB.
5141 	 */
5142 	cp->cmd = cmd;
5143 
5144 	/*
5145 	 *  Retrieve the target descriptor.
5146 	 */
5147 	tp = &np->target[cp->target];
5148 
5149 	/*
5150 	 *  Retrieve the lun descriptor.
5151 	 */
5152 	lp = sym_lp(tp, sdev->lun);
5153 
5154 	can_disconnect = (cp->tag != NO_TAG) ||
5155 		(lp && (lp->curr_flags & SYM_DISC_ENABLED));
5156 
5157 	msgptr = cp->scsi_smsg;
5158 	msglen = 0;
5159 	msgptr[msglen++] = IDENTIFY(can_disconnect, sdev->lun);
5160 
5161 	/*
5162 	 *  Build the tag message if present.
5163 	 */
5164 	if (cp->tag != NO_TAG) {
5165 		u_char order = cp->order;
5166 
5167 		switch(order) {
5168 		case M_ORDERED_TAG:
5169 			break;
5170 		case M_HEAD_TAG:
5171 			break;
5172 		default:
5173 			order = M_SIMPLE_TAG;
5174 		}
5175 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
5176 		/*
5177 		 *  Avoid too much reordering of SCSI commands.
5178 		 *  The algorithm tries to prevent completion of any
5179 		 *  tagged command from being delayed against more
5180 		 *  than 3 times the max number of queued commands.
5181 		 */
5182 		if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) {
5183 			lp->tags_si = !(lp->tags_si);
5184 			if (lp->tags_sum[lp->tags_si]) {
5185 				order = M_ORDERED_TAG;
5186 				if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) {
5187 					sym_print_addr(cmd,
5188 						"ordered tag forced.\n");
5189 				}
5190 			}
5191 			lp->tags_since = 0;
5192 		}
5193 #endif
5194 		msgptr[msglen++] = order;
5195 
5196 		/*
5197 		 *  For less than 128 tags, actual tags are numbered
5198 		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
5199 		 *  with devices that have problems with #TAG 0 or too
5200 		 *  great #TAG numbers. For more tags (up to 256),
5201 		 *  we use directly our tag number.
5202 		 */
5203 #if SYM_CONF_MAX_TASK > (512/4)
5204 		msgptr[msglen++] = cp->tag;
5205 #else
5206 		msgptr[msglen++] = (cp->tag << 1) + 1;
5207 #endif
5208 	}
5209 
5210 	/*
5211 	 *  Build a negotiation message if needed.
5212 	 *  (nego_status is filled by sym_prepare_nego())
5213 	 *
5214 	 *  Always negotiate on INQUIRY and REQUEST SENSE.
5215 	 *
5216 	 */
5217 	cp->nego_status = 0;
5218 	if ((tp->tgoal.check_nego ||
5219 	     cmd->cmnd[0] == INQUIRY || cmd->cmnd[0] == REQUEST_SENSE) &&
5220 	    !tp->nego_cp && lp) {
5221 		msglen += sym_prepare_nego(np, cp, msgptr + msglen);
5222 	}
5223 
5224 	/*
5225 	 *  Startqueue
5226 	 */
5227 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA(np, select));
5228 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA(np, resel_dsa));
5229 
5230 	/*
5231 	 *  select
5232 	 */
5233 	cp->phys.select.sel_id		= cp->target;
5234 	cp->phys.select.sel_scntl3	= tp->head.wval;
5235 	cp->phys.select.sel_sxfer	= tp->head.sval;
5236 	cp->phys.select.sel_scntl4	= tp->head.uval;
5237 
5238 	/*
5239 	 *  message
5240 	 */
5241 	cp->phys.smsg.addr	= CCB_BA(cp, scsi_smsg);
5242 	cp->phys.smsg.size	= cpu_to_scr(msglen);
5243 
5244 	/*
5245 	 *  status
5246 	 */
5247 	cp->host_xflags		= 0;
5248 	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
5249 	cp->ssss_status		= S_ILLEGAL;
5250 	cp->xerr_status		= 0;
5251 	cp->host_flags		= 0;
5252 	cp->extra_bytes		= 0;
5253 
5254 	/*
5255 	 *  extreme data pointer.
5256 	 *  shall be positive, so -1 is lower than lowest.:)
5257 	 */
5258 	cp->ext_sg  = -1;
5259 	cp->ext_ofs = 0;
5260 
5261 	/*
5262 	 *  Build the CDB and DATA descriptor block
5263 	 *  and start the IO.
5264 	 */
5265 	return sym_setup_data_and_start(np, cmd, cp);
5266 }
5267 
5268 /*
5269  *  Reset a SCSI target (all LUNs of this target).
5270  */
5271 int sym_reset_scsi_target(struct sym_hcb *np, int target)
5272 {
5273 	struct sym_tcb *tp;
5274 
5275 	if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET)
5276 		return -1;
5277 
5278 	tp = &np->target[target];
5279 	tp->to_reset = 1;
5280 
5281 	np->istat_sem = SEM;
5282 	OUTB(np, nc_istat, SIGP|SEM);
5283 
5284 	return 0;
5285 }
5286 
5287 /*
5288  *  Abort a SCSI IO.
5289  */
5290 static int sym_abort_ccb(struct sym_hcb *np, struct sym_ccb *cp, int timed_out)
5291 {
5292 	/*
5293 	 *  Check that the IO is active.
5294 	 */
5295 	if (!cp || !cp->host_status || cp->host_status == HS_WAIT)
5296 		return -1;
5297 
5298 	/*
5299 	 *  If a previous abort didn't succeed in time,
5300 	 *  perform a BUS reset.
5301 	 */
5302 	if (cp->to_abort) {
5303 		sym_reset_scsi_bus(np, 1);
5304 		return 0;
5305 	}
5306 
5307 	/*
5308 	 *  Mark the CCB for abort and allow time for.
5309 	 */
5310 	cp->to_abort = timed_out ? 2 : 1;
5311 
5312 	/*
5313 	 *  Tell the SCRIPTS processor to stop and synchronize with us.
5314 	 */
5315 	np->istat_sem = SEM;
5316 	OUTB(np, nc_istat, SIGP|SEM);
5317 	return 0;
5318 }
5319 
5320 int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, int timed_out)
5321 {
5322 	struct sym_ccb *cp;
5323 	SYM_QUEHEAD *qp;
5324 
5325 	/*
5326 	 *  Look up our CCB control block.
5327 	 */
5328 	cp = NULL;
5329 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5330 		struct sym_ccb *cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5331 		if (cp2->cmd == cmd) {
5332 			cp = cp2;
5333 			break;
5334 		}
5335 	}
5336 
5337 	return sym_abort_ccb(np, cp, timed_out);
5338 }
5339 
5340 /*
5341  *  Complete execution of a SCSI command with extended
5342  *  error, SCSI status error, or having been auto-sensed.
5343  *
5344  *  The SCRIPTS processor is not running there, so we
5345  *  can safely access IO registers and remove JOBs from
5346  *  the START queue.
5347  *  SCRATCHA is assumed to have been loaded with STARTPOS
5348  *  before the SCRIPTS called the C code.
5349  */
5350 void sym_complete_error(struct sym_hcb *np, struct sym_ccb *cp)
5351 {
5352 	struct scsi_device *sdev;
5353 	struct scsi_cmnd *cmd;
5354 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5355 	struct sym_tcb *tp;
5356 	struct sym_lcb *lp;
5357 #endif
5358 	int resid;
5359 	int i;
5360 
5361 	/*
5362 	 *  Paranoid check. :)
5363 	 */
5364 	if (!cp || !cp->cmd)
5365 		return;
5366 
5367 	cmd = cp->cmd;
5368 	sdev = cmd->device;
5369 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
5370 		dev_info(&sdev->sdev_gendev, "CCB=%p STAT=%x/%x/%x\n", cp,
5371 			cp->host_status, cp->ssss_status, cp->host_flags);
5372 	}
5373 
5374 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5375 	/*
5376 	 *  Get target and lun pointers.
5377 	 */
5378 	tp = &np->target[cp->target];
5379 	lp = sym_lp(tp, sdev->lun);
5380 #endif
5381 
5382 	/*
5383 	 *  Check for extended errors.
5384 	 */
5385 	if (cp->xerr_status) {
5386 		if (sym_verbose)
5387 			sym_print_xerr(cmd, cp->xerr_status);
5388 		if (cp->host_status == HS_COMPLETE)
5389 			cp->host_status = HS_COMP_ERR;
5390 	}
5391 
5392 	/*
5393 	 *  Calculate the residual.
5394 	 */
5395 	resid = sym_compute_residual(np, cp);
5396 
5397 	if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */
5398 		resid  = 0;		 /* throw them away. :)		    */
5399 		cp->sv_resid = 0;
5400 	}
5401 #ifdef DEBUG_2_0_X
5402 if (resid)
5403 	printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5404 #endif
5405 
5406 	/*
5407 	 *  Dequeue all queued CCBs for that device
5408 	 *  not yet started by SCRIPTS.
5409 	 */
5410 	i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
5411 	i = sym_dequeue_from_squeue(np, i, cp->target, sdev->lun, -1);
5412 
5413 	/*
5414 	 *  Restart the SCRIPTS processor.
5415 	 */
5416 	OUTL_DSP(np, SCRIPTA_BA(np, start));
5417 
5418 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5419 	if (cp->host_status == HS_COMPLETE &&
5420 	    cp->ssss_status == S_QUEUE_FULL) {
5421 		if (!lp || lp->started_tags - i < 2)
5422 			goto weirdness;
5423 		/*
5424 		 *  Decrease queue depth as needed.
5425 		 */
5426 		lp->started_max = lp->started_tags - i - 1;
5427 		lp->num_sgood = 0;
5428 
5429 		if (sym_verbose >= 2) {
5430 			sym_print_addr(cmd, " queue depth is now %d\n",
5431 					lp->started_max);
5432 		}
5433 
5434 		/*
5435 		 *  Repair the CCB.
5436 		 */
5437 		cp->host_status = HS_BUSY;
5438 		cp->ssss_status = S_ILLEGAL;
5439 
5440 		/*
5441 		 *  Let's requeue it to device.
5442 		 */
5443 		sym_set_cam_status(cmd, DID_SOFT_ERROR);
5444 		goto finish;
5445 	}
5446 weirdness:
5447 #endif
5448 	/*
5449 	 *  Build result in CAM ccb.
5450 	 */
5451 	sym_set_cam_result_error(np, cp, resid);
5452 
5453 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5454 finish:
5455 #endif
5456 	/*
5457 	 *  Add this one to the COMP queue.
5458 	 */
5459 	sym_remque(&cp->link_ccbq);
5460 	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
5461 
5462 	/*
5463 	 *  Complete all those commands with either error
5464 	 *  or requeue condition.
5465 	 */
5466 	sym_flush_comp_queue(np, 0);
5467 
5468 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5469 	/*
5470 	 *  Donnot start more than 1 command after an error.
5471 	 */
5472 	sym_start_next_ccbs(np, lp, 1);
5473 #endif
5474 }
5475 
5476 /*
5477  *  Complete execution of a successful SCSI command.
5478  *
5479  *  Only successful commands go to the DONE queue,
5480  *  since we need to have the SCRIPTS processor
5481  *  stopped on any error condition.
5482  *  The SCRIPTS processor is running while we are
5483  *  completing successful commands.
5484  */
5485 void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp)
5486 {
5487 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5488 	struct sym_tcb *tp;
5489 	struct sym_lcb *lp;
5490 #endif
5491 	struct scsi_cmnd *cmd;
5492 	int resid;
5493 
5494 	/*
5495 	 *  Paranoid check. :)
5496 	 */
5497 	if (!cp || !cp->cmd)
5498 		return;
5499 	assert (cp->host_status == HS_COMPLETE);
5500 
5501 	/*
5502 	 *  Get user command.
5503 	 */
5504 	cmd = cp->cmd;
5505 
5506 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5507 	/*
5508 	 *  Get target and lun pointers.
5509 	 */
5510 	tp = &np->target[cp->target];
5511 	lp = sym_lp(tp, cp->lun);
5512 #endif
5513 
5514 	/*
5515 	 *  If all data have been transferred, given than no
5516 	 *  extended error did occur, there is no residual.
5517 	 */
5518 	resid = 0;
5519 	if (cp->phys.head.lastp != cp->goalp)
5520 		resid = sym_compute_residual(np, cp);
5521 
5522 	/*
5523 	 *  Wrong transfer residuals may be worse than just always
5524 	 *  returning zero. User can disable this feature in
5525 	 *  sym53c8xx.h. Residual support is enabled by default.
5526 	 */
5527 	if (!SYM_SETUP_RESIDUAL_SUPPORT)
5528 		resid  = 0;
5529 #ifdef DEBUG_2_0_X
5530 if (resid)
5531 	printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5532 #endif
5533 
5534 	/*
5535 	 *  Build result in CAM ccb.
5536 	 */
5537 	sym_set_cam_result_ok(cp, cmd, resid);
5538 
5539 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5540 	/*
5541 	 *  If max number of started ccbs had been reduced,
5542 	 *  increase it if 200 good status received.
5543 	 */
5544 	if (lp && lp->started_max < lp->started_limit) {
5545 		++lp->num_sgood;
5546 		if (lp->num_sgood >= 200) {
5547 			lp->num_sgood = 0;
5548 			++lp->started_max;
5549 			if (sym_verbose >= 2) {
5550 				sym_print_addr(cmd, " queue depth is now %d\n",
5551 				       lp->started_max);
5552 			}
5553 		}
5554 	}
5555 #endif
5556 
5557 	/*
5558 	 *  Free our CCB.
5559 	 */
5560 	sym_free_ccb (np, cp);
5561 
5562 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5563 	/*
5564 	 *  Requeue a couple of awaiting scsi commands.
5565 	 */
5566 	if (!sym_que_empty(&lp->waiting_ccbq))
5567 		sym_start_next_ccbs(np, lp, 2);
5568 #endif
5569 	/*
5570 	 *  Complete the command.
5571 	 */
5572 	sym_xpt_done(np, cmd);
5573 }
5574 
5575 /*
5576  *  Soft-attach the controller.
5577  */
5578 int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram)
5579 {
5580 	struct sym_hcb *np = sym_get_hcb(shost);
5581 	int i;
5582 
5583 	/*
5584 	 *  Get some info about the firmware.
5585 	 */
5586 	np->scripta_sz	 = fw->a_size;
5587 	np->scriptb_sz	 = fw->b_size;
5588 	np->scriptz_sz	 = fw->z_size;
5589 	np->fw_setup	 = fw->setup;
5590 	np->fw_patch	 = fw->patch;
5591 	np->fw_name	 = fw->name;
5592 
5593 	/*
5594 	 *  Save setting of some IO registers, so we will
5595 	 *  be able to probe specific implementations.
5596 	 */
5597 	sym_save_initial_setting (np);
5598 
5599 	/*
5600 	 *  Reset the chip now, since it has been reported
5601 	 *  that SCSI clock calibration may not work properly
5602 	 *  if the chip is currently active.
5603 	 */
5604 	sym_chip_reset(np);
5605 
5606 	/*
5607 	 *  Prepare controller and devices settings, according
5608 	 *  to chip features, user set-up and driver set-up.
5609 	 */
5610 	sym_prepare_setting(shost, np, nvram);
5611 
5612 	/*
5613 	 *  Check the PCI clock frequency.
5614 	 *  Must be performed after prepare_setting since it destroys
5615 	 *  STEST1 that is used to probe for the clock doubler.
5616 	 */
5617 	i = sym_getpciclock(np);
5618 	if (i > 37000 && !(np->features & FE_66MHZ))
5619 		printf("%s: PCI BUS clock seems too high: %u KHz.\n",
5620 			sym_name(np), i);
5621 
5622 	/*
5623 	 *  Allocate the start queue.
5624 	 */
5625 	np->squeue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
5626 	if (!np->squeue)
5627 		goto attach_failed;
5628 	np->squeue_ba = vtobus(np->squeue);
5629 
5630 	/*
5631 	 *  Allocate the done queue.
5632 	 */
5633 	np->dqueue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
5634 	if (!np->dqueue)
5635 		goto attach_failed;
5636 	np->dqueue_ba = vtobus(np->dqueue);
5637 
5638 	/*
5639 	 *  Allocate the target bus address array.
5640 	 */
5641 	np->targtbl = sym_calloc_dma(256, "TARGTBL");
5642 	if (!np->targtbl)
5643 		goto attach_failed;
5644 	np->targtbl_ba = vtobus(np->targtbl);
5645 
5646 	/*
5647 	 *  Allocate SCRIPTS areas.
5648 	 */
5649 	np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
5650 	np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
5651 	np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0");
5652 	if (!np->scripta0 || !np->scriptb0 || !np->scriptz0)
5653 		goto attach_failed;
5654 
5655 	/*
5656 	 *  Allocate the array of lists of CCBs hashed by DSA.
5657 	 */
5658 	np->ccbh = kcalloc(CCB_HASH_SIZE, sizeof(*np->ccbh), GFP_KERNEL);
5659 	if (!np->ccbh)
5660 		goto attach_failed;
5661 
5662 	/*
5663 	 *  Initialyze the CCB free and busy queues.
5664 	 */
5665 	sym_que_init(&np->free_ccbq);
5666 	sym_que_init(&np->busy_ccbq);
5667 	sym_que_init(&np->comp_ccbq);
5668 
5669 	/*
5670 	 *  Initialization for optional handling
5671 	 *  of device queueing.
5672 	 */
5673 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5674 	sym_que_init(&np->dummy_ccbq);
5675 #endif
5676 	/*
5677 	 *  Allocate some CCB. We need at least ONE.
5678 	 */
5679 	if (!sym_alloc_ccb(np))
5680 		goto attach_failed;
5681 
5682 	/*
5683 	 *  Calculate BUS addresses where we are going
5684 	 *  to load the SCRIPTS.
5685 	 */
5686 	np->scripta_ba	= vtobus(np->scripta0);
5687 	np->scriptb_ba	= vtobus(np->scriptb0);
5688 	np->scriptz_ba	= vtobus(np->scriptz0);
5689 
5690 	if (np->ram_ba) {
5691 		np->scripta_ba = np->ram_ba;
5692 		if (np->features & FE_RAM8K) {
5693 			np->scriptb_ba = np->scripta_ba + 4096;
5694 #if 0	/* May get useful for 64 BIT PCI addressing */
5695 			np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
5696 #endif
5697 		}
5698 	}
5699 
5700 	/*
5701 	 *  Copy scripts to controller instance.
5702 	 */
5703 	memcpy(np->scripta0, fw->a_base, np->scripta_sz);
5704 	memcpy(np->scriptb0, fw->b_base, np->scriptb_sz);
5705 	memcpy(np->scriptz0, fw->z_base, np->scriptz_sz);
5706 
5707 	/*
5708 	 *  Setup variable parts in scripts and compute
5709 	 *  scripts bus addresses used from the C code.
5710 	 */
5711 	np->fw_setup(np, fw);
5712 
5713 	/*
5714 	 *  Bind SCRIPTS with physical addresses usable by the
5715 	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
5716 	 */
5717 	sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
5718 	sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
5719 	sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz);
5720 
5721 #ifdef SYM_CONF_IARB_SUPPORT
5722 	/*
5723 	 *    If user wants IARB to be set when we win arbitration
5724 	 *    and have other jobs, compute the max number of consecutive
5725 	 *    settings of IARB hints before we leave devices a chance to
5726 	 *    arbitrate for reselection.
5727 	 */
5728 #ifdef	SYM_SETUP_IARB_MAX
5729 	np->iarb_max = SYM_SETUP_IARB_MAX;
5730 #else
5731 	np->iarb_max = 4;
5732 #endif
5733 #endif
5734 
5735 	/*
5736 	 *  Prepare the idle and invalid task actions.
5737 	 */
5738 	np->idletask.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5739 	np->idletask.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5740 	np->idletask_ba		= vtobus(&np->idletask);
5741 
5742 	np->notask.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5743 	np->notask.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5744 	np->notask_ba		= vtobus(&np->notask);
5745 
5746 	np->bad_itl.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5747 	np->bad_itl.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5748 	np->bad_itl_ba		= vtobus(&np->bad_itl);
5749 
5750 	np->bad_itlq.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5751 	np->bad_itlq.restart	= cpu_to_scr(SCRIPTB_BA(np,bad_i_t_l_q));
5752 	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
5753 
5754 	/*
5755 	 *  Allocate and prepare the lun JUMP table that is used
5756 	 *  for a target prior the probing of devices (bad lun table).
5757 	 *  A private table will be allocated for the target on the
5758 	 *  first INQUIRY response received.
5759 	 */
5760 	np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
5761 	if (!np->badluntbl)
5762 		goto attach_failed;
5763 
5764 	np->badlun_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5765 	memset32(np->badluntbl, cpu_to_scr(vtobus(&np->badlun_sa)), 64);
5766 
5767 	/*
5768 	 *  Prepare the bus address array that contains the bus
5769 	 *  address of each target control block.
5770 	 *  For now, assume all logical units are wrong. :)
5771 	 */
5772 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
5773 		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
5774 		np->target[i].head.luntbl_sa =
5775 				cpu_to_scr(vtobus(np->badluntbl));
5776 		np->target[i].head.lun0_sa =
5777 				cpu_to_scr(vtobus(&np->badlun_sa));
5778 	}
5779 
5780 	/*
5781 	 *  Now check the cache handling of the pci chipset.
5782 	 */
5783 	if (sym_snooptest (np)) {
5784 		printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
5785 		goto attach_failed;
5786 	}
5787 
5788 	/*
5789 	 *  Sigh! we are done.
5790 	 */
5791 	return 0;
5792 
5793 attach_failed:
5794 	return -ENXIO;
5795 }
5796 
5797 /*
5798  *  Free everything that has been allocated for this device.
5799  */
5800 void sym_hcb_free(struct sym_hcb *np)
5801 {
5802 	SYM_QUEHEAD *qp;
5803 	struct sym_ccb *cp;
5804 	struct sym_tcb *tp;
5805 	int target;
5806 
5807 	if (np->scriptz0)
5808 		sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0");
5809 	if (np->scriptb0)
5810 		sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
5811 	if (np->scripta0)
5812 		sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
5813 	if (np->squeue)
5814 		sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
5815 	if (np->dqueue)
5816 		sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
5817 
5818 	if (np->actccbs) {
5819 		while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) {
5820 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5821 			sym_mfree_dma(cp, sizeof(*cp), "CCB");
5822 		}
5823 	}
5824 	kfree(np->ccbh);
5825 
5826 	if (np->badluntbl)
5827 		sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
5828 
5829 	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
5830 		tp = &np->target[target];
5831 		if (tp->luntbl)
5832 			sym_mfree_dma(tp->luntbl, 256, "LUNTBL");
5833 #if SYM_CONF_MAX_LUN > 1
5834 		kfree(tp->lunmp);
5835 #endif
5836 	}
5837 	if (np->targtbl)
5838 		sym_mfree_dma(np->targtbl, 256, "TARGTBL");
5839 }
5840