1 /* 2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family 3 * of PCI-SCSI IO processors. 4 * 5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> 6 * Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx> 7 * 8 * This driver is derived from the Linux sym53c8xx driver. 9 * Copyright (C) 1998-2000 Gerard Roudier 10 * 11 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 12 * a port of the FreeBSD ncr driver to Linux-1.2.13. 13 * 14 * The original ncr driver has been written for 386bsd and FreeBSD by 15 * Wolfgang Stanglmeier <wolf@cologne.de> 16 * Stefan Esser <se@mi.Uni-Koeln.de> 17 * Copyright (C) 1994 Wolfgang Stanglmeier 18 * 19 * Other major contributions: 20 * 21 * NVRAM detection and reading. 22 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> 23 * 24 *----------------------------------------------------------------------------- 25 * 26 * This program is free software; you can redistribute it and/or modify 27 * it under the terms of the GNU General Public License as published by 28 * the Free Software Foundation; either version 2 of the License, or 29 * (at your option) any later version. 30 * 31 * This program is distributed in the hope that it will be useful, 32 * but WITHOUT ANY WARRANTY; without even the implied warranty of 33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 34 * GNU General Public License for more details. 35 * 36 * You should have received a copy of the GNU General Public License 37 * along with this program; if not, write to the Free Software 38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 39 */ 40 #include <linux/ctype.h> 41 #include <linux/init.h> 42 #include <linux/interrupt.h> 43 #include <linux/module.h> 44 #include <linux/moduleparam.h> 45 #include <linux/spinlock.h> 46 #include <scsi/scsi.h> 47 #include <scsi/scsi_tcq.h> 48 #include <scsi/scsi_device.h> 49 #include <scsi/scsi_transport.h> 50 51 #include "sym_glue.h" 52 #include "sym_nvram.h" 53 54 #define NAME53C "sym53c" 55 #define NAME53C8XX "sym53c8xx" 56 57 /* SPARC just has to be different ... */ 58 #ifdef __sparc__ 59 #define IRQ_FMT "%s" 60 #define IRQ_PRM(x) __irq_itoa(x) 61 #else 62 #define IRQ_FMT "%d" 63 #define IRQ_PRM(x) (x) 64 #endif 65 66 struct sym_driver_setup sym_driver_setup = SYM_LINUX_DRIVER_SETUP; 67 unsigned int sym_debug_flags = 0; 68 69 static char *excl_string; 70 static char *safe_string; 71 module_param_named(cmd_per_lun, sym_driver_setup.max_tag, ushort, 0); 72 module_param_string(tag_ctrl, sym_driver_setup.tag_ctrl, 100, 0); 73 module_param_named(burst, sym_driver_setup.burst_order, byte, 0); 74 module_param_named(led, sym_driver_setup.scsi_led, byte, 0); 75 module_param_named(diff, sym_driver_setup.scsi_diff, byte, 0); 76 module_param_named(irqm, sym_driver_setup.irq_mode, byte, 0); 77 module_param_named(buschk, sym_driver_setup.scsi_bus_check, byte, 0); 78 module_param_named(hostid, sym_driver_setup.host_id, byte, 0); 79 module_param_named(verb, sym_driver_setup.verbose, byte, 0); 80 module_param_named(debug, sym_debug_flags, uint, 0); 81 module_param_named(settle, sym_driver_setup.settle_delay, byte, 0); 82 module_param_named(nvram, sym_driver_setup.use_nvram, byte, 0); 83 module_param_named(excl, excl_string, charp, 0); 84 module_param_named(safe, safe_string, charp, 0); 85 86 MODULE_PARM_DESC(cmd_per_lun, "The maximum number of tags to use by default"); 87 MODULE_PARM_DESC(tag_ctrl, "More detailed control over tags per LUN"); 88 MODULE_PARM_DESC(burst, "Maximum burst. 0 to disable, 255 to read from registers"); 89 MODULE_PARM_DESC(led, "Set to 1 to enable LED support"); 90 MODULE_PARM_DESC(diff, "0 for no differential mode, 1 for BIOS, 2 for always, 3 for not GPIO3"); 91 MODULE_PARM_DESC(irqm, "0 for open drain, 1 to leave alone, 2 for totem pole"); 92 MODULE_PARM_DESC(buschk, "0 to not check, 1 for detach on error, 2 for warn on error"); 93 MODULE_PARM_DESC(hostid, "The SCSI ID to use for the host adapters"); 94 MODULE_PARM_DESC(verb, "0 for minimal verbosity, 1 for normal, 2 for excessive"); 95 MODULE_PARM_DESC(debug, "Set bits to enable debugging"); 96 MODULE_PARM_DESC(settle, "Settle delay in seconds. Default 3"); 97 MODULE_PARM_DESC(nvram, "Option currently not used"); 98 MODULE_PARM_DESC(excl, "List ioport addresses here to prevent controllers from being attached"); 99 MODULE_PARM_DESC(safe, "Set other settings to a \"safe mode\""); 100 101 MODULE_LICENSE("GPL"); 102 MODULE_VERSION(SYM_VERSION); 103 MODULE_AUTHOR("Matthew Wilcox <matthew@wil.cx>"); 104 MODULE_DESCRIPTION("NCR, Symbios and LSI 8xx and 1010 PCI SCSI adapters"); 105 106 static void sym2_setup_params(void) 107 { 108 char *p = excl_string; 109 int xi = 0; 110 111 while (p && (xi < 8)) { 112 char *next_p; 113 int val = (int) simple_strtoul(p, &next_p, 0); 114 sym_driver_setup.excludes[xi++] = val; 115 p = next_p; 116 } 117 118 if (safe_string) { 119 if (*safe_string == 'y') { 120 sym_driver_setup.max_tag = 0; 121 sym_driver_setup.burst_order = 0; 122 sym_driver_setup.scsi_led = 0; 123 sym_driver_setup.scsi_diff = 1; 124 sym_driver_setup.irq_mode = 0; 125 sym_driver_setup.scsi_bus_check = 2; 126 sym_driver_setup.host_id = 7; 127 sym_driver_setup.verbose = 2; 128 sym_driver_setup.settle_delay = 10; 129 sym_driver_setup.use_nvram = 1; 130 } else if (*safe_string != 'n') { 131 printk(KERN_WARNING NAME53C8XX "Ignoring parameter %s" 132 " passed to safe option", safe_string); 133 } 134 } 135 } 136 137 /* 138 * We used to try to deal with 64-bit BARs here, but don't any more. 139 * There are many parts of this driver which would need to be modified 140 * to handle a 64-bit base address, including scripts. I'm uncomfortable 141 * with making those changes when I have no way of testing it, so I'm 142 * just going to disable it. 143 * 144 * Note that some machines (eg HP rx8620 and Superdome) have bus addresses 145 * below 4GB and physical addresses above 4GB. These will continue to work. 146 */ 147 static int __devinit 148 pci_get_base_address(struct pci_dev *pdev, int index, unsigned long *basep) 149 { 150 u32 tmp; 151 unsigned long base; 152 #define PCI_BAR_OFFSET(index) (PCI_BASE_ADDRESS_0 + (index<<2)) 153 154 pci_read_config_dword(pdev, PCI_BAR_OFFSET(index++), &tmp); 155 base = tmp; 156 if ((tmp & 0x7) == PCI_BASE_ADDRESS_MEM_TYPE_64) { 157 pci_read_config_dword(pdev, PCI_BAR_OFFSET(index++), &tmp); 158 if (tmp > 0) { 159 dev_err(&pdev->dev, 160 "BAR %d is 64-bit, disabling\n", index - 1); 161 base = 0; 162 } 163 } 164 165 if ((base & PCI_BASE_ADDRESS_SPACE) == PCI_BASE_ADDRESS_SPACE_IO) { 166 base &= PCI_BASE_ADDRESS_IO_MASK; 167 } else { 168 base &= PCI_BASE_ADDRESS_MEM_MASK; 169 } 170 171 *basep = base; 172 return index; 173 #undef PCI_BAR_OFFSET 174 } 175 176 static struct scsi_transport_template *sym2_transport_template = NULL; 177 178 /* 179 * Used by the eh thread to wait for command completion. 180 * It is allocated on the eh thread stack. 181 */ 182 struct sym_eh_wait { 183 struct completion done; 184 struct timer_list timer; 185 void (*old_done)(struct scsi_cmnd *); 186 int to_do; 187 int timed_out; 188 }; 189 190 /* 191 * Driver private area in the SCSI command structure. 192 */ 193 struct sym_ucmd { /* Override the SCSI pointer structure */ 194 dma_addr_t data_mapping; 195 u_char data_mapped; 196 struct sym_eh_wait *eh_wait; 197 }; 198 199 #define SYM_UCMD_PTR(cmd) ((struct sym_ucmd *)(&(cmd)->SCp)) 200 #define SYM_SOFTC_PTR(cmd) sym_get_hcb(cmd->device->host) 201 202 static void __unmap_scsi_data(struct pci_dev *pdev, struct scsi_cmnd *cmd) 203 { 204 int dma_dir = cmd->sc_data_direction; 205 206 switch(SYM_UCMD_PTR(cmd)->data_mapped) { 207 case 2: 208 pci_unmap_sg(pdev, cmd->buffer, cmd->use_sg, dma_dir); 209 break; 210 case 1: 211 pci_unmap_single(pdev, SYM_UCMD_PTR(cmd)->data_mapping, 212 cmd->request_bufflen, dma_dir); 213 break; 214 } 215 SYM_UCMD_PTR(cmd)->data_mapped = 0; 216 } 217 218 static dma_addr_t __map_scsi_single_data(struct pci_dev *pdev, struct scsi_cmnd *cmd) 219 { 220 dma_addr_t mapping; 221 int dma_dir = cmd->sc_data_direction; 222 223 mapping = pci_map_single(pdev, cmd->request_buffer, 224 cmd->request_bufflen, dma_dir); 225 if (mapping) { 226 SYM_UCMD_PTR(cmd)->data_mapped = 1; 227 SYM_UCMD_PTR(cmd)->data_mapping = mapping; 228 } 229 230 return mapping; 231 } 232 233 static int __map_scsi_sg_data(struct pci_dev *pdev, struct scsi_cmnd *cmd) 234 { 235 int use_sg; 236 int dma_dir = cmd->sc_data_direction; 237 238 use_sg = pci_map_sg(pdev, cmd->buffer, cmd->use_sg, dma_dir); 239 if (use_sg > 0) { 240 SYM_UCMD_PTR(cmd)->data_mapped = 2; 241 SYM_UCMD_PTR(cmd)->data_mapping = use_sg; 242 } 243 244 return use_sg; 245 } 246 247 #define unmap_scsi_data(np, cmd) \ 248 __unmap_scsi_data(np->s.device, cmd) 249 #define map_scsi_single_data(np, cmd) \ 250 __map_scsi_single_data(np->s.device, cmd) 251 #define map_scsi_sg_data(np, cmd) \ 252 __map_scsi_sg_data(np->s.device, cmd) 253 /* 254 * Complete a pending CAM CCB. 255 */ 256 void sym_xpt_done(struct sym_hcb *np, struct scsi_cmnd *cmd) 257 { 258 unmap_scsi_data(np, cmd); 259 cmd->scsi_done(cmd); 260 } 261 262 static void sym_xpt_done2(struct sym_hcb *np, struct scsi_cmnd *cmd, int cam_status) 263 { 264 sym_set_cam_status(cmd, cam_status); 265 sym_xpt_done(np, cmd); 266 } 267 268 269 /* 270 * Tell the SCSI layer about a BUS RESET. 271 */ 272 void sym_xpt_async_bus_reset(struct sym_hcb *np) 273 { 274 printf_notice("%s: SCSI BUS has been reset.\n", sym_name(np)); 275 np->s.settle_time = jiffies + sym_driver_setup.settle_delay * HZ; 276 np->s.settle_time_valid = 1; 277 if (sym_verbose >= 2) 278 printf_info("%s: command processing suspended for %d seconds\n", 279 sym_name(np), sym_driver_setup.settle_delay); 280 } 281 282 /* 283 * Tell the SCSI layer about a BUS DEVICE RESET message sent. 284 */ 285 void sym_xpt_async_sent_bdr(struct sym_hcb *np, int target) 286 { 287 printf_notice("%s: TARGET %d has been reset.\n", sym_name(np), target); 288 } 289 290 /* 291 * Choose the more appropriate CAM status if 292 * the IO encountered an extended error. 293 */ 294 static int sym_xerr_cam_status(int cam_status, int x_status) 295 { 296 if (x_status) { 297 if (x_status & XE_PARITY_ERR) 298 cam_status = DID_PARITY; 299 else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) 300 cam_status = DID_ERROR; 301 else if (x_status & XE_BAD_PHASE) 302 cam_status = DID_ERROR; 303 else 304 cam_status = DID_ERROR; 305 } 306 return cam_status; 307 } 308 309 /* 310 * Build CAM result for a failed or auto-sensed IO. 311 */ 312 void sym_set_cam_result_error(struct sym_hcb *np, struct sym_ccb *cp, int resid) 313 { 314 struct scsi_cmnd *cmd = cp->cmd; 315 u_int cam_status, scsi_status, drv_status; 316 317 drv_status = 0; 318 cam_status = DID_OK; 319 scsi_status = cp->ssss_status; 320 321 if (cp->host_flags & HF_SENSE) { 322 scsi_status = cp->sv_scsi_status; 323 resid = cp->sv_resid; 324 if (sym_verbose && cp->sv_xerr_status) 325 sym_print_xerr(cmd, cp->sv_xerr_status); 326 if (cp->host_status == HS_COMPLETE && 327 cp->ssss_status == S_GOOD && 328 cp->xerr_status == 0) { 329 cam_status = sym_xerr_cam_status(DID_OK, 330 cp->sv_xerr_status); 331 drv_status = DRIVER_SENSE; 332 /* 333 * Bounce back the sense data to user. 334 */ 335 memset(&cmd->sense_buffer, 0, sizeof(cmd->sense_buffer)); 336 memcpy(cmd->sense_buffer, cp->sns_bbuf, 337 min(sizeof(cmd->sense_buffer), 338 (size_t)SYM_SNS_BBUF_LEN)); 339 #if 0 340 /* 341 * If the device reports a UNIT ATTENTION condition 342 * due to a RESET condition, we should consider all 343 * disconnect CCBs for this unit as aborted. 344 */ 345 if (1) { 346 u_char *p; 347 p = (u_char *) cmd->sense_data; 348 if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29) 349 sym_clear_tasks(np, DID_ABORT, 350 cp->target,cp->lun, -1); 351 } 352 #endif 353 } else { 354 /* 355 * Error return from our internal request sense. This 356 * is bad: we must clear the contingent allegiance 357 * condition otherwise the device will always return 358 * BUSY. Use a big stick. 359 */ 360 sym_reset_scsi_target(np, cmd->device->id); 361 cam_status = DID_ERROR; 362 } 363 } else if (cp->host_status == HS_COMPLETE) /* Bad SCSI status */ 364 cam_status = DID_OK; 365 else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */ 366 cam_status = DID_NO_CONNECT; 367 else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/ 368 cam_status = DID_ERROR; 369 else { /* Extended error */ 370 if (sym_verbose) { 371 sym_print_addr(cmd, "COMMAND FAILED (%x %x %x).\n", 372 cp->host_status, cp->ssss_status, 373 cp->xerr_status); 374 } 375 /* 376 * Set the most appropriate value for CAM status. 377 */ 378 cam_status = sym_xerr_cam_status(DID_ERROR, cp->xerr_status); 379 } 380 cmd->resid = resid; 381 cmd->result = (drv_status << 24) + (cam_status << 16) + scsi_status; 382 } 383 384 385 /* 386 * Build the scatter/gather array for an I/O. 387 */ 388 389 static int sym_scatter_no_sglist(struct sym_hcb *np, struct sym_ccb *cp, struct scsi_cmnd *cmd) 390 { 391 struct sym_tblmove *data = &cp->phys.data[SYM_CONF_MAX_SG-1]; 392 int segment; 393 unsigned int len = cmd->request_bufflen; 394 395 if (len) { 396 dma_addr_t baddr = map_scsi_single_data(np, cmd); 397 if (baddr) { 398 if (len & 1) { 399 struct sym_tcb *tp = &np->target[cp->target]; 400 if (tp->head.wval & EWS) { 401 len++; 402 cp->odd_byte_adjustment++; 403 } 404 } 405 cp->data_len = len; 406 sym_build_sge(np, data, baddr, len); 407 segment = 1; 408 } else { 409 segment = -2; 410 } 411 } else { 412 segment = 0; 413 } 414 415 return segment; 416 } 417 418 static int sym_scatter(struct sym_hcb *np, struct sym_ccb *cp, struct scsi_cmnd *cmd) 419 { 420 int segment; 421 int use_sg = (int) cmd->use_sg; 422 423 cp->data_len = 0; 424 425 if (!use_sg) 426 segment = sym_scatter_no_sglist(np, cp, cmd); 427 else if ((use_sg = map_scsi_sg_data(np, cmd)) > 0) { 428 struct scatterlist *scatter = (struct scatterlist *)cmd->buffer; 429 struct sym_tcb *tp = &np->target[cp->target]; 430 struct sym_tblmove *data; 431 432 if (use_sg > SYM_CONF_MAX_SG) { 433 unmap_scsi_data(np, cmd); 434 return -1; 435 } 436 437 data = &cp->phys.data[SYM_CONF_MAX_SG - use_sg]; 438 439 for (segment = 0; segment < use_sg; segment++) { 440 dma_addr_t baddr = sg_dma_address(&scatter[segment]); 441 unsigned int len = sg_dma_len(&scatter[segment]); 442 443 if ((len & 1) && (tp->head.wval & EWS)) { 444 len++; 445 cp->odd_byte_adjustment++; 446 } 447 448 sym_build_sge(np, &data[segment], baddr, len); 449 cp->data_len += len; 450 } 451 } else { 452 segment = -2; 453 } 454 455 return segment; 456 } 457 458 /* 459 * Queue a SCSI command. 460 */ 461 static int sym_queue_command(struct sym_hcb *np, struct scsi_cmnd *cmd) 462 { 463 struct scsi_device *sdev = cmd->device; 464 struct sym_tcb *tp; 465 struct sym_lcb *lp; 466 struct sym_ccb *cp; 467 int order; 468 469 /* 470 * Minimal checkings, so that we will not 471 * go outside our tables. 472 */ 473 if (sdev->id == np->myaddr) { 474 sym_xpt_done2(np, cmd, DID_NO_CONNECT); 475 return 0; 476 } 477 478 /* 479 * Retrieve the target descriptor. 480 */ 481 tp = &np->target[sdev->id]; 482 483 /* 484 * Select tagged/untagged. 485 */ 486 lp = sym_lp(tp, sdev->lun); 487 order = (lp && lp->s.reqtags) ? M_SIMPLE_TAG : 0; 488 489 /* 490 * Queue the SCSI IO. 491 */ 492 cp = sym_get_ccb(np, cmd, order); 493 if (!cp) 494 return 1; /* Means resource shortage */ 495 sym_queue_scsiio(np, cmd, cp); 496 return 0; 497 } 498 499 /* 500 * Setup buffers and pointers that address the CDB. 501 */ 502 static inline int sym_setup_cdb(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp) 503 { 504 memcpy(cp->cdb_buf, cmd->cmnd, cmd->cmd_len); 505 506 cp->phys.cmd.addr = CCB_BA(cp, cdb_buf[0]); 507 cp->phys.cmd.size = cpu_to_scr(cmd->cmd_len); 508 509 return 0; 510 } 511 512 /* 513 * Setup pointers that address the data and start the I/O. 514 */ 515 int sym_setup_data_and_start(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp) 516 { 517 int dir; 518 struct sym_tcb *tp = &np->target[cp->target]; 519 struct sym_lcb *lp = sym_lp(tp, cp->lun); 520 521 /* 522 * Build the CDB. 523 */ 524 if (sym_setup_cdb(np, cmd, cp)) 525 goto out_abort; 526 527 /* 528 * No direction means no data. 529 */ 530 dir = cmd->sc_data_direction; 531 if (dir != DMA_NONE) { 532 cp->segments = sym_scatter(np, cp, cmd); 533 if (cp->segments < 0) { 534 sym_set_cam_status(cmd, DID_ERROR); 535 goto out_abort; 536 } 537 } else { 538 cp->data_len = 0; 539 cp->segments = 0; 540 } 541 542 /* 543 * Set data pointers. 544 */ 545 sym_setup_data_pointers(np, cp, dir); 546 547 /* 548 * When `#ifed 1', the code below makes the driver 549 * panic on the first attempt to write to a SCSI device. 550 * It is the first test we want to do after a driver 551 * change that does not seem obviously safe. :) 552 */ 553 #if 0 554 switch (cp->cdb_buf[0]) { 555 case 0x0A: case 0x2A: case 0xAA: 556 panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n"); 557 break; 558 default: 559 break; 560 } 561 #endif 562 563 /* 564 * activate this job. 565 */ 566 if (lp) 567 sym_start_next_ccbs(np, lp, 2); 568 else 569 sym_put_start_queue(np, cp); 570 return 0; 571 572 out_abort: 573 sym_free_ccb(np, cp); 574 sym_xpt_done(np, cmd); 575 return 0; 576 } 577 578 579 /* 580 * timer daemon. 581 * 582 * Misused to keep the driver running when 583 * interrupts are not configured correctly. 584 */ 585 static void sym_timer(struct sym_hcb *np) 586 { 587 unsigned long thistime = jiffies; 588 589 /* 590 * Restart the timer. 591 */ 592 np->s.timer.expires = thistime + SYM_CONF_TIMER_INTERVAL; 593 add_timer(&np->s.timer); 594 595 /* 596 * If we are resetting the ncr, wait for settle_time before 597 * clearing it. Then command processing will be resumed. 598 */ 599 if (np->s.settle_time_valid) { 600 if (time_before_eq(np->s.settle_time, thistime)) { 601 if (sym_verbose >= 2 ) 602 printk("%s: command processing resumed\n", 603 sym_name(np)); 604 np->s.settle_time_valid = 0; 605 } 606 return; 607 } 608 609 /* 610 * Nothing to do for now, but that may come. 611 */ 612 if (np->s.lasttime + 4*HZ < thistime) { 613 np->s.lasttime = thistime; 614 } 615 616 #ifdef SYM_CONF_PCIQ_MAY_MISS_COMPLETIONS 617 /* 618 * Some way-broken PCI bridges may lead to 619 * completions being lost when the clearing 620 * of the INTFLY flag by the CPU occurs 621 * concurrently with the chip raising this flag. 622 * If this ever happen, lost completions will 623 * be reaped here. 624 */ 625 sym_wakeup_done(np); 626 #endif 627 } 628 629 630 /* 631 * PCI BUS error handler. 632 */ 633 void sym_log_bus_error(struct sym_hcb *np) 634 { 635 u_short pci_sts; 636 pci_read_config_word(np->s.device, PCI_STATUS, &pci_sts); 637 if (pci_sts & 0xf900) { 638 pci_write_config_word(np->s.device, PCI_STATUS, pci_sts); 639 printf("%s: PCI STATUS = 0x%04x\n", 640 sym_name(np), pci_sts & 0xf900); 641 } 642 } 643 644 /* 645 * queuecommand method. Entered with the host adapter lock held and 646 * interrupts disabled. 647 */ 648 static int sym53c8xx_queue_command(struct scsi_cmnd *cmd, 649 void (*done)(struct scsi_cmnd *)) 650 { 651 struct sym_hcb *np = SYM_SOFTC_PTR(cmd); 652 struct sym_ucmd *ucp = SYM_UCMD_PTR(cmd); 653 int sts = 0; 654 655 cmd->scsi_done = done; 656 memset(ucp, 0, sizeof(*ucp)); 657 658 /* 659 * Shorten our settle_time if needed for 660 * this command not to time out. 661 */ 662 if (np->s.settle_time_valid && cmd->timeout_per_command) { 663 unsigned long tlimit = jiffies + cmd->timeout_per_command; 664 tlimit -= SYM_CONF_TIMER_INTERVAL*2; 665 if (time_after(np->s.settle_time, tlimit)) { 666 np->s.settle_time = tlimit; 667 } 668 } 669 670 if (np->s.settle_time_valid) 671 return SCSI_MLQUEUE_HOST_BUSY; 672 673 sts = sym_queue_command(np, cmd); 674 if (sts) 675 return SCSI_MLQUEUE_HOST_BUSY; 676 return 0; 677 } 678 679 /* 680 * Linux entry point of the interrupt handler. 681 */ 682 static irqreturn_t sym53c8xx_intr(int irq, void *dev_id, struct pt_regs * regs) 683 { 684 unsigned long flags; 685 struct sym_hcb *np = (struct sym_hcb *)dev_id; 686 687 if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("["); 688 689 spin_lock_irqsave(np->s.host->host_lock, flags); 690 sym_interrupt(np); 691 spin_unlock_irqrestore(np->s.host->host_lock, flags); 692 693 if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("]\n"); 694 695 return IRQ_HANDLED; 696 } 697 698 /* 699 * Linux entry point of the timer handler 700 */ 701 static void sym53c8xx_timer(unsigned long npref) 702 { 703 struct sym_hcb *np = (struct sym_hcb *)npref; 704 unsigned long flags; 705 706 spin_lock_irqsave(np->s.host->host_lock, flags); 707 sym_timer(np); 708 spin_unlock_irqrestore(np->s.host->host_lock, flags); 709 } 710 711 712 /* 713 * What the eh thread wants us to perform. 714 */ 715 #define SYM_EH_ABORT 0 716 #define SYM_EH_DEVICE_RESET 1 717 #define SYM_EH_BUS_RESET 2 718 #define SYM_EH_HOST_RESET 3 719 720 /* 721 * What we will do regarding the involved SCSI command. 722 */ 723 #define SYM_EH_DO_IGNORE 0 724 #define SYM_EH_DO_COMPLETE 1 725 #define SYM_EH_DO_WAIT 2 726 727 /* 728 * Our general completion handler. 729 */ 730 static void __sym_eh_done(struct scsi_cmnd *cmd, int timed_out) 731 { 732 struct sym_eh_wait *ep = SYM_UCMD_PTR(cmd)->eh_wait; 733 if (!ep) 734 return; 735 736 /* Try to avoid a race here (not 100% safe) */ 737 if (!timed_out) { 738 ep->timed_out = 0; 739 if (ep->to_do == SYM_EH_DO_WAIT && !del_timer(&ep->timer)) 740 return; 741 } 742 743 /* Revert everything */ 744 SYM_UCMD_PTR(cmd)->eh_wait = NULL; 745 cmd->scsi_done = ep->old_done; 746 747 /* Wake up the eh thread if it wants to sleep */ 748 if (ep->to_do == SYM_EH_DO_WAIT) 749 complete(&ep->done); 750 } 751 752 /* 753 * scsi_done() alias when error recovery is in progress. 754 */ 755 static void sym_eh_done(struct scsi_cmnd *cmd) { __sym_eh_done(cmd, 0); } 756 757 /* 758 * Some timeout handler to avoid waiting too long. 759 */ 760 static void sym_eh_timeout(u_long p) { __sym_eh_done((struct scsi_cmnd *)p, 1); } 761 762 /* 763 * Generic method for our eh processing. 764 * The 'op' argument tells what we have to do. 765 */ 766 static int sym_eh_handler(int op, char *opname, struct scsi_cmnd *cmd) 767 { 768 struct sym_hcb *np = SYM_SOFTC_PTR(cmd); 769 SYM_QUEHEAD *qp; 770 int to_do = SYM_EH_DO_IGNORE; 771 int sts = -1; 772 struct sym_eh_wait eh, *ep = &eh; 773 774 dev_warn(&cmd->device->sdev_gendev, "%s operation started.\n", opname); 775 776 /* This one is queued in some place -> to wait for completion */ 777 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 778 struct sym_ccb *cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 779 if (cp->cmd == cmd) { 780 to_do = SYM_EH_DO_WAIT; 781 goto prepare; 782 } 783 } 784 785 prepare: 786 /* Prepare stuff to either ignore, complete or wait for completion */ 787 switch(to_do) { 788 default: 789 case SYM_EH_DO_IGNORE: 790 break; 791 case SYM_EH_DO_WAIT: 792 init_completion(&ep->done); 793 /* fall through */ 794 case SYM_EH_DO_COMPLETE: 795 ep->old_done = cmd->scsi_done; 796 cmd->scsi_done = sym_eh_done; 797 SYM_UCMD_PTR(cmd)->eh_wait = ep; 798 } 799 800 /* Try to proceed the operation we have been asked for */ 801 sts = -1; 802 switch(op) { 803 case SYM_EH_ABORT: 804 sts = sym_abort_scsiio(np, cmd, 1); 805 break; 806 case SYM_EH_DEVICE_RESET: 807 sts = sym_reset_scsi_target(np, cmd->device->id); 808 break; 809 case SYM_EH_BUS_RESET: 810 sym_reset_scsi_bus(np, 1); 811 sts = 0; 812 break; 813 case SYM_EH_HOST_RESET: 814 sym_reset_scsi_bus(np, 0); 815 sym_start_up (np, 1); 816 sts = 0; 817 break; 818 default: 819 break; 820 } 821 822 /* On error, restore everything and cross fingers :) */ 823 if (sts) { 824 SYM_UCMD_PTR(cmd)->eh_wait = NULL; 825 cmd->scsi_done = ep->old_done; 826 to_do = SYM_EH_DO_IGNORE; 827 } 828 829 ep->to_do = to_do; 830 /* Complete the command with locks held as required by the driver */ 831 if (to_do == SYM_EH_DO_COMPLETE) 832 sym_xpt_done2(np, cmd, DID_ABORT); 833 834 /* Wait for completion with locks released, as required by kernel */ 835 if (to_do == SYM_EH_DO_WAIT) { 836 init_timer(&ep->timer); 837 ep->timer.expires = jiffies + (5*HZ); 838 ep->timer.function = sym_eh_timeout; 839 ep->timer.data = (u_long)cmd; 840 ep->timed_out = 1; /* Be pessimistic for once :) */ 841 add_timer(&ep->timer); 842 spin_unlock_irq(np->s.host->host_lock); 843 wait_for_completion(&ep->done); 844 spin_lock_irq(np->s.host->host_lock); 845 if (ep->timed_out) 846 sts = -2; 847 } 848 dev_warn(&cmd->device->sdev_gendev, "%s operation %s.\n", opname, 849 sts==0 ? "complete" :sts==-2 ? "timed-out" : "failed"); 850 return sts ? SCSI_FAILED : SCSI_SUCCESS; 851 } 852 853 854 /* 855 * Error handlers called from the eh thread (one thread per HBA). 856 */ 857 static int sym53c8xx_eh_abort_handler(struct scsi_cmnd *cmd) 858 { 859 int rc; 860 861 spin_lock_irq(cmd->device->host->host_lock); 862 rc = sym_eh_handler(SYM_EH_ABORT, "ABORT", cmd); 863 spin_unlock_irq(cmd->device->host->host_lock); 864 865 return rc; 866 } 867 868 static int sym53c8xx_eh_device_reset_handler(struct scsi_cmnd *cmd) 869 { 870 int rc; 871 872 spin_lock_irq(cmd->device->host->host_lock); 873 rc = sym_eh_handler(SYM_EH_DEVICE_RESET, "DEVICE RESET", cmd); 874 spin_unlock_irq(cmd->device->host->host_lock); 875 876 return rc; 877 } 878 879 static int sym53c8xx_eh_bus_reset_handler(struct scsi_cmnd *cmd) 880 { 881 int rc; 882 883 spin_lock_irq(cmd->device->host->host_lock); 884 rc = sym_eh_handler(SYM_EH_BUS_RESET, "BUS RESET", cmd); 885 spin_unlock_irq(cmd->device->host->host_lock); 886 887 return rc; 888 } 889 890 static int sym53c8xx_eh_host_reset_handler(struct scsi_cmnd *cmd) 891 { 892 int rc; 893 894 spin_lock_irq(cmd->device->host->host_lock); 895 rc = sym_eh_handler(SYM_EH_HOST_RESET, "HOST RESET", cmd); 896 spin_unlock_irq(cmd->device->host->host_lock); 897 898 return rc; 899 } 900 901 /* 902 * Tune device queuing depth, according to various limits. 903 */ 904 static void sym_tune_dev_queuing(struct sym_tcb *tp, int lun, u_short reqtags) 905 { 906 struct sym_lcb *lp = sym_lp(tp, lun); 907 u_short oldtags; 908 909 if (!lp) 910 return; 911 912 oldtags = lp->s.reqtags; 913 914 if (reqtags > lp->s.scdev_depth) 915 reqtags = lp->s.scdev_depth; 916 917 lp->started_limit = reqtags ? reqtags : 2; 918 lp->started_max = 1; 919 lp->s.reqtags = reqtags; 920 921 if (reqtags != oldtags) { 922 dev_info(&tp->starget->dev, 923 "tagged command queuing %s, command queue depth %d.\n", 924 lp->s.reqtags ? "enabled" : "disabled", 925 lp->started_limit); 926 } 927 } 928 929 /* 930 * Linux select queue depths function 931 */ 932 #define DEF_DEPTH (sym_driver_setup.max_tag) 933 #define ALL_TARGETS -2 934 #define NO_TARGET -1 935 #define ALL_LUNS -2 936 #define NO_LUN -1 937 938 static int device_queue_depth(struct sym_hcb *np, int target, int lun) 939 { 940 int c, h, t, u, v; 941 char *p = sym_driver_setup.tag_ctrl; 942 char *ep; 943 944 h = -1; 945 t = NO_TARGET; 946 u = NO_LUN; 947 while ((c = *p++) != 0) { 948 v = simple_strtoul(p, &ep, 0); 949 switch(c) { 950 case '/': 951 ++h; 952 t = ALL_TARGETS; 953 u = ALL_LUNS; 954 break; 955 case 't': 956 if (t != target) 957 t = (target == v) ? v : NO_TARGET; 958 u = ALL_LUNS; 959 break; 960 case 'u': 961 if (u != lun) 962 u = (lun == v) ? v : NO_LUN; 963 break; 964 case 'q': 965 if (h == np->s.unit && 966 (t == ALL_TARGETS || t == target) && 967 (u == ALL_LUNS || u == lun)) 968 return v; 969 break; 970 case '-': 971 t = ALL_TARGETS; 972 u = ALL_LUNS; 973 break; 974 default: 975 break; 976 } 977 p = ep; 978 } 979 return DEF_DEPTH; 980 } 981 982 static int sym53c8xx_slave_alloc(struct scsi_device *sdev) 983 { 984 struct sym_hcb *np; 985 struct sym_tcb *tp; 986 987 if (sdev->id >= SYM_CONF_MAX_TARGET || sdev->lun >= SYM_CONF_MAX_LUN) 988 return -ENXIO; 989 990 np = sym_get_hcb(sdev->host); 991 tp = &np->target[sdev->id]; 992 993 /* 994 * Fail the device init if the device is flagged NOSCAN at BOOT in 995 * the NVRAM. This may speed up boot and maintain coherency with 996 * BIOS device numbering. Clearing the flag allows the user to 997 * rescan skipped devices later. We also return an error for 998 * devices not flagged for SCAN LUNS in the NVRAM since some single 999 * lun devices behave badly when asked for a non zero LUN. 1000 */ 1001 1002 if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) || 1003 ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) && sdev->lun != 0)) { 1004 tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED; 1005 return -ENXIO; 1006 } 1007 1008 tp->starget = sdev->sdev_target; 1009 return 0; 1010 } 1011 1012 /* 1013 * Linux entry point for device queue sizing. 1014 */ 1015 static int sym53c8xx_slave_configure(struct scsi_device *device) 1016 { 1017 struct sym_hcb *np = sym_get_hcb(device->host); 1018 struct sym_tcb *tp = &np->target[device->id]; 1019 struct sym_lcb *lp; 1020 int reqtags, depth_to_use; 1021 1022 /* 1023 * Allocate the LCB if not yet. 1024 * If it fail, we may well be in the sh*t. :) 1025 */ 1026 lp = sym_alloc_lcb(np, device->id, device->lun); 1027 if (!lp) 1028 return -ENOMEM; 1029 1030 /* 1031 * Get user flags. 1032 */ 1033 lp->curr_flags = lp->user_flags; 1034 1035 /* 1036 * Select queue depth from driver setup. 1037 * Donnot use more than configured by user. 1038 * Use at least 2. 1039 * Donnot use more than our maximum. 1040 */ 1041 reqtags = device_queue_depth(np, device->id, device->lun); 1042 if (reqtags > tp->usrtags) 1043 reqtags = tp->usrtags; 1044 if (!device->tagged_supported) 1045 reqtags = 0; 1046 #if 1 /* Avoid to locally queue commands for no good reasons */ 1047 if (reqtags > SYM_CONF_MAX_TAG) 1048 reqtags = SYM_CONF_MAX_TAG; 1049 depth_to_use = (reqtags ? reqtags : 2); 1050 #else 1051 depth_to_use = (reqtags ? SYM_CONF_MAX_TAG : 2); 1052 #endif 1053 scsi_adjust_queue_depth(device, 1054 (device->tagged_supported ? 1055 MSG_SIMPLE_TAG : 0), 1056 depth_to_use); 1057 lp->s.scdev_depth = depth_to_use; 1058 sym_tune_dev_queuing(tp, device->lun, reqtags); 1059 1060 if (!spi_initial_dv(device->sdev_target)) 1061 spi_dv_device(device); 1062 1063 return 0; 1064 } 1065 1066 /* 1067 * Linux entry point for info() function 1068 */ 1069 static const char *sym53c8xx_info (struct Scsi_Host *host) 1070 { 1071 return SYM_DRIVER_NAME; 1072 } 1073 1074 1075 #ifdef SYM_LINUX_PROC_INFO_SUPPORT 1076 /* 1077 * Proc file system stuff 1078 * 1079 * A read operation returns adapter information. 1080 * A write operation is a control command. 1081 * The string is parsed in the driver code and the command is passed 1082 * to the sym_usercmd() function. 1083 */ 1084 1085 #ifdef SYM_LINUX_USER_COMMAND_SUPPORT 1086 1087 struct sym_usrcmd { 1088 u_long target; 1089 u_long lun; 1090 u_long data; 1091 u_long cmd; 1092 }; 1093 1094 #define UC_SETSYNC 10 1095 #define UC_SETTAGS 11 1096 #define UC_SETDEBUG 12 1097 #define UC_SETWIDE 14 1098 #define UC_SETFLAG 15 1099 #define UC_SETVERBOSE 17 1100 #define UC_RESETDEV 18 1101 #define UC_CLEARDEV 19 1102 1103 static void sym_exec_user_command (struct sym_hcb *np, struct sym_usrcmd *uc) 1104 { 1105 struct sym_tcb *tp; 1106 int t, l; 1107 1108 switch (uc->cmd) { 1109 case 0: return; 1110 1111 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT 1112 case UC_SETDEBUG: 1113 sym_debug_flags = uc->data; 1114 break; 1115 #endif 1116 case UC_SETVERBOSE: 1117 np->verbose = uc->data; 1118 break; 1119 default: 1120 /* 1121 * We assume that other commands apply to targets. 1122 * This should always be the case and avoid the below 1123 * 4 lines to be repeated 6 times. 1124 */ 1125 for (t = 0; t < SYM_CONF_MAX_TARGET; t++) { 1126 if (!((uc->target >> t) & 1)) 1127 continue; 1128 tp = &np->target[t]; 1129 1130 switch (uc->cmd) { 1131 1132 case UC_SETSYNC: 1133 if (!uc->data || uc->data >= 255) { 1134 tp->tgoal.iu = tp->tgoal.dt = 1135 tp->tgoal.qas = 0; 1136 tp->tgoal.offset = 0; 1137 } else if (uc->data <= 9 && np->minsync_dt) { 1138 if (uc->data < np->minsync_dt) 1139 uc->data = np->minsync_dt; 1140 tp->tgoal.iu = tp->tgoal.dt = 1141 tp->tgoal.qas = 1; 1142 tp->tgoal.width = 1; 1143 tp->tgoal.period = uc->data; 1144 tp->tgoal.offset = np->maxoffs_dt; 1145 } else { 1146 if (uc->data < np->minsync) 1147 uc->data = np->minsync; 1148 tp->tgoal.iu = tp->tgoal.dt = 1149 tp->tgoal.qas = 0; 1150 tp->tgoal.period = uc->data; 1151 tp->tgoal.offset = np->maxoffs; 1152 } 1153 tp->tgoal.check_nego = 1; 1154 break; 1155 case UC_SETWIDE: 1156 tp->tgoal.width = uc->data ? 1 : 0; 1157 tp->tgoal.check_nego = 1; 1158 break; 1159 case UC_SETTAGS: 1160 for (l = 0; l < SYM_CONF_MAX_LUN; l++) 1161 sym_tune_dev_queuing(tp, l, uc->data); 1162 break; 1163 case UC_RESETDEV: 1164 tp->to_reset = 1; 1165 np->istat_sem = SEM; 1166 OUTB(np, nc_istat, SIGP|SEM); 1167 break; 1168 case UC_CLEARDEV: 1169 for (l = 0; l < SYM_CONF_MAX_LUN; l++) { 1170 struct sym_lcb *lp = sym_lp(tp, l); 1171 if (lp) lp->to_clear = 1; 1172 } 1173 np->istat_sem = SEM; 1174 OUTB(np, nc_istat, SIGP|SEM); 1175 break; 1176 case UC_SETFLAG: 1177 tp->usrflags = uc->data; 1178 break; 1179 } 1180 } 1181 break; 1182 } 1183 } 1184 1185 static int skip_spaces(char *ptr, int len) 1186 { 1187 int cnt, c; 1188 1189 for (cnt = len; cnt > 0 && (c = *ptr++) && isspace(c); cnt--); 1190 1191 return (len - cnt); 1192 } 1193 1194 static int get_int_arg(char *ptr, int len, u_long *pv) 1195 { 1196 char *end; 1197 1198 *pv = simple_strtoul(ptr, &end, 10); 1199 return (end - ptr); 1200 } 1201 1202 static int is_keyword(char *ptr, int len, char *verb) 1203 { 1204 int verb_len = strlen(verb); 1205 1206 if (len >= verb_len && !memcmp(verb, ptr, verb_len)) 1207 return verb_len; 1208 else 1209 return 0; 1210 } 1211 1212 #define SKIP_SPACES(ptr, len) \ 1213 if ((arg_len = skip_spaces(ptr, len)) < 1) \ 1214 return -EINVAL; \ 1215 ptr += arg_len; len -= arg_len; 1216 1217 #define GET_INT_ARG(ptr, len, v) \ 1218 if (!(arg_len = get_int_arg(ptr, len, &(v)))) \ 1219 return -EINVAL; \ 1220 ptr += arg_len; len -= arg_len; 1221 1222 1223 /* 1224 * Parse a control command 1225 */ 1226 1227 static int sym_user_command(struct sym_hcb *np, char *buffer, int length) 1228 { 1229 char *ptr = buffer; 1230 int len = length; 1231 struct sym_usrcmd cmd, *uc = &cmd; 1232 int arg_len; 1233 u_long target; 1234 1235 memset(uc, 0, sizeof(*uc)); 1236 1237 if (len > 0 && ptr[len-1] == '\n') 1238 --len; 1239 1240 if ((arg_len = is_keyword(ptr, len, "setsync")) != 0) 1241 uc->cmd = UC_SETSYNC; 1242 else if ((arg_len = is_keyword(ptr, len, "settags")) != 0) 1243 uc->cmd = UC_SETTAGS; 1244 else if ((arg_len = is_keyword(ptr, len, "setverbose")) != 0) 1245 uc->cmd = UC_SETVERBOSE; 1246 else if ((arg_len = is_keyword(ptr, len, "setwide")) != 0) 1247 uc->cmd = UC_SETWIDE; 1248 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT 1249 else if ((arg_len = is_keyword(ptr, len, "setdebug")) != 0) 1250 uc->cmd = UC_SETDEBUG; 1251 #endif 1252 else if ((arg_len = is_keyword(ptr, len, "setflag")) != 0) 1253 uc->cmd = UC_SETFLAG; 1254 else if ((arg_len = is_keyword(ptr, len, "resetdev")) != 0) 1255 uc->cmd = UC_RESETDEV; 1256 else if ((arg_len = is_keyword(ptr, len, "cleardev")) != 0) 1257 uc->cmd = UC_CLEARDEV; 1258 else 1259 arg_len = 0; 1260 1261 #ifdef DEBUG_PROC_INFO 1262 printk("sym_user_command: arg_len=%d, cmd=%ld\n", arg_len, uc->cmd); 1263 #endif 1264 1265 if (!arg_len) 1266 return -EINVAL; 1267 ptr += arg_len; len -= arg_len; 1268 1269 switch(uc->cmd) { 1270 case UC_SETSYNC: 1271 case UC_SETTAGS: 1272 case UC_SETWIDE: 1273 case UC_SETFLAG: 1274 case UC_RESETDEV: 1275 case UC_CLEARDEV: 1276 SKIP_SPACES(ptr, len); 1277 if ((arg_len = is_keyword(ptr, len, "all")) != 0) { 1278 ptr += arg_len; len -= arg_len; 1279 uc->target = ~0; 1280 } else { 1281 GET_INT_ARG(ptr, len, target); 1282 uc->target = (1<<target); 1283 #ifdef DEBUG_PROC_INFO 1284 printk("sym_user_command: target=%ld\n", target); 1285 #endif 1286 } 1287 break; 1288 } 1289 1290 switch(uc->cmd) { 1291 case UC_SETVERBOSE: 1292 case UC_SETSYNC: 1293 case UC_SETTAGS: 1294 case UC_SETWIDE: 1295 SKIP_SPACES(ptr, len); 1296 GET_INT_ARG(ptr, len, uc->data); 1297 #ifdef DEBUG_PROC_INFO 1298 printk("sym_user_command: data=%ld\n", uc->data); 1299 #endif 1300 break; 1301 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT 1302 case UC_SETDEBUG: 1303 while (len > 0) { 1304 SKIP_SPACES(ptr, len); 1305 if ((arg_len = is_keyword(ptr, len, "alloc"))) 1306 uc->data |= DEBUG_ALLOC; 1307 else if ((arg_len = is_keyword(ptr, len, "phase"))) 1308 uc->data |= DEBUG_PHASE; 1309 else if ((arg_len = is_keyword(ptr, len, "queue"))) 1310 uc->data |= DEBUG_QUEUE; 1311 else if ((arg_len = is_keyword(ptr, len, "result"))) 1312 uc->data |= DEBUG_RESULT; 1313 else if ((arg_len = is_keyword(ptr, len, "scatter"))) 1314 uc->data |= DEBUG_SCATTER; 1315 else if ((arg_len = is_keyword(ptr, len, "script"))) 1316 uc->data |= DEBUG_SCRIPT; 1317 else if ((arg_len = is_keyword(ptr, len, "tiny"))) 1318 uc->data |= DEBUG_TINY; 1319 else if ((arg_len = is_keyword(ptr, len, "timing"))) 1320 uc->data |= DEBUG_TIMING; 1321 else if ((arg_len = is_keyword(ptr, len, "nego"))) 1322 uc->data |= DEBUG_NEGO; 1323 else if ((arg_len = is_keyword(ptr, len, "tags"))) 1324 uc->data |= DEBUG_TAGS; 1325 else if ((arg_len = is_keyword(ptr, len, "pointer"))) 1326 uc->data |= DEBUG_POINTER; 1327 else 1328 return -EINVAL; 1329 ptr += arg_len; len -= arg_len; 1330 } 1331 #ifdef DEBUG_PROC_INFO 1332 printk("sym_user_command: data=%ld\n", uc->data); 1333 #endif 1334 break; 1335 #endif /* SYM_LINUX_DEBUG_CONTROL_SUPPORT */ 1336 case UC_SETFLAG: 1337 while (len > 0) { 1338 SKIP_SPACES(ptr, len); 1339 if ((arg_len = is_keyword(ptr, len, "no_disc"))) 1340 uc->data &= ~SYM_DISC_ENABLED; 1341 else 1342 return -EINVAL; 1343 ptr += arg_len; len -= arg_len; 1344 } 1345 break; 1346 default: 1347 break; 1348 } 1349 1350 if (len) 1351 return -EINVAL; 1352 else { 1353 unsigned long flags; 1354 1355 spin_lock_irqsave(np->s.host->host_lock, flags); 1356 sym_exec_user_command (np, uc); 1357 spin_unlock_irqrestore(np->s.host->host_lock, flags); 1358 } 1359 return length; 1360 } 1361 1362 #endif /* SYM_LINUX_USER_COMMAND_SUPPORT */ 1363 1364 1365 #ifdef SYM_LINUX_USER_INFO_SUPPORT 1366 /* 1367 * Informations through the proc file system. 1368 */ 1369 struct info_str { 1370 char *buffer; 1371 int length; 1372 int offset; 1373 int pos; 1374 }; 1375 1376 static void copy_mem_info(struct info_str *info, char *data, int len) 1377 { 1378 if (info->pos + len > info->length) 1379 len = info->length - info->pos; 1380 1381 if (info->pos + len < info->offset) { 1382 info->pos += len; 1383 return; 1384 } 1385 if (info->pos < info->offset) { 1386 data += (info->offset - info->pos); 1387 len -= (info->offset - info->pos); 1388 } 1389 1390 if (len > 0) { 1391 memcpy(info->buffer + info->pos, data, len); 1392 info->pos += len; 1393 } 1394 } 1395 1396 static int copy_info(struct info_str *info, char *fmt, ...) 1397 { 1398 va_list args; 1399 char buf[81]; 1400 int len; 1401 1402 va_start(args, fmt); 1403 len = vsprintf(buf, fmt, args); 1404 va_end(args); 1405 1406 copy_mem_info(info, buf, len); 1407 return len; 1408 } 1409 1410 /* 1411 * Copy formatted information into the input buffer. 1412 */ 1413 static int sym_host_info(struct sym_hcb *np, char *ptr, off_t offset, int len) 1414 { 1415 struct info_str info; 1416 1417 info.buffer = ptr; 1418 info.length = len; 1419 info.offset = offset; 1420 info.pos = 0; 1421 1422 copy_info(&info, "Chip " NAME53C "%s, device id 0x%x, " 1423 "revision id 0x%x\n", 1424 np->s.chip_name, np->device_id, np->revision_id); 1425 copy_info(&info, "At PCI address %s, IRQ " IRQ_FMT "\n", 1426 pci_name(np->s.device), IRQ_PRM(np->s.irq)); 1427 copy_info(&info, "Min. period factor %d, %s SCSI BUS%s\n", 1428 (int) (np->minsync_dt ? np->minsync_dt : np->minsync), 1429 np->maxwide ? "Wide" : "Narrow", 1430 np->minsync_dt ? ", DT capable" : ""); 1431 1432 copy_info(&info, "Max. started commands %d, " 1433 "max. commands per LUN %d\n", 1434 SYM_CONF_MAX_START, SYM_CONF_MAX_TAG); 1435 1436 return info.pos > info.offset? info.pos - info.offset : 0; 1437 } 1438 #endif /* SYM_LINUX_USER_INFO_SUPPORT */ 1439 1440 /* 1441 * Entry point of the scsi proc fs of the driver. 1442 * - func = 0 means read (returns adapter infos) 1443 * - func = 1 means write (not yet merget from sym53c8xx) 1444 */ 1445 static int sym53c8xx_proc_info(struct Scsi_Host *host, char *buffer, 1446 char **start, off_t offset, int length, int func) 1447 { 1448 struct sym_hcb *np = sym_get_hcb(host); 1449 int retv; 1450 1451 if (func) { 1452 #ifdef SYM_LINUX_USER_COMMAND_SUPPORT 1453 retv = sym_user_command(np, buffer, length); 1454 #else 1455 retv = -EINVAL; 1456 #endif 1457 } else { 1458 if (start) 1459 *start = buffer; 1460 #ifdef SYM_LINUX_USER_INFO_SUPPORT 1461 retv = sym_host_info(np, buffer, offset, length); 1462 #else 1463 retv = -EINVAL; 1464 #endif 1465 } 1466 1467 return retv; 1468 } 1469 #endif /* SYM_LINUX_PROC_INFO_SUPPORT */ 1470 1471 /* 1472 * Free controller resources. 1473 */ 1474 static void sym_free_resources(struct sym_hcb *np, struct pci_dev *pdev) 1475 { 1476 /* 1477 * Free O/S specific resources. 1478 */ 1479 if (np->s.irq) 1480 free_irq(np->s.irq, np); 1481 if (np->s.ioaddr) 1482 pci_iounmap(pdev, np->s.ioaddr); 1483 if (np->s.ramaddr) 1484 pci_iounmap(pdev, np->s.ramaddr); 1485 /* 1486 * Free O/S independent resources. 1487 */ 1488 sym_hcb_free(np); 1489 1490 sym_mfree_dma(np, sizeof(*np), "HCB"); 1491 } 1492 1493 /* 1494 * Ask/tell the system about DMA addressing. 1495 */ 1496 static int sym_setup_bus_dma_mask(struct sym_hcb *np) 1497 { 1498 #if SYM_CONF_DMA_ADDRESSING_MODE > 0 1499 #if SYM_CONF_DMA_ADDRESSING_MODE == 1 1500 #define DMA_DAC_MASK 0x000000ffffffffffULL /* 40-bit */ 1501 #elif SYM_CONF_DMA_ADDRESSING_MODE == 2 1502 #define DMA_DAC_MASK DMA_64BIT_MASK 1503 #endif 1504 if ((np->features & FE_DAC) && 1505 !pci_set_dma_mask(np->s.device, DMA_DAC_MASK)) { 1506 np->use_dac = 1; 1507 return 0; 1508 } 1509 #endif 1510 1511 if (!pci_set_dma_mask(np->s.device, DMA_32BIT_MASK)) 1512 return 0; 1513 1514 printf_warning("%s: No suitable DMA available\n", sym_name(np)); 1515 return -1; 1516 } 1517 1518 /* 1519 * Host attach and initialisations. 1520 * 1521 * Allocate host data and ncb structure. 1522 * Remap MMIO region. 1523 * Do chip initialization. 1524 * If all is OK, install interrupt handling and 1525 * start the timer daemon. 1526 */ 1527 static struct Scsi_Host * __devinit sym_attach(struct scsi_host_template *tpnt, 1528 int unit, struct sym_device *dev) 1529 { 1530 struct host_data *host_data; 1531 struct sym_hcb *np = NULL; 1532 struct Scsi_Host *instance = NULL; 1533 struct pci_dev *pdev = dev->pdev; 1534 unsigned long flags; 1535 struct sym_fw *fw; 1536 1537 printk(KERN_INFO 1538 "sym%d: <%s> rev 0x%x at pci %s irq " IRQ_FMT "\n", 1539 unit, dev->chip.name, dev->chip.revision_id, 1540 pci_name(pdev), IRQ_PRM(pdev->irq)); 1541 1542 /* 1543 * Get the firmware for this chip. 1544 */ 1545 fw = sym_find_firmware(&dev->chip); 1546 if (!fw) 1547 goto attach_failed; 1548 1549 /* 1550 * Allocate host_data structure 1551 */ 1552 instance = scsi_host_alloc(tpnt, sizeof(*host_data)); 1553 if (!instance) 1554 goto attach_failed; 1555 host_data = (struct host_data *) instance->hostdata; 1556 1557 /* 1558 * Allocate immediately the host control block, 1559 * since we are only expecting to succeed. :) 1560 * We keep track in the HCB of all the resources that 1561 * are to be released on error. 1562 */ 1563 np = __sym_calloc_dma(&pdev->dev, sizeof(*np), "HCB"); 1564 if (!np) 1565 goto attach_failed; 1566 np->s.device = pdev; 1567 np->bus_dmat = &pdev->dev; /* Result in 1 DMA pool per HBA */ 1568 host_data->ncb = np; 1569 np->s.host = instance; 1570 1571 pci_set_drvdata(pdev, np); 1572 1573 /* 1574 * Copy some useful infos to the HCB. 1575 */ 1576 np->hcb_ba = vtobus(np); 1577 np->verbose = sym_driver_setup.verbose; 1578 np->s.device = pdev; 1579 np->s.unit = unit; 1580 np->device_id = dev->chip.device_id; 1581 np->revision_id = dev->chip.revision_id; 1582 np->features = dev->chip.features; 1583 np->clock_divn = dev->chip.nr_divisor; 1584 np->maxoffs = dev->chip.offset_max; 1585 np->maxburst = dev->chip.burst_max; 1586 np->myaddr = dev->host_id; 1587 1588 /* 1589 * Edit its name. 1590 */ 1591 strlcpy(np->s.chip_name, dev->chip.name, sizeof(np->s.chip_name)); 1592 sprintf(np->s.inst_name, "sym%d", np->s.unit); 1593 1594 if (sym_setup_bus_dma_mask(np)) 1595 goto attach_failed; 1596 1597 /* 1598 * Try to map the controller chip to 1599 * virtual and physical memory. 1600 */ 1601 np->mmio_ba = (u32)dev->mmio_base; 1602 np->s.ioaddr = dev->s.ioaddr; 1603 np->s.ramaddr = dev->s.ramaddr; 1604 np->s.io_ws = (np->features & FE_IO256) ? 256 : 128; 1605 1606 /* 1607 * Map on-chip RAM if present and supported. 1608 */ 1609 if (!(np->features & FE_RAM)) 1610 dev->ram_base = 0; 1611 if (dev->ram_base) { 1612 np->ram_ba = (u32)dev->ram_base; 1613 np->ram_ws = (np->features & FE_RAM8K) ? 8192 : 4096; 1614 } 1615 1616 if (sym_hcb_attach(instance, fw, dev->nvram)) 1617 goto attach_failed; 1618 1619 /* 1620 * Install the interrupt handler. 1621 * If we synchonize the C code with SCRIPTS on interrupt, 1622 * we do not want to share the INTR line at all. 1623 */ 1624 if (request_irq(pdev->irq, sym53c8xx_intr, SA_SHIRQ, NAME53C8XX, np)) { 1625 printf_err("%s: request irq %d failure\n", 1626 sym_name(np), pdev->irq); 1627 goto attach_failed; 1628 } 1629 np->s.irq = pdev->irq; 1630 1631 /* 1632 * After SCSI devices have been opened, we cannot 1633 * reset the bus safely, so we do it here. 1634 */ 1635 spin_lock_irqsave(instance->host_lock, flags); 1636 if (sym_reset_scsi_bus(np, 0)) 1637 goto reset_failed; 1638 1639 /* 1640 * Start the SCRIPTS. 1641 */ 1642 sym_start_up (np, 1); 1643 1644 /* 1645 * Start the timer daemon 1646 */ 1647 init_timer(&np->s.timer); 1648 np->s.timer.data = (unsigned long) np; 1649 np->s.timer.function = sym53c8xx_timer; 1650 np->s.lasttime=0; 1651 sym_timer (np); 1652 1653 /* 1654 * Fill Linux host instance structure 1655 * and return success. 1656 */ 1657 instance->max_channel = 0; 1658 instance->this_id = np->myaddr; 1659 instance->max_id = np->maxwide ? 16 : 8; 1660 instance->max_lun = SYM_CONF_MAX_LUN; 1661 instance->unique_id = pci_resource_start(pdev, 0); 1662 instance->cmd_per_lun = SYM_CONF_MAX_TAG; 1663 instance->can_queue = (SYM_CONF_MAX_START-2); 1664 instance->sg_tablesize = SYM_CONF_MAX_SG; 1665 instance->max_cmd_len = 16; 1666 BUG_ON(sym2_transport_template == NULL); 1667 instance->transportt = sym2_transport_template; 1668 1669 spin_unlock_irqrestore(instance->host_lock, flags); 1670 1671 return instance; 1672 1673 reset_failed: 1674 printf_err("%s: FATAL ERROR: CHECK SCSI BUS - CABLES, " 1675 "TERMINATION, DEVICE POWER etc.!\n", sym_name(np)); 1676 spin_unlock_irqrestore(instance->host_lock, flags); 1677 attach_failed: 1678 if (!instance) 1679 return NULL; 1680 printf_info("%s: giving up ...\n", sym_name(np)); 1681 if (np) 1682 sym_free_resources(np, pdev); 1683 scsi_host_put(instance); 1684 1685 return NULL; 1686 } 1687 1688 1689 /* 1690 * Detect and try to read SYMBIOS and TEKRAM NVRAM. 1691 */ 1692 #if SYM_CONF_NVRAM_SUPPORT 1693 static void __devinit sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp) 1694 { 1695 devp->nvram = nvp; 1696 devp->device_id = devp->chip.device_id; 1697 nvp->type = 0; 1698 1699 sym_read_nvram(devp, nvp); 1700 } 1701 #else 1702 static inline void sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp) 1703 { 1704 } 1705 #endif /* SYM_CONF_NVRAM_SUPPORT */ 1706 1707 static int __devinit sym_check_supported(struct sym_device *device) 1708 { 1709 struct sym_chip *chip; 1710 struct pci_dev *pdev = device->pdev; 1711 u_char revision; 1712 unsigned long io_port = pci_resource_start(pdev, 0); 1713 int i; 1714 1715 /* 1716 * If user excluded this chip, do not initialize it. 1717 * I hate this code so much. Must kill it. 1718 */ 1719 if (io_port) { 1720 for (i = 0 ; i < 8 ; i++) { 1721 if (sym_driver_setup.excludes[i] == io_port) 1722 return -ENODEV; 1723 } 1724 } 1725 1726 /* 1727 * Check if the chip is supported. Then copy the chip description 1728 * to our device structure so we can make it match the actual device 1729 * and options. 1730 */ 1731 pci_read_config_byte(pdev, PCI_CLASS_REVISION, &revision); 1732 chip = sym_lookup_chip_table(pdev->device, revision); 1733 if (!chip) { 1734 dev_info(&pdev->dev, "device not supported\n"); 1735 return -ENODEV; 1736 } 1737 memcpy(&device->chip, chip, sizeof(device->chip)); 1738 device->chip.revision_id = revision; 1739 1740 return 0; 1741 } 1742 1743 /* 1744 * Ignore Symbios chips controlled by various RAID controllers. 1745 * These controllers set value 0x52414944 at RAM end - 16. 1746 */ 1747 static int __devinit sym_check_raid(struct sym_device *device) 1748 { 1749 unsigned int ram_size, ram_val; 1750 1751 if (!device->s.ramaddr) 1752 return 0; 1753 1754 if (device->chip.features & FE_RAM8K) 1755 ram_size = 8192; 1756 else 1757 ram_size = 4096; 1758 1759 ram_val = readl(device->s.ramaddr + ram_size - 16); 1760 if (ram_val != 0x52414944) 1761 return 0; 1762 1763 dev_info(&device->pdev->dev, 1764 "not initializing, driven by RAID controller.\n"); 1765 return -ENODEV; 1766 } 1767 1768 static int __devinit sym_set_workarounds(struct sym_device *device) 1769 { 1770 struct sym_chip *chip = &device->chip; 1771 struct pci_dev *pdev = device->pdev; 1772 u_short status_reg; 1773 1774 /* 1775 * (ITEM 12 of a DEL about the 896 I haven't yet). 1776 * We must ensure the chip will use WRITE AND INVALIDATE. 1777 * The revision number limit is for now arbitrary. 1778 */ 1779 if (pdev->device == PCI_DEVICE_ID_NCR_53C896 && chip->revision_id < 0x4) { 1780 chip->features |= (FE_WRIE | FE_CLSE); 1781 } 1782 1783 /* If the chip can do Memory Write Invalidate, enable it */ 1784 if (chip->features & FE_WRIE) { 1785 if (pci_set_mwi(pdev)) 1786 return -ENODEV; 1787 } 1788 1789 /* 1790 * Work around for errant bit in 895A. The 66Mhz 1791 * capable bit is set erroneously. Clear this bit. 1792 * (Item 1 DEL 533) 1793 * 1794 * Make sure Config space and Features agree. 1795 * 1796 * Recall: writes are not normal to status register - 1797 * write a 1 to clear and a 0 to leave unchanged. 1798 * Can only reset bits. 1799 */ 1800 pci_read_config_word(pdev, PCI_STATUS, &status_reg); 1801 if (chip->features & FE_66MHZ) { 1802 if (!(status_reg & PCI_STATUS_66MHZ)) 1803 chip->features &= ~FE_66MHZ; 1804 } else { 1805 if (status_reg & PCI_STATUS_66MHZ) { 1806 status_reg = PCI_STATUS_66MHZ; 1807 pci_write_config_word(pdev, PCI_STATUS, status_reg); 1808 pci_read_config_word(pdev, PCI_STATUS, &status_reg); 1809 } 1810 } 1811 1812 return 0; 1813 } 1814 1815 /* 1816 * Read and check the PCI configuration for any detected NCR 1817 * boards and save data for attaching after all boards have 1818 * been detected. 1819 */ 1820 static void __devinit 1821 sym_init_device(struct pci_dev *pdev, struct sym_device *device) 1822 { 1823 int i; 1824 1825 device->host_id = SYM_SETUP_HOST_ID; 1826 device->pdev = pdev; 1827 1828 i = pci_get_base_address(pdev, 1, &device->mmio_base); 1829 pci_get_base_address(pdev, i, &device->ram_base); 1830 1831 #ifndef CONFIG_SCSI_SYM53C8XX_IOMAPPED 1832 if (device->mmio_base) 1833 device->s.ioaddr = pci_iomap(pdev, 1, 1834 pci_resource_len(pdev, 1)); 1835 #endif 1836 if (!device->s.ioaddr) 1837 device->s.ioaddr = pci_iomap(pdev, 0, 1838 pci_resource_len(pdev, 0)); 1839 if (device->ram_base) 1840 device->s.ramaddr = pci_iomap(pdev, i, 1841 pci_resource_len(pdev, i)); 1842 } 1843 1844 /* 1845 * The NCR PQS and PDS cards are constructed as a DEC bridge 1846 * behind which sits a proprietary NCR memory controller and 1847 * either four or two 53c875s as separate devices. We can tell 1848 * if an 875 is part of a PQS/PDS or not since if it is, it will 1849 * be on the same bus as the memory controller. In its usual 1850 * mode of operation, the 875s are slaved to the memory 1851 * controller for all transfers. To operate with the Linux 1852 * driver, the memory controller is disabled and the 875s 1853 * freed to function independently. The only wrinkle is that 1854 * the preset SCSI ID (which may be zero) must be read in from 1855 * a special configuration space register of the 875. 1856 */ 1857 static void sym_config_pqs(struct pci_dev *pdev, struct sym_device *sym_dev) 1858 { 1859 int slot; 1860 u8 tmp; 1861 1862 for (slot = 0; slot < 256; slot++) { 1863 struct pci_dev *memc = pci_get_slot(pdev->bus, slot); 1864 1865 if (!memc || memc->vendor != 0x101a || memc->device == 0x0009) { 1866 pci_dev_put(memc); 1867 continue; 1868 } 1869 1870 /* bit 1: allow individual 875 configuration */ 1871 pci_read_config_byte(memc, 0x44, &tmp); 1872 if ((tmp & 0x2) == 0) { 1873 tmp |= 0x2; 1874 pci_write_config_byte(memc, 0x44, tmp); 1875 } 1876 1877 /* bit 2: drive individual 875 interrupts to the bus */ 1878 pci_read_config_byte(memc, 0x45, &tmp); 1879 if ((tmp & 0x4) == 0) { 1880 tmp |= 0x4; 1881 pci_write_config_byte(memc, 0x45, tmp); 1882 } 1883 1884 pci_dev_put(memc); 1885 break; 1886 } 1887 1888 pci_read_config_byte(pdev, 0x84, &tmp); 1889 sym_dev->host_id = tmp; 1890 } 1891 1892 /* 1893 * Called before unloading the module. 1894 * Detach the host. 1895 * We have to free resources and halt the NCR chip. 1896 */ 1897 static int sym_detach(struct sym_hcb *np, struct pci_dev *pdev) 1898 { 1899 printk("%s: detaching ...\n", sym_name(np)); 1900 1901 del_timer_sync(&np->s.timer); 1902 1903 /* 1904 * Reset NCR chip. 1905 * We should use sym_soft_reset(), but we don't want to do 1906 * so, since we may not be safe if interrupts occur. 1907 */ 1908 printk("%s: resetting chip\n", sym_name(np)); 1909 OUTB(np, nc_istat, SRST); 1910 INB(np, nc_mbox1); 1911 udelay(10); 1912 OUTB(np, nc_istat, 0); 1913 1914 sym_free_resources(np, pdev); 1915 1916 return 1; 1917 } 1918 1919 /* 1920 * Driver host template. 1921 */ 1922 static struct scsi_host_template sym2_template = { 1923 .module = THIS_MODULE, 1924 .name = "sym53c8xx", 1925 .info = sym53c8xx_info, 1926 .queuecommand = sym53c8xx_queue_command, 1927 .slave_alloc = sym53c8xx_slave_alloc, 1928 .slave_configure = sym53c8xx_slave_configure, 1929 .eh_abort_handler = sym53c8xx_eh_abort_handler, 1930 .eh_device_reset_handler = sym53c8xx_eh_device_reset_handler, 1931 .eh_bus_reset_handler = sym53c8xx_eh_bus_reset_handler, 1932 .eh_host_reset_handler = sym53c8xx_eh_host_reset_handler, 1933 .this_id = 7, 1934 .use_clustering = DISABLE_CLUSTERING, 1935 #ifdef SYM_LINUX_PROC_INFO_SUPPORT 1936 .proc_info = sym53c8xx_proc_info, 1937 .proc_name = NAME53C8XX, 1938 #endif 1939 }; 1940 1941 static int attach_count; 1942 1943 static int __devinit sym2_probe(struct pci_dev *pdev, 1944 const struct pci_device_id *ent) 1945 { 1946 struct sym_device sym_dev; 1947 struct sym_nvram nvram; 1948 struct Scsi_Host *instance; 1949 1950 memset(&sym_dev, 0, sizeof(sym_dev)); 1951 memset(&nvram, 0, sizeof(nvram)); 1952 1953 if (pci_enable_device(pdev)) 1954 goto leave; 1955 1956 pci_set_master(pdev); 1957 1958 if (pci_request_regions(pdev, NAME53C8XX)) 1959 goto disable; 1960 1961 sym_init_device(pdev, &sym_dev); 1962 if (sym_check_supported(&sym_dev)) 1963 goto free; 1964 1965 if (sym_check_raid(&sym_dev)) 1966 goto leave; /* Don't disable the device */ 1967 1968 if (sym_set_workarounds(&sym_dev)) 1969 goto free; 1970 1971 sym_config_pqs(pdev, &sym_dev); 1972 1973 sym_get_nvram(&sym_dev, &nvram); 1974 1975 instance = sym_attach(&sym2_template, attach_count, &sym_dev); 1976 if (!instance) 1977 goto free; 1978 1979 if (scsi_add_host(instance, &pdev->dev)) 1980 goto detach; 1981 scsi_scan_host(instance); 1982 1983 attach_count++; 1984 1985 return 0; 1986 1987 detach: 1988 sym_detach(pci_get_drvdata(pdev), pdev); 1989 free: 1990 pci_release_regions(pdev); 1991 disable: 1992 pci_disable_device(pdev); 1993 leave: 1994 return -ENODEV; 1995 } 1996 1997 static void __devexit sym2_remove(struct pci_dev *pdev) 1998 { 1999 struct sym_hcb *np = pci_get_drvdata(pdev); 2000 struct Scsi_Host *host = np->s.host; 2001 2002 scsi_remove_host(host); 2003 scsi_host_put(host); 2004 2005 sym_detach(np, pdev); 2006 2007 pci_release_regions(pdev); 2008 pci_disable_device(pdev); 2009 2010 attach_count--; 2011 } 2012 2013 static void sym2_get_signalling(struct Scsi_Host *shost) 2014 { 2015 struct sym_hcb *np = sym_get_hcb(shost); 2016 enum spi_signal_type type; 2017 2018 switch (np->scsi_mode) { 2019 case SMODE_SE: 2020 type = SPI_SIGNAL_SE; 2021 break; 2022 case SMODE_LVD: 2023 type = SPI_SIGNAL_LVD; 2024 break; 2025 case SMODE_HVD: 2026 type = SPI_SIGNAL_HVD; 2027 break; 2028 default: 2029 type = SPI_SIGNAL_UNKNOWN; 2030 break; 2031 } 2032 spi_signalling(shost) = type; 2033 } 2034 2035 static void sym2_set_offset(struct scsi_target *starget, int offset) 2036 { 2037 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 2038 struct sym_hcb *np = sym_get_hcb(shost); 2039 struct sym_tcb *tp = &np->target[starget->id]; 2040 2041 tp->tgoal.offset = offset; 2042 tp->tgoal.check_nego = 1; 2043 } 2044 2045 static void sym2_set_period(struct scsi_target *starget, int period) 2046 { 2047 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 2048 struct sym_hcb *np = sym_get_hcb(shost); 2049 struct sym_tcb *tp = &np->target[starget->id]; 2050 2051 /* have to have DT for these transfers, but DT will also 2052 * set width, so check that this is allowed */ 2053 if (period <= np->minsync && spi_width(starget)) 2054 tp->tgoal.dt = 1; 2055 2056 tp->tgoal.period = period; 2057 tp->tgoal.check_nego = 1; 2058 } 2059 2060 static void sym2_set_width(struct scsi_target *starget, int width) 2061 { 2062 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 2063 struct sym_hcb *np = sym_get_hcb(shost); 2064 struct sym_tcb *tp = &np->target[starget->id]; 2065 2066 /* It is illegal to have DT set on narrow transfers. If DT is 2067 * clear, we must also clear IU and QAS. */ 2068 if (width == 0) 2069 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0; 2070 2071 tp->tgoal.width = width; 2072 tp->tgoal.check_nego = 1; 2073 } 2074 2075 static void sym2_set_dt(struct scsi_target *starget, int dt) 2076 { 2077 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 2078 struct sym_hcb *np = sym_get_hcb(shost); 2079 struct sym_tcb *tp = &np->target[starget->id]; 2080 2081 /* We must clear QAS and IU if DT is clear */ 2082 if (dt) 2083 tp->tgoal.dt = 1; 2084 else 2085 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0; 2086 tp->tgoal.check_nego = 1; 2087 } 2088 2089 #if 0 2090 static void sym2_set_iu(struct scsi_target *starget, int iu) 2091 { 2092 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 2093 struct sym_hcb *np = sym_get_hcb(shost); 2094 struct sym_tcb *tp = &np->target[starget->id]; 2095 2096 if (iu) 2097 tp->tgoal.iu = tp->tgoal.dt = 1; 2098 else 2099 tp->tgoal.iu = 0; 2100 tp->tgoal.check_nego = 1; 2101 } 2102 2103 static void sym2_set_qas(struct scsi_target *starget, int qas) 2104 { 2105 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 2106 struct sym_hcb *np = sym_get_hcb(shost); 2107 struct sym_tcb *tp = &np->target[starget->id]; 2108 2109 if (qas) 2110 tp->tgoal.dt = tp->tgoal.qas = 1; 2111 else 2112 tp->tgoal.qas = 0; 2113 tp->tgoal.check_nego = 1; 2114 } 2115 #endif 2116 2117 static struct spi_function_template sym2_transport_functions = { 2118 .set_offset = sym2_set_offset, 2119 .show_offset = 1, 2120 .set_period = sym2_set_period, 2121 .show_period = 1, 2122 .set_width = sym2_set_width, 2123 .show_width = 1, 2124 .set_dt = sym2_set_dt, 2125 .show_dt = 1, 2126 #if 0 2127 .set_iu = sym2_set_iu, 2128 .show_iu = 1, 2129 .set_qas = sym2_set_qas, 2130 .show_qas = 1, 2131 #endif 2132 .get_signalling = sym2_get_signalling, 2133 }; 2134 2135 static struct pci_device_id sym2_id_table[] __devinitdata = { 2136 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C810, 2137 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2138 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C820, 2139 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */ 2140 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C825, 2141 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2142 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C815, 2143 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2144 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C810AP, 2145 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */ 2146 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C860, 2147 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2148 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1510, 2149 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2150 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C896, 2151 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2152 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C895, 2153 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2154 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C885, 2155 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2156 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875, 2157 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2158 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C1510, 2159 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */ 2160 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C895A, 2161 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2162 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C875A, 2163 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2164 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_33, 2165 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2166 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_66, 2167 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2168 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875J, 2169 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2170 { 0, } 2171 }; 2172 2173 MODULE_DEVICE_TABLE(pci, sym2_id_table); 2174 2175 static struct pci_driver sym2_driver = { 2176 .name = NAME53C8XX, 2177 .id_table = sym2_id_table, 2178 .probe = sym2_probe, 2179 .remove = __devexit_p(sym2_remove), 2180 }; 2181 2182 static int __init sym2_init(void) 2183 { 2184 int error; 2185 2186 sym2_setup_params(); 2187 sym2_transport_template = spi_attach_transport(&sym2_transport_functions); 2188 if (!sym2_transport_template) 2189 return -ENODEV; 2190 2191 error = pci_register_driver(&sym2_driver); 2192 if (error) 2193 spi_release_transport(sym2_transport_template); 2194 return error; 2195 } 2196 2197 static void __exit sym2_exit(void) 2198 { 2199 pci_unregister_driver(&sym2_driver); 2200 spi_release_transport(sym2_transport_template); 2201 } 2202 2203 module_init(sym2_init); 2204 module_exit(sym2_exit); 2205