xref: /linux/drivers/scsi/sym53c8xx_2/sym_fw2.h (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
4  * of PCI-SCSI IO processors.
5  *
6  * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
7  *
8  * This driver is derived from the Linux sym53c8xx driver.
9  * Copyright (C) 1998-2000  Gerard Roudier
10  *
11  * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
12  * a port of the FreeBSD ncr driver to Linux-1.2.13.
13  *
14  * The original ncr driver has been written for 386bsd and FreeBSD by
15  *         Wolfgang Stanglmeier        <wolf@cologne.de>
16  *         Stefan Esser                <se@mi.Uni-Koeln.de>
17  * Copyright (C) 1994  Wolfgang Stanglmeier
18  *
19  * Other major contributions:
20  *
21  * NVRAM detection and reading.
22  * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
23  *
24  *-----------------------------------------------------------------------------
25  */
26 
27 /*
28  *  Scripts for SYMBIOS-Processor
29  *
30  *  We have to know the offsets of all labels before we reach
31  *  them (for forward jumps). Therefore we declare a struct
32  *  here. If you make changes inside the script,
33  *
34  *  DONT FORGET TO CHANGE THE LENGTHS HERE!
35  */
36 
37 /*
38  *  Script fragments which are loaded into the on-chip RAM
39  *  of 825A, 875, 876, 895, 895A, 896 and 1010 chips.
40  *  Must not exceed 4K bytes.
41  */
42 struct SYM_FWA_SCR {
43 	u32 start		[ 14];
44 	u32 getjob_begin	[  4];
45 	u32 getjob_end		[  4];
46 #ifdef SYM_CONF_TARGET_ROLE_SUPPORT
47 	u32 select		[  6];
48 #else
49 	u32 select		[  4];
50 #endif
51 #if	SYM_CONF_DMA_ADDRESSING_MODE == 2
52 	u32 is_dmap_dirty	[  4];
53 #endif
54 	u32 wf_sel_done		[  2];
55 	u32 sel_done		[  2];
56 	u32 send_ident		[  2];
57 #ifdef SYM_CONF_IARB_SUPPORT
58 	u32 select2		[  8];
59 #else
60 	u32 select2		[  2];
61 #endif
62 	u32 command		[  2];
63 	u32 dispatch		[ 28];
64 	u32 sel_no_cmd		[ 10];
65 	u32 init		[  6];
66 	u32 clrack		[  4];
67 	u32 datai_done		[ 10];
68 	u32 datai_done_wsr	[ 20];
69 	u32 datao_done		[ 10];
70 	u32 datao_done_wss	[  6];
71 	u32 datai_phase		[  4];
72 	u32 datao_phase		[  6];
73 	u32 msg_in		[  2];
74 	u32 msg_in2		[ 10];
75 #ifdef SYM_CONF_IARB_SUPPORT
76 	u32 status		[ 14];
77 #else
78 	u32 status		[ 10];
79 #endif
80 	u32 complete		[  6];
81 	u32 complete2		[ 12];
82 	u32 done		[ 14];
83 	u32 done_end		[  2];
84 	u32 complete_error	[  4];
85 	u32 save_dp		[ 12];
86 	u32 restore_dp		[  8];
87 	u32 disconnect		[ 12];
88 #ifdef SYM_CONF_IARB_SUPPORT
89 	u32 idle		[  4];
90 #else
91 	u32 idle		[  2];
92 #endif
93 #ifdef SYM_CONF_IARB_SUPPORT
94 	u32 ungetjob		[  6];
95 #else
96 	u32 ungetjob		[  4];
97 #endif
98 #ifdef SYM_CONF_TARGET_ROLE_SUPPORT
99 	u32 reselect		[  4];
100 #else
101 	u32 reselect		[  2];
102 #endif
103 	u32 reselected		[ 22];
104 	u32 resel_scntl4	[ 20];
105 	u32 resel_lun0		[  6];
106 #if   SYM_CONF_MAX_TASK*4 > 512
107 	u32 resel_tag		[ 26];
108 #elif SYM_CONF_MAX_TASK*4 > 256
109 	u32 resel_tag		[ 20];
110 #else
111 	u32 resel_tag		[ 16];
112 #endif
113 	u32 resel_dsa		[  2];
114 	u32 resel_dsa1		[  4];
115 	u32 resel_no_tag	[  6];
116 	u32 data_in		[SYM_CONF_MAX_SG * 2];
117 	u32 data_in2		[  4];
118 	u32 data_out		[SYM_CONF_MAX_SG * 2];
119 	u32 data_out2		[  4];
120 	u32 pm0_data		[ 12];
121 	u32 pm0_data_out	[  6];
122 	u32 pm0_data_end	[  6];
123 	u32 pm1_data		[ 12];
124 	u32 pm1_data_out	[  6];
125 	u32 pm1_data_end	[  6];
126 };
127 
128 /*
129  *  Script fragments which stay in main memory for all chips
130  *  except for chips that support 8K on-chip RAM.
131  */
132 struct SYM_FWB_SCR {
133 	u32 start64		[  2];
134 	u32 no_data		[  2];
135 #ifdef SYM_CONF_TARGET_ROLE_SUPPORT
136 	u32 sel_for_abort	[ 18];
137 #else
138 	u32 sel_for_abort	[ 16];
139 #endif
140 	u32 sel_for_abort_1	[  2];
141 	u32 msg_in_etc		[ 12];
142 	u32 msg_received	[  4];
143 	u32 msg_weird_seen	[  4];
144 	u32 msg_extended	[ 20];
145 	u32 msg_bad		[  6];
146 	u32 msg_weird		[  4];
147 	u32 msg_weird1		[  8];
148 
149 	u32 wdtr_resp		[  6];
150 	u32 send_wdtr		[  4];
151 	u32 sdtr_resp		[  6];
152 	u32 send_sdtr		[  4];
153 	u32 ppr_resp		[  6];
154 	u32 send_ppr		[  4];
155 	u32 nego_bad_phase	[  4];
156 	u32 msg_out		[  4];
157 	u32 msg_out_done	[  4];
158 	u32 data_ovrun		[  2];
159 	u32 data_ovrun1		[ 22];
160 	u32 data_ovrun2		[  8];
161 	u32 abort_resel		[ 16];
162 	u32 resend_ident	[  4];
163 	u32 ident_break		[  4];
164 	u32 ident_break_atn	[  4];
165 	u32 sdata_in		[  6];
166 	u32 resel_bad_lun	[  4];
167 	u32 bad_i_t_l		[  4];
168 	u32 bad_i_t_l_q		[  4];
169 	u32 bad_status		[  6];
170 	u32 pm_handle		[ 20];
171 	u32 pm_handle1		[  4];
172 	u32 pm_save		[  4];
173 	u32 pm0_save		[ 12];
174 	u32 pm_save_end		[  4];
175 	u32 pm1_save		[ 14];
176 
177 	/* WSR handling */
178 	u32 pm_wsr_handle	[ 38];
179 	u32 wsr_ma_helper	[  4];
180 
181 	/* Data area */
182 	u32 zero		[  1];
183 	u32 scratch		[  1];
184 	u32 pm0_data_addr	[  1];
185 	u32 pm1_data_addr	[  1];
186 	u32 done_pos		[  1];
187 	u32 startpos		[  1];
188 	u32 targtbl		[  1];
189 };
190 
191 /*
192  *  Script fragments used at initialisations.
193  *  Only runs out of main memory.
194  */
195 struct SYM_FWZ_SCR {
196 	u32 snooptest		[  6];
197 	u32 snoopend		[  2];
198 };
199 
200 static struct SYM_FWA_SCR SYM_FWA_SCR = {
201 /*--------------------------< START >----------------------------*/ {
202 	/*
203 	 *  Switch the LED on.
204 	 *  Will be patched with a NO_OP if LED
205 	 *  not needed or not desired.
206 	 */
207 	SCR_REG_REG (gpreg, SCR_AND, 0xfe),
208 		0,
209 	/*
210 	 *      Clear SIGP.
211 	 */
212 	SCR_FROM_REG (ctest2),
213 		0,
214 	/*
215 	 *  Stop here if the C code wants to perform
216 	 *  some error recovery procedure manually.
217 	 *  (Indicate this by setting SEM in ISTAT)
218 	 */
219 	SCR_FROM_REG (istat),
220 		0,
221 	/*
222 	 *  Report to the C code the next position in
223 	 *  the start queue the SCRIPTS will schedule.
224 	 *  The C code must not change SCRATCHA.
225 	 */
226 	SCR_LOAD_ABS (scratcha, 4),
227 		PADDR_B (startpos),
228 	SCR_INT ^ IFTRUE (MASK (SEM, SEM)),
229 		SIR_SCRIPT_STOPPED,
230 	/*
231 	 *  Start the next job.
232 	 *
233 	 *  @DSA     = start point for this job.
234 	 *  SCRATCHA = address of this job in the start queue.
235 	 *
236 	 *  We will restore startpos with SCRATCHA if we fails the
237 	 *  arbitration or if it is the idle job.
238 	 *
239 	 *  The below GETJOB_BEGIN to GETJOB_END section of SCRIPTS
240 	 *  is a critical path. If it is partially executed, it then
241 	 *  may happen that the job address is not yet in the DSA
242 	 *  and the next queue position points to the next JOB.
243 	 */
244 	SCR_LOAD_ABS (dsa, 4),
245 		PADDR_B (startpos),
246 	SCR_LOAD_REL (temp, 4),
247 		4,
248 }/*-------------------------< GETJOB_BEGIN >---------------------*/,{
249 	SCR_STORE_ABS (temp, 4),
250 		PADDR_B (startpos),
251 	SCR_LOAD_REL (dsa, 4),
252 		0,
253 }/*-------------------------< GETJOB_END >-----------------------*/,{
254 	SCR_LOAD_REL (temp, 4),
255 		0,
256 	SCR_RETURN,
257 		0,
258 }/*-------------------------< SELECT >---------------------------*/,{
259 	/*
260 	 *  DSA	contains the address of a scheduled
261 	 *  	data structure.
262 	 *
263 	 *  SCRATCHA contains the address of the start queue
264 	 *  	entry which points to the next job.
265 	 *
266 	 *  Set Initiator mode.
267 	 *
268 	 *  (Target mode is left as an exercise for the reader)
269 	 */
270 #ifdef SYM_CONF_TARGET_ROLE_SUPPORT
271 	SCR_CLR (SCR_TRG),
272 		0,
273 #endif
274 	/*
275 	 *      And try to select this target.
276 	 */
277 	SCR_SEL_TBL_ATN ^ offsetof (struct sym_dsb, select),
278 		PADDR_A (ungetjob),
279 	/*
280 	 *  Now there are 4 possibilities:
281 	 *
282 	 *  (1) The chip loses arbitration.
283 	 *  This is ok, because it will try again,
284 	 *  when the bus becomes idle.
285 	 *  (But beware of the timeout function!)
286 	 *
287 	 *  (2) The chip is reselected.
288 	 *  Then the script processor takes the jump
289 	 *  to the RESELECT label.
290 	 *
291 	 *  (3) The chip wins arbitration.
292 	 *  Then it will execute SCRIPTS instruction until
293 	 *  the next instruction that checks SCSI phase.
294 	 *  Then will stop and wait for selection to be
295 	 *  complete or selection time-out to occur.
296 	 *
297 	 *  After having won arbitration, the SCRIPTS
298 	 *  processor is able to execute instructions while
299 	 *  the SCSI core is performing SCSI selection.
300 	 */
301 	/*
302 	 *      Initialize the status registers
303 	 */
304 	SCR_LOAD_REL (scr0, 4),
305 		offsetof (struct sym_ccb, phys.head.status),
306 	/*
307 	 *  We may need help from CPU if the DMA segment
308 	 *  registers aren't up-to-date for this IO.
309 	 *  Patched with NOOP for chips that donnot
310 	 *  support DAC addressing.
311 	 */
312 #if	SYM_CONF_DMA_ADDRESSING_MODE == 2
313 }/*-------------------------< IS_DMAP_DIRTY >--------------------*/,{
314 	SCR_FROM_REG (HX_REG),
315 		0,
316 	SCR_INT ^ IFTRUE (MASK (HX_DMAP_DIRTY, HX_DMAP_DIRTY)),
317 		SIR_DMAP_DIRTY,
318 #endif
319 }/*-------------------------< WF_SEL_DONE >----------------------*/,{
320 	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_OUT)),
321 		SIR_SEL_ATN_NO_MSG_OUT,
322 }/*-------------------------< SEL_DONE >-------------------------*/,{
323 	/*
324 	 *  C1010-33 errata work-around.
325 	 *  Due to a race, the SCSI core may not have
326 	 *  loaded SCNTL3 on SEL_TBL instruction.
327 	 *  We reload it once phase is stable.
328 	 *  Patched with a NOOP for other chips.
329 	 */
330 	SCR_LOAD_REL (scntl3, 1),
331 		offsetof(struct sym_dsb, select.sel_scntl3),
332 }/*-------------------------< SEND_IDENT >-----------------------*/,{
333 	/*
334 	 *  Selection complete.
335 	 *  Send the IDENTIFY and possibly the TAG message
336 	 *  and negotiation message if present.
337 	 */
338 	SCR_MOVE_TBL ^ SCR_MSG_OUT,
339 		offsetof (struct sym_dsb, smsg),
340 }/*-------------------------< SELECT2 >--------------------------*/,{
341 #ifdef SYM_CONF_IARB_SUPPORT
342 	/*
343 	 *  Set IMMEDIATE ARBITRATION if we have been given
344 	 *  a hint to do so. (Some job to do after this one).
345 	 */
346 	SCR_FROM_REG (HF_REG),
347 		0,
348 	SCR_JUMPR ^ IFFALSE (MASK (HF_HINT_IARB, HF_HINT_IARB)),
349 		8,
350 	SCR_REG_REG (scntl1, SCR_OR, IARB),
351 		0,
352 #endif
353 	/*
354 	 *  Anticipate the COMMAND phase.
355 	 *  This is the PHASE we expect at this point.
356 	 */
357 	SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
358 		PADDR_A (sel_no_cmd),
359 }/*-------------------------< COMMAND >--------------------------*/,{
360 	/*
361 	 *  ... and send the command
362 	 */
363 	SCR_MOVE_TBL ^ SCR_COMMAND,
364 		offsetof (struct sym_dsb, cmd),
365 }/*-------------------------< DISPATCH >-------------------------*/,{
366 	/*
367 	 *  MSG_IN is the only phase that shall be
368 	 *  entered at least once for each (re)selection.
369 	 *  So we test it first.
370 	 */
371 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
372 		PADDR_A (msg_in),
373 	SCR_JUMP ^ IFTRUE (IF (SCR_DATA_OUT)),
374 		PADDR_A (datao_phase),
375 	SCR_JUMP ^ IFTRUE (IF (SCR_DATA_IN)),
376 		PADDR_A (datai_phase),
377 	SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
378 		PADDR_A (status),
379 	SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
380 		PADDR_A (command),
381 	SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
382 		PADDR_B (msg_out),
383 	/*
384 	 *  Discard as many illegal phases as
385 	 *  required and tell the C code about.
386 	 */
387 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_OUT)),
388 		16,
389 	SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
390 		HADDR_1 (scratch),
391 	SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_OUT)),
392 		-16,
393 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_IN)),
394 		16,
395 	SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
396 		HADDR_1 (scratch),
397 	SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_IN)),
398 		-16,
399 	SCR_INT,
400 		SIR_BAD_PHASE,
401 	SCR_JUMP,
402 		PADDR_A (dispatch),
403 }/*-------------------------< SEL_NO_CMD >-----------------------*/,{
404 	/*
405 	 *  The target does not switch to command
406 	 *  phase after IDENTIFY has been sent.
407 	 *
408 	 *  If it stays in MSG OUT phase send it
409 	 *  the IDENTIFY again.
410 	 */
411 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
412 		PADDR_B (resend_ident),
413 	/*
414 	 *  If target does not switch to MSG IN phase
415 	 *  and we sent a negotiation, assert the
416 	 *  failure immediately.
417 	 */
418 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
419 		PADDR_A (dispatch),
420 	SCR_FROM_REG (HS_REG),
421 		0,
422 	SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
423 		SIR_NEGO_FAILED,
424 	/*
425 	 *  Jump to dispatcher.
426 	 */
427 	SCR_JUMP,
428 		PADDR_A (dispatch),
429 }/*-------------------------< INIT >-----------------------------*/,{
430 	/*
431 	 *  Wait for the SCSI RESET signal to be
432 	 *  inactive before restarting operations,
433 	 *  since the chip may hang on SEL_ATN
434 	 *  if SCSI RESET is active.
435 	 */
436 	SCR_FROM_REG (sstat0),
437 		0,
438 	SCR_JUMPR ^ IFTRUE (MASK (IRST, IRST)),
439 		-16,
440 	SCR_JUMP,
441 		PADDR_A (start),
442 }/*-------------------------< CLRACK >---------------------------*/,{
443 	/*
444 	 *  Terminate possible pending message phase.
445 	 */
446 	SCR_CLR (SCR_ACK),
447 		0,
448 	SCR_JUMP,
449 		PADDR_A (dispatch),
450 }/*-------------------------< DATAI_DONE >-----------------------*/,{
451 	/*
452 	 *  Save current pointer to LASTP.
453 	 */
454 	SCR_STORE_REL (temp, 4),
455 		offsetof (struct sym_ccb, phys.head.lastp),
456 	/*
457 	 *  If the SWIDE is not full, jump to dispatcher.
458 	 *  We anticipate a STATUS phase.
459 	 */
460 	SCR_FROM_REG (scntl2),
461 		0,
462 	SCR_JUMP ^ IFTRUE (MASK (WSR, WSR)),
463 		PADDR_A (datai_done_wsr),
464 	SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
465 		PADDR_A (status),
466 	SCR_JUMP,
467 		PADDR_A (dispatch),
468 }/*-------------------------< DATAI_DONE_WSR >-------------------*/,{
469 	/*
470 	 *  The SWIDE is full.
471 	 *  Clear this condition.
472 	 */
473 	SCR_REG_REG (scntl2, SCR_OR, WSR),
474 		0,
475 	/*
476 	 *  We are expecting an IGNORE RESIDUE message
477 	 *  from the device, otherwise we are in data
478 	 *  overrun condition. Check against MSG_IN phase.
479 	 */
480 	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
481 		SIR_SWIDE_OVERRUN,
482 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
483 		PADDR_A (dispatch),
484 	/*
485 	 *  We are in MSG_IN phase,
486 	 *  Read the first byte of the message.
487 	 *  If it is not an IGNORE RESIDUE message,
488 	 *  signal overrun and jump to message
489 	 *  processing.
490 	 */
491 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
492 		HADDR_1 (msgin[0]),
493 	SCR_INT ^ IFFALSE (DATA (M_IGN_RESIDUE)),
494 		SIR_SWIDE_OVERRUN,
495 	SCR_JUMP ^ IFFALSE (DATA (M_IGN_RESIDUE)),
496 		PADDR_A (msg_in2),
497 	/*
498 	 *  We got the message we expected.
499 	 *  Read the 2nd byte, and jump to dispatcher.
500 	 */
501 	SCR_CLR (SCR_ACK),
502 		0,
503 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
504 		HADDR_1 (msgin[1]),
505 	SCR_CLR (SCR_ACK),
506 		0,
507 	SCR_JUMP,
508 		PADDR_A (dispatch),
509 }/*-------------------------< DATAO_DONE >-----------------------*/,{
510 	/*
511 	 *  Save current pointer to LASTP.
512 	 */
513 	SCR_STORE_REL (temp, 4),
514 		offsetof (struct sym_ccb, phys.head.lastp),
515 	/*
516 	 *  If the SODL is not full jump to dispatcher.
517 	 *  We anticipate a STATUS phase.
518 	 */
519 	SCR_FROM_REG (scntl2),
520 		0,
521 	SCR_JUMP ^ IFTRUE (MASK (WSS, WSS)),
522 		PADDR_A (datao_done_wss),
523 	SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
524 		PADDR_A (status),
525 	SCR_JUMP,
526 		PADDR_A (dispatch),
527 }/*-------------------------< DATAO_DONE_WSS >-------------------*/,{
528 	/*
529 	 *  The SODL is full, clear this condition.
530 	 */
531 	SCR_REG_REG (scntl2, SCR_OR, WSS),
532 		0,
533 	/*
534 	 *  And signal a DATA UNDERRUN condition
535 	 *  to the C code.
536 	 */
537 	SCR_INT,
538 		SIR_SODL_UNDERRUN,
539 	SCR_JUMP,
540 		PADDR_A (dispatch),
541 }/*-------------------------< DATAI_PHASE >----------------------*/,{
542 	/*
543 	 *  Jump to current pointer.
544 	 */
545 	SCR_LOAD_REL (temp, 4),
546 		offsetof (struct sym_ccb, phys.head.lastp),
547 	SCR_RETURN,
548 		0,
549 }/*-------------------------< DATAO_PHASE >----------------------*/,{
550 	/*
551 	 *  C1010-66 errata work-around.
552 	 *  Extra clocks of data hold must be inserted
553 	 *  in DATA OUT phase on 33 MHz PCI BUS.
554 	 *  Patched with a NOOP for other chips.
555 	 */
556 	SCR_REG_REG (scntl4, SCR_OR, (XCLKH_DT|XCLKH_ST)),
557 		0,
558 	/*
559 	 *  Jump to current pointer.
560 	 */
561 	SCR_LOAD_REL (temp, 4),
562 		offsetof (struct sym_ccb, phys.head.lastp),
563 	SCR_RETURN,
564 		0,
565 }/*-------------------------< MSG_IN >---------------------------*/,{
566 	/*
567 	 *  Get the first byte of the message.
568 	 *
569 	 *  The script processor doesn't negate the
570 	 *  ACK signal after this transfer.
571 	 */
572 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
573 		HADDR_1 (msgin[0]),
574 }/*-------------------------< MSG_IN2 >--------------------------*/,{
575 	/*
576 	 *  Check first against 1 byte messages
577 	 *  that we handle from SCRIPTS.
578 	 */
579 	SCR_JUMP ^ IFTRUE (DATA (M_COMPLETE)),
580 		PADDR_A (complete),
581 	SCR_JUMP ^ IFTRUE (DATA (M_DISCONNECT)),
582 		PADDR_A (disconnect),
583 	SCR_JUMP ^ IFTRUE (DATA (M_SAVE_DP)),
584 		PADDR_A (save_dp),
585 	SCR_JUMP ^ IFTRUE (DATA (M_RESTORE_DP)),
586 		PADDR_A (restore_dp),
587 	/*
588 	 *  We handle all other messages from the
589 	 *  C code, so no need to waste on-chip RAM
590 	 *  for those ones.
591 	 */
592 	SCR_JUMP,
593 		PADDR_B (msg_in_etc),
594 }/*-------------------------< STATUS >---------------------------*/,{
595 	/*
596 	 *  get the status
597 	 */
598 	SCR_MOVE_ABS (1) ^ SCR_STATUS,
599 		HADDR_1 (scratch),
600 #ifdef SYM_CONF_IARB_SUPPORT
601 	/*
602 	 *  If STATUS is not GOOD, clear IMMEDIATE ARBITRATION,
603 	 *  since we may have to tamper the start queue from
604 	 *  the C code.
605 	 */
606 	SCR_JUMPR ^ IFTRUE (DATA (S_GOOD)),
607 		8,
608 	SCR_REG_REG (scntl1, SCR_AND, ~IARB),
609 		0,
610 #endif
611 	/*
612 	 *  save status to scsi_status.
613 	 *  mark as complete.
614 	 */
615 	SCR_TO_REG (SS_REG),
616 		0,
617 	SCR_LOAD_REG (HS_REG, HS_COMPLETE),
618 		0,
619 	/*
620 	 *  Anticipate the MESSAGE PHASE for
621 	 *  the TASK COMPLETE message.
622 	 */
623 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
624 		PADDR_A (msg_in),
625 	SCR_JUMP,
626 		PADDR_A (dispatch),
627 }/*-------------------------< COMPLETE >-------------------------*/,{
628 	/*
629 	 *  Complete message.
630 	 *
631 	 *  When we terminate the cycle by clearing ACK,
632 	 *  the target may disconnect immediately.
633 	 *
634 	 *  We don't want to be told of an "unexpected disconnect",
635 	 *  so we disable this feature.
636 	 */
637 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
638 		0,
639 	/*
640 	 *  Terminate cycle ...
641 	 */
642 	SCR_CLR (SCR_ACK|SCR_ATN),
643 		0,
644 	/*
645 	 *  ... and wait for the disconnect.
646 	 */
647 	SCR_WAIT_DISC,
648 		0,
649 }/*-------------------------< COMPLETE2 >------------------------*/,{
650 	/*
651 	 *  Save host status.
652 	 */
653 	SCR_STORE_REL (scr0, 4),
654 		offsetof (struct sym_ccb, phys.head.status),
655 	/*
656 	 *  Some bridges may reorder DMA writes to memory.
657 	 *  We donnot want the CPU to deal with completions
658 	 *  without all the posted write having been flushed
659 	 *  to memory. This DUMMY READ should flush posted
660 	 *  buffers prior to the CPU having to deal with
661 	 *  completions.
662 	 */
663 	SCR_LOAD_REL (scr0, 4),	/* DUMMY READ */
664 		offsetof (struct sym_ccb, phys.head.status),
665 
666 	/*
667 	 *  If command resulted in not GOOD status,
668 	 *  call the C code if needed.
669 	 */
670 	SCR_FROM_REG (SS_REG),
671 		0,
672 	SCR_CALL ^ IFFALSE (DATA (S_GOOD)),
673 		PADDR_B (bad_status),
674 	/*
675 	 *  If we performed an auto-sense, call
676 	 *  the C code to synchronyze task aborts
677 	 *  with UNIT ATTENTION conditions.
678 	 */
679 	SCR_FROM_REG (HF_REG),
680 		0,
681 	SCR_JUMP ^ IFFALSE (MASK (0 ,(HF_SENSE|HF_EXT_ERR))),
682 		PADDR_A (complete_error),
683 }/*-------------------------< DONE >-----------------------------*/,{
684 	/*
685 	 *  Copy the DSA to the DONE QUEUE and
686 	 *  signal completion to the host.
687 	 *  If we are interrupted between DONE
688 	 *  and DONE_END, we must reset, otherwise
689 	 *  the completed CCB may be lost.
690 	 */
691 	SCR_STORE_ABS (dsa, 4),
692 		PADDR_B (scratch),
693 	SCR_LOAD_ABS (dsa, 4),
694 		PADDR_B (done_pos),
695 	SCR_LOAD_ABS (scratcha, 4),
696 		PADDR_B (scratch),
697 	SCR_STORE_REL (scratcha, 4),
698 		0,
699 	/*
700 	 *  The instruction below reads the DONE QUEUE next
701 	 *  free position from memory.
702 	 *  In addition it ensures that all PCI posted writes
703 	 *  are flushed and so the DSA value of the done
704 	 *  CCB is visible by the CPU before INTFLY is raised.
705 	 */
706 	SCR_LOAD_REL (scratcha, 4),
707 		4,
708 	SCR_INT_FLY,
709 		0,
710 	SCR_STORE_ABS (scratcha, 4),
711 		PADDR_B (done_pos),
712 }/*-------------------------< DONE_END >-------------------------*/,{
713 	SCR_JUMP,
714 		PADDR_A (start),
715 }/*-------------------------< COMPLETE_ERROR >-------------------*/,{
716 	SCR_LOAD_ABS (scratcha, 4),
717 		PADDR_B (startpos),
718 	SCR_INT,
719 		SIR_COMPLETE_ERROR,
720 }/*-------------------------< SAVE_DP >--------------------------*/,{
721 	/*
722 	 *  Clear ACK immediately.
723 	 *  No need to delay it.
724 	 */
725 	SCR_CLR (SCR_ACK),
726 		0,
727 	/*
728 	 *  Keep track we received a SAVE DP, so
729 	 *  we will switch to the other PM context
730 	 *  on the next PM since the DP may point
731 	 *  to the current PM context.
732 	 */
733 	SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED),
734 		0,
735 	/*
736 	 *  SAVE_DP message:
737 	 *  Copy LASTP to SAVEP.
738 	 */
739 	SCR_LOAD_REL (scratcha, 4),
740 		offsetof (struct sym_ccb, phys.head.lastp),
741 	SCR_STORE_REL (scratcha, 4),
742 		offsetof (struct sym_ccb, phys.head.savep),
743 	/*
744 	 *  Anticipate the MESSAGE PHASE for
745 	 *  the DISCONNECT message.
746 	 */
747 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
748 		PADDR_A (msg_in),
749 	SCR_JUMP,
750 		PADDR_A (dispatch),
751 }/*-------------------------< RESTORE_DP >-----------------------*/,{
752 	/*
753 	 *  Clear ACK immediately.
754 	 *  No need to delay it.
755 	 */
756 	SCR_CLR (SCR_ACK),
757 		0,
758 	/*
759 	 *  Copy SAVEP to LASTP.
760 	 */
761 	SCR_LOAD_REL  (scratcha, 4),
762 		offsetof (struct sym_ccb, phys.head.savep),
763 	SCR_STORE_REL (scratcha, 4),
764 		offsetof (struct sym_ccb, phys.head.lastp),
765 	SCR_JUMP,
766 		PADDR_A (dispatch),
767 }/*-------------------------< DISCONNECT >-----------------------*/,{
768 	/*
769 	 *  DISCONNECTing  ...
770 	 *
771 	 *  disable the "unexpected disconnect" feature,
772 	 *  and remove the ACK signal.
773 	 */
774 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
775 		0,
776 	SCR_CLR (SCR_ACK|SCR_ATN),
777 		0,
778 	/*
779 	 *  Wait for the disconnect.
780 	 */
781 	SCR_WAIT_DISC,
782 		0,
783 	/*
784 	 *  Status is: DISCONNECTED.
785 	 */
786 	SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
787 		0,
788 	/*
789 	 *  Save host status.
790 	 */
791 	SCR_STORE_REL (scr0, 4),
792 		offsetof (struct sym_ccb, phys.head.status),
793 	SCR_JUMP,
794 		PADDR_A (start),
795 }/*-------------------------< IDLE >-----------------------------*/,{
796 	/*
797 	 *  Nothing to do?
798 	 *  Switch the LED off and wait for reselect.
799 	 *  Will be patched with a NO_OP if LED
800 	 *  not needed or not desired.
801 	 */
802 	SCR_REG_REG (gpreg, SCR_OR, 0x01),
803 		0,
804 #ifdef SYM_CONF_IARB_SUPPORT
805 	SCR_JUMPR,
806 		8,
807 #endif
808 }/*-------------------------< UNGETJOB >-------------------------*/,{
809 #ifdef SYM_CONF_IARB_SUPPORT
810 	/*
811 	 *  Set IMMEDIATE ARBITRATION, for the next time.
812 	 *  This will give us better chance to win arbitration
813 	 *  for the job we just wanted to do.
814 	 */
815 	SCR_REG_REG (scntl1, SCR_OR, IARB),
816 		0,
817 #endif
818 	/*
819 	 *  We are not able to restart the SCRIPTS if we are
820 	 *  interrupted and these instruction haven't been
821 	 *  all executed. BTW, this is very unlikely to
822 	 *  happen, but we check that from the C code.
823 	 */
824 	SCR_LOAD_REG (dsa, 0xff),
825 		0,
826 	SCR_STORE_ABS (scratcha, 4),
827 		PADDR_B (startpos),
828 }/*-------------------------< RESELECT >-------------------------*/,{
829 #ifdef SYM_CONF_TARGET_ROLE_SUPPORT
830 	/*
831 	 *  Make sure we are in initiator mode.
832 	 */
833 	SCR_CLR (SCR_TRG),
834 		0,
835 #endif
836 	/*
837 	 *  Sleep waiting for a reselection.
838 	 */
839 	SCR_WAIT_RESEL,
840 		PADDR_A(start),
841 }/*-------------------------< RESELECTED >-----------------------*/,{
842 	/*
843 	 *  Switch the LED on.
844 	 *  Will be patched with a NO_OP if LED
845 	 *  not needed or not desired.
846 	 */
847 	SCR_REG_REG (gpreg, SCR_AND, 0xfe),
848 		0,
849 	/*
850 	 *  load the target id into the sdid
851 	 */
852 	SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
853 		0,
854 	SCR_TO_REG (sdid),
855 		0,
856 	/*
857 	 *  Load the target control block address
858 	 */
859 	SCR_LOAD_ABS (dsa, 4),
860 		PADDR_B (targtbl),
861 	SCR_SFBR_REG (dsa, SCR_SHL, 0),
862 		0,
863 	SCR_REG_REG (dsa, SCR_SHL, 0),
864 		0,
865 	SCR_REG_REG (dsa, SCR_AND, 0x3c),
866 		0,
867 	SCR_LOAD_REL (dsa, 4),
868 		0,
869 	/*
870 	 *  We expect MESSAGE IN phase.
871 	 *  If not, get help from the C code.
872 	 */
873 	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
874 		SIR_RESEL_NO_MSG_IN,
875 	/*
876 	 *  Load the legacy synchronous transfer registers.
877 	 */
878 	SCR_LOAD_REL (scntl3, 1),
879 		offsetof(struct sym_tcb, head.wval),
880 	SCR_LOAD_REL (sxfer, 1),
881 		offsetof(struct sym_tcb, head.sval),
882 }/*-------------------------< RESEL_SCNTL4 >---------------------*/,{
883 	/*
884 	 *  The C1010 uses a new synchronous timing scheme.
885 	 *  Will be patched with a NO_OP if not a C1010.
886 	 */
887 	SCR_LOAD_REL (scntl4, 1),
888 		offsetof(struct sym_tcb, head.uval),
889 	/*
890 	 *  Get the IDENTIFY message.
891 	 */
892 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
893 		HADDR_1 (msgin),
894 	/*
895 	 *  If IDENTIFY LUN #0, use a faster path
896 	 *  to find the LCB structure.
897 	 */
898 	SCR_JUMP ^ IFTRUE (MASK (0x80, 0xbf)),
899 		PADDR_A (resel_lun0),
900 	/*
901 	 *  If message isn't an IDENTIFY,
902 	 *  tell the C code about.
903 	 */
904 	SCR_INT ^ IFFALSE (MASK (0x80, 0x80)),
905 		SIR_RESEL_NO_IDENTIFY,
906 	/*
907 	 *  It is an IDENTIFY message,
908 	 *  Load the LUN control block address.
909 	 */
910 	SCR_LOAD_REL (dsa, 4),
911 		offsetof(struct sym_tcb, head.luntbl_sa),
912 	SCR_SFBR_REG (dsa, SCR_SHL, 0),
913 		0,
914 	SCR_REG_REG (dsa, SCR_SHL, 0),
915 		0,
916 	SCR_REG_REG (dsa, SCR_AND, 0xfc),
917 		0,
918 	SCR_LOAD_REL (dsa, 4),
919 		0,
920 	SCR_JUMPR,
921 		8,
922 }/*-------------------------< RESEL_LUN0 >-----------------------*/,{
923 	/*
924 	 *  LUN 0 special case (but usual one :))
925 	 */
926 	SCR_LOAD_REL (dsa, 4),
927 		offsetof(struct sym_tcb, head.lun0_sa),
928 	/*
929 	 *  Jump indirectly to the reselect action for this LUN.
930 	 */
931 	SCR_LOAD_REL (temp, 4),
932 		offsetof(struct sym_lcb, head.resel_sa),
933 	SCR_RETURN,
934 		0,
935 	/* In normal situations, we jump to RESEL_TAG or RESEL_NO_TAG */
936 }/*-------------------------< RESEL_TAG >------------------------*/,{
937 	/*
938 	 *  ACK the IDENTIFY previously received.
939 	 */
940 	SCR_CLR (SCR_ACK),
941 		0,
942 	/*
943 	 *  It shall be a tagged command.
944 	 *  Read SIMPLE+TAG.
945 	 *  The C code will deal with errors.
946 	 *  Aggressive optimization, isn't it? :)
947 	 */
948 	SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
949 		HADDR_1 (msgin),
950 	/*
951 	 *  Load the pointer to the tagged task
952 	 *  table for this LUN.
953 	 */
954 	SCR_LOAD_REL (dsa, 4),
955 		offsetof(struct sym_lcb, head.itlq_tbl_sa),
956 	/*
957 	 *  The SIDL still contains the TAG value.
958 	 *  Aggressive optimization, isn't it? :):)
959 	 */
960 	SCR_REG_SFBR (sidl, SCR_SHL, 0),
961 		0,
962 #if SYM_CONF_MAX_TASK*4 > 512
963 	SCR_JUMPR ^ IFFALSE (CARRYSET),
964 		8,
965 	SCR_REG_REG (dsa1, SCR_OR, 2),
966 		0,
967 	SCR_REG_REG (sfbr, SCR_SHL, 0),
968 		0,
969 	SCR_JUMPR ^ IFFALSE (CARRYSET),
970 		8,
971 	SCR_REG_REG (dsa1, SCR_OR, 1),
972 		0,
973 #elif SYM_CONF_MAX_TASK*4 > 256
974 	SCR_JUMPR ^ IFFALSE (CARRYSET),
975 		8,
976 	SCR_REG_REG (dsa1, SCR_OR, 1),
977 		0,
978 #endif
979 	/*
980 	 *  Retrieve the DSA of this task.
981 	 *  JUMP indirectly to the restart point of the CCB.
982 	 */
983 	SCR_SFBR_REG (dsa, SCR_AND, 0xfc),
984 		0,
985 	SCR_LOAD_REL (dsa, 4),
986 		0,
987 	SCR_LOAD_REL (temp, 4),
988 		offsetof(struct sym_ccb, phys.head.go.restart),
989 	SCR_RETURN,
990 		0,
991 	/* In normal situations we branch to RESEL_DSA */
992 }/*-------------------------< RESEL_DSA >------------------------*/,{
993 	/*
994 	 *  ACK the IDENTIFY or TAG previously received.
995 	 */
996 	SCR_CLR (SCR_ACK),
997 		0,
998 }/*-------------------------< RESEL_DSA1 >-----------------------*/,{
999 	/*
1000 	 *      Initialize the status registers
1001 	 */
1002 	SCR_LOAD_REL (scr0, 4),
1003 		offsetof (struct sym_ccb, phys.head.status),
1004 	/*
1005 	 *  Jump to dispatcher.
1006 	 */
1007 	SCR_JUMP,
1008 		PADDR_A (dispatch),
1009 }/*-------------------------< RESEL_NO_TAG >---------------------*/,{
1010 	/*
1011 	 *  Load the DSA with the unique ITL task.
1012 	 */
1013 	SCR_LOAD_REL (dsa, 4),
1014 		offsetof(struct sym_lcb, head.itl_task_sa),
1015 	/*
1016 	 *  JUMP indirectly to the restart point of the CCB.
1017 	 */
1018 	SCR_LOAD_REL (temp, 4),
1019 		offsetof(struct sym_ccb, phys.head.go.restart),
1020 	SCR_RETURN,
1021 		0,
1022 	/* In normal situations we branch to RESEL_DSA */
1023 }/*-------------------------< DATA_IN >--------------------------*/,{
1024 /*
1025  *  Because the size depends on the
1026  *  #define SYM_CONF_MAX_SG parameter,
1027  *  it is filled in at runtime.
1028  *
1029  *  ##===========< i=0; i<SYM_CONF_MAX_SG >=========
1030  *  ||	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1031  *  ||		offsetof (struct sym_dsb, data[ i]),
1032  *  ##==========================================
1033  */
1034 0
1035 }/*-------------------------< DATA_IN2 >-------------------------*/,{
1036 	SCR_CALL,
1037 		PADDR_A (datai_done),
1038 	SCR_JUMP,
1039 		PADDR_B (data_ovrun),
1040 }/*-------------------------< DATA_OUT >-------------------------*/,{
1041 /*
1042  *  Because the size depends on the
1043  *  #define SYM_CONF_MAX_SG parameter,
1044  *  it is filled in at runtime.
1045  *
1046  *  ##===========< i=0; i<SYM_CONF_MAX_SG >=========
1047  *  ||	SCR_CHMOV_TBL ^ SCR_DATA_OUT,
1048  *  ||		offsetof (struct sym_dsb, data[ i]),
1049  *  ##==========================================
1050  */
1051 0
1052 }/*-------------------------< DATA_OUT2 >------------------------*/,{
1053 	SCR_CALL,
1054 		PADDR_A (datao_done),
1055 	SCR_JUMP,
1056 		PADDR_B (data_ovrun),
1057 }/*-------------------------< PM0_DATA >-------------------------*/,{
1058 	/*
1059 	 *  Read our host flags to SFBR, so we will be able
1060 	 *  to check against the data direction we expect.
1061 	 */
1062 	SCR_FROM_REG (HF_REG),
1063 		0,
1064 	/*
1065 	 *  Check against actual DATA PHASE.
1066 	 */
1067 	SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
1068 		PADDR_A (pm0_data_out),
1069 	/*
1070 	 *  Actual phase is DATA IN.
1071 	 *  Check against expected direction.
1072 	 */
1073 	SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
1074 		PADDR_B (data_ovrun),
1075 	/*
1076 	 *  Keep track we are moving data from the
1077 	 *  PM0 DATA mini-script.
1078 	 */
1079 	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
1080 		0,
1081 	/*
1082 	 *  Move the data to memory.
1083 	 */
1084 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1085 		offsetof (struct sym_ccb, phys.pm0.sg),
1086 	SCR_JUMP,
1087 		PADDR_A (pm0_data_end),
1088 }/*-------------------------< PM0_DATA_OUT >---------------------*/,{
1089 	/*
1090 	 *  Actual phase is DATA OUT.
1091 	 *  Check against expected direction.
1092 	 */
1093 	SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
1094 		PADDR_B (data_ovrun),
1095 	/*
1096 	 *  Keep track we are moving data from the
1097 	 *  PM0 DATA mini-script.
1098 	 */
1099 	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
1100 		0,
1101 	/*
1102 	 *  Move the data from memory.
1103 	 */
1104 	SCR_CHMOV_TBL ^ SCR_DATA_OUT,
1105 		offsetof (struct sym_ccb, phys.pm0.sg),
1106 }/*-------------------------< PM0_DATA_END >---------------------*/,{
1107 	/*
1108 	 *  Clear the flag that told we were moving
1109 	 *  data from the PM0 DATA mini-script.
1110 	 */
1111 	SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM0)),
1112 		0,
1113 	/*
1114 	 *  Return to the previous DATA script which
1115 	 *  is guaranteed by design (if no bug) to be
1116 	 *  the main DATA script for this transfer.
1117 	 */
1118 	SCR_LOAD_REL (temp, 4),
1119 		offsetof (struct sym_ccb, phys.pm0.ret),
1120 	SCR_RETURN,
1121 		0,
1122 }/*-------------------------< PM1_DATA >-------------------------*/,{
1123 	/*
1124 	 *  Read our host flags to SFBR, so we will be able
1125 	 *  to check against the data direction we expect.
1126 	 */
1127 	SCR_FROM_REG (HF_REG),
1128 		0,
1129 	/*
1130 	 *  Check against actual DATA PHASE.
1131 	 */
1132 	SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
1133 		PADDR_A (pm1_data_out),
1134 	/*
1135 	 *  Actual phase is DATA IN.
1136 	 *  Check against expected direction.
1137 	 */
1138 	SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
1139 		PADDR_B (data_ovrun),
1140 	/*
1141 	 *  Keep track we are moving data from the
1142 	 *  PM1 DATA mini-script.
1143 	 */
1144 	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
1145 		0,
1146 	/*
1147 	 *  Move the data to memory.
1148 	 */
1149 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1150 		offsetof (struct sym_ccb, phys.pm1.sg),
1151 	SCR_JUMP,
1152 		PADDR_A (pm1_data_end),
1153 }/*-------------------------< PM1_DATA_OUT >---------------------*/,{
1154 	/*
1155 	 *  Actual phase is DATA OUT.
1156 	 *  Check against expected direction.
1157 	 */
1158 	SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
1159 		PADDR_B (data_ovrun),
1160 	/*
1161 	 *  Keep track we are moving data from the
1162 	 *  PM1 DATA mini-script.
1163 	 */
1164 	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
1165 		0,
1166 	/*
1167 	 *  Move the data from memory.
1168 	 */
1169 	SCR_CHMOV_TBL ^ SCR_DATA_OUT,
1170 		offsetof (struct sym_ccb, phys.pm1.sg),
1171 }/*-------------------------< PM1_DATA_END >---------------------*/,{
1172 	/*
1173 	 *  Clear the flag that told we were moving
1174 	 *  data from the PM1 DATA mini-script.
1175 	 */
1176 	SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM1)),
1177 		0,
1178 	/*
1179 	 *  Return to the previous DATA script which
1180 	 *  is guaranteed by design (if no bug) to be
1181 	 *  the main DATA script for this transfer.
1182 	 */
1183 	SCR_LOAD_REL (temp, 4),
1184 		offsetof (struct sym_ccb, phys.pm1.ret),
1185 	SCR_RETURN,
1186 		0,
1187 }/*-------------------------<>-----------------------------------*/
1188 };
1189 
1190 static struct SYM_FWB_SCR SYM_FWB_SCR = {
1191 /*--------------------------< START64 >--------------------------*/ {
1192 	/*
1193 	 *  SCRIPT entry point for the 895A, 896 and 1010.
1194 	 *  For now, there is no specific stuff for those
1195 	 *  chips at this point, but this may come.
1196 	 */
1197 	SCR_JUMP,
1198 		PADDR_A (init),
1199 }/*-------------------------< NO_DATA >--------------------------*/,{
1200 	SCR_JUMP,
1201 		PADDR_B (data_ovrun),
1202 }/*-------------------------< SEL_FOR_ABORT >--------------------*/,{
1203 	/*
1204 	 *  We are jumped here by the C code, if we have
1205 	 *  some target to reset or some disconnected
1206 	 *  job to abort. Since error recovery is a serious
1207 	 *  busyness, we will really reset the SCSI BUS, if
1208 	 *  case of a SCSI interrupt occurring in this path.
1209 	 */
1210 #ifdef SYM_CONF_TARGET_ROLE_SUPPORT
1211 	/*
1212 	 *  Set initiator mode.
1213 	 */
1214 	SCR_CLR (SCR_TRG),
1215 		0,
1216 #endif
1217 	/*
1218 	 *      And try to select this target.
1219 	 */
1220 	SCR_SEL_TBL_ATN ^ offsetof (struct sym_hcb, abrt_sel),
1221 		PADDR_A (reselect),
1222 	/*
1223 	 *  Wait for the selection to complete or
1224 	 *  the selection to time out.
1225 	 */
1226 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1227 		-8,
1228 	/*
1229 	 *  Call the C code.
1230 	 */
1231 	SCR_INT,
1232 		SIR_TARGET_SELECTED,
1233 	/*
1234 	 *  The C code should let us continue here.
1235 	 *  Send the 'kiss of death' message.
1236 	 *  We expect an immediate disconnect once
1237 	 *  the target has eaten the message.
1238 	 */
1239 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
1240 		0,
1241 	SCR_MOVE_TBL ^ SCR_MSG_OUT,
1242 		offsetof (struct sym_hcb, abrt_tbl),
1243 	SCR_CLR (SCR_ACK|SCR_ATN),
1244 		0,
1245 	SCR_WAIT_DISC,
1246 		0,
1247 	/*
1248 	 *  Tell the C code that we are done.
1249 	 */
1250 	SCR_INT,
1251 		SIR_ABORT_SENT,
1252 }/*-------------------------< SEL_FOR_ABORT_1 >------------------*/,{
1253 	/*
1254 	 *  Jump at scheduler.
1255 	 */
1256 	SCR_JUMP,
1257 		PADDR_A (start),
1258 }/*-------------------------< MSG_IN_ETC >-----------------------*/,{
1259 	/*
1260 	 *  If it is an EXTENDED (variable size message)
1261 	 *  Handle it.
1262 	 */
1263 	SCR_JUMP ^ IFTRUE (DATA (M_EXTENDED)),
1264 		PADDR_B (msg_extended),
1265 	/*
1266 	 *  Let the C code handle any other
1267 	 *  1 byte message.
1268 	 */
1269 	SCR_JUMP ^ IFTRUE (MASK (0x00, 0xf0)),
1270 		PADDR_B (msg_received),
1271 	SCR_JUMP ^ IFTRUE (MASK (0x10, 0xf0)),
1272 		PADDR_B (msg_received),
1273 	/*
1274 	 *  We donnot handle 2 bytes messages from SCRIPTS.
1275 	 *  So, let the C code deal with these ones too.
1276 	 */
1277 	SCR_JUMP ^ IFFALSE (MASK (0x20, 0xf0)),
1278 		PADDR_B (msg_weird_seen),
1279 	SCR_CLR (SCR_ACK),
1280 		0,
1281 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
1282 		HADDR_1 (msgin[1]),
1283 }/*-------------------------< MSG_RECEIVED >---------------------*/,{
1284 	SCR_LOAD_REL (scratcha, 4),	/* DUMMY READ */
1285 		0,
1286 	SCR_INT,
1287 		SIR_MSG_RECEIVED,
1288 }/*-------------------------< MSG_WEIRD_SEEN >-------------------*/,{
1289 	SCR_LOAD_REL (scratcha, 4),	/* DUMMY READ */
1290 		0,
1291 	SCR_INT,
1292 		SIR_MSG_WEIRD,
1293 }/*-------------------------< MSG_EXTENDED >---------------------*/,{
1294 	/*
1295 	 *  Clear ACK and get the next byte
1296 	 *  assumed to be the message length.
1297 	 */
1298 	SCR_CLR (SCR_ACK),
1299 		0,
1300 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
1301 		HADDR_1 (msgin[1]),
1302 	/*
1303 	 *  Try to catch some unlikely situations as 0 length
1304 	 *  or too large the length.
1305 	 */
1306 	SCR_JUMP ^ IFTRUE (DATA (0)),
1307 		PADDR_B (msg_weird_seen),
1308 	SCR_TO_REG (scratcha),
1309 		0,
1310 	SCR_REG_REG (sfbr, SCR_ADD, (256-8)),
1311 		0,
1312 	SCR_JUMP ^ IFTRUE (CARRYSET),
1313 		PADDR_B (msg_weird_seen),
1314 	/*
1315 	 *  We donnot handle extended messages from SCRIPTS.
1316 	 *  Read the amount of data corresponding to the
1317 	 *  message length and call the C code.
1318 	 */
1319 	SCR_STORE_REL (scratcha, 1),
1320 		offsetof (struct sym_dsb, smsg_ext.size),
1321 	SCR_CLR (SCR_ACK),
1322 		0,
1323 	SCR_MOVE_TBL ^ SCR_MSG_IN,
1324 		offsetof (struct sym_dsb, smsg_ext),
1325 	SCR_JUMP,
1326 		PADDR_B (msg_received),
1327 }/*-------------------------< MSG_BAD >--------------------------*/,{
1328 	/*
1329 	 *  unimplemented message - reject it.
1330 	 */
1331 	SCR_INT,
1332 		SIR_REJECT_TO_SEND,
1333 	SCR_SET (SCR_ATN),
1334 		0,
1335 	SCR_JUMP,
1336 		PADDR_A (clrack),
1337 }/*-------------------------< MSG_WEIRD >------------------------*/,{
1338 	/*
1339 	 *  weird message received
1340 	 *  ignore all MSG IN phases and reject it.
1341 	 */
1342 	SCR_INT,
1343 		SIR_REJECT_TO_SEND,
1344 	SCR_SET (SCR_ATN),
1345 		0,
1346 }/*-------------------------< MSG_WEIRD1 >-----------------------*/,{
1347 	SCR_CLR (SCR_ACK),
1348 		0,
1349 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
1350 		PADDR_A (dispatch),
1351 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
1352 		HADDR_1 (scratch),
1353 	SCR_JUMP,
1354 		PADDR_B (msg_weird1),
1355 }/*-------------------------< WDTR_RESP >------------------------*/,{
1356 	/*
1357 	 *  let the target fetch our answer.
1358 	 */
1359 	SCR_SET (SCR_ATN),
1360 		0,
1361 	SCR_CLR (SCR_ACK),
1362 		0,
1363 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1364 		PADDR_B (nego_bad_phase),
1365 }/*-------------------------< SEND_WDTR >------------------------*/,{
1366 	/*
1367 	 *  Send the M_X_WIDE_REQ
1368 	 */
1369 	SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
1370 		HADDR_1 (msgout),
1371 	SCR_JUMP,
1372 		PADDR_B (msg_out_done),
1373 }/*-------------------------< SDTR_RESP >------------------------*/,{
1374 	/*
1375 	 *  let the target fetch our answer.
1376 	 */
1377 	SCR_SET (SCR_ATN),
1378 		0,
1379 	SCR_CLR (SCR_ACK),
1380 		0,
1381 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1382 		PADDR_B (nego_bad_phase),
1383 }/*-------------------------< SEND_SDTR >------------------------*/,{
1384 	/*
1385 	 *  Send the M_X_SYNC_REQ
1386 	 */
1387 	SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
1388 		HADDR_1 (msgout),
1389 	SCR_JUMP,
1390 		PADDR_B (msg_out_done),
1391 }/*-------------------------< PPR_RESP >-------------------------*/,{
1392 	/*
1393 	 *  let the target fetch our answer.
1394 	 */
1395 	SCR_SET (SCR_ATN),
1396 		0,
1397 	SCR_CLR (SCR_ACK),
1398 		0,
1399 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1400 		PADDR_B (nego_bad_phase),
1401 }/*-------------------------< SEND_PPR >-------------------------*/,{
1402 	/*
1403 	 *  Send the M_X_PPR_REQ
1404 	 */
1405 	SCR_MOVE_ABS (8) ^ SCR_MSG_OUT,
1406 		HADDR_1 (msgout),
1407 	SCR_JUMP,
1408 		PADDR_B (msg_out_done),
1409 }/*-------------------------< NEGO_BAD_PHASE >-------------------*/,{
1410 	SCR_INT,
1411 		SIR_NEGO_PROTO,
1412 	SCR_JUMP,
1413 		PADDR_A (dispatch),
1414 }/*-------------------------< MSG_OUT >--------------------------*/,{
1415 	/*
1416 	 *  The target requests a message.
1417 	 *  We donnot send messages that may
1418 	 *  require the device to go to bus free.
1419 	 */
1420 	SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
1421 		HADDR_1 (msgout),
1422 	/*
1423 	 *  ... wait for the next phase
1424 	 *  if it's a message out, send it again, ...
1425 	 */
1426 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
1427 		PADDR_B (msg_out),
1428 }/*-------------------------< MSG_OUT_DONE >---------------------*/,{
1429 	/*
1430 	 *  Let the C code be aware of the
1431 	 *  sent message and clear the message.
1432 	 */
1433 	SCR_INT,
1434 		SIR_MSG_OUT_DONE,
1435 	/*
1436 	 *  ... and process the next phase
1437 	 */
1438 	SCR_JUMP,
1439 		PADDR_A (dispatch),
1440 }/*-------------------------< DATA_OVRUN >-----------------------*/,{
1441 	/*
1442 	 *  Use scratcha to count the extra bytes.
1443 	 */
1444 	SCR_LOAD_ABS (scratcha, 4),
1445 		PADDR_B (zero),
1446 }/*-------------------------< DATA_OVRUN1 >----------------------*/,{
1447 	/*
1448 	 *  The target may want to transfer too much data.
1449 	 *
1450 	 *  If phase is DATA OUT write 1 byte and count it.
1451 	 */
1452 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
1453 		16,
1454 	SCR_CHMOV_ABS (1) ^ SCR_DATA_OUT,
1455 		HADDR_1 (scratch),
1456 	SCR_JUMP,
1457 		PADDR_B (data_ovrun2),
1458 	/*
1459 	 *  If WSR is set, clear this condition, and
1460 	 *  count this byte.
1461 	 */
1462 	SCR_FROM_REG (scntl2),
1463 		0,
1464 	SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
1465 		16,
1466 	SCR_REG_REG (scntl2, SCR_OR, WSR),
1467 		0,
1468 	SCR_JUMP,
1469 		PADDR_B (data_ovrun2),
1470 	/*
1471 	 *  Finally check against DATA IN phase.
1472 	 *  Signal data overrun to the C code
1473 	 *  and jump to dispatcher if not so.
1474 	 *  Read 1 byte otherwise and count it.
1475 	 */
1476 	SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_IN)),
1477 		16,
1478 	SCR_INT,
1479 		SIR_DATA_OVERRUN,
1480 	SCR_JUMP,
1481 		PADDR_A (dispatch),
1482 	SCR_CHMOV_ABS (1) ^ SCR_DATA_IN,
1483 		HADDR_1 (scratch),
1484 }/*-------------------------< DATA_OVRUN2 >----------------------*/,{
1485 	/*
1486 	 *  Count this byte.
1487 	 *  This will allow to return a negative
1488 	 *  residual to user.
1489 	 */
1490 	SCR_REG_REG (scratcha,  SCR_ADD,  0x01),
1491 		0,
1492 	SCR_REG_REG (scratcha1, SCR_ADDC, 0),
1493 		0,
1494 	SCR_REG_REG (scratcha2, SCR_ADDC, 0),
1495 		0,
1496 	/*
1497 	 *  .. and repeat as required.
1498 	 */
1499 	SCR_JUMP,
1500 		PADDR_B (data_ovrun1),
1501 }/*-------------------------< ABORT_RESEL >----------------------*/,{
1502 	SCR_SET (SCR_ATN),
1503 		0,
1504 	SCR_CLR (SCR_ACK),
1505 		0,
1506 	/*
1507 	 *  send the abort/abortag/reset message
1508 	 *  we expect an immediate disconnect
1509 	 */
1510 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
1511 		0,
1512 	SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
1513 		HADDR_1 (msgout),
1514 	SCR_CLR (SCR_ACK|SCR_ATN),
1515 		0,
1516 	SCR_WAIT_DISC,
1517 		0,
1518 	SCR_INT,
1519 		SIR_RESEL_ABORTED,
1520 	SCR_JUMP,
1521 		PADDR_A (start),
1522 }/*-------------------------< RESEND_IDENT >---------------------*/,{
1523 	/*
1524 	 *  The target stays in MSG OUT phase after having acked
1525 	 *  Identify [+ Tag [+ Extended message ]]. Targets shall
1526 	 *  behave this way on parity error.
1527 	 *  We must send it again all the messages.
1528 	 */
1529 	SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the  */
1530 		0,         /* 1rst ACK = 90 ns. Hope the chip isn't too fast */
1531 	SCR_JUMP,
1532 		PADDR_A (send_ident),
1533 }/*-------------------------< IDENT_BREAK >----------------------*/,{
1534 	SCR_CLR (SCR_ATN),
1535 		0,
1536 	SCR_JUMP,
1537 		PADDR_A (select2),
1538 }/*-------------------------< IDENT_BREAK_ATN >------------------*/,{
1539 	SCR_SET (SCR_ATN),
1540 		0,
1541 	SCR_JUMP,
1542 		PADDR_A (select2),
1543 }/*-------------------------< SDATA_IN >-------------------------*/,{
1544 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1545 		offsetof (struct sym_dsb, sense),
1546 	SCR_CALL,
1547 		PADDR_A (datai_done),
1548 	SCR_JUMP,
1549 		PADDR_B (data_ovrun),
1550 }/*-------------------------< RESEL_BAD_LUN >--------------------*/,{
1551 	/*
1552 	 *  Message is an IDENTIFY, but lun is unknown.
1553 	 *  Signal problem to C code for logging the event.
1554 	 *  Send a M_ABORT to clear all pending tasks.
1555 	 */
1556 	SCR_INT,
1557 		SIR_RESEL_BAD_LUN,
1558 	SCR_JUMP,
1559 		PADDR_B (abort_resel),
1560 }/*-------------------------< BAD_I_T_L >------------------------*/,{
1561 	/*
1562 	 *  We donnot have a task for that I_T_L.
1563 	 *  Signal problem to C code for logging the event.
1564 	 *  Send a M_ABORT message.
1565 	 */
1566 	SCR_INT,
1567 		SIR_RESEL_BAD_I_T_L,
1568 	SCR_JUMP,
1569 		PADDR_B (abort_resel),
1570 }/*-------------------------< BAD_I_T_L_Q >----------------------*/,{
1571 	/*
1572 	 *  We donnot have a task that matches the tag.
1573 	 *  Signal problem to C code for logging the event.
1574 	 *  Send a M_ABORTTAG message.
1575 	 */
1576 	SCR_INT,
1577 		SIR_RESEL_BAD_I_T_L_Q,
1578 	SCR_JUMP,
1579 		PADDR_B (abort_resel),
1580 }/*-------------------------< BAD_STATUS >-----------------------*/,{
1581 	/*
1582 	 *  Anything different from INTERMEDIATE
1583 	 *  CONDITION MET should be a bad SCSI status,
1584 	 *  given that GOOD status has already been tested.
1585 	 *  Call the C code.
1586 	 */
1587 	SCR_LOAD_ABS (scratcha, 4),
1588 		PADDR_B (startpos),
1589 	SCR_INT ^ IFFALSE (DATA (S_COND_MET)),
1590 		SIR_BAD_SCSI_STATUS,
1591 	SCR_RETURN,
1592 		0,
1593 }/*-------------------------< PM_HANDLE >------------------------*/,{
1594 	/*
1595 	 *  Phase mismatch handling.
1596 	 *
1597 	 *  Since we have to deal with 2 SCSI data pointers
1598 	 *  (current and saved), we need at least 2 contexts.
1599 	 *  Each context (pm0 and pm1) has a saved area, a
1600 	 *  SAVE mini-script and a DATA phase mini-script.
1601 	 */
1602 	/*
1603 	 *  Get the PM handling flags.
1604 	 */
1605 	SCR_FROM_REG (HF_REG),
1606 		0,
1607 	/*
1608 	 *  If no flags (1rst PM for example), avoid
1609 	 *  all the below heavy flags testing.
1610 	 *  This makes the normal case a bit faster.
1611 	 */
1612 	SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED))),
1613 		PADDR_B (pm_handle1),
1614 	/*
1615 	 *  If we received a SAVE DP, switch to the
1616 	 *  other PM context since the savep may point
1617 	 *  to the current PM context.
1618 	 */
1619 	SCR_JUMPR ^ IFFALSE (MASK (HF_DP_SAVED, HF_DP_SAVED)),
1620 		8,
1621 	SCR_REG_REG (sfbr, SCR_XOR, HF_ACT_PM),
1622 		0,
1623 	/*
1624 	 *  If we have been interrupt in a PM DATA mini-script,
1625 	 *  we take the return address from the corresponding
1626 	 *  saved area.
1627 	 *  This ensure the return address always points to the
1628 	 *  main DATA script for this transfer.
1629 	 */
1630 	SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1))),
1631 		PADDR_B (pm_handle1),
1632 	SCR_JUMPR ^ IFFALSE (MASK (HF_IN_PM0, HF_IN_PM0)),
1633 		16,
1634 	SCR_LOAD_REL (ia, 4),
1635 		offsetof(struct sym_ccb, phys.pm0.ret),
1636 	SCR_JUMP,
1637 		PADDR_B (pm_save),
1638 	SCR_LOAD_REL (ia, 4),
1639 		offsetof(struct sym_ccb, phys.pm1.ret),
1640 	SCR_JUMP,
1641 		PADDR_B (pm_save),
1642 }/*-------------------------< PM_HANDLE1 >-----------------------*/,{
1643 	/*
1644 	 *  Normal case.
1645 	 *  Update the return address so that it
1646 	 *  will point after the interrupted MOVE.
1647 	 */
1648 	SCR_REG_REG (ia, SCR_ADD, 8),
1649 		0,
1650 	SCR_REG_REG (ia1, SCR_ADDC, 0),
1651 		0,
1652 }/*-------------------------< PM_SAVE >--------------------------*/,{
1653 	/*
1654 	 *  Clear all the flags that told us if we were
1655 	 *  interrupted in a PM DATA mini-script and/or
1656 	 *  we received a SAVE DP.
1657 	 */
1658 	SCR_SFBR_REG (HF_REG, SCR_AND, (~(HF_IN_PM0|HF_IN_PM1|HF_DP_SAVED))),
1659 		0,
1660 	/*
1661 	 *  Choose the current PM context.
1662 	 */
1663 	SCR_JUMP ^ IFTRUE (MASK (HF_ACT_PM, HF_ACT_PM)),
1664 		PADDR_B (pm1_save),
1665 }/*-------------------------< PM0_SAVE >-------------------------*/,{
1666 	SCR_STORE_REL (ia, 4),
1667 		offsetof(struct sym_ccb, phys.pm0.ret),
1668 	/*
1669 	 *  If WSR bit is set, either UA and RBC may
1670 	 *  have to be changed whether the device wants
1671 	 *  to ignore this residue or not.
1672 	 */
1673 	SCR_FROM_REG (scntl2),
1674 		0,
1675 	SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
1676 		PADDR_B (pm_wsr_handle),
1677 	/*
1678 	 *  Save the remaining byte count, the updated
1679 	 *  address and the return address.
1680 	 */
1681 	SCR_STORE_REL (rbc, 4),
1682 		offsetof(struct sym_ccb, phys.pm0.sg.size),
1683 	SCR_STORE_REL (ua, 4),
1684 		offsetof(struct sym_ccb, phys.pm0.sg.addr),
1685 	/*
1686 	 *  Set the current pointer at the PM0 DATA mini-script.
1687 	 */
1688 	SCR_LOAD_ABS (ia, 4),
1689 		PADDR_B (pm0_data_addr),
1690 }/*-------------------------< PM_SAVE_END >----------------------*/,{
1691 	SCR_STORE_REL (ia, 4),
1692 		offsetof(struct sym_ccb, phys.head.lastp),
1693 	SCR_JUMP,
1694 		PADDR_A (dispatch),
1695 }/*-------------------------< PM1_SAVE >-------------------------*/,{
1696 	SCR_STORE_REL (ia, 4),
1697 		offsetof(struct sym_ccb, phys.pm1.ret),
1698 	/*
1699 	 *  If WSR bit is set, either UA and RBC may
1700 	 *  have to be changed whether the device wants
1701 	 *  to ignore this residue or not.
1702 	 */
1703 	SCR_FROM_REG (scntl2),
1704 		0,
1705 	SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
1706 		PADDR_B (pm_wsr_handle),
1707 	/*
1708 	 *  Save the remaining byte count, the updated
1709 	 *  address and the return address.
1710 	 */
1711 	SCR_STORE_REL (rbc, 4),
1712 		offsetof(struct sym_ccb, phys.pm1.sg.size),
1713 	SCR_STORE_REL (ua, 4),
1714 		offsetof(struct sym_ccb, phys.pm1.sg.addr),
1715 	/*
1716 	 *  Set the current pointer at the PM1 DATA mini-script.
1717 	 */
1718 	SCR_LOAD_ABS (ia, 4),
1719 		PADDR_B (pm1_data_addr),
1720 	SCR_JUMP,
1721 		PADDR_B (pm_save_end),
1722 }/*-------------------------< PM_WSR_HANDLE >--------------------*/,{
1723 	/*
1724 	 *  Phase mismatch handling from SCRIPT with WSR set.
1725 	 *  Such a condition can occur if the chip wants to
1726 	 *  execute a CHMOV(size > 1) when the WSR bit is
1727 	 *  set and the target changes PHASE.
1728 	 *
1729 	 *  We must move the residual byte to memory.
1730 	 *
1731 	 *  UA contains bit 0..31 of the address to
1732 	 *  move the residual byte.
1733 	 *  Move it to the table indirect.
1734 	 */
1735 	SCR_STORE_REL (ua, 4),
1736 		offsetof (struct sym_ccb, phys.wresid.addr),
1737 	/*
1738 	 *  Increment UA (move address to next position).
1739 	 */
1740 	SCR_REG_REG (ua, SCR_ADD, 1),
1741 		0,
1742 	SCR_REG_REG (ua1, SCR_ADDC, 0),
1743 		0,
1744 	SCR_REG_REG (ua2, SCR_ADDC, 0),
1745 		0,
1746 	SCR_REG_REG (ua3, SCR_ADDC, 0),
1747 		0,
1748 	/*
1749 	 *  Compute SCRATCHA as:
1750 	 *  - size to transfer = 1 byte.
1751 	 *  - bit 24..31 = high address bit [32...39].
1752 	 */
1753 	SCR_LOAD_ABS (scratcha, 4),
1754 		PADDR_B (zero),
1755 	SCR_REG_REG (scratcha, SCR_OR, 1),
1756 		0,
1757 	SCR_FROM_REG (rbc3),
1758 		0,
1759 	SCR_TO_REG (scratcha3),
1760 		0,
1761 	/*
1762 	 *  Move this value to the table indirect.
1763 	 */
1764 	SCR_STORE_REL (scratcha, 4),
1765 		offsetof (struct sym_ccb, phys.wresid.size),
1766 	/*
1767 	 *  Wait for a valid phase.
1768 	 *  While testing with bogus QUANTUM drives, the C1010
1769 	 *  sometimes raised a spurious phase mismatch with
1770 	 *  WSR and the CHMOV(1) triggered another PM.
1771 	 *  Waiting explicitly for the PHASE seemed to avoid
1772 	 *  the nested phase mismatch. Btw, this didn't happen
1773 	 *  using my IBM drives.
1774 	 */
1775 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)),
1776 		0,
1777 	/*
1778 	 *  Perform the move of the residual byte.
1779 	 */
1780 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1781 		offsetof (struct sym_ccb, phys.wresid),
1782 	/*
1783 	 *  We can now handle the phase mismatch with UA fixed.
1784 	 *  RBC[0..23]=0 is a special case that does not require
1785 	 *  a PM context. The C code also checks against this.
1786 	 */
1787 	SCR_FROM_REG (rbc),
1788 		0,
1789 	SCR_RETURN ^ IFFALSE (DATA (0)),
1790 		0,
1791 	SCR_FROM_REG (rbc1),
1792 		0,
1793 	SCR_RETURN ^ IFFALSE (DATA (0)),
1794 		0,
1795 	SCR_FROM_REG (rbc2),
1796 		0,
1797 	SCR_RETURN ^ IFFALSE (DATA (0)),
1798 		0,
1799 	/*
1800 	 *  RBC[0..23]=0.
1801 	 *  Not only we donnot need a PM context, but this would
1802 	 *  lead to a bogus CHMOV(0). This condition means that
1803 	 *  the residual was the last byte to move from this CHMOV.
1804 	 *  So, we just have to move the current data script pointer
1805 	 *  (i.e. TEMP) to the SCRIPTS address following the
1806 	 *  interrupted CHMOV and jump to dispatcher.
1807 	 *  IA contains the data pointer to save.
1808 	 */
1809 	SCR_JUMP,
1810 		PADDR_B (pm_save_end),
1811 }/*-------------------------< WSR_MA_HELPER >--------------------*/,{
1812 	/*
1813 	 *  Helper for the C code when WSR bit is set.
1814 	 *  Perform the move of the residual byte.
1815 	 */
1816 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1817 		offsetof (struct sym_ccb, phys.wresid),
1818 	SCR_JUMP,
1819 		PADDR_A (dispatch),
1820 
1821 }/*-------------------------< ZERO >-----------------------------*/,{
1822 	SCR_DATA_ZERO,
1823 }/*-------------------------< SCRATCH >--------------------------*/,{
1824 	SCR_DATA_ZERO,
1825 }/*-------------------------< PM0_DATA_ADDR >--------------------*/,{
1826 	SCR_DATA_ZERO,
1827 }/*-------------------------< PM1_DATA_ADDR >--------------------*/,{
1828 	SCR_DATA_ZERO,
1829 }/*-------------------------< DONE_POS >-------------------------*/,{
1830 	SCR_DATA_ZERO,
1831 }/*-------------------------< STARTPOS >-------------------------*/,{
1832 	SCR_DATA_ZERO,
1833 }/*-------------------------< TARGTBL >--------------------------*/,{
1834 	SCR_DATA_ZERO,
1835 }/*-------------------------<>-----------------------------------*/
1836 };
1837 
1838 static struct SYM_FWZ_SCR SYM_FWZ_SCR = {
1839  /*-------------------------< SNOOPTEST >------------------------*/{
1840 	/*
1841 	 *  Read the variable from memory.
1842 	 */
1843 	SCR_LOAD_REL (scratcha, 4),
1844 		offsetof(struct sym_hcb, scratch),
1845 	/*
1846 	 *  Write the variable to memory.
1847 	 */
1848 	SCR_STORE_REL (temp, 4),
1849 		offsetof(struct sym_hcb, scratch),
1850 	/*
1851 	 *  Read back the variable from memory.
1852 	 */
1853 	SCR_LOAD_REL (temp, 4),
1854 		offsetof(struct sym_hcb, scratch),
1855 }/*-------------------------< SNOOPEND >-------------------------*/,{
1856 	/*
1857 	 *  And stop.
1858 	 */
1859 	SCR_INT,
1860 		99,
1861 }/*-------------------------<>-----------------------------------*/
1862 };
1863