1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 * K. Y. Srinivasan <kys@microsoft.com> 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/wait.h> 13 #include <linux/sched.h> 14 #include <linux/completion.h> 15 #include <linux/string.h> 16 #include <linux/mm.h> 17 #include <linux/delay.h> 18 #include <linux/init.h> 19 #include <linux/slab.h> 20 #include <linux/module.h> 21 #include <linux/device.h> 22 #include <linux/hyperv.h> 23 #include <linux/blkdev.h> 24 #include <linux/dma-mapping.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_host.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_tcq.h> 31 #include <scsi/scsi_eh.h> 32 #include <scsi/scsi_devinfo.h> 33 #include <scsi/scsi_dbg.h> 34 #include <scsi/scsi_transport_fc.h> 35 #include <scsi/scsi_transport.h> 36 37 /* 38 * All wire protocol details (storage protocol between the guest and the host) 39 * are consolidated here. 40 * 41 * Begin protocol definitions. 42 */ 43 44 /* 45 * Version history: 46 * V1 Beta: 0.1 47 * V1 RC < 2008/1/31: 1.0 48 * V1 RC > 2008/1/31: 2.0 49 * Win7: 4.2 50 * Win8: 5.1 51 * Win8.1: 6.0 52 * Win10: 6.2 53 */ 54 55 #define VMSTOR_PROTO_VERSION(MAJOR_, MINOR_) ((((MAJOR_) & 0xff) << 8) | \ 56 (((MINOR_) & 0xff))) 57 58 #define VMSTOR_PROTO_VERSION_WIN6 VMSTOR_PROTO_VERSION(2, 0) 59 #define VMSTOR_PROTO_VERSION_WIN7 VMSTOR_PROTO_VERSION(4, 2) 60 #define VMSTOR_PROTO_VERSION_WIN8 VMSTOR_PROTO_VERSION(5, 1) 61 #define VMSTOR_PROTO_VERSION_WIN8_1 VMSTOR_PROTO_VERSION(6, 0) 62 #define VMSTOR_PROTO_VERSION_WIN10 VMSTOR_PROTO_VERSION(6, 2) 63 64 /* Packet structure describing virtual storage requests. */ 65 enum vstor_packet_operation { 66 VSTOR_OPERATION_COMPLETE_IO = 1, 67 VSTOR_OPERATION_REMOVE_DEVICE = 2, 68 VSTOR_OPERATION_EXECUTE_SRB = 3, 69 VSTOR_OPERATION_RESET_LUN = 4, 70 VSTOR_OPERATION_RESET_ADAPTER = 5, 71 VSTOR_OPERATION_RESET_BUS = 6, 72 VSTOR_OPERATION_BEGIN_INITIALIZATION = 7, 73 VSTOR_OPERATION_END_INITIALIZATION = 8, 74 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION = 9, 75 VSTOR_OPERATION_QUERY_PROPERTIES = 10, 76 VSTOR_OPERATION_ENUMERATE_BUS = 11, 77 VSTOR_OPERATION_FCHBA_DATA = 12, 78 VSTOR_OPERATION_CREATE_SUB_CHANNELS = 13, 79 VSTOR_OPERATION_MAXIMUM = 13 80 }; 81 82 /* 83 * WWN packet for Fibre Channel HBA 84 */ 85 86 struct hv_fc_wwn_packet { 87 u8 primary_active; 88 u8 reserved1[3]; 89 u8 primary_port_wwn[8]; 90 u8 primary_node_wwn[8]; 91 u8 secondary_port_wwn[8]; 92 u8 secondary_node_wwn[8]; 93 }; 94 95 96 97 /* 98 * SRB Flag Bits 99 */ 100 101 #define SRB_FLAGS_QUEUE_ACTION_ENABLE 0x00000002 102 #define SRB_FLAGS_DISABLE_DISCONNECT 0x00000004 103 #define SRB_FLAGS_DISABLE_SYNCH_TRANSFER 0x00000008 104 #define SRB_FLAGS_BYPASS_FROZEN_QUEUE 0x00000010 105 #define SRB_FLAGS_DISABLE_AUTOSENSE 0x00000020 106 #define SRB_FLAGS_DATA_IN 0x00000040 107 #define SRB_FLAGS_DATA_OUT 0x00000080 108 #define SRB_FLAGS_NO_DATA_TRANSFER 0x00000000 109 #define SRB_FLAGS_UNSPECIFIED_DIRECTION (SRB_FLAGS_DATA_IN | SRB_FLAGS_DATA_OUT) 110 #define SRB_FLAGS_NO_QUEUE_FREEZE 0x00000100 111 #define SRB_FLAGS_ADAPTER_CACHE_ENABLE 0x00000200 112 #define SRB_FLAGS_FREE_SENSE_BUFFER 0x00000400 113 114 /* 115 * This flag indicates the request is part of the workflow for processing a D3. 116 */ 117 #define SRB_FLAGS_D3_PROCESSING 0x00000800 118 #define SRB_FLAGS_IS_ACTIVE 0x00010000 119 #define SRB_FLAGS_ALLOCATED_FROM_ZONE 0x00020000 120 #define SRB_FLAGS_SGLIST_FROM_POOL 0x00040000 121 #define SRB_FLAGS_BYPASS_LOCKED_QUEUE 0x00080000 122 #define SRB_FLAGS_NO_KEEP_AWAKE 0x00100000 123 #define SRB_FLAGS_PORT_DRIVER_ALLOCSENSE 0x00200000 124 #define SRB_FLAGS_PORT_DRIVER_SENSEHASPORT 0x00400000 125 #define SRB_FLAGS_DONT_START_NEXT_PACKET 0x00800000 126 #define SRB_FLAGS_PORT_DRIVER_RESERVED 0x0F000000 127 #define SRB_FLAGS_CLASS_DRIVER_RESERVED 0xF0000000 128 129 #define SP_UNTAGGED ((unsigned char) ~0) 130 #define SRB_SIMPLE_TAG_REQUEST 0x20 131 132 /* 133 * Platform neutral description of a scsi request - 134 * this remains the same across the write regardless of 32/64 bit 135 * note: it's patterned off the SCSI_PASS_THROUGH structure 136 */ 137 #define STORVSC_MAX_CMD_LEN 0x10 138 139 #define POST_WIN7_STORVSC_SENSE_BUFFER_SIZE 0x14 140 #define PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE 0x12 141 142 #define STORVSC_SENSE_BUFFER_SIZE 0x14 143 #define STORVSC_MAX_BUF_LEN_WITH_PADDING 0x14 144 145 /* 146 * Sense buffer size changed in win8; have a run-time 147 * variable to track the size we should use. This value will 148 * likely change during protocol negotiation but it is valid 149 * to start by assuming pre-Win8. 150 */ 151 static int sense_buffer_size = PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE; 152 153 /* 154 * The storage protocol version is determined during the 155 * initial exchange with the host. It will indicate which 156 * storage functionality is available in the host. 157 */ 158 static int vmstor_proto_version; 159 160 #define STORVSC_LOGGING_NONE 0 161 #define STORVSC_LOGGING_ERROR 1 162 #define STORVSC_LOGGING_WARN 2 163 164 static int logging_level = STORVSC_LOGGING_ERROR; 165 module_param(logging_level, int, S_IRUGO|S_IWUSR); 166 MODULE_PARM_DESC(logging_level, 167 "Logging level, 0 - None, 1 - Error (default), 2 - Warning."); 168 169 static inline bool do_logging(int level) 170 { 171 return logging_level >= level; 172 } 173 174 #define storvsc_log(dev, level, fmt, ...) \ 175 do { \ 176 if (do_logging(level)) \ 177 dev_warn(&(dev)->device, fmt, ##__VA_ARGS__); \ 178 } while (0) 179 180 struct vmscsi_win8_extension { 181 /* 182 * The following were added in Windows 8 183 */ 184 u16 reserve; 185 u8 queue_tag; 186 u8 queue_action; 187 u32 srb_flags; 188 u32 time_out_value; 189 u32 queue_sort_ey; 190 } __packed; 191 192 struct vmscsi_request { 193 u16 length; 194 u8 srb_status; 195 u8 scsi_status; 196 197 u8 port_number; 198 u8 path_id; 199 u8 target_id; 200 u8 lun; 201 202 u8 cdb_length; 203 u8 sense_info_length; 204 u8 data_in; 205 u8 reserved; 206 207 u32 data_transfer_length; 208 209 union { 210 u8 cdb[STORVSC_MAX_CMD_LEN]; 211 u8 sense_data[STORVSC_SENSE_BUFFER_SIZE]; 212 u8 reserved_array[STORVSC_MAX_BUF_LEN_WITH_PADDING]; 213 }; 214 /* 215 * The following was added in win8. 216 */ 217 struct vmscsi_win8_extension win8_extension; 218 219 } __attribute((packed)); 220 221 /* 222 * The list of storage protocols in order of preference. 223 */ 224 struct vmstor_protocol { 225 int protocol_version; 226 int sense_buffer_size; 227 int vmscsi_size_delta; 228 }; 229 230 231 static const struct vmstor_protocol vmstor_protocols[] = { 232 { 233 VMSTOR_PROTO_VERSION_WIN10, 234 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE, 235 0 236 }, 237 { 238 VMSTOR_PROTO_VERSION_WIN8_1, 239 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE, 240 0 241 }, 242 { 243 VMSTOR_PROTO_VERSION_WIN8, 244 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE, 245 0 246 }, 247 { 248 VMSTOR_PROTO_VERSION_WIN7, 249 PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE, 250 sizeof(struct vmscsi_win8_extension), 251 }, 252 { 253 VMSTOR_PROTO_VERSION_WIN6, 254 PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE, 255 sizeof(struct vmscsi_win8_extension), 256 } 257 }; 258 259 260 /* 261 * This structure is sent during the initialization phase to get the different 262 * properties of the channel. 263 */ 264 265 #define STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL 0x1 266 267 struct vmstorage_channel_properties { 268 u32 reserved; 269 u16 max_channel_cnt; 270 u16 reserved1; 271 272 u32 flags; 273 u32 max_transfer_bytes; 274 275 u64 reserved2; 276 } __packed; 277 278 /* This structure is sent during the storage protocol negotiations. */ 279 struct vmstorage_protocol_version { 280 /* Major (MSW) and minor (LSW) version numbers. */ 281 u16 major_minor; 282 283 /* 284 * Revision number is auto-incremented whenever this file is changed 285 * (See FILL_VMSTOR_REVISION macro above). Mismatch does not 286 * definitely indicate incompatibility--but it does indicate mismatched 287 * builds. 288 * This is only used on the windows side. Just set it to 0. 289 */ 290 u16 revision; 291 } __packed; 292 293 /* Channel Property Flags */ 294 #define STORAGE_CHANNEL_REMOVABLE_FLAG 0x1 295 #define STORAGE_CHANNEL_EMULATED_IDE_FLAG 0x2 296 297 struct vstor_packet { 298 /* Requested operation type */ 299 enum vstor_packet_operation operation; 300 301 /* Flags - see below for values */ 302 u32 flags; 303 304 /* Status of the request returned from the server side. */ 305 u32 status; 306 307 /* Data payload area */ 308 union { 309 /* 310 * Structure used to forward SCSI commands from the 311 * client to the server. 312 */ 313 struct vmscsi_request vm_srb; 314 315 /* Structure used to query channel properties. */ 316 struct vmstorage_channel_properties storage_channel_properties; 317 318 /* Used during version negotiations. */ 319 struct vmstorage_protocol_version version; 320 321 /* Fibre channel address packet */ 322 struct hv_fc_wwn_packet wwn_packet; 323 324 /* Number of sub-channels to create */ 325 u16 sub_channel_count; 326 327 /* This will be the maximum of the union members */ 328 u8 buffer[0x34]; 329 }; 330 } __packed; 331 332 /* 333 * Packet Flags: 334 * 335 * This flag indicates that the server should send back a completion for this 336 * packet. 337 */ 338 339 #define REQUEST_COMPLETION_FLAG 0x1 340 341 /* Matches Windows-end */ 342 enum storvsc_request_type { 343 WRITE_TYPE = 0, 344 READ_TYPE, 345 UNKNOWN_TYPE, 346 }; 347 348 /* 349 * SRB status codes and masks; a subset of the codes used here. 350 */ 351 352 #define SRB_STATUS_AUTOSENSE_VALID 0x80 353 #define SRB_STATUS_QUEUE_FROZEN 0x40 354 #define SRB_STATUS_INVALID_LUN 0x20 355 #define SRB_STATUS_SUCCESS 0x01 356 #define SRB_STATUS_ABORTED 0x02 357 #define SRB_STATUS_ERROR 0x04 358 #define SRB_STATUS_DATA_OVERRUN 0x12 359 360 #define SRB_STATUS(status) \ 361 (status & ~(SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_QUEUE_FROZEN)) 362 /* 363 * This is the end of Protocol specific defines. 364 */ 365 366 static int storvsc_ringbuffer_size = (128 * 1024); 367 static u32 max_outstanding_req_per_channel; 368 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth); 369 370 static int storvsc_vcpus_per_sub_channel = 4; 371 static unsigned int storvsc_max_hw_queues; 372 373 module_param(storvsc_ringbuffer_size, int, S_IRUGO); 374 MODULE_PARM_DESC(storvsc_ringbuffer_size, "Ring buffer size (bytes)"); 375 376 module_param(storvsc_max_hw_queues, uint, 0644); 377 MODULE_PARM_DESC(storvsc_max_hw_queues, "Maximum number of hardware queues"); 378 379 module_param(storvsc_vcpus_per_sub_channel, int, S_IRUGO); 380 MODULE_PARM_DESC(storvsc_vcpus_per_sub_channel, "Ratio of VCPUs to subchannels"); 381 382 static int ring_avail_percent_lowater = 10; 383 module_param(ring_avail_percent_lowater, int, S_IRUGO); 384 MODULE_PARM_DESC(ring_avail_percent_lowater, 385 "Select a channel if available ring size > this in percent"); 386 387 /* 388 * Timeout in seconds for all devices managed by this driver. 389 */ 390 static int storvsc_timeout = 180; 391 392 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 393 static struct scsi_transport_template *fc_transport_template; 394 #endif 395 396 static struct scsi_host_template scsi_driver; 397 static void storvsc_on_channel_callback(void *context); 398 399 #define STORVSC_MAX_LUNS_PER_TARGET 255 400 #define STORVSC_MAX_TARGETS 2 401 #define STORVSC_MAX_CHANNELS 8 402 403 #define STORVSC_FC_MAX_LUNS_PER_TARGET 255 404 #define STORVSC_FC_MAX_TARGETS 128 405 #define STORVSC_FC_MAX_CHANNELS 8 406 407 #define STORVSC_IDE_MAX_LUNS_PER_TARGET 64 408 #define STORVSC_IDE_MAX_TARGETS 1 409 #define STORVSC_IDE_MAX_CHANNELS 1 410 411 /* 412 * Upper bound on the size of a storvsc packet. vmscsi_size_delta is not 413 * included in the calculation because it is set after STORVSC_MAX_PKT_SIZE 414 * is used in storvsc_connect_to_vsp 415 */ 416 #define STORVSC_MAX_PKT_SIZE (sizeof(struct vmpacket_descriptor) +\ 417 sizeof(struct vstor_packet)) 418 419 struct storvsc_cmd_request { 420 struct scsi_cmnd *cmd; 421 422 struct hv_device *device; 423 424 /* Synchronize the request/response if needed */ 425 struct completion wait_event; 426 427 struct vmbus_channel_packet_multipage_buffer mpb; 428 struct vmbus_packet_mpb_array *payload; 429 u32 payload_sz; 430 431 struct vstor_packet vstor_packet; 432 }; 433 434 435 /* A storvsc device is a device object that contains a vmbus channel */ 436 struct storvsc_device { 437 struct hv_device *device; 438 439 bool destroy; 440 bool drain_notify; 441 atomic_t num_outstanding_req; 442 struct Scsi_Host *host; 443 444 wait_queue_head_t waiting_to_drain; 445 446 /* 447 * Each unique Port/Path/Target represents 1 channel ie scsi 448 * controller. In reality, the pathid, targetid is always 0 449 * and the port is set by us 450 */ 451 unsigned int port_number; 452 unsigned char path_id; 453 unsigned char target_id; 454 455 /* 456 * The size of the vmscsi_request has changed in win8. The 457 * additional size is because of new elements added to the 458 * structure. These elements are valid only when we are talking 459 * to a win8 host. 460 * Track the correction to size we need to apply. This value 461 * will likely change during protocol negotiation but it is 462 * valid to start by assuming pre-Win8. 463 */ 464 int vmscsi_size_delta; 465 466 /* 467 * Max I/O, the device can support. 468 */ 469 u32 max_transfer_bytes; 470 /* 471 * Number of sub-channels we will open. 472 */ 473 u16 num_sc; 474 struct vmbus_channel **stor_chns; 475 /* 476 * Mask of CPUs bound to subchannels. 477 */ 478 struct cpumask alloced_cpus; 479 /* 480 * Serializes modifications of stor_chns[] from storvsc_do_io() 481 * and storvsc_change_target_cpu(). 482 */ 483 spinlock_t lock; 484 /* Used for vsc/vsp channel reset process */ 485 struct storvsc_cmd_request init_request; 486 struct storvsc_cmd_request reset_request; 487 /* 488 * Currently active port and node names for FC devices. 489 */ 490 u64 node_name; 491 u64 port_name; 492 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 493 struct fc_rport *rport; 494 #endif 495 }; 496 497 struct hv_host_device { 498 struct hv_device *dev; 499 unsigned int port; 500 unsigned char path; 501 unsigned char target; 502 struct workqueue_struct *handle_error_wq; 503 struct work_struct host_scan_work; 504 struct Scsi_Host *host; 505 }; 506 507 struct storvsc_scan_work { 508 struct work_struct work; 509 struct Scsi_Host *host; 510 u8 lun; 511 u8 tgt_id; 512 }; 513 514 static void storvsc_device_scan(struct work_struct *work) 515 { 516 struct storvsc_scan_work *wrk; 517 struct scsi_device *sdev; 518 519 wrk = container_of(work, struct storvsc_scan_work, work); 520 521 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun); 522 if (!sdev) 523 goto done; 524 scsi_rescan_device(&sdev->sdev_gendev); 525 scsi_device_put(sdev); 526 527 done: 528 kfree(wrk); 529 } 530 531 static void storvsc_host_scan(struct work_struct *work) 532 { 533 struct Scsi_Host *host; 534 struct scsi_device *sdev; 535 struct hv_host_device *host_device = 536 container_of(work, struct hv_host_device, host_scan_work); 537 538 host = host_device->host; 539 /* 540 * Before scanning the host, first check to see if any of the 541 * currrently known devices have been hot removed. We issue a 542 * "unit ready" command against all currently known devices. 543 * This I/O will result in an error for devices that have been 544 * removed. As part of handling the I/O error, we remove the device. 545 * 546 * When a LUN is added or removed, the host sends us a signal to 547 * scan the host. Thus we are forced to discover the LUNs that 548 * may have been removed this way. 549 */ 550 mutex_lock(&host->scan_mutex); 551 shost_for_each_device(sdev, host) 552 scsi_test_unit_ready(sdev, 1, 1, NULL); 553 mutex_unlock(&host->scan_mutex); 554 /* 555 * Now scan the host to discover LUNs that may have been added. 556 */ 557 scsi_scan_host(host); 558 } 559 560 static void storvsc_remove_lun(struct work_struct *work) 561 { 562 struct storvsc_scan_work *wrk; 563 struct scsi_device *sdev; 564 565 wrk = container_of(work, struct storvsc_scan_work, work); 566 if (!scsi_host_get(wrk->host)) 567 goto done; 568 569 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun); 570 571 if (sdev) { 572 scsi_remove_device(sdev); 573 scsi_device_put(sdev); 574 } 575 scsi_host_put(wrk->host); 576 577 done: 578 kfree(wrk); 579 } 580 581 582 /* 583 * We can get incoming messages from the host that are not in response to 584 * messages that we have sent out. An example of this would be messages 585 * received by the guest to notify dynamic addition/removal of LUNs. To 586 * deal with potential race conditions where the driver may be in the 587 * midst of being unloaded when we might receive an unsolicited message 588 * from the host, we have implemented a mechanism to gurantee sequential 589 * consistency: 590 * 591 * 1) Once the device is marked as being destroyed, we will fail all 592 * outgoing messages. 593 * 2) We permit incoming messages when the device is being destroyed, 594 * only to properly account for messages already sent out. 595 */ 596 597 static inline struct storvsc_device *get_out_stor_device( 598 struct hv_device *device) 599 { 600 struct storvsc_device *stor_device; 601 602 stor_device = hv_get_drvdata(device); 603 604 if (stor_device && stor_device->destroy) 605 stor_device = NULL; 606 607 return stor_device; 608 } 609 610 611 static inline void storvsc_wait_to_drain(struct storvsc_device *dev) 612 { 613 dev->drain_notify = true; 614 wait_event(dev->waiting_to_drain, 615 atomic_read(&dev->num_outstanding_req) == 0); 616 dev->drain_notify = false; 617 } 618 619 static inline struct storvsc_device *get_in_stor_device( 620 struct hv_device *device) 621 { 622 struct storvsc_device *stor_device; 623 624 stor_device = hv_get_drvdata(device); 625 626 if (!stor_device) 627 goto get_in_err; 628 629 /* 630 * If the device is being destroyed; allow incoming 631 * traffic only to cleanup outstanding requests. 632 */ 633 634 if (stor_device->destroy && 635 (atomic_read(&stor_device->num_outstanding_req) == 0)) 636 stor_device = NULL; 637 638 get_in_err: 639 return stor_device; 640 641 } 642 643 static void storvsc_change_target_cpu(struct vmbus_channel *channel, u32 old, 644 u32 new) 645 { 646 struct storvsc_device *stor_device; 647 struct vmbus_channel *cur_chn; 648 bool old_is_alloced = false; 649 struct hv_device *device; 650 unsigned long flags; 651 int cpu; 652 653 device = channel->primary_channel ? 654 channel->primary_channel->device_obj 655 : channel->device_obj; 656 stor_device = get_out_stor_device(device); 657 if (!stor_device) 658 return; 659 660 /* See storvsc_do_io() -> get_og_chn(). */ 661 spin_lock_irqsave(&stor_device->lock, flags); 662 663 /* 664 * Determines if the storvsc device has other channels assigned to 665 * the "old" CPU to update the alloced_cpus mask and the stor_chns 666 * array. 667 */ 668 if (device->channel != channel && device->channel->target_cpu == old) { 669 cur_chn = device->channel; 670 old_is_alloced = true; 671 goto old_is_alloced; 672 } 673 list_for_each_entry(cur_chn, &device->channel->sc_list, sc_list) { 674 if (cur_chn == channel) 675 continue; 676 if (cur_chn->target_cpu == old) { 677 old_is_alloced = true; 678 goto old_is_alloced; 679 } 680 } 681 682 old_is_alloced: 683 if (old_is_alloced) 684 WRITE_ONCE(stor_device->stor_chns[old], cur_chn); 685 else 686 cpumask_clear_cpu(old, &stor_device->alloced_cpus); 687 688 /* "Flush" the stor_chns array. */ 689 for_each_possible_cpu(cpu) { 690 if (stor_device->stor_chns[cpu] && !cpumask_test_cpu( 691 cpu, &stor_device->alloced_cpus)) 692 WRITE_ONCE(stor_device->stor_chns[cpu], NULL); 693 } 694 695 WRITE_ONCE(stor_device->stor_chns[new], channel); 696 cpumask_set_cpu(new, &stor_device->alloced_cpus); 697 698 spin_unlock_irqrestore(&stor_device->lock, flags); 699 } 700 701 static u64 storvsc_next_request_id(struct vmbus_channel *channel, u64 rqst_addr) 702 { 703 struct storvsc_cmd_request *request = 704 (struct storvsc_cmd_request *)(unsigned long)rqst_addr; 705 706 if (rqst_addr == VMBUS_RQST_INIT) 707 return VMBUS_RQST_INIT; 708 if (rqst_addr == VMBUS_RQST_RESET) 709 return VMBUS_RQST_RESET; 710 711 /* 712 * Cannot return an ID of 0, which is reserved for an unsolicited 713 * message from Hyper-V. 714 */ 715 return (u64)blk_mq_unique_tag(scsi_cmd_to_rq(request->cmd)) + 1; 716 } 717 718 static void handle_sc_creation(struct vmbus_channel *new_sc) 719 { 720 struct hv_device *device = new_sc->primary_channel->device_obj; 721 struct device *dev = &device->device; 722 struct storvsc_device *stor_device; 723 struct vmstorage_channel_properties props; 724 int ret; 725 726 stor_device = get_out_stor_device(device); 727 if (!stor_device) 728 return; 729 730 memset(&props, 0, sizeof(struct vmstorage_channel_properties)); 731 new_sc->max_pkt_size = STORVSC_MAX_PKT_SIZE; 732 733 new_sc->next_request_id_callback = storvsc_next_request_id; 734 735 ret = vmbus_open(new_sc, 736 storvsc_ringbuffer_size, 737 storvsc_ringbuffer_size, 738 (void *)&props, 739 sizeof(struct vmstorage_channel_properties), 740 storvsc_on_channel_callback, new_sc); 741 742 /* In case vmbus_open() fails, we don't use the sub-channel. */ 743 if (ret != 0) { 744 dev_err(dev, "Failed to open sub-channel: err=%d\n", ret); 745 return; 746 } 747 748 new_sc->change_target_cpu_callback = storvsc_change_target_cpu; 749 750 /* Add the sub-channel to the array of available channels. */ 751 stor_device->stor_chns[new_sc->target_cpu] = new_sc; 752 cpumask_set_cpu(new_sc->target_cpu, &stor_device->alloced_cpus); 753 } 754 755 static void handle_multichannel_storage(struct hv_device *device, int max_chns) 756 { 757 struct device *dev = &device->device; 758 struct storvsc_device *stor_device; 759 int num_sc; 760 struct storvsc_cmd_request *request; 761 struct vstor_packet *vstor_packet; 762 int ret, t; 763 764 /* 765 * If the number of CPUs is artificially restricted, such as 766 * with maxcpus=1 on the kernel boot line, Hyper-V could offer 767 * sub-channels >= the number of CPUs. These sub-channels 768 * should not be created. The primary channel is already created 769 * and assigned to one CPU, so check against # CPUs - 1. 770 */ 771 num_sc = min((int)(num_online_cpus() - 1), max_chns); 772 if (!num_sc) 773 return; 774 775 stor_device = get_out_stor_device(device); 776 if (!stor_device) 777 return; 778 779 stor_device->num_sc = num_sc; 780 request = &stor_device->init_request; 781 vstor_packet = &request->vstor_packet; 782 783 /* 784 * Establish a handler for dealing with subchannels. 785 */ 786 vmbus_set_sc_create_callback(device->channel, handle_sc_creation); 787 788 /* 789 * Request the host to create sub-channels. 790 */ 791 memset(request, 0, sizeof(struct storvsc_cmd_request)); 792 init_completion(&request->wait_event); 793 vstor_packet->operation = VSTOR_OPERATION_CREATE_SUB_CHANNELS; 794 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 795 vstor_packet->sub_channel_count = num_sc; 796 797 ret = vmbus_sendpacket(device->channel, vstor_packet, 798 (sizeof(struct vstor_packet) - 799 stor_device->vmscsi_size_delta), 800 VMBUS_RQST_INIT, 801 VM_PKT_DATA_INBAND, 802 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 803 804 if (ret != 0) { 805 dev_err(dev, "Failed to create sub-channel: err=%d\n", ret); 806 return; 807 } 808 809 t = wait_for_completion_timeout(&request->wait_event, 10*HZ); 810 if (t == 0) { 811 dev_err(dev, "Failed to create sub-channel: timed out\n"); 812 return; 813 } 814 815 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || 816 vstor_packet->status != 0) { 817 dev_err(dev, "Failed to create sub-channel: op=%d, sts=%d\n", 818 vstor_packet->operation, vstor_packet->status); 819 return; 820 } 821 822 /* 823 * We need to do nothing here, because vmbus_process_offer() 824 * invokes channel->sc_creation_callback, which will open and use 825 * the sub-channel(s). 826 */ 827 } 828 829 static void cache_wwn(struct storvsc_device *stor_device, 830 struct vstor_packet *vstor_packet) 831 { 832 /* 833 * Cache the currently active port and node ww names. 834 */ 835 if (vstor_packet->wwn_packet.primary_active) { 836 stor_device->node_name = 837 wwn_to_u64(vstor_packet->wwn_packet.primary_node_wwn); 838 stor_device->port_name = 839 wwn_to_u64(vstor_packet->wwn_packet.primary_port_wwn); 840 } else { 841 stor_device->node_name = 842 wwn_to_u64(vstor_packet->wwn_packet.secondary_node_wwn); 843 stor_device->port_name = 844 wwn_to_u64(vstor_packet->wwn_packet.secondary_port_wwn); 845 } 846 } 847 848 849 static int storvsc_execute_vstor_op(struct hv_device *device, 850 struct storvsc_cmd_request *request, 851 bool status_check) 852 { 853 struct storvsc_device *stor_device; 854 struct vstor_packet *vstor_packet; 855 int ret, t; 856 857 stor_device = get_out_stor_device(device); 858 if (!stor_device) 859 return -ENODEV; 860 861 vstor_packet = &request->vstor_packet; 862 863 init_completion(&request->wait_event); 864 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 865 866 ret = vmbus_sendpacket(device->channel, vstor_packet, 867 (sizeof(struct vstor_packet) - 868 stor_device->vmscsi_size_delta), 869 VMBUS_RQST_INIT, 870 VM_PKT_DATA_INBAND, 871 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 872 if (ret != 0) 873 return ret; 874 875 t = wait_for_completion_timeout(&request->wait_event, 5*HZ); 876 if (t == 0) 877 return -ETIMEDOUT; 878 879 if (!status_check) 880 return ret; 881 882 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || 883 vstor_packet->status != 0) 884 return -EINVAL; 885 886 return ret; 887 } 888 889 static int storvsc_channel_init(struct hv_device *device, bool is_fc) 890 { 891 struct storvsc_device *stor_device; 892 struct storvsc_cmd_request *request; 893 struct vstor_packet *vstor_packet; 894 int ret, i; 895 int max_chns; 896 bool process_sub_channels = false; 897 898 stor_device = get_out_stor_device(device); 899 if (!stor_device) 900 return -ENODEV; 901 902 request = &stor_device->init_request; 903 vstor_packet = &request->vstor_packet; 904 905 /* 906 * Now, initiate the vsc/vsp initialization protocol on the open 907 * channel 908 */ 909 memset(request, 0, sizeof(struct storvsc_cmd_request)); 910 vstor_packet->operation = VSTOR_OPERATION_BEGIN_INITIALIZATION; 911 ret = storvsc_execute_vstor_op(device, request, true); 912 if (ret) 913 return ret; 914 /* 915 * Query host supported protocol version. 916 */ 917 918 for (i = 0; i < ARRAY_SIZE(vmstor_protocols); i++) { 919 /* reuse the packet for version range supported */ 920 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 921 vstor_packet->operation = 922 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION; 923 924 vstor_packet->version.major_minor = 925 vmstor_protocols[i].protocol_version; 926 927 /* 928 * The revision number is only used in Windows; set it to 0. 929 */ 930 vstor_packet->version.revision = 0; 931 ret = storvsc_execute_vstor_op(device, request, false); 932 if (ret != 0) 933 return ret; 934 935 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO) 936 return -EINVAL; 937 938 if (vstor_packet->status == 0) { 939 vmstor_proto_version = 940 vmstor_protocols[i].protocol_version; 941 942 sense_buffer_size = 943 vmstor_protocols[i].sense_buffer_size; 944 945 stor_device->vmscsi_size_delta = 946 vmstor_protocols[i].vmscsi_size_delta; 947 948 break; 949 } 950 } 951 952 if (vstor_packet->status != 0) 953 return -EINVAL; 954 955 956 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 957 vstor_packet->operation = VSTOR_OPERATION_QUERY_PROPERTIES; 958 ret = storvsc_execute_vstor_op(device, request, true); 959 if (ret != 0) 960 return ret; 961 962 /* 963 * Check to see if multi-channel support is there. 964 * Hosts that implement protocol version of 5.1 and above 965 * support multi-channel. 966 */ 967 max_chns = vstor_packet->storage_channel_properties.max_channel_cnt; 968 969 /* 970 * Allocate state to manage the sub-channels. 971 * We allocate an array based on the numbers of possible CPUs 972 * (Hyper-V does not support cpu online/offline). 973 * This Array will be sparseley populated with unique 974 * channels - primary + sub-channels. 975 * We will however populate all the slots to evenly distribute 976 * the load. 977 */ 978 stor_device->stor_chns = kcalloc(num_possible_cpus(), sizeof(void *), 979 GFP_KERNEL); 980 if (stor_device->stor_chns == NULL) 981 return -ENOMEM; 982 983 device->channel->change_target_cpu_callback = storvsc_change_target_cpu; 984 985 stor_device->stor_chns[device->channel->target_cpu] = device->channel; 986 cpumask_set_cpu(device->channel->target_cpu, 987 &stor_device->alloced_cpus); 988 989 if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN8) { 990 if (vstor_packet->storage_channel_properties.flags & 991 STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL) 992 process_sub_channels = true; 993 } 994 stor_device->max_transfer_bytes = 995 vstor_packet->storage_channel_properties.max_transfer_bytes; 996 997 if (!is_fc) 998 goto done; 999 1000 /* 1001 * For FC devices retrieve FC HBA data. 1002 */ 1003 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 1004 vstor_packet->operation = VSTOR_OPERATION_FCHBA_DATA; 1005 ret = storvsc_execute_vstor_op(device, request, true); 1006 if (ret != 0) 1007 return ret; 1008 1009 /* 1010 * Cache the currently active port and node ww names. 1011 */ 1012 cache_wwn(stor_device, vstor_packet); 1013 1014 done: 1015 1016 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 1017 vstor_packet->operation = VSTOR_OPERATION_END_INITIALIZATION; 1018 ret = storvsc_execute_vstor_op(device, request, true); 1019 if (ret != 0) 1020 return ret; 1021 1022 if (process_sub_channels) 1023 handle_multichannel_storage(device, max_chns); 1024 1025 return ret; 1026 } 1027 1028 static void storvsc_handle_error(struct vmscsi_request *vm_srb, 1029 struct scsi_cmnd *scmnd, 1030 struct Scsi_Host *host, 1031 u8 asc, u8 ascq) 1032 { 1033 struct storvsc_scan_work *wrk; 1034 void (*process_err_fn)(struct work_struct *work); 1035 struct hv_host_device *host_dev = shost_priv(host); 1036 1037 /* 1038 * In some situations, Hyper-V sets multiple bits in the 1039 * srb_status, such as ABORTED and ERROR. So process them 1040 * individually, with the most specific bits first. 1041 */ 1042 1043 if (vm_srb->srb_status & SRB_STATUS_INVALID_LUN) { 1044 set_host_byte(scmnd, DID_NO_CONNECT); 1045 process_err_fn = storvsc_remove_lun; 1046 goto do_work; 1047 } 1048 1049 if (vm_srb->srb_status & SRB_STATUS_ABORTED) { 1050 if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID && 1051 /* Capacity data has changed */ 1052 (asc == 0x2a) && (ascq == 0x9)) { 1053 process_err_fn = storvsc_device_scan; 1054 /* 1055 * Retry the I/O that triggered this. 1056 */ 1057 set_host_byte(scmnd, DID_REQUEUE); 1058 goto do_work; 1059 } 1060 } 1061 1062 if (vm_srb->srb_status & SRB_STATUS_ERROR) { 1063 /* 1064 * Let upper layer deal with error when 1065 * sense message is present. 1066 */ 1067 if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID) 1068 return; 1069 1070 /* 1071 * If there is an error; offline the device since all 1072 * error recovery strategies would have already been 1073 * deployed on the host side. However, if the command 1074 * were a pass-through command deal with it appropriately. 1075 */ 1076 switch (scmnd->cmnd[0]) { 1077 case ATA_16: 1078 case ATA_12: 1079 set_host_byte(scmnd, DID_PASSTHROUGH); 1080 break; 1081 /* 1082 * On some Hyper-V hosts TEST_UNIT_READY command can 1083 * return SRB_STATUS_ERROR. Let the upper level code 1084 * deal with it based on the sense information. 1085 */ 1086 case TEST_UNIT_READY: 1087 break; 1088 default: 1089 set_host_byte(scmnd, DID_ERROR); 1090 } 1091 } 1092 return; 1093 1094 do_work: 1095 /* 1096 * We need to schedule work to process this error; schedule it. 1097 */ 1098 wrk = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC); 1099 if (!wrk) { 1100 set_host_byte(scmnd, DID_TARGET_FAILURE); 1101 return; 1102 } 1103 1104 wrk->host = host; 1105 wrk->lun = vm_srb->lun; 1106 wrk->tgt_id = vm_srb->target_id; 1107 INIT_WORK(&wrk->work, process_err_fn); 1108 queue_work(host_dev->handle_error_wq, &wrk->work); 1109 } 1110 1111 1112 static void storvsc_command_completion(struct storvsc_cmd_request *cmd_request, 1113 struct storvsc_device *stor_dev) 1114 { 1115 struct scsi_cmnd *scmnd = cmd_request->cmd; 1116 struct scsi_sense_hdr sense_hdr; 1117 struct vmscsi_request *vm_srb; 1118 u32 data_transfer_length; 1119 struct Scsi_Host *host; 1120 u32 payload_sz = cmd_request->payload_sz; 1121 void *payload = cmd_request->payload; 1122 bool sense_ok; 1123 1124 host = stor_dev->host; 1125 1126 vm_srb = &cmd_request->vstor_packet.vm_srb; 1127 data_transfer_length = vm_srb->data_transfer_length; 1128 1129 scmnd->result = vm_srb->scsi_status; 1130 1131 if (scmnd->result) { 1132 sense_ok = scsi_normalize_sense(scmnd->sense_buffer, 1133 SCSI_SENSE_BUFFERSIZE, &sense_hdr); 1134 1135 if (sense_ok && do_logging(STORVSC_LOGGING_WARN)) 1136 scsi_print_sense_hdr(scmnd->device, "storvsc", 1137 &sense_hdr); 1138 } 1139 1140 if (vm_srb->srb_status != SRB_STATUS_SUCCESS) { 1141 storvsc_handle_error(vm_srb, scmnd, host, sense_hdr.asc, 1142 sense_hdr.ascq); 1143 /* 1144 * The Windows driver set data_transfer_length on 1145 * SRB_STATUS_DATA_OVERRUN. On other errors, this value 1146 * is untouched. In these cases we set it to 0. 1147 */ 1148 if (vm_srb->srb_status != SRB_STATUS_DATA_OVERRUN) 1149 data_transfer_length = 0; 1150 } 1151 1152 /* Validate data_transfer_length (from Hyper-V) */ 1153 if (data_transfer_length > cmd_request->payload->range.len) 1154 data_transfer_length = cmd_request->payload->range.len; 1155 1156 scsi_set_resid(scmnd, 1157 cmd_request->payload->range.len - data_transfer_length); 1158 1159 scsi_done(scmnd); 1160 1161 if (payload_sz > 1162 sizeof(struct vmbus_channel_packet_multipage_buffer)) 1163 kfree(payload); 1164 } 1165 1166 static void storvsc_on_io_completion(struct storvsc_device *stor_device, 1167 struct vstor_packet *vstor_packet, 1168 struct storvsc_cmd_request *request) 1169 { 1170 struct vstor_packet *stor_pkt; 1171 struct hv_device *device = stor_device->device; 1172 1173 stor_pkt = &request->vstor_packet; 1174 1175 /* 1176 * The current SCSI handling on the host side does 1177 * not correctly handle: 1178 * INQUIRY command with page code parameter set to 0x80 1179 * MODE_SENSE command with cmd[2] == 0x1c 1180 * 1181 * Setup srb and scsi status so this won't be fatal. 1182 * We do this so we can distinguish truly fatal failues 1183 * (srb status == 0x4) and off-line the device in that case. 1184 */ 1185 1186 if ((stor_pkt->vm_srb.cdb[0] == INQUIRY) || 1187 (stor_pkt->vm_srb.cdb[0] == MODE_SENSE)) { 1188 vstor_packet->vm_srb.scsi_status = 0; 1189 vstor_packet->vm_srb.srb_status = SRB_STATUS_SUCCESS; 1190 } 1191 1192 /* Copy over the status...etc */ 1193 stor_pkt->vm_srb.scsi_status = vstor_packet->vm_srb.scsi_status; 1194 stor_pkt->vm_srb.srb_status = vstor_packet->vm_srb.srb_status; 1195 1196 /* 1197 * Copy over the sense_info_length, but limit to the known max 1198 * size if Hyper-V returns a bad value. 1199 */ 1200 stor_pkt->vm_srb.sense_info_length = min_t(u8, sense_buffer_size, 1201 vstor_packet->vm_srb.sense_info_length); 1202 1203 if (vstor_packet->vm_srb.scsi_status != 0 || 1204 vstor_packet->vm_srb.srb_status != SRB_STATUS_SUCCESS) { 1205 1206 /* 1207 * Log TEST_UNIT_READY errors only as warnings. Hyper-V can 1208 * return errors when detecting devices using TEST_UNIT_READY, 1209 * and logging these as errors produces unhelpful noise. 1210 */ 1211 int loglevel = (stor_pkt->vm_srb.cdb[0] == TEST_UNIT_READY) ? 1212 STORVSC_LOGGING_WARN : STORVSC_LOGGING_ERROR; 1213 1214 storvsc_log(device, loglevel, 1215 "tag#%d cmd 0x%x status: scsi 0x%x srb 0x%x hv 0x%x\n", 1216 scsi_cmd_to_rq(request->cmd)->tag, 1217 stor_pkt->vm_srb.cdb[0], 1218 vstor_packet->vm_srb.scsi_status, 1219 vstor_packet->vm_srb.srb_status, 1220 vstor_packet->status); 1221 } 1222 1223 if (vstor_packet->vm_srb.scsi_status == SAM_STAT_CHECK_CONDITION && 1224 (vstor_packet->vm_srb.srb_status & SRB_STATUS_AUTOSENSE_VALID)) 1225 memcpy(request->cmd->sense_buffer, 1226 vstor_packet->vm_srb.sense_data, 1227 stor_pkt->vm_srb.sense_info_length); 1228 1229 stor_pkt->vm_srb.data_transfer_length = 1230 vstor_packet->vm_srb.data_transfer_length; 1231 1232 storvsc_command_completion(request, stor_device); 1233 1234 if (atomic_dec_and_test(&stor_device->num_outstanding_req) && 1235 stor_device->drain_notify) 1236 wake_up(&stor_device->waiting_to_drain); 1237 } 1238 1239 static void storvsc_on_receive(struct storvsc_device *stor_device, 1240 struct vstor_packet *vstor_packet, 1241 struct storvsc_cmd_request *request) 1242 { 1243 struct hv_host_device *host_dev; 1244 switch (vstor_packet->operation) { 1245 case VSTOR_OPERATION_COMPLETE_IO: 1246 storvsc_on_io_completion(stor_device, vstor_packet, request); 1247 break; 1248 1249 case VSTOR_OPERATION_REMOVE_DEVICE: 1250 case VSTOR_OPERATION_ENUMERATE_BUS: 1251 host_dev = shost_priv(stor_device->host); 1252 queue_work( 1253 host_dev->handle_error_wq, &host_dev->host_scan_work); 1254 break; 1255 1256 case VSTOR_OPERATION_FCHBA_DATA: 1257 cache_wwn(stor_device, vstor_packet); 1258 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1259 fc_host_node_name(stor_device->host) = stor_device->node_name; 1260 fc_host_port_name(stor_device->host) = stor_device->port_name; 1261 #endif 1262 break; 1263 default: 1264 break; 1265 } 1266 } 1267 1268 static void storvsc_on_channel_callback(void *context) 1269 { 1270 struct vmbus_channel *channel = (struct vmbus_channel *)context; 1271 const struct vmpacket_descriptor *desc; 1272 struct hv_device *device; 1273 struct storvsc_device *stor_device; 1274 struct Scsi_Host *shost; 1275 1276 if (channel->primary_channel != NULL) 1277 device = channel->primary_channel->device_obj; 1278 else 1279 device = channel->device_obj; 1280 1281 stor_device = get_in_stor_device(device); 1282 if (!stor_device) 1283 return; 1284 1285 shost = stor_device->host; 1286 1287 foreach_vmbus_pkt(desc, channel) { 1288 struct vstor_packet *packet = hv_pkt_data(desc); 1289 struct storvsc_cmd_request *request = NULL; 1290 u32 pktlen = hv_pkt_datalen(desc); 1291 u64 rqst_id = desc->trans_id; 1292 u32 minlen = rqst_id ? sizeof(struct vstor_packet) - 1293 stor_device->vmscsi_size_delta : sizeof(enum vstor_packet_operation); 1294 1295 if (pktlen < minlen) { 1296 dev_err(&device->device, 1297 "Invalid pkt: id=%llu, len=%u, minlen=%u\n", 1298 rqst_id, pktlen, minlen); 1299 continue; 1300 } 1301 1302 if (rqst_id == VMBUS_RQST_INIT) { 1303 request = &stor_device->init_request; 1304 } else if (rqst_id == VMBUS_RQST_RESET) { 1305 request = &stor_device->reset_request; 1306 } else { 1307 /* Hyper-V can send an unsolicited message with ID of 0 */ 1308 if (rqst_id == 0) { 1309 /* 1310 * storvsc_on_receive() looks at the vstor_packet in the message 1311 * from the ring buffer. 1312 * 1313 * - If the operation in the vstor_packet is COMPLETE_IO, then 1314 * we call storvsc_on_io_completion(), and dereference the 1315 * guest memory address. Make sure we don't call 1316 * storvsc_on_io_completion() with a guest memory address 1317 * that is zero if Hyper-V were to construct and send such 1318 * a bogus packet. 1319 * 1320 * - If the operation in the vstor_packet is FCHBA_DATA, then 1321 * we call cache_wwn(), and access the data payload area of 1322 * the packet (wwn_packet); however, there is no guarantee 1323 * that the packet is big enough to contain such area. 1324 * Future-proof the code by rejecting such a bogus packet. 1325 */ 1326 if (packet->operation == VSTOR_OPERATION_COMPLETE_IO || 1327 packet->operation == VSTOR_OPERATION_FCHBA_DATA) { 1328 dev_err(&device->device, "Invalid packet with ID of 0\n"); 1329 continue; 1330 } 1331 } else { 1332 struct scsi_cmnd *scmnd; 1333 1334 /* Transaction 'rqst_id' corresponds to tag 'rqst_id - 1' */ 1335 scmnd = scsi_host_find_tag(shost, rqst_id - 1); 1336 if (scmnd == NULL) { 1337 dev_err(&device->device, "Incorrect transaction ID\n"); 1338 continue; 1339 } 1340 request = (struct storvsc_cmd_request *)scsi_cmd_priv(scmnd); 1341 scsi_dma_unmap(scmnd); 1342 } 1343 1344 storvsc_on_receive(stor_device, packet, request); 1345 continue; 1346 } 1347 1348 memcpy(&request->vstor_packet, packet, 1349 (sizeof(struct vstor_packet) - stor_device->vmscsi_size_delta)); 1350 complete(&request->wait_event); 1351 } 1352 } 1353 1354 static int storvsc_connect_to_vsp(struct hv_device *device, u32 ring_size, 1355 bool is_fc) 1356 { 1357 struct vmstorage_channel_properties props; 1358 int ret; 1359 1360 memset(&props, 0, sizeof(struct vmstorage_channel_properties)); 1361 1362 device->channel->max_pkt_size = STORVSC_MAX_PKT_SIZE; 1363 device->channel->next_request_id_callback = storvsc_next_request_id; 1364 1365 ret = vmbus_open(device->channel, 1366 ring_size, 1367 ring_size, 1368 (void *)&props, 1369 sizeof(struct vmstorage_channel_properties), 1370 storvsc_on_channel_callback, device->channel); 1371 1372 if (ret != 0) 1373 return ret; 1374 1375 ret = storvsc_channel_init(device, is_fc); 1376 1377 return ret; 1378 } 1379 1380 static int storvsc_dev_remove(struct hv_device *device) 1381 { 1382 struct storvsc_device *stor_device; 1383 1384 stor_device = hv_get_drvdata(device); 1385 1386 stor_device->destroy = true; 1387 1388 /* Make sure flag is set before waiting */ 1389 wmb(); 1390 1391 /* 1392 * At this point, all outbound traffic should be disable. We 1393 * only allow inbound traffic (responses) to proceed so that 1394 * outstanding requests can be completed. 1395 */ 1396 1397 storvsc_wait_to_drain(stor_device); 1398 1399 /* 1400 * Since we have already drained, we don't need to busy wait 1401 * as was done in final_release_stor_device() 1402 * Note that we cannot set the ext pointer to NULL until 1403 * we have drained - to drain the outgoing packets, we need to 1404 * allow incoming packets. 1405 */ 1406 hv_set_drvdata(device, NULL); 1407 1408 /* Close the channel */ 1409 vmbus_close(device->channel); 1410 1411 kfree(stor_device->stor_chns); 1412 kfree(stor_device); 1413 return 0; 1414 } 1415 1416 static struct vmbus_channel *get_og_chn(struct storvsc_device *stor_device, 1417 u16 q_num) 1418 { 1419 u16 slot = 0; 1420 u16 hash_qnum; 1421 const struct cpumask *node_mask; 1422 int num_channels, tgt_cpu; 1423 1424 if (stor_device->num_sc == 0) { 1425 stor_device->stor_chns[q_num] = stor_device->device->channel; 1426 return stor_device->device->channel; 1427 } 1428 1429 /* 1430 * Our channel array is sparsley populated and we 1431 * initiated I/O on a processor/hw-q that does not 1432 * currently have a designated channel. Fix this. 1433 * The strategy is simple: 1434 * I. Ensure NUMA locality 1435 * II. Distribute evenly (best effort) 1436 */ 1437 1438 node_mask = cpumask_of_node(cpu_to_node(q_num)); 1439 1440 num_channels = 0; 1441 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1442 if (cpumask_test_cpu(tgt_cpu, node_mask)) 1443 num_channels++; 1444 } 1445 if (num_channels == 0) { 1446 stor_device->stor_chns[q_num] = stor_device->device->channel; 1447 return stor_device->device->channel; 1448 } 1449 1450 hash_qnum = q_num; 1451 while (hash_qnum >= num_channels) 1452 hash_qnum -= num_channels; 1453 1454 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1455 if (!cpumask_test_cpu(tgt_cpu, node_mask)) 1456 continue; 1457 if (slot == hash_qnum) 1458 break; 1459 slot++; 1460 } 1461 1462 stor_device->stor_chns[q_num] = stor_device->stor_chns[tgt_cpu]; 1463 1464 return stor_device->stor_chns[q_num]; 1465 } 1466 1467 1468 static int storvsc_do_io(struct hv_device *device, 1469 struct storvsc_cmd_request *request, u16 q_num) 1470 { 1471 struct storvsc_device *stor_device; 1472 struct vstor_packet *vstor_packet; 1473 struct vmbus_channel *outgoing_channel, *channel; 1474 unsigned long flags; 1475 int ret = 0; 1476 const struct cpumask *node_mask; 1477 int tgt_cpu; 1478 1479 vstor_packet = &request->vstor_packet; 1480 stor_device = get_out_stor_device(device); 1481 1482 if (!stor_device) 1483 return -ENODEV; 1484 1485 1486 request->device = device; 1487 /* 1488 * Select an appropriate channel to send the request out. 1489 */ 1490 /* See storvsc_change_target_cpu(). */ 1491 outgoing_channel = READ_ONCE(stor_device->stor_chns[q_num]); 1492 if (outgoing_channel != NULL) { 1493 if (outgoing_channel->target_cpu == q_num) { 1494 /* 1495 * Ideally, we want to pick a different channel if 1496 * available on the same NUMA node. 1497 */ 1498 node_mask = cpumask_of_node(cpu_to_node(q_num)); 1499 for_each_cpu_wrap(tgt_cpu, 1500 &stor_device->alloced_cpus, q_num + 1) { 1501 if (!cpumask_test_cpu(tgt_cpu, node_mask)) 1502 continue; 1503 if (tgt_cpu == q_num) 1504 continue; 1505 channel = READ_ONCE( 1506 stor_device->stor_chns[tgt_cpu]); 1507 if (channel == NULL) 1508 continue; 1509 if (hv_get_avail_to_write_percent( 1510 &channel->outbound) 1511 > ring_avail_percent_lowater) { 1512 outgoing_channel = channel; 1513 goto found_channel; 1514 } 1515 } 1516 1517 /* 1518 * All the other channels on the same NUMA node are 1519 * busy. Try to use the channel on the current CPU 1520 */ 1521 if (hv_get_avail_to_write_percent( 1522 &outgoing_channel->outbound) 1523 > ring_avail_percent_lowater) 1524 goto found_channel; 1525 1526 /* 1527 * If we reach here, all the channels on the current 1528 * NUMA node are busy. Try to find a channel in 1529 * other NUMA nodes 1530 */ 1531 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1532 if (cpumask_test_cpu(tgt_cpu, node_mask)) 1533 continue; 1534 channel = READ_ONCE( 1535 stor_device->stor_chns[tgt_cpu]); 1536 if (channel == NULL) 1537 continue; 1538 if (hv_get_avail_to_write_percent( 1539 &channel->outbound) 1540 > ring_avail_percent_lowater) { 1541 outgoing_channel = channel; 1542 goto found_channel; 1543 } 1544 } 1545 } 1546 } else { 1547 spin_lock_irqsave(&stor_device->lock, flags); 1548 outgoing_channel = stor_device->stor_chns[q_num]; 1549 if (outgoing_channel != NULL) { 1550 spin_unlock_irqrestore(&stor_device->lock, flags); 1551 goto found_channel; 1552 } 1553 outgoing_channel = get_og_chn(stor_device, q_num); 1554 spin_unlock_irqrestore(&stor_device->lock, flags); 1555 } 1556 1557 found_channel: 1558 vstor_packet->flags |= REQUEST_COMPLETION_FLAG; 1559 1560 vstor_packet->vm_srb.length = (sizeof(struct vmscsi_request) - 1561 stor_device->vmscsi_size_delta); 1562 1563 1564 vstor_packet->vm_srb.sense_info_length = sense_buffer_size; 1565 1566 1567 vstor_packet->vm_srb.data_transfer_length = 1568 request->payload->range.len; 1569 1570 vstor_packet->operation = VSTOR_OPERATION_EXECUTE_SRB; 1571 1572 if (request->payload->range.len) { 1573 1574 ret = vmbus_sendpacket_mpb_desc(outgoing_channel, 1575 request->payload, request->payload_sz, 1576 vstor_packet, 1577 (sizeof(struct vstor_packet) - 1578 stor_device->vmscsi_size_delta), 1579 (unsigned long)request); 1580 } else { 1581 ret = vmbus_sendpacket(outgoing_channel, vstor_packet, 1582 (sizeof(struct vstor_packet) - 1583 stor_device->vmscsi_size_delta), 1584 (unsigned long)request, 1585 VM_PKT_DATA_INBAND, 1586 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1587 } 1588 1589 if (ret != 0) 1590 return ret; 1591 1592 atomic_inc(&stor_device->num_outstanding_req); 1593 1594 return ret; 1595 } 1596 1597 static int storvsc_device_alloc(struct scsi_device *sdevice) 1598 { 1599 /* 1600 * Set blist flag to permit the reading of the VPD pages even when 1601 * the target may claim SPC-2 compliance. MSFT targets currently 1602 * claim SPC-2 compliance while they implement post SPC-2 features. 1603 * With this flag we can correctly handle WRITE_SAME_16 issues. 1604 * 1605 * Hypervisor reports SCSI_UNKNOWN type for DVD ROM device but 1606 * still supports REPORT LUN. 1607 */ 1608 sdevice->sdev_bflags = BLIST_REPORTLUN2 | BLIST_TRY_VPD_PAGES; 1609 1610 return 0; 1611 } 1612 1613 static int storvsc_device_configure(struct scsi_device *sdevice) 1614 { 1615 blk_queue_rq_timeout(sdevice->request_queue, (storvsc_timeout * HZ)); 1616 1617 sdevice->no_write_same = 1; 1618 1619 /* 1620 * If the host is WIN8 or WIN8 R2, claim conformance to SPC-3 1621 * if the device is a MSFT virtual device. If the host is 1622 * WIN10 or newer, allow write_same. 1623 */ 1624 if (!strncmp(sdevice->vendor, "Msft", 4)) { 1625 switch (vmstor_proto_version) { 1626 case VMSTOR_PROTO_VERSION_WIN8: 1627 case VMSTOR_PROTO_VERSION_WIN8_1: 1628 sdevice->scsi_level = SCSI_SPC_3; 1629 break; 1630 } 1631 1632 if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN10) 1633 sdevice->no_write_same = 0; 1634 } 1635 1636 return 0; 1637 } 1638 1639 static int storvsc_get_chs(struct scsi_device *sdev, struct block_device * bdev, 1640 sector_t capacity, int *info) 1641 { 1642 sector_t nsect = capacity; 1643 sector_t cylinders = nsect; 1644 int heads, sectors_pt; 1645 1646 /* 1647 * We are making up these values; let us keep it simple. 1648 */ 1649 heads = 0xff; 1650 sectors_pt = 0x3f; /* Sectors per track */ 1651 sector_div(cylinders, heads * sectors_pt); 1652 if ((sector_t)(cylinders + 1) * heads * sectors_pt < nsect) 1653 cylinders = 0xffff; 1654 1655 info[0] = heads; 1656 info[1] = sectors_pt; 1657 info[2] = (int)cylinders; 1658 1659 return 0; 1660 } 1661 1662 static int storvsc_host_reset_handler(struct scsi_cmnd *scmnd) 1663 { 1664 struct hv_host_device *host_dev = shost_priv(scmnd->device->host); 1665 struct hv_device *device = host_dev->dev; 1666 1667 struct storvsc_device *stor_device; 1668 struct storvsc_cmd_request *request; 1669 struct vstor_packet *vstor_packet; 1670 int ret, t; 1671 1672 stor_device = get_out_stor_device(device); 1673 if (!stor_device) 1674 return FAILED; 1675 1676 request = &stor_device->reset_request; 1677 vstor_packet = &request->vstor_packet; 1678 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 1679 1680 init_completion(&request->wait_event); 1681 1682 vstor_packet->operation = VSTOR_OPERATION_RESET_BUS; 1683 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 1684 vstor_packet->vm_srb.path_id = stor_device->path_id; 1685 1686 ret = vmbus_sendpacket(device->channel, vstor_packet, 1687 (sizeof(struct vstor_packet) - 1688 stor_device->vmscsi_size_delta), 1689 VMBUS_RQST_RESET, 1690 VM_PKT_DATA_INBAND, 1691 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1692 if (ret != 0) 1693 return FAILED; 1694 1695 t = wait_for_completion_timeout(&request->wait_event, 5*HZ); 1696 if (t == 0) 1697 return TIMEOUT_ERROR; 1698 1699 1700 /* 1701 * At this point, all outstanding requests in the adapter 1702 * should have been flushed out and return to us 1703 * There is a potential race here where the host may be in 1704 * the process of responding when we return from here. 1705 * Just wait for all in-transit packets to be accounted for 1706 * before we return from here. 1707 */ 1708 storvsc_wait_to_drain(stor_device); 1709 1710 return SUCCESS; 1711 } 1712 1713 /* 1714 * The host guarantees to respond to each command, although I/O latencies might 1715 * be unbounded on Azure. Reset the timer unconditionally to give the host a 1716 * chance to perform EH. 1717 */ 1718 static enum blk_eh_timer_return storvsc_eh_timed_out(struct scsi_cmnd *scmnd) 1719 { 1720 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1721 if (scmnd->device->host->transportt == fc_transport_template) 1722 return fc_eh_timed_out(scmnd); 1723 #endif 1724 return BLK_EH_RESET_TIMER; 1725 } 1726 1727 static bool storvsc_scsi_cmd_ok(struct scsi_cmnd *scmnd) 1728 { 1729 bool allowed = true; 1730 u8 scsi_op = scmnd->cmnd[0]; 1731 1732 switch (scsi_op) { 1733 /* the host does not handle WRITE_SAME, log accident usage */ 1734 case WRITE_SAME: 1735 /* 1736 * smartd sends this command and the host does not handle 1737 * this. So, don't send it. 1738 */ 1739 case SET_WINDOW: 1740 set_host_byte(scmnd, DID_ERROR); 1741 allowed = false; 1742 break; 1743 default: 1744 break; 1745 } 1746 return allowed; 1747 } 1748 1749 static int storvsc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scmnd) 1750 { 1751 int ret; 1752 struct hv_host_device *host_dev = shost_priv(host); 1753 struct hv_device *dev = host_dev->dev; 1754 struct storvsc_cmd_request *cmd_request = scsi_cmd_priv(scmnd); 1755 struct scatterlist *sgl; 1756 struct vmscsi_request *vm_srb; 1757 struct vmbus_packet_mpb_array *payload; 1758 u32 payload_sz; 1759 u32 length; 1760 1761 if (vmstor_proto_version <= VMSTOR_PROTO_VERSION_WIN8) { 1762 /* 1763 * On legacy hosts filter unimplemented commands. 1764 * Future hosts are expected to correctly handle 1765 * unsupported commands. Furthermore, it is 1766 * possible that some of the currently 1767 * unsupported commands maybe supported in 1768 * future versions of the host. 1769 */ 1770 if (!storvsc_scsi_cmd_ok(scmnd)) { 1771 scsi_done(scmnd); 1772 return 0; 1773 } 1774 } 1775 1776 /* Setup the cmd request */ 1777 cmd_request->cmd = scmnd; 1778 1779 memset(&cmd_request->vstor_packet, 0, sizeof(struct vstor_packet)); 1780 vm_srb = &cmd_request->vstor_packet.vm_srb; 1781 vm_srb->win8_extension.time_out_value = 60; 1782 1783 vm_srb->win8_extension.srb_flags |= 1784 SRB_FLAGS_DISABLE_SYNCH_TRANSFER; 1785 1786 if (scmnd->device->tagged_supported) { 1787 vm_srb->win8_extension.srb_flags |= 1788 (SRB_FLAGS_QUEUE_ACTION_ENABLE | SRB_FLAGS_NO_QUEUE_FREEZE); 1789 vm_srb->win8_extension.queue_tag = SP_UNTAGGED; 1790 vm_srb->win8_extension.queue_action = SRB_SIMPLE_TAG_REQUEST; 1791 } 1792 1793 /* Build the SRB */ 1794 switch (scmnd->sc_data_direction) { 1795 case DMA_TO_DEVICE: 1796 vm_srb->data_in = WRITE_TYPE; 1797 vm_srb->win8_extension.srb_flags |= SRB_FLAGS_DATA_OUT; 1798 break; 1799 case DMA_FROM_DEVICE: 1800 vm_srb->data_in = READ_TYPE; 1801 vm_srb->win8_extension.srb_flags |= SRB_FLAGS_DATA_IN; 1802 break; 1803 case DMA_NONE: 1804 vm_srb->data_in = UNKNOWN_TYPE; 1805 vm_srb->win8_extension.srb_flags |= SRB_FLAGS_NO_DATA_TRANSFER; 1806 break; 1807 default: 1808 /* 1809 * This is DMA_BIDIRECTIONAL or something else we are never 1810 * supposed to see here. 1811 */ 1812 WARN(1, "Unexpected data direction: %d\n", 1813 scmnd->sc_data_direction); 1814 return -EINVAL; 1815 } 1816 1817 1818 vm_srb->port_number = host_dev->port; 1819 vm_srb->path_id = scmnd->device->channel; 1820 vm_srb->target_id = scmnd->device->id; 1821 vm_srb->lun = scmnd->device->lun; 1822 1823 vm_srb->cdb_length = scmnd->cmd_len; 1824 1825 memcpy(vm_srb->cdb, scmnd->cmnd, vm_srb->cdb_length); 1826 1827 sgl = (struct scatterlist *)scsi_sglist(scmnd); 1828 1829 length = scsi_bufflen(scmnd); 1830 payload = (struct vmbus_packet_mpb_array *)&cmd_request->mpb; 1831 payload_sz = sizeof(cmd_request->mpb); 1832 1833 if (scsi_sg_count(scmnd)) { 1834 unsigned long offset_in_hvpg = offset_in_hvpage(sgl->offset); 1835 unsigned int hvpg_count = HVPFN_UP(offset_in_hvpg + length); 1836 struct scatterlist *sg; 1837 unsigned long hvpfn, hvpfns_to_add; 1838 int j, i = 0, sg_count; 1839 1840 if (hvpg_count > MAX_PAGE_BUFFER_COUNT) { 1841 1842 payload_sz = (hvpg_count * sizeof(u64) + 1843 sizeof(struct vmbus_packet_mpb_array)); 1844 payload = kzalloc(payload_sz, GFP_ATOMIC); 1845 if (!payload) 1846 return SCSI_MLQUEUE_DEVICE_BUSY; 1847 } 1848 1849 payload->range.len = length; 1850 payload->range.offset = offset_in_hvpg; 1851 1852 sg_count = scsi_dma_map(scmnd); 1853 if (sg_count < 0) { 1854 ret = SCSI_MLQUEUE_DEVICE_BUSY; 1855 goto err_free_payload; 1856 } 1857 1858 for_each_sg(sgl, sg, sg_count, j) { 1859 /* 1860 * Init values for the current sgl entry. hvpfns_to_add 1861 * is in units of Hyper-V size pages. Handling the 1862 * PAGE_SIZE != HV_HYP_PAGE_SIZE case also handles 1863 * values of sgl->offset that are larger than PAGE_SIZE. 1864 * Such offsets are handled even on other than the first 1865 * sgl entry, provided they are a multiple of PAGE_SIZE. 1866 */ 1867 hvpfn = HVPFN_DOWN(sg_dma_address(sg)); 1868 hvpfns_to_add = HVPFN_UP(sg_dma_address(sg) + 1869 sg_dma_len(sg)) - hvpfn; 1870 1871 /* 1872 * Fill the next portion of the PFN array with 1873 * sequential Hyper-V PFNs for the continguous physical 1874 * memory described by the sgl entry. The end of the 1875 * last sgl should be reached at the same time that 1876 * the PFN array is filled. 1877 */ 1878 while (hvpfns_to_add--) 1879 payload->range.pfn_array[i++] = hvpfn++; 1880 } 1881 } 1882 1883 cmd_request->payload = payload; 1884 cmd_request->payload_sz = payload_sz; 1885 1886 /* Invokes the vsc to start an IO */ 1887 ret = storvsc_do_io(dev, cmd_request, get_cpu()); 1888 put_cpu(); 1889 1890 if (ret == -EAGAIN) { 1891 /* no more space */ 1892 ret = SCSI_MLQUEUE_DEVICE_BUSY; 1893 goto err_free_payload; 1894 } 1895 1896 return 0; 1897 1898 err_free_payload: 1899 if (payload_sz > sizeof(cmd_request->mpb)) 1900 kfree(payload); 1901 1902 return ret; 1903 } 1904 1905 static struct scsi_host_template scsi_driver = { 1906 .module = THIS_MODULE, 1907 .name = "storvsc_host_t", 1908 .cmd_size = sizeof(struct storvsc_cmd_request), 1909 .bios_param = storvsc_get_chs, 1910 .queuecommand = storvsc_queuecommand, 1911 .eh_host_reset_handler = storvsc_host_reset_handler, 1912 .proc_name = "storvsc_host", 1913 .eh_timed_out = storvsc_eh_timed_out, 1914 .slave_alloc = storvsc_device_alloc, 1915 .slave_configure = storvsc_device_configure, 1916 .cmd_per_lun = 2048, 1917 .this_id = -1, 1918 /* Ensure there are no gaps in presented sgls */ 1919 .virt_boundary_mask = PAGE_SIZE-1, 1920 .no_write_same = 1, 1921 .track_queue_depth = 1, 1922 .change_queue_depth = storvsc_change_queue_depth, 1923 }; 1924 1925 enum { 1926 SCSI_GUID, 1927 IDE_GUID, 1928 SFC_GUID, 1929 }; 1930 1931 static const struct hv_vmbus_device_id id_table[] = { 1932 /* SCSI guid */ 1933 { HV_SCSI_GUID, 1934 .driver_data = SCSI_GUID 1935 }, 1936 /* IDE guid */ 1937 { HV_IDE_GUID, 1938 .driver_data = IDE_GUID 1939 }, 1940 /* Fibre Channel GUID */ 1941 { 1942 HV_SYNTHFC_GUID, 1943 .driver_data = SFC_GUID 1944 }, 1945 { }, 1946 }; 1947 1948 MODULE_DEVICE_TABLE(vmbus, id_table); 1949 1950 static const struct { guid_t guid; } fc_guid = { HV_SYNTHFC_GUID }; 1951 1952 static bool hv_dev_is_fc(struct hv_device *hv_dev) 1953 { 1954 return guid_equal(&fc_guid.guid, &hv_dev->dev_type); 1955 } 1956 1957 static int storvsc_probe(struct hv_device *device, 1958 const struct hv_vmbus_device_id *dev_id) 1959 { 1960 int ret; 1961 int num_cpus = num_online_cpus(); 1962 int num_present_cpus = num_present_cpus(); 1963 struct Scsi_Host *host; 1964 struct hv_host_device *host_dev; 1965 bool dev_is_ide = ((dev_id->driver_data == IDE_GUID) ? true : false); 1966 bool is_fc = ((dev_id->driver_data == SFC_GUID) ? true : false); 1967 int target = 0; 1968 struct storvsc_device *stor_device; 1969 int max_luns_per_target; 1970 int max_targets; 1971 int max_channels; 1972 int max_sub_channels = 0; 1973 1974 /* 1975 * Based on the windows host we are running on, 1976 * set state to properly communicate with the host. 1977 */ 1978 1979 if (vmbus_proto_version < VERSION_WIN8) { 1980 max_luns_per_target = STORVSC_IDE_MAX_LUNS_PER_TARGET; 1981 max_targets = STORVSC_IDE_MAX_TARGETS; 1982 max_channels = STORVSC_IDE_MAX_CHANNELS; 1983 } else { 1984 max_luns_per_target = STORVSC_MAX_LUNS_PER_TARGET; 1985 max_targets = STORVSC_MAX_TARGETS; 1986 max_channels = STORVSC_MAX_CHANNELS; 1987 /* 1988 * On Windows8 and above, we support sub-channels for storage 1989 * on SCSI and FC controllers. 1990 * The number of sub-channels offerred is based on the number of 1991 * VCPUs in the guest. 1992 */ 1993 if (!dev_is_ide) 1994 max_sub_channels = 1995 (num_cpus - 1) / storvsc_vcpus_per_sub_channel; 1996 } 1997 1998 scsi_driver.can_queue = max_outstanding_req_per_channel * 1999 (max_sub_channels + 1) * 2000 (100 - ring_avail_percent_lowater) / 100; 2001 2002 host = scsi_host_alloc(&scsi_driver, 2003 sizeof(struct hv_host_device)); 2004 if (!host) 2005 return -ENOMEM; 2006 2007 host_dev = shost_priv(host); 2008 memset(host_dev, 0, sizeof(struct hv_host_device)); 2009 2010 host_dev->port = host->host_no; 2011 host_dev->dev = device; 2012 host_dev->host = host; 2013 2014 2015 stor_device = kzalloc(sizeof(struct storvsc_device), GFP_KERNEL); 2016 if (!stor_device) { 2017 ret = -ENOMEM; 2018 goto err_out0; 2019 } 2020 2021 stor_device->destroy = false; 2022 init_waitqueue_head(&stor_device->waiting_to_drain); 2023 stor_device->device = device; 2024 stor_device->host = host; 2025 stor_device->vmscsi_size_delta = sizeof(struct vmscsi_win8_extension); 2026 spin_lock_init(&stor_device->lock); 2027 hv_set_drvdata(device, stor_device); 2028 dma_set_min_align_mask(&device->device, HV_HYP_PAGE_SIZE - 1); 2029 2030 stor_device->port_number = host->host_no; 2031 ret = storvsc_connect_to_vsp(device, storvsc_ringbuffer_size, is_fc); 2032 if (ret) 2033 goto err_out1; 2034 2035 host_dev->path = stor_device->path_id; 2036 host_dev->target = stor_device->target_id; 2037 2038 switch (dev_id->driver_data) { 2039 case SFC_GUID: 2040 host->max_lun = STORVSC_FC_MAX_LUNS_PER_TARGET; 2041 host->max_id = STORVSC_FC_MAX_TARGETS; 2042 host->max_channel = STORVSC_FC_MAX_CHANNELS - 1; 2043 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2044 host->transportt = fc_transport_template; 2045 #endif 2046 break; 2047 2048 case SCSI_GUID: 2049 host->max_lun = max_luns_per_target; 2050 host->max_id = max_targets; 2051 host->max_channel = max_channels - 1; 2052 break; 2053 2054 default: 2055 host->max_lun = STORVSC_IDE_MAX_LUNS_PER_TARGET; 2056 host->max_id = STORVSC_IDE_MAX_TARGETS; 2057 host->max_channel = STORVSC_IDE_MAX_CHANNELS - 1; 2058 break; 2059 } 2060 /* max cmd length */ 2061 host->max_cmd_len = STORVSC_MAX_CMD_LEN; 2062 2063 /* 2064 * set the table size based on the info we got 2065 * from the host. 2066 */ 2067 host->sg_tablesize = (stor_device->max_transfer_bytes >> PAGE_SHIFT); 2068 /* 2069 * For non-IDE disks, the host supports multiple channels. 2070 * Set the number of HW queues we are supporting. 2071 */ 2072 if (!dev_is_ide) { 2073 if (storvsc_max_hw_queues > num_present_cpus) { 2074 storvsc_max_hw_queues = 0; 2075 storvsc_log(device, STORVSC_LOGGING_WARN, 2076 "Resetting invalid storvsc_max_hw_queues value to default.\n"); 2077 } 2078 if (storvsc_max_hw_queues) 2079 host->nr_hw_queues = storvsc_max_hw_queues; 2080 else 2081 host->nr_hw_queues = num_present_cpus; 2082 } 2083 2084 /* 2085 * Set the error handler work queue. 2086 */ 2087 host_dev->handle_error_wq = 2088 alloc_ordered_workqueue("storvsc_error_wq_%d", 2089 WQ_MEM_RECLAIM, 2090 host->host_no); 2091 if (!host_dev->handle_error_wq) { 2092 ret = -ENOMEM; 2093 goto err_out2; 2094 } 2095 INIT_WORK(&host_dev->host_scan_work, storvsc_host_scan); 2096 /* Register the HBA and start the scsi bus scan */ 2097 ret = scsi_add_host(host, &device->device); 2098 if (ret != 0) 2099 goto err_out3; 2100 2101 if (!dev_is_ide) { 2102 scsi_scan_host(host); 2103 } else { 2104 target = (device->dev_instance.b[5] << 8 | 2105 device->dev_instance.b[4]); 2106 ret = scsi_add_device(host, 0, target, 0); 2107 if (ret) 2108 goto err_out4; 2109 } 2110 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2111 if (host->transportt == fc_transport_template) { 2112 struct fc_rport_identifiers ids = { 2113 .roles = FC_PORT_ROLE_FCP_DUMMY_INITIATOR, 2114 }; 2115 2116 fc_host_node_name(host) = stor_device->node_name; 2117 fc_host_port_name(host) = stor_device->port_name; 2118 stor_device->rport = fc_remote_port_add(host, 0, &ids); 2119 if (!stor_device->rport) { 2120 ret = -ENOMEM; 2121 goto err_out4; 2122 } 2123 } 2124 #endif 2125 return 0; 2126 2127 err_out4: 2128 scsi_remove_host(host); 2129 2130 err_out3: 2131 destroy_workqueue(host_dev->handle_error_wq); 2132 2133 err_out2: 2134 /* 2135 * Once we have connected with the host, we would need to 2136 * to invoke storvsc_dev_remove() to rollback this state and 2137 * this call also frees up the stor_device; hence the jump around 2138 * err_out1 label. 2139 */ 2140 storvsc_dev_remove(device); 2141 goto err_out0; 2142 2143 err_out1: 2144 kfree(stor_device->stor_chns); 2145 kfree(stor_device); 2146 2147 err_out0: 2148 scsi_host_put(host); 2149 return ret; 2150 } 2151 2152 /* Change a scsi target's queue depth */ 2153 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth) 2154 { 2155 if (queue_depth > scsi_driver.can_queue) 2156 queue_depth = scsi_driver.can_queue; 2157 2158 return scsi_change_queue_depth(sdev, queue_depth); 2159 } 2160 2161 static int storvsc_remove(struct hv_device *dev) 2162 { 2163 struct storvsc_device *stor_device = hv_get_drvdata(dev); 2164 struct Scsi_Host *host = stor_device->host; 2165 struct hv_host_device *host_dev = shost_priv(host); 2166 2167 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2168 if (host->transportt == fc_transport_template) { 2169 fc_remote_port_delete(stor_device->rport); 2170 fc_remove_host(host); 2171 } 2172 #endif 2173 destroy_workqueue(host_dev->handle_error_wq); 2174 scsi_remove_host(host); 2175 storvsc_dev_remove(dev); 2176 scsi_host_put(host); 2177 2178 return 0; 2179 } 2180 2181 static int storvsc_suspend(struct hv_device *hv_dev) 2182 { 2183 struct storvsc_device *stor_device = hv_get_drvdata(hv_dev); 2184 struct Scsi_Host *host = stor_device->host; 2185 struct hv_host_device *host_dev = shost_priv(host); 2186 2187 storvsc_wait_to_drain(stor_device); 2188 2189 drain_workqueue(host_dev->handle_error_wq); 2190 2191 vmbus_close(hv_dev->channel); 2192 2193 kfree(stor_device->stor_chns); 2194 stor_device->stor_chns = NULL; 2195 2196 cpumask_clear(&stor_device->alloced_cpus); 2197 2198 return 0; 2199 } 2200 2201 static int storvsc_resume(struct hv_device *hv_dev) 2202 { 2203 int ret; 2204 2205 ret = storvsc_connect_to_vsp(hv_dev, storvsc_ringbuffer_size, 2206 hv_dev_is_fc(hv_dev)); 2207 return ret; 2208 } 2209 2210 static struct hv_driver storvsc_drv = { 2211 .name = KBUILD_MODNAME, 2212 .id_table = id_table, 2213 .probe = storvsc_probe, 2214 .remove = storvsc_remove, 2215 .suspend = storvsc_suspend, 2216 .resume = storvsc_resume, 2217 .driver = { 2218 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 2219 }, 2220 }; 2221 2222 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2223 static struct fc_function_template fc_transport_functions = { 2224 .show_host_node_name = 1, 2225 .show_host_port_name = 1, 2226 }; 2227 #endif 2228 2229 static int __init storvsc_drv_init(void) 2230 { 2231 int ret; 2232 2233 /* 2234 * Divide the ring buffer data size (which is 1 page less 2235 * than the ring buffer size since that page is reserved for 2236 * the ring buffer indices) by the max request size (which is 2237 * vmbus_channel_packet_multipage_buffer + struct vstor_packet + u64) 2238 * 2239 * The computation underestimates max_outstanding_req_per_channel 2240 * for Win7 and older hosts because it does not take into account 2241 * the vmscsi_size_delta correction to the max request size. 2242 */ 2243 max_outstanding_req_per_channel = 2244 ((storvsc_ringbuffer_size - PAGE_SIZE) / 2245 ALIGN(MAX_MULTIPAGE_BUFFER_PACKET + 2246 sizeof(struct vstor_packet) + sizeof(u64), 2247 sizeof(u64))); 2248 2249 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2250 fc_transport_template = fc_attach_transport(&fc_transport_functions); 2251 if (!fc_transport_template) 2252 return -ENODEV; 2253 #endif 2254 2255 ret = vmbus_driver_register(&storvsc_drv); 2256 2257 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2258 if (ret) 2259 fc_release_transport(fc_transport_template); 2260 #endif 2261 2262 return ret; 2263 } 2264 2265 static void __exit storvsc_drv_exit(void) 2266 { 2267 vmbus_driver_unregister(&storvsc_drv); 2268 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2269 fc_release_transport(fc_transport_template); 2270 #endif 2271 } 2272 2273 MODULE_LICENSE("GPL"); 2274 MODULE_DESCRIPTION("Microsoft Hyper-V virtual storage driver"); 2275 module_init(storvsc_drv_init); 2276 module_exit(storvsc_drv_exit); 2277