1 /* 2 * Copyright (c) 2009, Microsoft Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 15 * Place - Suite 330, Boston, MA 02111-1307 USA. 16 * 17 * Authors: 18 * Haiyang Zhang <haiyangz@microsoft.com> 19 * Hank Janssen <hjanssen@microsoft.com> 20 * K. Y. Srinivasan <kys@microsoft.com> 21 */ 22 23 #include <linux/kernel.h> 24 #include <linux/wait.h> 25 #include <linux/sched.h> 26 #include <linux/completion.h> 27 #include <linux/string.h> 28 #include <linux/mm.h> 29 #include <linux/delay.h> 30 #include <linux/init.h> 31 #include <linux/slab.h> 32 #include <linux/module.h> 33 #include <linux/device.h> 34 #include <linux/hyperv.h> 35 #include <linux/blkdev.h> 36 #include <scsi/scsi.h> 37 #include <scsi/scsi_cmnd.h> 38 #include <scsi/scsi_host.h> 39 #include <scsi/scsi_device.h> 40 #include <scsi/scsi_tcq.h> 41 #include <scsi/scsi_eh.h> 42 #include <scsi/scsi_devinfo.h> 43 #include <scsi/scsi_dbg.h> 44 #include <scsi/scsi_transport_fc.h> 45 #include <scsi/scsi_transport.h> 46 47 /* 48 * All wire protocol details (storage protocol between the guest and the host) 49 * are consolidated here. 50 * 51 * Begin protocol definitions. 52 */ 53 54 /* 55 * Version history: 56 * V1 Beta: 0.1 57 * V1 RC < 2008/1/31: 1.0 58 * V1 RC > 2008/1/31: 2.0 59 * Win7: 4.2 60 * Win8: 5.1 61 * Win8.1: 6.0 62 * Win10: 6.2 63 */ 64 65 #define VMSTOR_PROTO_VERSION(MAJOR_, MINOR_) ((((MAJOR_) & 0xff) << 8) | \ 66 (((MINOR_) & 0xff))) 67 68 #define VMSTOR_PROTO_VERSION_WIN6 VMSTOR_PROTO_VERSION(2, 0) 69 #define VMSTOR_PROTO_VERSION_WIN7 VMSTOR_PROTO_VERSION(4, 2) 70 #define VMSTOR_PROTO_VERSION_WIN8 VMSTOR_PROTO_VERSION(5, 1) 71 #define VMSTOR_PROTO_VERSION_WIN8_1 VMSTOR_PROTO_VERSION(6, 0) 72 #define VMSTOR_PROTO_VERSION_WIN10 VMSTOR_PROTO_VERSION(6, 2) 73 74 /* Packet structure describing virtual storage requests. */ 75 enum vstor_packet_operation { 76 VSTOR_OPERATION_COMPLETE_IO = 1, 77 VSTOR_OPERATION_REMOVE_DEVICE = 2, 78 VSTOR_OPERATION_EXECUTE_SRB = 3, 79 VSTOR_OPERATION_RESET_LUN = 4, 80 VSTOR_OPERATION_RESET_ADAPTER = 5, 81 VSTOR_OPERATION_RESET_BUS = 6, 82 VSTOR_OPERATION_BEGIN_INITIALIZATION = 7, 83 VSTOR_OPERATION_END_INITIALIZATION = 8, 84 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION = 9, 85 VSTOR_OPERATION_QUERY_PROPERTIES = 10, 86 VSTOR_OPERATION_ENUMERATE_BUS = 11, 87 VSTOR_OPERATION_FCHBA_DATA = 12, 88 VSTOR_OPERATION_CREATE_SUB_CHANNELS = 13, 89 VSTOR_OPERATION_MAXIMUM = 13 90 }; 91 92 /* 93 * WWN packet for Fibre Channel HBA 94 */ 95 96 struct hv_fc_wwn_packet { 97 u8 primary_active; 98 u8 reserved1[3]; 99 u8 primary_port_wwn[8]; 100 u8 primary_node_wwn[8]; 101 u8 secondary_port_wwn[8]; 102 u8 secondary_node_wwn[8]; 103 }; 104 105 106 107 /* 108 * SRB Flag Bits 109 */ 110 111 #define SRB_FLAGS_QUEUE_ACTION_ENABLE 0x00000002 112 #define SRB_FLAGS_DISABLE_DISCONNECT 0x00000004 113 #define SRB_FLAGS_DISABLE_SYNCH_TRANSFER 0x00000008 114 #define SRB_FLAGS_BYPASS_FROZEN_QUEUE 0x00000010 115 #define SRB_FLAGS_DISABLE_AUTOSENSE 0x00000020 116 #define SRB_FLAGS_DATA_IN 0x00000040 117 #define SRB_FLAGS_DATA_OUT 0x00000080 118 #define SRB_FLAGS_NO_DATA_TRANSFER 0x00000000 119 #define SRB_FLAGS_UNSPECIFIED_DIRECTION (SRB_FLAGS_DATA_IN | SRB_FLAGS_DATA_OUT) 120 #define SRB_FLAGS_NO_QUEUE_FREEZE 0x00000100 121 #define SRB_FLAGS_ADAPTER_CACHE_ENABLE 0x00000200 122 #define SRB_FLAGS_FREE_SENSE_BUFFER 0x00000400 123 124 /* 125 * This flag indicates the request is part of the workflow for processing a D3. 126 */ 127 #define SRB_FLAGS_D3_PROCESSING 0x00000800 128 #define SRB_FLAGS_IS_ACTIVE 0x00010000 129 #define SRB_FLAGS_ALLOCATED_FROM_ZONE 0x00020000 130 #define SRB_FLAGS_SGLIST_FROM_POOL 0x00040000 131 #define SRB_FLAGS_BYPASS_LOCKED_QUEUE 0x00080000 132 #define SRB_FLAGS_NO_KEEP_AWAKE 0x00100000 133 #define SRB_FLAGS_PORT_DRIVER_ALLOCSENSE 0x00200000 134 #define SRB_FLAGS_PORT_DRIVER_SENSEHASPORT 0x00400000 135 #define SRB_FLAGS_DONT_START_NEXT_PACKET 0x00800000 136 #define SRB_FLAGS_PORT_DRIVER_RESERVED 0x0F000000 137 #define SRB_FLAGS_CLASS_DRIVER_RESERVED 0xF0000000 138 139 #define SP_UNTAGGED ((unsigned char) ~0) 140 #define SRB_SIMPLE_TAG_REQUEST 0x20 141 142 /* 143 * Platform neutral description of a scsi request - 144 * this remains the same across the write regardless of 32/64 bit 145 * note: it's patterned off the SCSI_PASS_THROUGH structure 146 */ 147 #define STORVSC_MAX_CMD_LEN 0x10 148 149 #define POST_WIN7_STORVSC_SENSE_BUFFER_SIZE 0x14 150 #define PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE 0x12 151 152 #define STORVSC_SENSE_BUFFER_SIZE 0x14 153 #define STORVSC_MAX_BUF_LEN_WITH_PADDING 0x14 154 155 /* 156 * Sense buffer size changed in win8; have a run-time 157 * variable to track the size we should use. This value will 158 * likely change during protocol negotiation but it is valid 159 * to start by assuming pre-Win8. 160 */ 161 static int sense_buffer_size = PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE; 162 163 /* 164 * The storage protocol version is determined during the 165 * initial exchange with the host. It will indicate which 166 * storage functionality is available in the host. 167 */ 168 static int vmstor_proto_version; 169 170 #define STORVSC_LOGGING_NONE 0 171 #define STORVSC_LOGGING_ERROR 1 172 #define STORVSC_LOGGING_WARN 2 173 174 static int logging_level = STORVSC_LOGGING_ERROR; 175 module_param(logging_level, int, S_IRUGO|S_IWUSR); 176 MODULE_PARM_DESC(logging_level, 177 "Logging level, 0 - None, 1 - Error (default), 2 - Warning."); 178 179 static inline bool do_logging(int level) 180 { 181 return logging_level >= level; 182 } 183 184 #define storvsc_log(dev, level, fmt, ...) \ 185 do { \ 186 if (do_logging(level)) \ 187 dev_warn(&(dev)->device, fmt, ##__VA_ARGS__); \ 188 } while (0) 189 190 struct vmscsi_win8_extension { 191 /* 192 * The following were added in Windows 8 193 */ 194 u16 reserve; 195 u8 queue_tag; 196 u8 queue_action; 197 u32 srb_flags; 198 u32 time_out_value; 199 u32 queue_sort_ey; 200 } __packed; 201 202 struct vmscsi_request { 203 u16 length; 204 u8 srb_status; 205 u8 scsi_status; 206 207 u8 port_number; 208 u8 path_id; 209 u8 target_id; 210 u8 lun; 211 212 u8 cdb_length; 213 u8 sense_info_length; 214 u8 data_in; 215 u8 reserved; 216 217 u32 data_transfer_length; 218 219 union { 220 u8 cdb[STORVSC_MAX_CMD_LEN]; 221 u8 sense_data[STORVSC_SENSE_BUFFER_SIZE]; 222 u8 reserved_array[STORVSC_MAX_BUF_LEN_WITH_PADDING]; 223 }; 224 /* 225 * The following was added in win8. 226 */ 227 struct vmscsi_win8_extension win8_extension; 228 229 } __attribute((packed)); 230 231 232 /* 233 * The size of the vmscsi_request has changed in win8. The 234 * additional size is because of new elements added to the 235 * structure. These elements are valid only when we are talking 236 * to a win8 host. 237 * Track the correction to size we need to apply. This value 238 * will likely change during protocol negotiation but it is 239 * valid to start by assuming pre-Win8. 240 */ 241 static int vmscsi_size_delta = sizeof(struct vmscsi_win8_extension); 242 243 /* 244 * The list of storage protocols in order of preference. 245 */ 246 struct vmstor_protocol { 247 int protocol_version; 248 int sense_buffer_size; 249 int vmscsi_size_delta; 250 }; 251 252 253 static const struct vmstor_protocol vmstor_protocols[] = { 254 { 255 VMSTOR_PROTO_VERSION_WIN10, 256 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE, 257 0 258 }, 259 { 260 VMSTOR_PROTO_VERSION_WIN8_1, 261 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE, 262 0 263 }, 264 { 265 VMSTOR_PROTO_VERSION_WIN8, 266 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE, 267 0 268 }, 269 { 270 VMSTOR_PROTO_VERSION_WIN7, 271 PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE, 272 sizeof(struct vmscsi_win8_extension), 273 }, 274 { 275 VMSTOR_PROTO_VERSION_WIN6, 276 PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE, 277 sizeof(struct vmscsi_win8_extension), 278 } 279 }; 280 281 282 /* 283 * This structure is sent during the initialization phase to get the different 284 * properties of the channel. 285 */ 286 287 #define STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL 0x1 288 289 struct vmstorage_channel_properties { 290 u32 reserved; 291 u16 max_channel_cnt; 292 u16 reserved1; 293 294 u32 flags; 295 u32 max_transfer_bytes; 296 297 u64 reserved2; 298 } __packed; 299 300 /* This structure is sent during the storage protocol negotiations. */ 301 struct vmstorage_protocol_version { 302 /* Major (MSW) and minor (LSW) version numbers. */ 303 u16 major_minor; 304 305 /* 306 * Revision number is auto-incremented whenever this file is changed 307 * (See FILL_VMSTOR_REVISION macro above). Mismatch does not 308 * definitely indicate incompatibility--but it does indicate mismatched 309 * builds. 310 * This is only used on the windows side. Just set it to 0. 311 */ 312 u16 revision; 313 } __packed; 314 315 /* Channel Property Flags */ 316 #define STORAGE_CHANNEL_REMOVABLE_FLAG 0x1 317 #define STORAGE_CHANNEL_EMULATED_IDE_FLAG 0x2 318 319 struct vstor_packet { 320 /* Requested operation type */ 321 enum vstor_packet_operation operation; 322 323 /* Flags - see below for values */ 324 u32 flags; 325 326 /* Status of the request returned from the server side. */ 327 u32 status; 328 329 /* Data payload area */ 330 union { 331 /* 332 * Structure used to forward SCSI commands from the 333 * client to the server. 334 */ 335 struct vmscsi_request vm_srb; 336 337 /* Structure used to query channel properties. */ 338 struct vmstorage_channel_properties storage_channel_properties; 339 340 /* Used during version negotiations. */ 341 struct vmstorage_protocol_version version; 342 343 /* Fibre channel address packet */ 344 struct hv_fc_wwn_packet wwn_packet; 345 346 /* Number of sub-channels to create */ 347 u16 sub_channel_count; 348 349 /* This will be the maximum of the union members */ 350 u8 buffer[0x34]; 351 }; 352 } __packed; 353 354 /* 355 * Packet Flags: 356 * 357 * This flag indicates that the server should send back a completion for this 358 * packet. 359 */ 360 361 #define REQUEST_COMPLETION_FLAG 0x1 362 363 /* Matches Windows-end */ 364 enum storvsc_request_type { 365 WRITE_TYPE = 0, 366 READ_TYPE, 367 UNKNOWN_TYPE, 368 }; 369 370 /* 371 * SRB status codes and masks; a subset of the codes used here. 372 */ 373 374 #define SRB_STATUS_AUTOSENSE_VALID 0x80 375 #define SRB_STATUS_QUEUE_FROZEN 0x40 376 #define SRB_STATUS_INVALID_LUN 0x20 377 #define SRB_STATUS_SUCCESS 0x01 378 #define SRB_STATUS_ABORTED 0x02 379 #define SRB_STATUS_ERROR 0x04 380 #define SRB_STATUS_DATA_OVERRUN 0x12 381 382 #define SRB_STATUS(status) \ 383 (status & ~(SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_QUEUE_FROZEN)) 384 /* 385 * This is the end of Protocol specific defines. 386 */ 387 388 static int storvsc_ringbuffer_size = (128 * 1024); 389 static u32 max_outstanding_req_per_channel; 390 391 static int storvsc_vcpus_per_sub_channel = 4; 392 393 module_param(storvsc_ringbuffer_size, int, S_IRUGO); 394 MODULE_PARM_DESC(storvsc_ringbuffer_size, "Ring buffer size (bytes)"); 395 396 module_param(storvsc_vcpus_per_sub_channel, int, S_IRUGO); 397 MODULE_PARM_DESC(storvsc_vcpus_per_sub_channel, "Ratio of VCPUs to subchannels"); 398 399 static int ring_avail_percent_lowater = 10; 400 module_param(ring_avail_percent_lowater, int, S_IRUGO); 401 MODULE_PARM_DESC(ring_avail_percent_lowater, 402 "Select a channel if available ring size > this in percent"); 403 404 /* 405 * Timeout in seconds for all devices managed by this driver. 406 */ 407 static int storvsc_timeout = 180; 408 409 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 410 static struct scsi_transport_template *fc_transport_template; 411 #endif 412 413 static void storvsc_on_channel_callback(void *context); 414 415 #define STORVSC_MAX_LUNS_PER_TARGET 255 416 #define STORVSC_MAX_TARGETS 2 417 #define STORVSC_MAX_CHANNELS 8 418 419 #define STORVSC_FC_MAX_LUNS_PER_TARGET 255 420 #define STORVSC_FC_MAX_TARGETS 128 421 #define STORVSC_FC_MAX_CHANNELS 8 422 423 #define STORVSC_IDE_MAX_LUNS_PER_TARGET 64 424 #define STORVSC_IDE_MAX_TARGETS 1 425 #define STORVSC_IDE_MAX_CHANNELS 1 426 427 struct storvsc_cmd_request { 428 struct scsi_cmnd *cmd; 429 430 struct hv_device *device; 431 432 /* Synchronize the request/response if needed */ 433 struct completion wait_event; 434 435 struct vmbus_channel_packet_multipage_buffer mpb; 436 struct vmbus_packet_mpb_array *payload; 437 u32 payload_sz; 438 439 struct vstor_packet vstor_packet; 440 }; 441 442 443 /* A storvsc device is a device object that contains a vmbus channel */ 444 struct storvsc_device { 445 struct hv_device *device; 446 447 bool destroy; 448 bool drain_notify; 449 atomic_t num_outstanding_req; 450 struct Scsi_Host *host; 451 452 wait_queue_head_t waiting_to_drain; 453 454 /* 455 * Each unique Port/Path/Target represents 1 channel ie scsi 456 * controller. In reality, the pathid, targetid is always 0 457 * and the port is set by us 458 */ 459 unsigned int port_number; 460 unsigned char path_id; 461 unsigned char target_id; 462 463 /* 464 * Max I/O, the device can support. 465 */ 466 u32 max_transfer_bytes; 467 /* 468 * Number of sub-channels we will open. 469 */ 470 u16 num_sc; 471 struct vmbus_channel **stor_chns; 472 /* 473 * Mask of CPUs bound to subchannels. 474 */ 475 struct cpumask alloced_cpus; 476 /* Used for vsc/vsp channel reset process */ 477 struct storvsc_cmd_request init_request; 478 struct storvsc_cmd_request reset_request; 479 /* 480 * Currently active port and node names for FC devices. 481 */ 482 u64 node_name; 483 u64 port_name; 484 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 485 struct fc_rport *rport; 486 #endif 487 }; 488 489 struct hv_host_device { 490 struct hv_device *dev; 491 unsigned int port; 492 unsigned char path; 493 unsigned char target; 494 struct workqueue_struct *handle_error_wq; 495 struct work_struct host_scan_work; 496 struct Scsi_Host *host; 497 }; 498 499 struct storvsc_scan_work { 500 struct work_struct work; 501 struct Scsi_Host *host; 502 u8 lun; 503 u8 tgt_id; 504 }; 505 506 static void storvsc_device_scan(struct work_struct *work) 507 { 508 struct storvsc_scan_work *wrk; 509 struct scsi_device *sdev; 510 511 wrk = container_of(work, struct storvsc_scan_work, work); 512 513 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun); 514 if (!sdev) 515 goto done; 516 scsi_rescan_device(&sdev->sdev_gendev); 517 scsi_device_put(sdev); 518 519 done: 520 kfree(wrk); 521 } 522 523 static void storvsc_host_scan(struct work_struct *work) 524 { 525 struct Scsi_Host *host; 526 struct scsi_device *sdev; 527 struct hv_host_device *host_device = 528 container_of(work, struct hv_host_device, host_scan_work); 529 530 host = host_device->host; 531 /* 532 * Before scanning the host, first check to see if any of the 533 * currrently known devices have been hot removed. We issue a 534 * "unit ready" command against all currently known devices. 535 * This I/O will result in an error for devices that have been 536 * removed. As part of handling the I/O error, we remove the device. 537 * 538 * When a LUN is added or removed, the host sends us a signal to 539 * scan the host. Thus we are forced to discover the LUNs that 540 * may have been removed this way. 541 */ 542 mutex_lock(&host->scan_mutex); 543 shost_for_each_device(sdev, host) 544 scsi_test_unit_ready(sdev, 1, 1, NULL); 545 mutex_unlock(&host->scan_mutex); 546 /* 547 * Now scan the host to discover LUNs that may have been added. 548 */ 549 scsi_scan_host(host); 550 } 551 552 static void storvsc_remove_lun(struct work_struct *work) 553 { 554 struct storvsc_scan_work *wrk; 555 struct scsi_device *sdev; 556 557 wrk = container_of(work, struct storvsc_scan_work, work); 558 if (!scsi_host_get(wrk->host)) 559 goto done; 560 561 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun); 562 563 if (sdev) { 564 scsi_remove_device(sdev); 565 scsi_device_put(sdev); 566 } 567 scsi_host_put(wrk->host); 568 569 done: 570 kfree(wrk); 571 } 572 573 574 /* 575 * We can get incoming messages from the host that are not in response to 576 * messages that we have sent out. An example of this would be messages 577 * received by the guest to notify dynamic addition/removal of LUNs. To 578 * deal with potential race conditions where the driver may be in the 579 * midst of being unloaded when we might receive an unsolicited message 580 * from the host, we have implemented a mechanism to gurantee sequential 581 * consistency: 582 * 583 * 1) Once the device is marked as being destroyed, we will fail all 584 * outgoing messages. 585 * 2) We permit incoming messages when the device is being destroyed, 586 * only to properly account for messages already sent out. 587 */ 588 589 static inline struct storvsc_device *get_out_stor_device( 590 struct hv_device *device) 591 { 592 struct storvsc_device *stor_device; 593 594 stor_device = hv_get_drvdata(device); 595 596 if (stor_device && stor_device->destroy) 597 stor_device = NULL; 598 599 return stor_device; 600 } 601 602 603 static inline void storvsc_wait_to_drain(struct storvsc_device *dev) 604 { 605 dev->drain_notify = true; 606 wait_event(dev->waiting_to_drain, 607 atomic_read(&dev->num_outstanding_req) == 0); 608 dev->drain_notify = false; 609 } 610 611 static inline struct storvsc_device *get_in_stor_device( 612 struct hv_device *device) 613 { 614 struct storvsc_device *stor_device; 615 616 stor_device = hv_get_drvdata(device); 617 618 if (!stor_device) 619 goto get_in_err; 620 621 /* 622 * If the device is being destroyed; allow incoming 623 * traffic only to cleanup outstanding requests. 624 */ 625 626 if (stor_device->destroy && 627 (atomic_read(&stor_device->num_outstanding_req) == 0)) 628 stor_device = NULL; 629 630 get_in_err: 631 return stor_device; 632 633 } 634 635 static void handle_sc_creation(struct vmbus_channel *new_sc) 636 { 637 struct hv_device *device = new_sc->primary_channel->device_obj; 638 struct device *dev = &device->device; 639 struct storvsc_device *stor_device; 640 struct vmstorage_channel_properties props; 641 int ret; 642 643 stor_device = get_out_stor_device(device); 644 if (!stor_device) 645 return; 646 647 memset(&props, 0, sizeof(struct vmstorage_channel_properties)); 648 649 ret = vmbus_open(new_sc, 650 storvsc_ringbuffer_size, 651 storvsc_ringbuffer_size, 652 (void *)&props, 653 sizeof(struct vmstorage_channel_properties), 654 storvsc_on_channel_callback, new_sc); 655 656 /* In case vmbus_open() fails, we don't use the sub-channel. */ 657 if (ret != 0) { 658 dev_err(dev, "Failed to open sub-channel: err=%d\n", ret); 659 return; 660 } 661 662 /* Add the sub-channel to the array of available channels. */ 663 stor_device->stor_chns[new_sc->target_cpu] = new_sc; 664 cpumask_set_cpu(new_sc->target_cpu, &stor_device->alloced_cpus); 665 } 666 667 static void handle_multichannel_storage(struct hv_device *device, int max_chns) 668 { 669 struct device *dev = &device->device; 670 struct storvsc_device *stor_device; 671 int num_sc; 672 struct storvsc_cmd_request *request; 673 struct vstor_packet *vstor_packet; 674 int ret, t; 675 676 /* 677 * If the number of CPUs is artificially restricted, such as 678 * with maxcpus=1 on the kernel boot line, Hyper-V could offer 679 * sub-channels >= the number of CPUs. These sub-channels 680 * should not be created. The primary channel is already created 681 * and assigned to one CPU, so check against # CPUs - 1. 682 */ 683 num_sc = min((int)(num_online_cpus() - 1), max_chns); 684 if (!num_sc) 685 return; 686 687 stor_device = get_out_stor_device(device); 688 if (!stor_device) 689 return; 690 691 stor_device->num_sc = num_sc; 692 request = &stor_device->init_request; 693 vstor_packet = &request->vstor_packet; 694 695 /* 696 * Establish a handler for dealing with subchannels. 697 */ 698 vmbus_set_sc_create_callback(device->channel, handle_sc_creation); 699 700 /* 701 * Request the host to create sub-channels. 702 */ 703 memset(request, 0, sizeof(struct storvsc_cmd_request)); 704 init_completion(&request->wait_event); 705 vstor_packet->operation = VSTOR_OPERATION_CREATE_SUB_CHANNELS; 706 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 707 vstor_packet->sub_channel_count = num_sc; 708 709 ret = vmbus_sendpacket(device->channel, vstor_packet, 710 (sizeof(struct vstor_packet) - 711 vmscsi_size_delta), 712 (unsigned long)request, 713 VM_PKT_DATA_INBAND, 714 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 715 716 if (ret != 0) { 717 dev_err(dev, "Failed to create sub-channel: err=%d\n", ret); 718 return; 719 } 720 721 t = wait_for_completion_timeout(&request->wait_event, 10*HZ); 722 if (t == 0) { 723 dev_err(dev, "Failed to create sub-channel: timed out\n"); 724 return; 725 } 726 727 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || 728 vstor_packet->status != 0) { 729 dev_err(dev, "Failed to create sub-channel: op=%d, sts=%d\n", 730 vstor_packet->operation, vstor_packet->status); 731 return; 732 } 733 734 /* 735 * We need to do nothing here, because vmbus_process_offer() 736 * invokes channel->sc_creation_callback, which will open and use 737 * the sub-channel(s). 738 */ 739 } 740 741 static void cache_wwn(struct storvsc_device *stor_device, 742 struct vstor_packet *vstor_packet) 743 { 744 /* 745 * Cache the currently active port and node ww names. 746 */ 747 if (vstor_packet->wwn_packet.primary_active) { 748 stor_device->node_name = 749 wwn_to_u64(vstor_packet->wwn_packet.primary_node_wwn); 750 stor_device->port_name = 751 wwn_to_u64(vstor_packet->wwn_packet.primary_port_wwn); 752 } else { 753 stor_device->node_name = 754 wwn_to_u64(vstor_packet->wwn_packet.secondary_node_wwn); 755 stor_device->port_name = 756 wwn_to_u64(vstor_packet->wwn_packet.secondary_port_wwn); 757 } 758 } 759 760 761 static int storvsc_execute_vstor_op(struct hv_device *device, 762 struct storvsc_cmd_request *request, 763 bool status_check) 764 { 765 struct vstor_packet *vstor_packet; 766 int ret, t; 767 768 vstor_packet = &request->vstor_packet; 769 770 init_completion(&request->wait_event); 771 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 772 773 ret = vmbus_sendpacket(device->channel, vstor_packet, 774 (sizeof(struct vstor_packet) - 775 vmscsi_size_delta), 776 (unsigned long)request, 777 VM_PKT_DATA_INBAND, 778 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 779 if (ret != 0) 780 return ret; 781 782 t = wait_for_completion_timeout(&request->wait_event, 5*HZ); 783 if (t == 0) 784 return -ETIMEDOUT; 785 786 if (!status_check) 787 return ret; 788 789 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || 790 vstor_packet->status != 0) 791 return -EINVAL; 792 793 return ret; 794 } 795 796 static int storvsc_channel_init(struct hv_device *device, bool is_fc) 797 { 798 struct storvsc_device *stor_device; 799 struct storvsc_cmd_request *request; 800 struct vstor_packet *vstor_packet; 801 int ret, i; 802 int max_chns; 803 bool process_sub_channels = false; 804 805 stor_device = get_out_stor_device(device); 806 if (!stor_device) 807 return -ENODEV; 808 809 request = &stor_device->init_request; 810 vstor_packet = &request->vstor_packet; 811 812 /* 813 * Now, initiate the vsc/vsp initialization protocol on the open 814 * channel 815 */ 816 memset(request, 0, sizeof(struct storvsc_cmd_request)); 817 vstor_packet->operation = VSTOR_OPERATION_BEGIN_INITIALIZATION; 818 ret = storvsc_execute_vstor_op(device, request, true); 819 if (ret) 820 return ret; 821 /* 822 * Query host supported protocol version. 823 */ 824 825 for (i = 0; i < ARRAY_SIZE(vmstor_protocols); i++) { 826 /* reuse the packet for version range supported */ 827 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 828 vstor_packet->operation = 829 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION; 830 831 vstor_packet->version.major_minor = 832 vmstor_protocols[i].protocol_version; 833 834 /* 835 * The revision number is only used in Windows; set it to 0. 836 */ 837 vstor_packet->version.revision = 0; 838 ret = storvsc_execute_vstor_op(device, request, false); 839 if (ret != 0) 840 return ret; 841 842 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO) 843 return -EINVAL; 844 845 if (vstor_packet->status == 0) { 846 vmstor_proto_version = 847 vmstor_protocols[i].protocol_version; 848 849 sense_buffer_size = 850 vmstor_protocols[i].sense_buffer_size; 851 852 vmscsi_size_delta = 853 vmstor_protocols[i].vmscsi_size_delta; 854 855 break; 856 } 857 } 858 859 if (vstor_packet->status != 0) 860 return -EINVAL; 861 862 863 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 864 vstor_packet->operation = VSTOR_OPERATION_QUERY_PROPERTIES; 865 ret = storvsc_execute_vstor_op(device, request, true); 866 if (ret != 0) 867 return ret; 868 869 /* 870 * Check to see if multi-channel support is there. 871 * Hosts that implement protocol version of 5.1 and above 872 * support multi-channel. 873 */ 874 max_chns = vstor_packet->storage_channel_properties.max_channel_cnt; 875 876 /* 877 * Allocate state to manage the sub-channels. 878 * We allocate an array based on the numbers of possible CPUs 879 * (Hyper-V does not support cpu online/offline). 880 * This Array will be sparseley populated with unique 881 * channels - primary + sub-channels. 882 * We will however populate all the slots to evenly distribute 883 * the load. 884 */ 885 stor_device->stor_chns = kcalloc(num_possible_cpus(), sizeof(void *), 886 GFP_KERNEL); 887 if (stor_device->stor_chns == NULL) 888 return -ENOMEM; 889 890 stor_device->stor_chns[device->channel->target_cpu] = device->channel; 891 cpumask_set_cpu(device->channel->target_cpu, 892 &stor_device->alloced_cpus); 893 894 if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN8) { 895 if (vstor_packet->storage_channel_properties.flags & 896 STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL) 897 process_sub_channels = true; 898 } 899 stor_device->max_transfer_bytes = 900 vstor_packet->storage_channel_properties.max_transfer_bytes; 901 902 if (!is_fc) 903 goto done; 904 905 /* 906 * For FC devices retrieve FC HBA data. 907 */ 908 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 909 vstor_packet->operation = VSTOR_OPERATION_FCHBA_DATA; 910 ret = storvsc_execute_vstor_op(device, request, true); 911 if (ret != 0) 912 return ret; 913 914 /* 915 * Cache the currently active port and node ww names. 916 */ 917 cache_wwn(stor_device, vstor_packet); 918 919 done: 920 921 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 922 vstor_packet->operation = VSTOR_OPERATION_END_INITIALIZATION; 923 ret = storvsc_execute_vstor_op(device, request, true); 924 if (ret != 0) 925 return ret; 926 927 if (process_sub_channels) 928 handle_multichannel_storage(device, max_chns); 929 930 return ret; 931 } 932 933 static void storvsc_handle_error(struct vmscsi_request *vm_srb, 934 struct scsi_cmnd *scmnd, 935 struct Scsi_Host *host, 936 u8 asc, u8 ascq) 937 { 938 struct storvsc_scan_work *wrk; 939 void (*process_err_fn)(struct work_struct *work); 940 struct hv_host_device *host_dev = shost_priv(host); 941 bool do_work = false; 942 943 switch (SRB_STATUS(vm_srb->srb_status)) { 944 case SRB_STATUS_ERROR: 945 /* 946 * Let upper layer deal with error when 947 * sense message is present. 948 */ 949 950 if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID) 951 break; 952 /* 953 * If there is an error; offline the device since all 954 * error recovery strategies would have already been 955 * deployed on the host side. However, if the command 956 * were a pass-through command deal with it appropriately. 957 */ 958 switch (scmnd->cmnd[0]) { 959 case ATA_16: 960 case ATA_12: 961 set_host_byte(scmnd, DID_PASSTHROUGH); 962 break; 963 /* 964 * On Some Windows hosts TEST_UNIT_READY command can return 965 * SRB_STATUS_ERROR, let the upper level code deal with it 966 * based on the sense information. 967 */ 968 case TEST_UNIT_READY: 969 break; 970 default: 971 set_host_byte(scmnd, DID_ERROR); 972 } 973 break; 974 case SRB_STATUS_INVALID_LUN: 975 set_host_byte(scmnd, DID_NO_CONNECT); 976 do_work = true; 977 process_err_fn = storvsc_remove_lun; 978 break; 979 case SRB_STATUS_ABORTED: 980 if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID && 981 (asc == 0x2a) && (ascq == 0x9)) { 982 do_work = true; 983 process_err_fn = storvsc_device_scan; 984 /* 985 * Retry the I/O that trigerred this. 986 */ 987 set_host_byte(scmnd, DID_REQUEUE); 988 } 989 break; 990 } 991 992 if (!do_work) 993 return; 994 995 /* 996 * We need to schedule work to process this error; schedule it. 997 */ 998 wrk = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC); 999 if (!wrk) { 1000 set_host_byte(scmnd, DID_TARGET_FAILURE); 1001 return; 1002 } 1003 1004 wrk->host = host; 1005 wrk->lun = vm_srb->lun; 1006 wrk->tgt_id = vm_srb->target_id; 1007 INIT_WORK(&wrk->work, process_err_fn); 1008 queue_work(host_dev->handle_error_wq, &wrk->work); 1009 } 1010 1011 1012 static void storvsc_command_completion(struct storvsc_cmd_request *cmd_request, 1013 struct storvsc_device *stor_dev) 1014 { 1015 struct scsi_cmnd *scmnd = cmd_request->cmd; 1016 struct scsi_sense_hdr sense_hdr; 1017 struct vmscsi_request *vm_srb; 1018 u32 data_transfer_length; 1019 struct Scsi_Host *host; 1020 u32 payload_sz = cmd_request->payload_sz; 1021 void *payload = cmd_request->payload; 1022 1023 host = stor_dev->host; 1024 1025 vm_srb = &cmd_request->vstor_packet.vm_srb; 1026 data_transfer_length = vm_srb->data_transfer_length; 1027 1028 scmnd->result = vm_srb->scsi_status; 1029 1030 if (scmnd->result) { 1031 if (scsi_normalize_sense(scmnd->sense_buffer, 1032 SCSI_SENSE_BUFFERSIZE, &sense_hdr) && 1033 !(sense_hdr.sense_key == NOT_READY && 1034 sense_hdr.asc == 0x03A) && 1035 do_logging(STORVSC_LOGGING_ERROR)) 1036 scsi_print_sense_hdr(scmnd->device, "storvsc", 1037 &sense_hdr); 1038 } 1039 1040 if (vm_srb->srb_status != SRB_STATUS_SUCCESS) { 1041 storvsc_handle_error(vm_srb, scmnd, host, sense_hdr.asc, 1042 sense_hdr.ascq); 1043 /* 1044 * The Windows driver set data_transfer_length on 1045 * SRB_STATUS_DATA_OVERRUN. On other errors, this value 1046 * is untouched. In these cases we set it to 0. 1047 */ 1048 if (vm_srb->srb_status != SRB_STATUS_DATA_OVERRUN) 1049 data_transfer_length = 0; 1050 } 1051 1052 scsi_set_resid(scmnd, 1053 cmd_request->payload->range.len - data_transfer_length); 1054 1055 scmnd->scsi_done(scmnd); 1056 1057 if (payload_sz > 1058 sizeof(struct vmbus_channel_packet_multipage_buffer)) 1059 kfree(payload); 1060 } 1061 1062 static void storvsc_on_io_completion(struct storvsc_device *stor_device, 1063 struct vstor_packet *vstor_packet, 1064 struct storvsc_cmd_request *request) 1065 { 1066 struct vstor_packet *stor_pkt; 1067 struct hv_device *device = stor_device->device; 1068 1069 stor_pkt = &request->vstor_packet; 1070 1071 /* 1072 * The current SCSI handling on the host side does 1073 * not correctly handle: 1074 * INQUIRY command with page code parameter set to 0x80 1075 * MODE_SENSE command with cmd[2] == 0x1c 1076 * 1077 * Setup srb and scsi status so this won't be fatal. 1078 * We do this so we can distinguish truly fatal failues 1079 * (srb status == 0x4) and off-line the device in that case. 1080 */ 1081 1082 if ((stor_pkt->vm_srb.cdb[0] == INQUIRY) || 1083 (stor_pkt->vm_srb.cdb[0] == MODE_SENSE)) { 1084 vstor_packet->vm_srb.scsi_status = 0; 1085 vstor_packet->vm_srb.srb_status = SRB_STATUS_SUCCESS; 1086 } 1087 1088 1089 /* Copy over the status...etc */ 1090 stor_pkt->vm_srb.scsi_status = vstor_packet->vm_srb.scsi_status; 1091 stor_pkt->vm_srb.srb_status = vstor_packet->vm_srb.srb_status; 1092 stor_pkt->vm_srb.sense_info_length = 1093 vstor_packet->vm_srb.sense_info_length; 1094 1095 if (vstor_packet->vm_srb.scsi_status != 0 || 1096 vstor_packet->vm_srb.srb_status != SRB_STATUS_SUCCESS) 1097 storvsc_log(device, STORVSC_LOGGING_WARN, 1098 "cmd 0x%x scsi status 0x%x srb status 0x%x\n", 1099 stor_pkt->vm_srb.cdb[0], 1100 vstor_packet->vm_srb.scsi_status, 1101 vstor_packet->vm_srb.srb_status); 1102 1103 if ((vstor_packet->vm_srb.scsi_status & 0xFF) == 0x02) { 1104 /* CHECK_CONDITION */ 1105 if (vstor_packet->vm_srb.srb_status & 1106 SRB_STATUS_AUTOSENSE_VALID) { 1107 /* autosense data available */ 1108 1109 storvsc_log(device, STORVSC_LOGGING_WARN, 1110 "stor pkt %p autosense data valid - len %d\n", 1111 request, vstor_packet->vm_srb.sense_info_length); 1112 1113 memcpy(request->cmd->sense_buffer, 1114 vstor_packet->vm_srb.sense_data, 1115 vstor_packet->vm_srb.sense_info_length); 1116 1117 } 1118 } 1119 1120 stor_pkt->vm_srb.data_transfer_length = 1121 vstor_packet->vm_srb.data_transfer_length; 1122 1123 storvsc_command_completion(request, stor_device); 1124 1125 if (atomic_dec_and_test(&stor_device->num_outstanding_req) && 1126 stor_device->drain_notify) 1127 wake_up(&stor_device->waiting_to_drain); 1128 1129 1130 } 1131 1132 static void storvsc_on_receive(struct storvsc_device *stor_device, 1133 struct vstor_packet *vstor_packet, 1134 struct storvsc_cmd_request *request) 1135 { 1136 struct hv_host_device *host_dev; 1137 switch (vstor_packet->operation) { 1138 case VSTOR_OPERATION_COMPLETE_IO: 1139 storvsc_on_io_completion(stor_device, vstor_packet, request); 1140 break; 1141 1142 case VSTOR_OPERATION_REMOVE_DEVICE: 1143 case VSTOR_OPERATION_ENUMERATE_BUS: 1144 host_dev = shost_priv(stor_device->host); 1145 queue_work( 1146 host_dev->handle_error_wq, &host_dev->host_scan_work); 1147 break; 1148 1149 case VSTOR_OPERATION_FCHBA_DATA: 1150 cache_wwn(stor_device, vstor_packet); 1151 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1152 fc_host_node_name(stor_device->host) = stor_device->node_name; 1153 fc_host_port_name(stor_device->host) = stor_device->port_name; 1154 #endif 1155 break; 1156 default: 1157 break; 1158 } 1159 } 1160 1161 static void storvsc_on_channel_callback(void *context) 1162 { 1163 struct vmbus_channel *channel = (struct vmbus_channel *)context; 1164 const struct vmpacket_descriptor *desc; 1165 struct hv_device *device; 1166 struct storvsc_device *stor_device; 1167 1168 if (channel->primary_channel != NULL) 1169 device = channel->primary_channel->device_obj; 1170 else 1171 device = channel->device_obj; 1172 1173 stor_device = get_in_stor_device(device); 1174 if (!stor_device) 1175 return; 1176 1177 foreach_vmbus_pkt(desc, channel) { 1178 void *packet = hv_pkt_data(desc); 1179 struct storvsc_cmd_request *request; 1180 1181 request = (struct storvsc_cmd_request *) 1182 ((unsigned long)desc->trans_id); 1183 1184 if (request == &stor_device->init_request || 1185 request == &stor_device->reset_request) { 1186 memcpy(&request->vstor_packet, packet, 1187 (sizeof(struct vstor_packet) - vmscsi_size_delta)); 1188 complete(&request->wait_event); 1189 } else { 1190 storvsc_on_receive(stor_device, packet, request); 1191 } 1192 } 1193 } 1194 1195 static int storvsc_connect_to_vsp(struct hv_device *device, u32 ring_size, 1196 bool is_fc) 1197 { 1198 struct vmstorage_channel_properties props; 1199 int ret; 1200 1201 memset(&props, 0, sizeof(struct vmstorage_channel_properties)); 1202 1203 ret = vmbus_open(device->channel, 1204 ring_size, 1205 ring_size, 1206 (void *)&props, 1207 sizeof(struct vmstorage_channel_properties), 1208 storvsc_on_channel_callback, device->channel); 1209 1210 if (ret != 0) 1211 return ret; 1212 1213 ret = storvsc_channel_init(device, is_fc); 1214 1215 return ret; 1216 } 1217 1218 static int storvsc_dev_remove(struct hv_device *device) 1219 { 1220 struct storvsc_device *stor_device; 1221 1222 stor_device = hv_get_drvdata(device); 1223 1224 stor_device->destroy = true; 1225 1226 /* Make sure flag is set before waiting */ 1227 wmb(); 1228 1229 /* 1230 * At this point, all outbound traffic should be disable. We 1231 * only allow inbound traffic (responses) to proceed so that 1232 * outstanding requests can be completed. 1233 */ 1234 1235 storvsc_wait_to_drain(stor_device); 1236 1237 /* 1238 * Since we have already drained, we don't need to busy wait 1239 * as was done in final_release_stor_device() 1240 * Note that we cannot set the ext pointer to NULL until 1241 * we have drained - to drain the outgoing packets, we need to 1242 * allow incoming packets. 1243 */ 1244 hv_set_drvdata(device, NULL); 1245 1246 /* Close the channel */ 1247 vmbus_close(device->channel); 1248 1249 kfree(stor_device->stor_chns); 1250 kfree(stor_device); 1251 return 0; 1252 } 1253 1254 static struct vmbus_channel *get_og_chn(struct storvsc_device *stor_device, 1255 u16 q_num) 1256 { 1257 u16 slot = 0; 1258 u16 hash_qnum; 1259 const struct cpumask *node_mask; 1260 int num_channels, tgt_cpu; 1261 1262 if (stor_device->num_sc == 0) 1263 return stor_device->device->channel; 1264 1265 /* 1266 * Our channel array is sparsley populated and we 1267 * initiated I/O on a processor/hw-q that does not 1268 * currently have a designated channel. Fix this. 1269 * The strategy is simple: 1270 * I. Ensure NUMA locality 1271 * II. Distribute evenly (best effort) 1272 * III. Mapping is persistent. 1273 */ 1274 1275 node_mask = cpumask_of_node(cpu_to_node(q_num)); 1276 1277 num_channels = 0; 1278 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1279 if (cpumask_test_cpu(tgt_cpu, node_mask)) 1280 num_channels++; 1281 } 1282 if (num_channels == 0) 1283 return stor_device->device->channel; 1284 1285 hash_qnum = q_num; 1286 while (hash_qnum >= num_channels) 1287 hash_qnum -= num_channels; 1288 1289 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1290 if (!cpumask_test_cpu(tgt_cpu, node_mask)) 1291 continue; 1292 if (slot == hash_qnum) 1293 break; 1294 slot++; 1295 } 1296 1297 stor_device->stor_chns[q_num] = stor_device->stor_chns[tgt_cpu]; 1298 1299 return stor_device->stor_chns[q_num]; 1300 } 1301 1302 1303 static int storvsc_do_io(struct hv_device *device, 1304 struct storvsc_cmd_request *request, u16 q_num) 1305 { 1306 struct storvsc_device *stor_device; 1307 struct vstor_packet *vstor_packet; 1308 struct vmbus_channel *outgoing_channel, *channel; 1309 int ret = 0; 1310 const struct cpumask *node_mask; 1311 int tgt_cpu; 1312 1313 vstor_packet = &request->vstor_packet; 1314 stor_device = get_out_stor_device(device); 1315 1316 if (!stor_device) 1317 return -ENODEV; 1318 1319 1320 request->device = device; 1321 /* 1322 * Select an an appropriate channel to send the request out. 1323 */ 1324 if (stor_device->stor_chns[q_num] != NULL) { 1325 outgoing_channel = stor_device->stor_chns[q_num]; 1326 if (outgoing_channel->target_cpu == q_num) { 1327 /* 1328 * Ideally, we want to pick a different channel if 1329 * available on the same NUMA node. 1330 */ 1331 node_mask = cpumask_of_node(cpu_to_node(q_num)); 1332 for_each_cpu_wrap(tgt_cpu, 1333 &stor_device->alloced_cpus, q_num + 1) { 1334 if (!cpumask_test_cpu(tgt_cpu, node_mask)) 1335 continue; 1336 if (tgt_cpu == q_num) 1337 continue; 1338 channel = stor_device->stor_chns[tgt_cpu]; 1339 if (hv_get_avail_to_write_percent( 1340 &channel->outbound) 1341 > ring_avail_percent_lowater) { 1342 outgoing_channel = channel; 1343 goto found_channel; 1344 } 1345 } 1346 1347 /* 1348 * All the other channels on the same NUMA node are 1349 * busy. Try to use the channel on the current CPU 1350 */ 1351 if (hv_get_avail_to_write_percent( 1352 &outgoing_channel->outbound) 1353 > ring_avail_percent_lowater) 1354 goto found_channel; 1355 1356 /* 1357 * If we reach here, all the channels on the current 1358 * NUMA node are busy. Try to find a channel in 1359 * other NUMA nodes 1360 */ 1361 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1362 if (cpumask_test_cpu(tgt_cpu, node_mask)) 1363 continue; 1364 channel = stor_device->stor_chns[tgt_cpu]; 1365 if (hv_get_avail_to_write_percent( 1366 &channel->outbound) 1367 > ring_avail_percent_lowater) { 1368 outgoing_channel = channel; 1369 goto found_channel; 1370 } 1371 } 1372 } 1373 } else { 1374 outgoing_channel = get_og_chn(stor_device, q_num); 1375 } 1376 1377 found_channel: 1378 vstor_packet->flags |= REQUEST_COMPLETION_FLAG; 1379 1380 vstor_packet->vm_srb.length = (sizeof(struct vmscsi_request) - 1381 vmscsi_size_delta); 1382 1383 1384 vstor_packet->vm_srb.sense_info_length = sense_buffer_size; 1385 1386 1387 vstor_packet->vm_srb.data_transfer_length = 1388 request->payload->range.len; 1389 1390 vstor_packet->operation = VSTOR_OPERATION_EXECUTE_SRB; 1391 1392 if (request->payload->range.len) { 1393 1394 ret = vmbus_sendpacket_mpb_desc(outgoing_channel, 1395 request->payload, request->payload_sz, 1396 vstor_packet, 1397 (sizeof(struct vstor_packet) - 1398 vmscsi_size_delta), 1399 (unsigned long)request); 1400 } else { 1401 ret = vmbus_sendpacket(outgoing_channel, vstor_packet, 1402 (sizeof(struct vstor_packet) - 1403 vmscsi_size_delta), 1404 (unsigned long)request, 1405 VM_PKT_DATA_INBAND, 1406 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1407 } 1408 1409 if (ret != 0) 1410 return ret; 1411 1412 atomic_inc(&stor_device->num_outstanding_req); 1413 1414 return ret; 1415 } 1416 1417 static int storvsc_device_alloc(struct scsi_device *sdevice) 1418 { 1419 /* 1420 * Set blist flag to permit the reading of the VPD pages even when 1421 * the target may claim SPC-2 compliance. MSFT targets currently 1422 * claim SPC-2 compliance while they implement post SPC-2 features. 1423 * With this flag we can correctly handle WRITE_SAME_16 issues. 1424 * 1425 * Hypervisor reports SCSI_UNKNOWN type for DVD ROM device but 1426 * still supports REPORT LUN. 1427 */ 1428 sdevice->sdev_bflags = BLIST_REPORTLUN2 | BLIST_TRY_VPD_PAGES; 1429 1430 return 0; 1431 } 1432 1433 static int storvsc_device_configure(struct scsi_device *sdevice) 1434 { 1435 blk_queue_rq_timeout(sdevice->request_queue, (storvsc_timeout * HZ)); 1436 1437 /* Ensure there are no gaps in presented sgls */ 1438 blk_queue_virt_boundary(sdevice->request_queue, PAGE_SIZE - 1); 1439 1440 sdevice->no_write_same = 1; 1441 1442 /* 1443 * If the host is WIN8 or WIN8 R2, claim conformance to SPC-3 1444 * if the device is a MSFT virtual device. If the host is 1445 * WIN10 or newer, allow write_same. 1446 */ 1447 if (!strncmp(sdevice->vendor, "Msft", 4)) { 1448 switch (vmstor_proto_version) { 1449 case VMSTOR_PROTO_VERSION_WIN8: 1450 case VMSTOR_PROTO_VERSION_WIN8_1: 1451 sdevice->scsi_level = SCSI_SPC_3; 1452 break; 1453 } 1454 1455 if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN10) 1456 sdevice->no_write_same = 0; 1457 } 1458 1459 return 0; 1460 } 1461 1462 static int storvsc_get_chs(struct scsi_device *sdev, struct block_device * bdev, 1463 sector_t capacity, int *info) 1464 { 1465 sector_t nsect = capacity; 1466 sector_t cylinders = nsect; 1467 int heads, sectors_pt; 1468 1469 /* 1470 * We are making up these values; let us keep it simple. 1471 */ 1472 heads = 0xff; 1473 sectors_pt = 0x3f; /* Sectors per track */ 1474 sector_div(cylinders, heads * sectors_pt); 1475 if ((sector_t)(cylinders + 1) * heads * sectors_pt < nsect) 1476 cylinders = 0xffff; 1477 1478 info[0] = heads; 1479 info[1] = sectors_pt; 1480 info[2] = (int)cylinders; 1481 1482 return 0; 1483 } 1484 1485 static int storvsc_host_reset_handler(struct scsi_cmnd *scmnd) 1486 { 1487 struct hv_host_device *host_dev = shost_priv(scmnd->device->host); 1488 struct hv_device *device = host_dev->dev; 1489 1490 struct storvsc_device *stor_device; 1491 struct storvsc_cmd_request *request; 1492 struct vstor_packet *vstor_packet; 1493 int ret, t; 1494 1495 1496 stor_device = get_out_stor_device(device); 1497 if (!stor_device) 1498 return FAILED; 1499 1500 request = &stor_device->reset_request; 1501 vstor_packet = &request->vstor_packet; 1502 1503 init_completion(&request->wait_event); 1504 1505 vstor_packet->operation = VSTOR_OPERATION_RESET_BUS; 1506 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 1507 vstor_packet->vm_srb.path_id = stor_device->path_id; 1508 1509 ret = vmbus_sendpacket(device->channel, vstor_packet, 1510 (sizeof(struct vstor_packet) - 1511 vmscsi_size_delta), 1512 (unsigned long)&stor_device->reset_request, 1513 VM_PKT_DATA_INBAND, 1514 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1515 if (ret != 0) 1516 return FAILED; 1517 1518 t = wait_for_completion_timeout(&request->wait_event, 5*HZ); 1519 if (t == 0) 1520 return TIMEOUT_ERROR; 1521 1522 1523 /* 1524 * At this point, all outstanding requests in the adapter 1525 * should have been flushed out and return to us 1526 * There is a potential race here where the host may be in 1527 * the process of responding when we return from here. 1528 * Just wait for all in-transit packets to be accounted for 1529 * before we return from here. 1530 */ 1531 storvsc_wait_to_drain(stor_device); 1532 1533 return SUCCESS; 1534 } 1535 1536 /* 1537 * The host guarantees to respond to each command, although I/O latencies might 1538 * be unbounded on Azure. Reset the timer unconditionally to give the host a 1539 * chance to perform EH. 1540 */ 1541 static enum blk_eh_timer_return storvsc_eh_timed_out(struct scsi_cmnd *scmnd) 1542 { 1543 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1544 if (scmnd->device->host->transportt == fc_transport_template) 1545 return fc_eh_timed_out(scmnd); 1546 #endif 1547 return BLK_EH_RESET_TIMER; 1548 } 1549 1550 static bool storvsc_scsi_cmd_ok(struct scsi_cmnd *scmnd) 1551 { 1552 bool allowed = true; 1553 u8 scsi_op = scmnd->cmnd[0]; 1554 1555 switch (scsi_op) { 1556 /* the host does not handle WRITE_SAME, log accident usage */ 1557 case WRITE_SAME: 1558 /* 1559 * smartd sends this command and the host does not handle 1560 * this. So, don't send it. 1561 */ 1562 case SET_WINDOW: 1563 scmnd->result = ILLEGAL_REQUEST << 16; 1564 allowed = false; 1565 break; 1566 default: 1567 break; 1568 } 1569 return allowed; 1570 } 1571 1572 static int storvsc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scmnd) 1573 { 1574 int ret; 1575 struct hv_host_device *host_dev = shost_priv(host); 1576 struct hv_device *dev = host_dev->dev; 1577 struct storvsc_cmd_request *cmd_request = scsi_cmd_priv(scmnd); 1578 int i; 1579 struct scatterlist *sgl; 1580 unsigned int sg_count = 0; 1581 struct vmscsi_request *vm_srb; 1582 struct scatterlist *cur_sgl; 1583 struct vmbus_packet_mpb_array *payload; 1584 u32 payload_sz; 1585 u32 length; 1586 1587 if (vmstor_proto_version <= VMSTOR_PROTO_VERSION_WIN8) { 1588 /* 1589 * On legacy hosts filter unimplemented commands. 1590 * Future hosts are expected to correctly handle 1591 * unsupported commands. Furthermore, it is 1592 * possible that some of the currently 1593 * unsupported commands maybe supported in 1594 * future versions of the host. 1595 */ 1596 if (!storvsc_scsi_cmd_ok(scmnd)) { 1597 scmnd->scsi_done(scmnd); 1598 return 0; 1599 } 1600 } 1601 1602 /* Setup the cmd request */ 1603 cmd_request->cmd = scmnd; 1604 1605 vm_srb = &cmd_request->vstor_packet.vm_srb; 1606 vm_srb->win8_extension.time_out_value = 60; 1607 1608 vm_srb->win8_extension.srb_flags |= 1609 SRB_FLAGS_DISABLE_SYNCH_TRANSFER; 1610 1611 if (scmnd->device->tagged_supported) { 1612 vm_srb->win8_extension.srb_flags |= 1613 (SRB_FLAGS_QUEUE_ACTION_ENABLE | SRB_FLAGS_NO_QUEUE_FREEZE); 1614 vm_srb->win8_extension.queue_tag = SP_UNTAGGED; 1615 vm_srb->win8_extension.queue_action = SRB_SIMPLE_TAG_REQUEST; 1616 } 1617 1618 /* Build the SRB */ 1619 switch (scmnd->sc_data_direction) { 1620 case DMA_TO_DEVICE: 1621 vm_srb->data_in = WRITE_TYPE; 1622 vm_srb->win8_extension.srb_flags |= SRB_FLAGS_DATA_OUT; 1623 break; 1624 case DMA_FROM_DEVICE: 1625 vm_srb->data_in = READ_TYPE; 1626 vm_srb->win8_extension.srb_flags |= SRB_FLAGS_DATA_IN; 1627 break; 1628 case DMA_NONE: 1629 vm_srb->data_in = UNKNOWN_TYPE; 1630 vm_srb->win8_extension.srb_flags |= SRB_FLAGS_NO_DATA_TRANSFER; 1631 break; 1632 default: 1633 /* 1634 * This is DMA_BIDIRECTIONAL or something else we are never 1635 * supposed to see here. 1636 */ 1637 WARN(1, "Unexpected data direction: %d\n", 1638 scmnd->sc_data_direction); 1639 return -EINVAL; 1640 } 1641 1642 1643 vm_srb->port_number = host_dev->port; 1644 vm_srb->path_id = scmnd->device->channel; 1645 vm_srb->target_id = scmnd->device->id; 1646 vm_srb->lun = scmnd->device->lun; 1647 1648 vm_srb->cdb_length = scmnd->cmd_len; 1649 1650 memcpy(vm_srb->cdb, scmnd->cmnd, vm_srb->cdb_length); 1651 1652 sgl = (struct scatterlist *)scsi_sglist(scmnd); 1653 sg_count = scsi_sg_count(scmnd); 1654 1655 length = scsi_bufflen(scmnd); 1656 payload = (struct vmbus_packet_mpb_array *)&cmd_request->mpb; 1657 payload_sz = sizeof(cmd_request->mpb); 1658 1659 if (sg_count) { 1660 if (sg_count > MAX_PAGE_BUFFER_COUNT) { 1661 1662 payload_sz = (sg_count * sizeof(u64) + 1663 sizeof(struct vmbus_packet_mpb_array)); 1664 payload = kzalloc(payload_sz, GFP_ATOMIC); 1665 if (!payload) 1666 return SCSI_MLQUEUE_DEVICE_BUSY; 1667 } 1668 1669 payload->range.len = length; 1670 payload->range.offset = sgl[0].offset; 1671 1672 cur_sgl = sgl; 1673 for (i = 0; i < sg_count; i++) { 1674 payload->range.pfn_array[i] = 1675 page_to_pfn(sg_page((cur_sgl))); 1676 cur_sgl = sg_next(cur_sgl); 1677 } 1678 } 1679 1680 cmd_request->payload = payload; 1681 cmd_request->payload_sz = payload_sz; 1682 1683 /* Invokes the vsc to start an IO */ 1684 ret = storvsc_do_io(dev, cmd_request, get_cpu()); 1685 put_cpu(); 1686 1687 if (ret == -EAGAIN) { 1688 if (payload_sz > sizeof(cmd_request->mpb)) 1689 kfree(payload); 1690 /* no more space */ 1691 return SCSI_MLQUEUE_DEVICE_BUSY; 1692 } 1693 1694 return 0; 1695 } 1696 1697 static struct scsi_host_template scsi_driver = { 1698 .module = THIS_MODULE, 1699 .name = "storvsc_host_t", 1700 .cmd_size = sizeof(struct storvsc_cmd_request), 1701 .bios_param = storvsc_get_chs, 1702 .queuecommand = storvsc_queuecommand, 1703 .eh_host_reset_handler = storvsc_host_reset_handler, 1704 .proc_name = "storvsc_host", 1705 .eh_timed_out = storvsc_eh_timed_out, 1706 .slave_alloc = storvsc_device_alloc, 1707 .slave_configure = storvsc_device_configure, 1708 .cmd_per_lun = 2048, 1709 .this_id = -1, 1710 /* Make sure we dont get a sg segment crosses a page boundary */ 1711 .dma_boundary = PAGE_SIZE-1, 1712 .no_write_same = 1, 1713 .track_queue_depth = 1, 1714 }; 1715 1716 enum { 1717 SCSI_GUID, 1718 IDE_GUID, 1719 SFC_GUID, 1720 }; 1721 1722 static const struct hv_vmbus_device_id id_table[] = { 1723 /* SCSI guid */ 1724 { HV_SCSI_GUID, 1725 .driver_data = SCSI_GUID 1726 }, 1727 /* IDE guid */ 1728 { HV_IDE_GUID, 1729 .driver_data = IDE_GUID 1730 }, 1731 /* Fibre Channel GUID */ 1732 { 1733 HV_SYNTHFC_GUID, 1734 .driver_data = SFC_GUID 1735 }, 1736 { }, 1737 }; 1738 1739 MODULE_DEVICE_TABLE(vmbus, id_table); 1740 1741 static int storvsc_probe(struct hv_device *device, 1742 const struct hv_vmbus_device_id *dev_id) 1743 { 1744 int ret; 1745 int num_cpus = num_online_cpus(); 1746 struct Scsi_Host *host; 1747 struct hv_host_device *host_dev; 1748 bool dev_is_ide = ((dev_id->driver_data == IDE_GUID) ? true : false); 1749 bool is_fc = ((dev_id->driver_data == SFC_GUID) ? true : false); 1750 int target = 0; 1751 struct storvsc_device *stor_device; 1752 int max_luns_per_target; 1753 int max_targets; 1754 int max_channels; 1755 int max_sub_channels = 0; 1756 1757 /* 1758 * Based on the windows host we are running on, 1759 * set state to properly communicate with the host. 1760 */ 1761 1762 if (vmbus_proto_version < VERSION_WIN8) { 1763 max_luns_per_target = STORVSC_IDE_MAX_LUNS_PER_TARGET; 1764 max_targets = STORVSC_IDE_MAX_TARGETS; 1765 max_channels = STORVSC_IDE_MAX_CHANNELS; 1766 } else { 1767 max_luns_per_target = STORVSC_MAX_LUNS_PER_TARGET; 1768 max_targets = STORVSC_MAX_TARGETS; 1769 max_channels = STORVSC_MAX_CHANNELS; 1770 /* 1771 * On Windows8 and above, we support sub-channels for storage 1772 * on SCSI and FC controllers. 1773 * The number of sub-channels offerred is based on the number of 1774 * VCPUs in the guest. 1775 */ 1776 if (!dev_is_ide) 1777 max_sub_channels = 1778 (num_cpus - 1) / storvsc_vcpus_per_sub_channel; 1779 } 1780 1781 scsi_driver.can_queue = max_outstanding_req_per_channel * 1782 (max_sub_channels + 1) * 1783 (100 - ring_avail_percent_lowater) / 100; 1784 1785 host = scsi_host_alloc(&scsi_driver, 1786 sizeof(struct hv_host_device)); 1787 if (!host) 1788 return -ENOMEM; 1789 1790 host_dev = shost_priv(host); 1791 memset(host_dev, 0, sizeof(struct hv_host_device)); 1792 1793 host_dev->port = host->host_no; 1794 host_dev->dev = device; 1795 host_dev->host = host; 1796 1797 1798 stor_device = kzalloc(sizeof(struct storvsc_device), GFP_KERNEL); 1799 if (!stor_device) { 1800 ret = -ENOMEM; 1801 goto err_out0; 1802 } 1803 1804 stor_device->destroy = false; 1805 init_waitqueue_head(&stor_device->waiting_to_drain); 1806 stor_device->device = device; 1807 stor_device->host = host; 1808 hv_set_drvdata(device, stor_device); 1809 1810 stor_device->port_number = host->host_no; 1811 ret = storvsc_connect_to_vsp(device, storvsc_ringbuffer_size, is_fc); 1812 if (ret) 1813 goto err_out1; 1814 1815 host_dev->path = stor_device->path_id; 1816 host_dev->target = stor_device->target_id; 1817 1818 switch (dev_id->driver_data) { 1819 case SFC_GUID: 1820 host->max_lun = STORVSC_FC_MAX_LUNS_PER_TARGET; 1821 host->max_id = STORVSC_FC_MAX_TARGETS; 1822 host->max_channel = STORVSC_FC_MAX_CHANNELS - 1; 1823 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1824 host->transportt = fc_transport_template; 1825 #endif 1826 break; 1827 1828 case SCSI_GUID: 1829 host->max_lun = max_luns_per_target; 1830 host->max_id = max_targets; 1831 host->max_channel = max_channels - 1; 1832 break; 1833 1834 default: 1835 host->max_lun = STORVSC_IDE_MAX_LUNS_PER_TARGET; 1836 host->max_id = STORVSC_IDE_MAX_TARGETS; 1837 host->max_channel = STORVSC_IDE_MAX_CHANNELS - 1; 1838 break; 1839 } 1840 /* max cmd length */ 1841 host->max_cmd_len = STORVSC_MAX_CMD_LEN; 1842 1843 /* 1844 * set the table size based on the info we got 1845 * from the host. 1846 */ 1847 host->sg_tablesize = (stor_device->max_transfer_bytes >> PAGE_SHIFT); 1848 /* 1849 * Set the number of HW queues we are supporting. 1850 */ 1851 if (stor_device->num_sc != 0) 1852 host->nr_hw_queues = stor_device->num_sc + 1; 1853 1854 /* 1855 * Set the error handler work queue. 1856 */ 1857 host_dev->handle_error_wq = 1858 alloc_ordered_workqueue("storvsc_error_wq_%d", 1859 WQ_MEM_RECLAIM, 1860 host->host_no); 1861 if (!host_dev->handle_error_wq) 1862 goto err_out2; 1863 INIT_WORK(&host_dev->host_scan_work, storvsc_host_scan); 1864 /* Register the HBA and start the scsi bus scan */ 1865 ret = scsi_add_host(host, &device->device); 1866 if (ret != 0) 1867 goto err_out3; 1868 1869 if (!dev_is_ide) { 1870 scsi_scan_host(host); 1871 } else { 1872 target = (device->dev_instance.b[5] << 8 | 1873 device->dev_instance.b[4]); 1874 ret = scsi_add_device(host, 0, target, 0); 1875 if (ret) 1876 goto err_out4; 1877 } 1878 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1879 if (host->transportt == fc_transport_template) { 1880 struct fc_rport_identifiers ids = { 1881 .roles = FC_PORT_ROLE_FCP_DUMMY_INITIATOR, 1882 }; 1883 1884 fc_host_node_name(host) = stor_device->node_name; 1885 fc_host_port_name(host) = stor_device->port_name; 1886 stor_device->rport = fc_remote_port_add(host, 0, &ids); 1887 if (!stor_device->rport) { 1888 ret = -ENOMEM; 1889 goto err_out4; 1890 } 1891 } 1892 #endif 1893 return 0; 1894 1895 err_out4: 1896 scsi_remove_host(host); 1897 1898 err_out3: 1899 destroy_workqueue(host_dev->handle_error_wq); 1900 1901 err_out2: 1902 /* 1903 * Once we have connected with the host, we would need to 1904 * to invoke storvsc_dev_remove() to rollback this state and 1905 * this call also frees up the stor_device; hence the jump around 1906 * err_out1 label. 1907 */ 1908 storvsc_dev_remove(device); 1909 goto err_out0; 1910 1911 err_out1: 1912 kfree(stor_device->stor_chns); 1913 kfree(stor_device); 1914 1915 err_out0: 1916 scsi_host_put(host); 1917 return ret; 1918 } 1919 1920 static int storvsc_remove(struct hv_device *dev) 1921 { 1922 struct storvsc_device *stor_device = hv_get_drvdata(dev); 1923 struct Scsi_Host *host = stor_device->host; 1924 struct hv_host_device *host_dev = shost_priv(host); 1925 1926 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1927 if (host->transportt == fc_transport_template) { 1928 fc_remote_port_delete(stor_device->rport); 1929 fc_remove_host(host); 1930 } 1931 #endif 1932 destroy_workqueue(host_dev->handle_error_wq); 1933 scsi_remove_host(host); 1934 storvsc_dev_remove(dev); 1935 scsi_host_put(host); 1936 1937 return 0; 1938 } 1939 1940 static struct hv_driver storvsc_drv = { 1941 .name = KBUILD_MODNAME, 1942 .id_table = id_table, 1943 .probe = storvsc_probe, 1944 .remove = storvsc_remove, 1945 .driver = { 1946 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 1947 }, 1948 }; 1949 1950 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1951 static struct fc_function_template fc_transport_functions = { 1952 .show_host_node_name = 1, 1953 .show_host_port_name = 1, 1954 }; 1955 #endif 1956 1957 static int __init storvsc_drv_init(void) 1958 { 1959 int ret; 1960 1961 /* 1962 * Divide the ring buffer data size (which is 1 page less 1963 * than the ring buffer size since that page is reserved for 1964 * the ring buffer indices) by the max request size (which is 1965 * vmbus_channel_packet_multipage_buffer + struct vstor_packet + u64) 1966 */ 1967 max_outstanding_req_per_channel = 1968 ((storvsc_ringbuffer_size - PAGE_SIZE) / 1969 ALIGN(MAX_MULTIPAGE_BUFFER_PACKET + 1970 sizeof(struct vstor_packet) + sizeof(u64) - 1971 vmscsi_size_delta, 1972 sizeof(u64))); 1973 1974 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1975 fc_transport_template = fc_attach_transport(&fc_transport_functions); 1976 if (!fc_transport_template) 1977 return -ENODEV; 1978 #endif 1979 1980 ret = vmbus_driver_register(&storvsc_drv); 1981 1982 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1983 if (ret) 1984 fc_release_transport(fc_transport_template); 1985 #endif 1986 1987 return ret; 1988 } 1989 1990 static void __exit storvsc_drv_exit(void) 1991 { 1992 vmbus_driver_unregister(&storvsc_drv); 1993 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1994 fc_release_transport(fc_transport_template); 1995 #endif 1996 } 1997 1998 MODULE_LICENSE("GPL"); 1999 MODULE_DESCRIPTION("Microsoft Hyper-V virtual storage driver"); 2000 module_init(storvsc_drv_init); 2001 module_exit(storvsc_drv_exit); 2002