1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 * K. Y. Srinivasan <kys@microsoft.com> 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/wait.h> 13 #include <linux/sched.h> 14 #include <linux/completion.h> 15 #include <linux/string.h> 16 #include <linux/mm.h> 17 #include <linux/delay.h> 18 #include <linux/init.h> 19 #include <linux/slab.h> 20 #include <linux/module.h> 21 #include <linux/device.h> 22 #include <linux/hyperv.h> 23 #include <linux/blkdev.h> 24 #include <linux/dma-mapping.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_host.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_tcq.h> 31 #include <scsi/scsi_eh.h> 32 #include <scsi/scsi_devinfo.h> 33 #include <scsi/scsi_dbg.h> 34 #include <scsi/scsi_transport_fc.h> 35 #include <scsi/scsi_transport.h> 36 37 /* 38 * All wire protocol details (storage protocol between the guest and the host) 39 * are consolidated here. 40 * 41 * Begin protocol definitions. 42 */ 43 44 /* 45 * Version history: 46 * V1 Beta: 0.1 47 * V1 RC < 2008/1/31: 1.0 48 * V1 RC > 2008/1/31: 2.0 49 * Win7: 4.2 50 * Win8: 5.1 51 * Win8.1: 6.0 52 * Win10: 6.2 53 */ 54 55 #define VMSTOR_PROTO_VERSION(MAJOR_, MINOR_) ((((MAJOR_) & 0xff) << 8) | \ 56 (((MINOR_) & 0xff))) 57 #define VMSTOR_PROTO_VERSION_WIN6 VMSTOR_PROTO_VERSION(2, 0) 58 #define VMSTOR_PROTO_VERSION_WIN7 VMSTOR_PROTO_VERSION(4, 2) 59 #define VMSTOR_PROTO_VERSION_WIN8 VMSTOR_PROTO_VERSION(5, 1) 60 #define VMSTOR_PROTO_VERSION_WIN8_1 VMSTOR_PROTO_VERSION(6, 0) 61 #define VMSTOR_PROTO_VERSION_WIN10 VMSTOR_PROTO_VERSION(6, 2) 62 63 /* channel callback timeout in ms */ 64 #define CALLBACK_TIMEOUT 2 65 66 /* Packet structure describing virtual storage requests. */ 67 enum vstor_packet_operation { 68 VSTOR_OPERATION_COMPLETE_IO = 1, 69 VSTOR_OPERATION_REMOVE_DEVICE = 2, 70 VSTOR_OPERATION_EXECUTE_SRB = 3, 71 VSTOR_OPERATION_RESET_LUN = 4, 72 VSTOR_OPERATION_RESET_ADAPTER = 5, 73 VSTOR_OPERATION_RESET_BUS = 6, 74 VSTOR_OPERATION_BEGIN_INITIALIZATION = 7, 75 VSTOR_OPERATION_END_INITIALIZATION = 8, 76 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION = 9, 77 VSTOR_OPERATION_QUERY_PROPERTIES = 10, 78 VSTOR_OPERATION_ENUMERATE_BUS = 11, 79 VSTOR_OPERATION_FCHBA_DATA = 12, 80 VSTOR_OPERATION_CREATE_SUB_CHANNELS = 13, 81 VSTOR_OPERATION_MAXIMUM = 13 82 }; 83 84 /* 85 * WWN packet for Fibre Channel HBA 86 */ 87 88 struct hv_fc_wwn_packet { 89 u8 primary_active; 90 u8 reserved1[3]; 91 u8 primary_port_wwn[8]; 92 u8 primary_node_wwn[8]; 93 u8 secondary_port_wwn[8]; 94 u8 secondary_node_wwn[8]; 95 }; 96 97 98 99 /* 100 * SRB Flag Bits 101 */ 102 103 #define SRB_FLAGS_QUEUE_ACTION_ENABLE 0x00000002 104 #define SRB_FLAGS_DISABLE_DISCONNECT 0x00000004 105 #define SRB_FLAGS_DISABLE_SYNCH_TRANSFER 0x00000008 106 #define SRB_FLAGS_BYPASS_FROZEN_QUEUE 0x00000010 107 #define SRB_FLAGS_DISABLE_AUTOSENSE 0x00000020 108 #define SRB_FLAGS_DATA_IN 0x00000040 109 #define SRB_FLAGS_DATA_OUT 0x00000080 110 #define SRB_FLAGS_NO_DATA_TRANSFER 0x00000000 111 #define SRB_FLAGS_UNSPECIFIED_DIRECTION (SRB_FLAGS_DATA_IN | SRB_FLAGS_DATA_OUT) 112 #define SRB_FLAGS_NO_QUEUE_FREEZE 0x00000100 113 #define SRB_FLAGS_ADAPTER_CACHE_ENABLE 0x00000200 114 #define SRB_FLAGS_FREE_SENSE_BUFFER 0x00000400 115 116 /* 117 * This flag indicates the request is part of the workflow for processing a D3. 118 */ 119 #define SRB_FLAGS_D3_PROCESSING 0x00000800 120 #define SRB_FLAGS_IS_ACTIVE 0x00010000 121 #define SRB_FLAGS_ALLOCATED_FROM_ZONE 0x00020000 122 #define SRB_FLAGS_SGLIST_FROM_POOL 0x00040000 123 #define SRB_FLAGS_BYPASS_LOCKED_QUEUE 0x00080000 124 #define SRB_FLAGS_NO_KEEP_AWAKE 0x00100000 125 #define SRB_FLAGS_PORT_DRIVER_ALLOCSENSE 0x00200000 126 #define SRB_FLAGS_PORT_DRIVER_SENSEHASPORT 0x00400000 127 #define SRB_FLAGS_DONT_START_NEXT_PACKET 0x00800000 128 #define SRB_FLAGS_PORT_DRIVER_RESERVED 0x0F000000 129 #define SRB_FLAGS_CLASS_DRIVER_RESERVED 0xF0000000 130 131 #define SP_UNTAGGED ((unsigned char) ~0) 132 #define SRB_SIMPLE_TAG_REQUEST 0x20 133 134 /* 135 * Platform neutral description of a scsi request - 136 * this remains the same across the write regardless of 32/64 bit 137 * note: it's patterned off the SCSI_PASS_THROUGH structure 138 */ 139 #define STORVSC_MAX_CMD_LEN 0x10 140 141 /* Sense buffer size is the same for all versions since Windows 8 */ 142 #define STORVSC_SENSE_BUFFER_SIZE 0x14 143 #define STORVSC_MAX_BUF_LEN_WITH_PADDING 0x14 144 145 /* 146 * The storage protocol version is determined during the 147 * initial exchange with the host. It will indicate which 148 * storage functionality is available in the host. 149 */ 150 static int vmstor_proto_version; 151 152 #define STORVSC_LOGGING_NONE 0 153 #define STORVSC_LOGGING_ERROR 1 154 #define STORVSC_LOGGING_WARN 2 155 156 static int logging_level = STORVSC_LOGGING_ERROR; 157 module_param(logging_level, int, S_IRUGO|S_IWUSR); 158 MODULE_PARM_DESC(logging_level, 159 "Logging level, 0 - None, 1 - Error (default), 2 - Warning."); 160 161 static inline bool do_logging(int level) 162 { 163 return logging_level >= level; 164 } 165 166 #define storvsc_log(dev, level, fmt, ...) \ 167 do { \ 168 if (do_logging(level)) \ 169 dev_warn(&(dev)->device, fmt, ##__VA_ARGS__); \ 170 } while (0) 171 172 struct vmscsi_request { 173 u16 length; 174 u8 srb_status; 175 u8 scsi_status; 176 177 u8 port_number; 178 u8 path_id; 179 u8 target_id; 180 u8 lun; 181 182 u8 cdb_length; 183 u8 sense_info_length; 184 u8 data_in; 185 u8 reserved; 186 187 u32 data_transfer_length; 188 189 union { 190 u8 cdb[STORVSC_MAX_CMD_LEN]; 191 u8 sense_data[STORVSC_SENSE_BUFFER_SIZE]; 192 u8 reserved_array[STORVSC_MAX_BUF_LEN_WITH_PADDING]; 193 }; 194 /* 195 * The following was added in win8. 196 */ 197 u16 reserve; 198 u8 queue_tag; 199 u8 queue_action; 200 u32 srb_flags; 201 u32 time_out_value; 202 u32 queue_sort_ey; 203 204 } __attribute((packed)); 205 206 /* 207 * The list of windows version in order of preference. 208 */ 209 210 static const int protocol_version[] = { 211 VMSTOR_PROTO_VERSION_WIN10, 212 VMSTOR_PROTO_VERSION_WIN8_1, 213 VMSTOR_PROTO_VERSION_WIN8, 214 }; 215 216 217 /* 218 * This structure is sent during the initialization phase to get the different 219 * properties of the channel. 220 */ 221 222 #define STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL 0x1 223 224 struct vmstorage_channel_properties { 225 u32 reserved; 226 u16 max_channel_cnt; 227 u16 reserved1; 228 229 u32 flags; 230 u32 max_transfer_bytes; 231 232 u64 reserved2; 233 } __packed; 234 235 /* This structure is sent during the storage protocol negotiations. */ 236 struct vmstorage_protocol_version { 237 /* Major (MSW) and minor (LSW) version numbers. */ 238 u16 major_minor; 239 240 /* 241 * Revision number is auto-incremented whenever this file is changed 242 * (See FILL_VMSTOR_REVISION macro above). Mismatch does not 243 * definitely indicate incompatibility--but it does indicate mismatched 244 * builds. 245 * This is only used on the windows side. Just set it to 0. 246 */ 247 u16 revision; 248 } __packed; 249 250 /* Channel Property Flags */ 251 #define STORAGE_CHANNEL_REMOVABLE_FLAG 0x1 252 #define STORAGE_CHANNEL_EMULATED_IDE_FLAG 0x2 253 254 struct vstor_packet { 255 /* Requested operation type */ 256 enum vstor_packet_operation operation; 257 258 /* Flags - see below for values */ 259 u32 flags; 260 261 /* Status of the request returned from the server side. */ 262 u32 status; 263 264 /* Data payload area */ 265 union { 266 /* 267 * Structure used to forward SCSI commands from the 268 * client to the server. 269 */ 270 struct vmscsi_request vm_srb; 271 272 /* Structure used to query channel properties. */ 273 struct vmstorage_channel_properties storage_channel_properties; 274 275 /* Used during version negotiations. */ 276 struct vmstorage_protocol_version version; 277 278 /* Fibre channel address packet */ 279 struct hv_fc_wwn_packet wwn_packet; 280 281 /* Number of sub-channels to create */ 282 u16 sub_channel_count; 283 284 /* This will be the maximum of the union members */ 285 u8 buffer[0x34]; 286 }; 287 } __packed; 288 289 /* 290 * Packet Flags: 291 * 292 * This flag indicates that the server should send back a completion for this 293 * packet. 294 */ 295 296 #define REQUEST_COMPLETION_FLAG 0x1 297 298 /* Matches Windows-end */ 299 enum storvsc_request_type { 300 WRITE_TYPE = 0, 301 READ_TYPE, 302 UNKNOWN_TYPE, 303 }; 304 305 /* 306 * SRB status codes and masks. In the 8-bit field, the two high order bits 307 * are flags, while the remaining 6 bits are an integer status code. The 308 * definitions here include only the subset of the integer status codes that 309 * are tested for in this driver. 310 */ 311 #define SRB_STATUS_AUTOSENSE_VALID 0x80 312 #define SRB_STATUS_QUEUE_FROZEN 0x40 313 314 /* SRB status integer codes */ 315 #define SRB_STATUS_SUCCESS 0x01 316 #define SRB_STATUS_ABORTED 0x02 317 #define SRB_STATUS_ERROR 0x04 318 #define SRB_STATUS_INVALID_REQUEST 0x06 319 #define SRB_STATUS_TIMEOUT 0x09 320 #define SRB_STATUS_SELECTION_TIMEOUT 0x0A 321 #define SRB_STATUS_BUS_RESET 0x0E 322 #define SRB_STATUS_DATA_OVERRUN 0x12 323 #define SRB_STATUS_INVALID_LUN 0x20 324 #define SRB_STATUS_INTERNAL_ERROR 0x30 325 326 #define SRB_STATUS(status) \ 327 (status & ~(SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_QUEUE_FROZEN)) 328 /* 329 * This is the end of Protocol specific defines. 330 */ 331 332 static int storvsc_ringbuffer_size = (128 * 1024); 333 static int aligned_ringbuffer_size; 334 static u32 max_outstanding_req_per_channel; 335 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth); 336 337 static int storvsc_vcpus_per_sub_channel = 4; 338 static unsigned int storvsc_max_hw_queues; 339 340 module_param(storvsc_ringbuffer_size, int, S_IRUGO); 341 MODULE_PARM_DESC(storvsc_ringbuffer_size, "Ring buffer size (bytes)"); 342 343 module_param(storvsc_max_hw_queues, uint, 0644); 344 MODULE_PARM_DESC(storvsc_max_hw_queues, "Maximum number of hardware queues"); 345 346 module_param(storvsc_vcpus_per_sub_channel, int, S_IRUGO); 347 MODULE_PARM_DESC(storvsc_vcpus_per_sub_channel, "Ratio of VCPUs to subchannels"); 348 349 static int ring_avail_percent_lowater = 10; 350 module_param(ring_avail_percent_lowater, int, S_IRUGO); 351 MODULE_PARM_DESC(ring_avail_percent_lowater, 352 "Select a channel if available ring size > this in percent"); 353 354 /* 355 * Timeout in seconds for all devices managed by this driver. 356 */ 357 static int storvsc_timeout = 180; 358 359 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 360 static struct scsi_transport_template *fc_transport_template; 361 #endif 362 363 static struct scsi_host_template scsi_driver; 364 static void storvsc_on_channel_callback(void *context); 365 366 #define STORVSC_MAX_LUNS_PER_TARGET 255 367 #define STORVSC_MAX_TARGETS 2 368 #define STORVSC_MAX_CHANNELS 8 369 370 #define STORVSC_FC_MAX_LUNS_PER_TARGET 255 371 #define STORVSC_FC_MAX_TARGETS 128 372 #define STORVSC_FC_MAX_CHANNELS 8 373 #define STORVSC_FC_MAX_XFER_SIZE ((u32)(512 * 1024)) 374 375 #define STORVSC_IDE_MAX_LUNS_PER_TARGET 64 376 #define STORVSC_IDE_MAX_TARGETS 1 377 #define STORVSC_IDE_MAX_CHANNELS 1 378 379 /* 380 * Upper bound on the size of a storvsc packet. 381 */ 382 #define STORVSC_MAX_PKT_SIZE (sizeof(struct vmpacket_descriptor) +\ 383 sizeof(struct vstor_packet)) 384 385 struct storvsc_cmd_request { 386 struct scsi_cmnd *cmd; 387 388 struct hv_device *device; 389 390 /* Synchronize the request/response if needed */ 391 struct completion wait_event; 392 393 struct vmbus_channel_packet_multipage_buffer mpb; 394 struct vmbus_packet_mpb_array *payload; 395 u32 payload_sz; 396 397 struct vstor_packet vstor_packet; 398 }; 399 400 401 /* A storvsc device is a device object that contains a vmbus channel */ 402 struct storvsc_device { 403 struct hv_device *device; 404 405 bool destroy; 406 bool drain_notify; 407 atomic_t num_outstanding_req; 408 struct Scsi_Host *host; 409 410 wait_queue_head_t waiting_to_drain; 411 412 /* 413 * Each unique Port/Path/Target represents 1 channel ie scsi 414 * controller. In reality, the pathid, targetid is always 0 415 * and the port is set by us 416 */ 417 unsigned int port_number; 418 unsigned char path_id; 419 unsigned char target_id; 420 421 /* 422 * Max I/O, the device can support. 423 */ 424 u32 max_transfer_bytes; 425 /* 426 * Number of sub-channels we will open. 427 */ 428 u16 num_sc; 429 struct vmbus_channel **stor_chns; 430 /* 431 * Mask of CPUs bound to subchannels. 432 */ 433 struct cpumask alloced_cpus; 434 /* 435 * Serializes modifications of stor_chns[] from storvsc_do_io() 436 * and storvsc_change_target_cpu(). 437 */ 438 spinlock_t lock; 439 /* Used for vsc/vsp channel reset process */ 440 struct storvsc_cmd_request init_request; 441 struct storvsc_cmd_request reset_request; 442 /* 443 * Currently active port and node names for FC devices. 444 */ 445 u64 node_name; 446 u64 port_name; 447 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 448 struct fc_rport *rport; 449 #endif 450 }; 451 452 struct hv_host_device { 453 struct hv_device *dev; 454 unsigned int port; 455 unsigned char path; 456 unsigned char target; 457 struct workqueue_struct *handle_error_wq; 458 struct work_struct host_scan_work; 459 struct Scsi_Host *host; 460 }; 461 462 struct storvsc_scan_work { 463 struct work_struct work; 464 struct Scsi_Host *host; 465 u8 lun; 466 u8 tgt_id; 467 }; 468 469 static void storvsc_device_scan(struct work_struct *work) 470 { 471 struct storvsc_scan_work *wrk; 472 struct scsi_device *sdev; 473 474 wrk = container_of(work, struct storvsc_scan_work, work); 475 476 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun); 477 if (!sdev) 478 goto done; 479 scsi_rescan_device(sdev); 480 scsi_device_put(sdev); 481 482 done: 483 kfree(wrk); 484 } 485 486 static void storvsc_host_scan(struct work_struct *work) 487 { 488 struct Scsi_Host *host; 489 struct scsi_device *sdev; 490 struct hv_host_device *host_device = 491 container_of(work, struct hv_host_device, host_scan_work); 492 493 host = host_device->host; 494 /* 495 * Before scanning the host, first check to see if any of the 496 * currently known devices have been hot removed. We issue a 497 * "unit ready" command against all currently known devices. 498 * This I/O will result in an error for devices that have been 499 * removed. As part of handling the I/O error, we remove the device. 500 * 501 * When a LUN is added or removed, the host sends us a signal to 502 * scan the host. Thus we are forced to discover the LUNs that 503 * may have been removed this way. 504 */ 505 mutex_lock(&host->scan_mutex); 506 shost_for_each_device(sdev, host) 507 scsi_test_unit_ready(sdev, 1, 1, NULL); 508 mutex_unlock(&host->scan_mutex); 509 /* 510 * Now scan the host to discover LUNs that may have been added. 511 */ 512 scsi_scan_host(host); 513 } 514 515 static void storvsc_remove_lun(struct work_struct *work) 516 { 517 struct storvsc_scan_work *wrk; 518 struct scsi_device *sdev; 519 520 wrk = container_of(work, struct storvsc_scan_work, work); 521 if (!scsi_host_get(wrk->host)) 522 goto done; 523 524 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun); 525 526 if (sdev) { 527 scsi_remove_device(sdev); 528 scsi_device_put(sdev); 529 } 530 scsi_host_put(wrk->host); 531 532 done: 533 kfree(wrk); 534 } 535 536 537 /* 538 * We can get incoming messages from the host that are not in response to 539 * messages that we have sent out. An example of this would be messages 540 * received by the guest to notify dynamic addition/removal of LUNs. To 541 * deal with potential race conditions where the driver may be in the 542 * midst of being unloaded when we might receive an unsolicited message 543 * from the host, we have implemented a mechanism to gurantee sequential 544 * consistency: 545 * 546 * 1) Once the device is marked as being destroyed, we will fail all 547 * outgoing messages. 548 * 2) We permit incoming messages when the device is being destroyed, 549 * only to properly account for messages already sent out. 550 */ 551 552 static inline struct storvsc_device *get_out_stor_device( 553 struct hv_device *device) 554 { 555 struct storvsc_device *stor_device; 556 557 stor_device = hv_get_drvdata(device); 558 559 if (stor_device && stor_device->destroy) 560 stor_device = NULL; 561 562 return stor_device; 563 } 564 565 566 static inline void storvsc_wait_to_drain(struct storvsc_device *dev) 567 { 568 dev->drain_notify = true; 569 wait_event(dev->waiting_to_drain, 570 atomic_read(&dev->num_outstanding_req) == 0); 571 dev->drain_notify = false; 572 } 573 574 static inline struct storvsc_device *get_in_stor_device( 575 struct hv_device *device) 576 { 577 struct storvsc_device *stor_device; 578 579 stor_device = hv_get_drvdata(device); 580 581 if (!stor_device) 582 goto get_in_err; 583 584 /* 585 * If the device is being destroyed; allow incoming 586 * traffic only to cleanup outstanding requests. 587 */ 588 589 if (stor_device->destroy && 590 (atomic_read(&stor_device->num_outstanding_req) == 0)) 591 stor_device = NULL; 592 593 get_in_err: 594 return stor_device; 595 596 } 597 598 static void storvsc_change_target_cpu(struct vmbus_channel *channel, u32 old, 599 u32 new) 600 { 601 struct storvsc_device *stor_device; 602 struct vmbus_channel *cur_chn; 603 bool old_is_alloced = false; 604 struct hv_device *device; 605 unsigned long flags; 606 int cpu; 607 608 device = channel->primary_channel ? 609 channel->primary_channel->device_obj 610 : channel->device_obj; 611 stor_device = get_out_stor_device(device); 612 if (!stor_device) 613 return; 614 615 /* See storvsc_do_io() -> get_og_chn(). */ 616 spin_lock_irqsave(&stor_device->lock, flags); 617 618 /* 619 * Determines if the storvsc device has other channels assigned to 620 * the "old" CPU to update the alloced_cpus mask and the stor_chns 621 * array. 622 */ 623 if (device->channel != channel && device->channel->target_cpu == old) { 624 cur_chn = device->channel; 625 old_is_alloced = true; 626 goto old_is_alloced; 627 } 628 list_for_each_entry(cur_chn, &device->channel->sc_list, sc_list) { 629 if (cur_chn == channel) 630 continue; 631 if (cur_chn->target_cpu == old) { 632 old_is_alloced = true; 633 goto old_is_alloced; 634 } 635 } 636 637 old_is_alloced: 638 if (old_is_alloced) 639 WRITE_ONCE(stor_device->stor_chns[old], cur_chn); 640 else 641 cpumask_clear_cpu(old, &stor_device->alloced_cpus); 642 643 /* "Flush" the stor_chns array. */ 644 for_each_possible_cpu(cpu) { 645 if (stor_device->stor_chns[cpu] && !cpumask_test_cpu( 646 cpu, &stor_device->alloced_cpus)) 647 WRITE_ONCE(stor_device->stor_chns[cpu], NULL); 648 } 649 650 WRITE_ONCE(stor_device->stor_chns[new], channel); 651 cpumask_set_cpu(new, &stor_device->alloced_cpus); 652 653 spin_unlock_irqrestore(&stor_device->lock, flags); 654 } 655 656 static u64 storvsc_next_request_id(struct vmbus_channel *channel, u64 rqst_addr) 657 { 658 struct storvsc_cmd_request *request = 659 (struct storvsc_cmd_request *)(unsigned long)rqst_addr; 660 661 if (rqst_addr == VMBUS_RQST_INIT) 662 return VMBUS_RQST_INIT; 663 if (rqst_addr == VMBUS_RQST_RESET) 664 return VMBUS_RQST_RESET; 665 666 /* 667 * Cannot return an ID of 0, which is reserved for an unsolicited 668 * message from Hyper-V. 669 */ 670 return (u64)blk_mq_unique_tag(scsi_cmd_to_rq(request->cmd)) + 1; 671 } 672 673 static void handle_sc_creation(struct vmbus_channel *new_sc) 674 { 675 struct hv_device *device = new_sc->primary_channel->device_obj; 676 struct device *dev = &device->device; 677 struct storvsc_device *stor_device; 678 struct vmstorage_channel_properties props; 679 int ret; 680 681 stor_device = get_out_stor_device(device); 682 if (!stor_device) 683 return; 684 685 memset(&props, 0, sizeof(struct vmstorage_channel_properties)); 686 new_sc->max_pkt_size = STORVSC_MAX_PKT_SIZE; 687 688 new_sc->next_request_id_callback = storvsc_next_request_id; 689 690 ret = vmbus_open(new_sc, 691 aligned_ringbuffer_size, 692 aligned_ringbuffer_size, 693 (void *)&props, 694 sizeof(struct vmstorage_channel_properties), 695 storvsc_on_channel_callback, new_sc); 696 697 /* In case vmbus_open() fails, we don't use the sub-channel. */ 698 if (ret != 0) { 699 dev_err(dev, "Failed to open sub-channel: err=%d\n", ret); 700 return; 701 } 702 703 new_sc->change_target_cpu_callback = storvsc_change_target_cpu; 704 705 /* Add the sub-channel to the array of available channels. */ 706 stor_device->stor_chns[new_sc->target_cpu] = new_sc; 707 cpumask_set_cpu(new_sc->target_cpu, &stor_device->alloced_cpus); 708 } 709 710 static void handle_multichannel_storage(struct hv_device *device, int max_chns) 711 { 712 struct device *dev = &device->device; 713 struct storvsc_device *stor_device; 714 int num_sc; 715 struct storvsc_cmd_request *request; 716 struct vstor_packet *vstor_packet; 717 int ret, t; 718 719 /* 720 * If the number of CPUs is artificially restricted, such as 721 * with maxcpus=1 on the kernel boot line, Hyper-V could offer 722 * sub-channels >= the number of CPUs. These sub-channels 723 * should not be created. The primary channel is already created 724 * and assigned to one CPU, so check against # CPUs - 1. 725 */ 726 num_sc = min((int)(num_online_cpus() - 1), max_chns); 727 if (!num_sc) 728 return; 729 730 stor_device = get_out_stor_device(device); 731 if (!stor_device) 732 return; 733 734 stor_device->num_sc = num_sc; 735 request = &stor_device->init_request; 736 vstor_packet = &request->vstor_packet; 737 738 /* 739 * Establish a handler for dealing with subchannels. 740 */ 741 vmbus_set_sc_create_callback(device->channel, handle_sc_creation); 742 743 /* 744 * Request the host to create sub-channels. 745 */ 746 memset(request, 0, sizeof(struct storvsc_cmd_request)); 747 init_completion(&request->wait_event); 748 vstor_packet->operation = VSTOR_OPERATION_CREATE_SUB_CHANNELS; 749 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 750 vstor_packet->sub_channel_count = num_sc; 751 752 ret = vmbus_sendpacket(device->channel, vstor_packet, 753 sizeof(struct vstor_packet), 754 VMBUS_RQST_INIT, 755 VM_PKT_DATA_INBAND, 756 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 757 758 if (ret != 0) { 759 dev_err(dev, "Failed to create sub-channel: err=%d\n", ret); 760 return; 761 } 762 763 t = wait_for_completion_timeout(&request->wait_event, 10*HZ); 764 if (t == 0) { 765 dev_err(dev, "Failed to create sub-channel: timed out\n"); 766 return; 767 } 768 769 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || 770 vstor_packet->status != 0) { 771 dev_err(dev, "Failed to create sub-channel: op=%d, sts=%d\n", 772 vstor_packet->operation, vstor_packet->status); 773 return; 774 } 775 776 /* 777 * We need to do nothing here, because vmbus_process_offer() 778 * invokes channel->sc_creation_callback, which will open and use 779 * the sub-channel(s). 780 */ 781 } 782 783 static void cache_wwn(struct storvsc_device *stor_device, 784 struct vstor_packet *vstor_packet) 785 { 786 /* 787 * Cache the currently active port and node ww names. 788 */ 789 if (vstor_packet->wwn_packet.primary_active) { 790 stor_device->node_name = 791 wwn_to_u64(vstor_packet->wwn_packet.primary_node_wwn); 792 stor_device->port_name = 793 wwn_to_u64(vstor_packet->wwn_packet.primary_port_wwn); 794 } else { 795 stor_device->node_name = 796 wwn_to_u64(vstor_packet->wwn_packet.secondary_node_wwn); 797 stor_device->port_name = 798 wwn_to_u64(vstor_packet->wwn_packet.secondary_port_wwn); 799 } 800 } 801 802 803 static int storvsc_execute_vstor_op(struct hv_device *device, 804 struct storvsc_cmd_request *request, 805 bool status_check) 806 { 807 struct storvsc_device *stor_device; 808 struct vstor_packet *vstor_packet; 809 int ret, t; 810 811 stor_device = get_out_stor_device(device); 812 if (!stor_device) 813 return -ENODEV; 814 815 vstor_packet = &request->vstor_packet; 816 817 init_completion(&request->wait_event); 818 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 819 820 ret = vmbus_sendpacket(device->channel, vstor_packet, 821 sizeof(struct vstor_packet), 822 VMBUS_RQST_INIT, 823 VM_PKT_DATA_INBAND, 824 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 825 if (ret != 0) 826 return ret; 827 828 t = wait_for_completion_timeout(&request->wait_event, 5*HZ); 829 if (t == 0) 830 return -ETIMEDOUT; 831 832 if (!status_check) 833 return ret; 834 835 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || 836 vstor_packet->status != 0) 837 return -EINVAL; 838 839 return ret; 840 } 841 842 static int storvsc_channel_init(struct hv_device *device, bool is_fc) 843 { 844 struct storvsc_device *stor_device; 845 struct storvsc_cmd_request *request; 846 struct vstor_packet *vstor_packet; 847 int ret, i; 848 int max_chns; 849 bool process_sub_channels = false; 850 851 stor_device = get_out_stor_device(device); 852 if (!stor_device) 853 return -ENODEV; 854 855 request = &stor_device->init_request; 856 vstor_packet = &request->vstor_packet; 857 858 /* 859 * Now, initiate the vsc/vsp initialization protocol on the open 860 * channel 861 */ 862 memset(request, 0, sizeof(struct storvsc_cmd_request)); 863 vstor_packet->operation = VSTOR_OPERATION_BEGIN_INITIALIZATION; 864 ret = storvsc_execute_vstor_op(device, request, true); 865 if (ret) 866 return ret; 867 /* 868 * Query host supported protocol version. 869 */ 870 871 for (i = 0; i < ARRAY_SIZE(protocol_version); i++) { 872 /* reuse the packet for version range supported */ 873 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 874 vstor_packet->operation = 875 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION; 876 877 vstor_packet->version.major_minor = protocol_version[i]; 878 879 /* 880 * The revision number is only used in Windows; set it to 0. 881 */ 882 vstor_packet->version.revision = 0; 883 ret = storvsc_execute_vstor_op(device, request, false); 884 if (ret != 0) 885 return ret; 886 887 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO) 888 return -EINVAL; 889 890 if (vstor_packet->status == 0) { 891 vmstor_proto_version = protocol_version[i]; 892 893 break; 894 } 895 } 896 897 if (vstor_packet->status != 0) { 898 dev_err(&device->device, "Obsolete Hyper-V version\n"); 899 return -EINVAL; 900 } 901 902 903 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 904 vstor_packet->operation = VSTOR_OPERATION_QUERY_PROPERTIES; 905 ret = storvsc_execute_vstor_op(device, request, true); 906 if (ret != 0) 907 return ret; 908 909 /* 910 * Check to see if multi-channel support is there. 911 * Hosts that implement protocol version of 5.1 and above 912 * support multi-channel. 913 */ 914 max_chns = vstor_packet->storage_channel_properties.max_channel_cnt; 915 916 /* 917 * Allocate state to manage the sub-channels. 918 * We allocate an array based on the numbers of possible CPUs 919 * (Hyper-V does not support cpu online/offline). 920 * This Array will be sparseley populated with unique 921 * channels - primary + sub-channels. 922 * We will however populate all the slots to evenly distribute 923 * the load. 924 */ 925 stor_device->stor_chns = kcalloc(num_possible_cpus(), sizeof(void *), 926 GFP_KERNEL); 927 if (stor_device->stor_chns == NULL) 928 return -ENOMEM; 929 930 device->channel->change_target_cpu_callback = storvsc_change_target_cpu; 931 932 stor_device->stor_chns[device->channel->target_cpu] = device->channel; 933 cpumask_set_cpu(device->channel->target_cpu, 934 &stor_device->alloced_cpus); 935 936 if (vstor_packet->storage_channel_properties.flags & 937 STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL) 938 process_sub_channels = true; 939 940 stor_device->max_transfer_bytes = 941 vstor_packet->storage_channel_properties.max_transfer_bytes; 942 943 if (!is_fc) 944 goto done; 945 946 /* 947 * For FC devices retrieve FC HBA data. 948 */ 949 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 950 vstor_packet->operation = VSTOR_OPERATION_FCHBA_DATA; 951 ret = storvsc_execute_vstor_op(device, request, true); 952 if (ret != 0) 953 return ret; 954 955 /* 956 * Cache the currently active port and node ww names. 957 */ 958 cache_wwn(stor_device, vstor_packet); 959 960 done: 961 962 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 963 vstor_packet->operation = VSTOR_OPERATION_END_INITIALIZATION; 964 ret = storvsc_execute_vstor_op(device, request, true); 965 if (ret != 0) 966 return ret; 967 968 if (process_sub_channels) 969 handle_multichannel_storage(device, max_chns); 970 971 return ret; 972 } 973 974 static void storvsc_handle_error(struct vmscsi_request *vm_srb, 975 struct scsi_cmnd *scmnd, 976 struct Scsi_Host *host, 977 u8 asc, u8 ascq) 978 { 979 struct storvsc_scan_work *wrk; 980 void (*process_err_fn)(struct work_struct *work); 981 struct hv_host_device *host_dev = shost_priv(host); 982 983 switch (SRB_STATUS(vm_srb->srb_status)) { 984 case SRB_STATUS_ERROR: 985 case SRB_STATUS_ABORTED: 986 case SRB_STATUS_INVALID_REQUEST: 987 case SRB_STATUS_INTERNAL_ERROR: 988 case SRB_STATUS_TIMEOUT: 989 case SRB_STATUS_SELECTION_TIMEOUT: 990 case SRB_STATUS_BUS_RESET: 991 case SRB_STATUS_DATA_OVERRUN: 992 if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID) { 993 /* Check for capacity change */ 994 if ((asc == 0x2a) && (ascq == 0x9)) { 995 process_err_fn = storvsc_device_scan; 996 /* Retry the I/O that triggered this. */ 997 set_host_byte(scmnd, DID_REQUEUE); 998 goto do_work; 999 } 1000 1001 /* 1002 * Check for "Operating parameters have changed" 1003 * due to Hyper-V changing the VHD/VHDX BlockSize 1004 * when adding/removing a differencing disk. This 1005 * causes discard_granularity to change, so do a 1006 * rescan to pick up the new granularity. We don't 1007 * want scsi_report_sense() to output a message 1008 * that a sysadmin wouldn't know what to do with. 1009 */ 1010 if ((asc == 0x3f) && (ascq != 0x03) && 1011 (ascq != 0x0e)) { 1012 process_err_fn = storvsc_device_scan; 1013 set_host_byte(scmnd, DID_REQUEUE); 1014 goto do_work; 1015 } 1016 1017 /* 1018 * Otherwise, let upper layer deal with the 1019 * error when sense message is present 1020 */ 1021 return; 1022 } 1023 1024 /* 1025 * If there is an error; offline the device since all 1026 * error recovery strategies would have already been 1027 * deployed on the host side. However, if the command 1028 * were a pass-through command deal with it appropriately. 1029 */ 1030 switch (scmnd->cmnd[0]) { 1031 case ATA_16: 1032 case ATA_12: 1033 set_host_byte(scmnd, DID_PASSTHROUGH); 1034 break; 1035 /* 1036 * On some Hyper-V hosts TEST_UNIT_READY command can 1037 * return SRB_STATUS_ERROR. Let the upper level code 1038 * deal with it based on the sense information. 1039 */ 1040 case TEST_UNIT_READY: 1041 break; 1042 default: 1043 set_host_byte(scmnd, DID_ERROR); 1044 } 1045 return; 1046 1047 case SRB_STATUS_INVALID_LUN: 1048 set_host_byte(scmnd, DID_NO_CONNECT); 1049 process_err_fn = storvsc_remove_lun; 1050 goto do_work; 1051 1052 } 1053 return; 1054 1055 do_work: 1056 /* 1057 * We need to schedule work to process this error; schedule it. 1058 */ 1059 wrk = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC); 1060 if (!wrk) { 1061 set_host_byte(scmnd, DID_BAD_TARGET); 1062 return; 1063 } 1064 1065 wrk->host = host; 1066 wrk->lun = vm_srb->lun; 1067 wrk->tgt_id = vm_srb->target_id; 1068 INIT_WORK(&wrk->work, process_err_fn); 1069 queue_work(host_dev->handle_error_wq, &wrk->work); 1070 } 1071 1072 1073 static void storvsc_command_completion(struct storvsc_cmd_request *cmd_request, 1074 struct storvsc_device *stor_dev) 1075 { 1076 struct scsi_cmnd *scmnd = cmd_request->cmd; 1077 struct scsi_sense_hdr sense_hdr; 1078 struct vmscsi_request *vm_srb; 1079 u32 data_transfer_length; 1080 struct Scsi_Host *host; 1081 u32 payload_sz = cmd_request->payload_sz; 1082 void *payload = cmd_request->payload; 1083 bool sense_ok; 1084 1085 host = stor_dev->host; 1086 1087 vm_srb = &cmd_request->vstor_packet.vm_srb; 1088 data_transfer_length = vm_srb->data_transfer_length; 1089 1090 scmnd->result = vm_srb->scsi_status; 1091 1092 if (scmnd->result) { 1093 sense_ok = scsi_normalize_sense(scmnd->sense_buffer, 1094 SCSI_SENSE_BUFFERSIZE, &sense_hdr); 1095 1096 if (sense_ok && do_logging(STORVSC_LOGGING_WARN)) 1097 scsi_print_sense_hdr(scmnd->device, "storvsc", 1098 &sense_hdr); 1099 } 1100 1101 if (vm_srb->srb_status != SRB_STATUS_SUCCESS) { 1102 storvsc_handle_error(vm_srb, scmnd, host, sense_hdr.asc, 1103 sense_hdr.ascq); 1104 /* 1105 * The Windows driver set data_transfer_length on 1106 * SRB_STATUS_DATA_OVERRUN. On other errors, this value 1107 * is untouched. In these cases we set it to 0. 1108 */ 1109 if (vm_srb->srb_status != SRB_STATUS_DATA_OVERRUN) 1110 data_transfer_length = 0; 1111 } 1112 1113 /* Validate data_transfer_length (from Hyper-V) */ 1114 if (data_transfer_length > cmd_request->payload->range.len) 1115 data_transfer_length = cmd_request->payload->range.len; 1116 1117 scsi_set_resid(scmnd, 1118 cmd_request->payload->range.len - data_transfer_length); 1119 1120 scsi_done(scmnd); 1121 1122 if (payload_sz > 1123 sizeof(struct vmbus_channel_packet_multipage_buffer)) 1124 kfree(payload); 1125 } 1126 1127 static void storvsc_on_io_completion(struct storvsc_device *stor_device, 1128 struct vstor_packet *vstor_packet, 1129 struct storvsc_cmd_request *request) 1130 { 1131 struct vstor_packet *stor_pkt; 1132 struct hv_device *device = stor_device->device; 1133 1134 stor_pkt = &request->vstor_packet; 1135 1136 /* 1137 * The current SCSI handling on the host side does 1138 * not correctly handle: 1139 * INQUIRY command with page code parameter set to 0x80 1140 * MODE_SENSE command with cmd[2] == 0x1c 1141 * 1142 * Setup srb and scsi status so this won't be fatal. 1143 * We do this so we can distinguish truly fatal failues 1144 * (srb status == 0x4) and off-line the device in that case. 1145 */ 1146 1147 if ((stor_pkt->vm_srb.cdb[0] == INQUIRY) || 1148 (stor_pkt->vm_srb.cdb[0] == MODE_SENSE)) { 1149 vstor_packet->vm_srb.scsi_status = 0; 1150 vstor_packet->vm_srb.srb_status = SRB_STATUS_SUCCESS; 1151 } 1152 1153 /* Copy over the status...etc */ 1154 stor_pkt->vm_srb.scsi_status = vstor_packet->vm_srb.scsi_status; 1155 stor_pkt->vm_srb.srb_status = vstor_packet->vm_srb.srb_status; 1156 1157 /* 1158 * Copy over the sense_info_length, but limit to the known max 1159 * size if Hyper-V returns a bad value. 1160 */ 1161 stor_pkt->vm_srb.sense_info_length = min_t(u8, STORVSC_SENSE_BUFFER_SIZE, 1162 vstor_packet->vm_srb.sense_info_length); 1163 1164 if (vstor_packet->vm_srb.scsi_status != 0 || 1165 vstor_packet->vm_srb.srb_status != SRB_STATUS_SUCCESS) { 1166 1167 /* 1168 * Log TEST_UNIT_READY errors only as warnings. Hyper-V can 1169 * return errors when detecting devices using TEST_UNIT_READY, 1170 * and logging these as errors produces unhelpful noise. 1171 */ 1172 int loglevel = (stor_pkt->vm_srb.cdb[0] == TEST_UNIT_READY) ? 1173 STORVSC_LOGGING_WARN : STORVSC_LOGGING_ERROR; 1174 1175 storvsc_log(device, loglevel, 1176 "tag#%d cmd 0x%x status: scsi 0x%x srb 0x%x hv 0x%x\n", 1177 scsi_cmd_to_rq(request->cmd)->tag, 1178 stor_pkt->vm_srb.cdb[0], 1179 vstor_packet->vm_srb.scsi_status, 1180 vstor_packet->vm_srb.srb_status, 1181 vstor_packet->status); 1182 } 1183 1184 if (vstor_packet->vm_srb.scsi_status == SAM_STAT_CHECK_CONDITION && 1185 (vstor_packet->vm_srb.srb_status & SRB_STATUS_AUTOSENSE_VALID)) 1186 memcpy(request->cmd->sense_buffer, 1187 vstor_packet->vm_srb.sense_data, 1188 stor_pkt->vm_srb.sense_info_length); 1189 1190 stor_pkt->vm_srb.data_transfer_length = 1191 vstor_packet->vm_srb.data_transfer_length; 1192 1193 storvsc_command_completion(request, stor_device); 1194 1195 if (atomic_dec_and_test(&stor_device->num_outstanding_req) && 1196 stor_device->drain_notify) 1197 wake_up(&stor_device->waiting_to_drain); 1198 } 1199 1200 static void storvsc_on_receive(struct storvsc_device *stor_device, 1201 struct vstor_packet *vstor_packet, 1202 struct storvsc_cmd_request *request) 1203 { 1204 struct hv_host_device *host_dev; 1205 switch (vstor_packet->operation) { 1206 case VSTOR_OPERATION_COMPLETE_IO: 1207 storvsc_on_io_completion(stor_device, vstor_packet, request); 1208 break; 1209 1210 case VSTOR_OPERATION_REMOVE_DEVICE: 1211 case VSTOR_OPERATION_ENUMERATE_BUS: 1212 host_dev = shost_priv(stor_device->host); 1213 queue_work( 1214 host_dev->handle_error_wq, &host_dev->host_scan_work); 1215 break; 1216 1217 case VSTOR_OPERATION_FCHBA_DATA: 1218 cache_wwn(stor_device, vstor_packet); 1219 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1220 fc_host_node_name(stor_device->host) = stor_device->node_name; 1221 fc_host_port_name(stor_device->host) = stor_device->port_name; 1222 #endif 1223 break; 1224 default: 1225 break; 1226 } 1227 } 1228 1229 static void storvsc_on_channel_callback(void *context) 1230 { 1231 struct vmbus_channel *channel = (struct vmbus_channel *)context; 1232 const struct vmpacket_descriptor *desc; 1233 struct hv_device *device; 1234 struct storvsc_device *stor_device; 1235 struct Scsi_Host *shost; 1236 unsigned long time_limit = jiffies + msecs_to_jiffies(CALLBACK_TIMEOUT); 1237 1238 if (channel->primary_channel != NULL) 1239 device = channel->primary_channel->device_obj; 1240 else 1241 device = channel->device_obj; 1242 1243 stor_device = get_in_stor_device(device); 1244 if (!stor_device) 1245 return; 1246 1247 shost = stor_device->host; 1248 1249 foreach_vmbus_pkt(desc, channel) { 1250 struct vstor_packet *packet = hv_pkt_data(desc); 1251 struct storvsc_cmd_request *request = NULL; 1252 u32 pktlen = hv_pkt_datalen(desc); 1253 u64 rqst_id = desc->trans_id; 1254 u32 minlen = rqst_id ? sizeof(struct vstor_packet) : 1255 sizeof(enum vstor_packet_operation); 1256 1257 if (unlikely(time_after(jiffies, time_limit))) { 1258 hv_pkt_iter_close(channel); 1259 return; 1260 } 1261 1262 if (pktlen < minlen) { 1263 dev_err(&device->device, 1264 "Invalid pkt: id=%llu, len=%u, minlen=%u\n", 1265 rqst_id, pktlen, minlen); 1266 continue; 1267 } 1268 1269 if (rqst_id == VMBUS_RQST_INIT) { 1270 request = &stor_device->init_request; 1271 } else if (rqst_id == VMBUS_RQST_RESET) { 1272 request = &stor_device->reset_request; 1273 } else { 1274 /* Hyper-V can send an unsolicited message with ID of 0 */ 1275 if (rqst_id == 0) { 1276 /* 1277 * storvsc_on_receive() looks at the vstor_packet in the message 1278 * from the ring buffer. 1279 * 1280 * - If the operation in the vstor_packet is COMPLETE_IO, then 1281 * we call storvsc_on_io_completion(), and dereference the 1282 * guest memory address. Make sure we don't call 1283 * storvsc_on_io_completion() with a guest memory address 1284 * that is zero if Hyper-V were to construct and send such 1285 * a bogus packet. 1286 * 1287 * - If the operation in the vstor_packet is FCHBA_DATA, then 1288 * we call cache_wwn(), and access the data payload area of 1289 * the packet (wwn_packet); however, there is no guarantee 1290 * that the packet is big enough to contain such area. 1291 * Future-proof the code by rejecting such a bogus packet. 1292 */ 1293 if (packet->operation == VSTOR_OPERATION_COMPLETE_IO || 1294 packet->operation == VSTOR_OPERATION_FCHBA_DATA) { 1295 dev_err(&device->device, "Invalid packet with ID of 0\n"); 1296 continue; 1297 } 1298 } else { 1299 struct scsi_cmnd *scmnd; 1300 1301 /* Transaction 'rqst_id' corresponds to tag 'rqst_id - 1' */ 1302 scmnd = scsi_host_find_tag(shost, rqst_id - 1); 1303 if (scmnd == NULL) { 1304 dev_err(&device->device, "Incorrect transaction ID\n"); 1305 continue; 1306 } 1307 request = (struct storvsc_cmd_request *)scsi_cmd_priv(scmnd); 1308 scsi_dma_unmap(scmnd); 1309 } 1310 1311 storvsc_on_receive(stor_device, packet, request); 1312 continue; 1313 } 1314 1315 memcpy(&request->vstor_packet, packet, 1316 sizeof(struct vstor_packet)); 1317 complete(&request->wait_event); 1318 } 1319 } 1320 1321 static int storvsc_connect_to_vsp(struct hv_device *device, u32 ring_size, 1322 bool is_fc) 1323 { 1324 struct vmstorage_channel_properties props; 1325 int ret; 1326 1327 memset(&props, 0, sizeof(struct vmstorage_channel_properties)); 1328 1329 device->channel->max_pkt_size = STORVSC_MAX_PKT_SIZE; 1330 device->channel->next_request_id_callback = storvsc_next_request_id; 1331 1332 ret = vmbus_open(device->channel, 1333 ring_size, 1334 ring_size, 1335 (void *)&props, 1336 sizeof(struct vmstorage_channel_properties), 1337 storvsc_on_channel_callback, device->channel); 1338 1339 if (ret != 0) 1340 return ret; 1341 1342 ret = storvsc_channel_init(device, is_fc); 1343 1344 return ret; 1345 } 1346 1347 static int storvsc_dev_remove(struct hv_device *device) 1348 { 1349 struct storvsc_device *stor_device; 1350 1351 stor_device = hv_get_drvdata(device); 1352 1353 stor_device->destroy = true; 1354 1355 /* Make sure flag is set before waiting */ 1356 wmb(); 1357 1358 /* 1359 * At this point, all outbound traffic should be disable. We 1360 * only allow inbound traffic (responses) to proceed so that 1361 * outstanding requests can be completed. 1362 */ 1363 1364 storvsc_wait_to_drain(stor_device); 1365 1366 /* 1367 * Since we have already drained, we don't need to busy wait 1368 * as was done in final_release_stor_device() 1369 * Note that we cannot set the ext pointer to NULL until 1370 * we have drained - to drain the outgoing packets, we need to 1371 * allow incoming packets. 1372 */ 1373 hv_set_drvdata(device, NULL); 1374 1375 /* Close the channel */ 1376 vmbus_close(device->channel); 1377 1378 kfree(stor_device->stor_chns); 1379 kfree(stor_device); 1380 return 0; 1381 } 1382 1383 static struct vmbus_channel *get_og_chn(struct storvsc_device *stor_device, 1384 u16 q_num) 1385 { 1386 u16 slot = 0; 1387 u16 hash_qnum; 1388 const struct cpumask *node_mask; 1389 int num_channels, tgt_cpu; 1390 1391 if (stor_device->num_sc == 0) { 1392 stor_device->stor_chns[q_num] = stor_device->device->channel; 1393 return stor_device->device->channel; 1394 } 1395 1396 /* 1397 * Our channel array is sparsley populated and we 1398 * initiated I/O on a processor/hw-q that does not 1399 * currently have a designated channel. Fix this. 1400 * The strategy is simple: 1401 * I. Ensure NUMA locality 1402 * II. Distribute evenly (best effort) 1403 */ 1404 1405 node_mask = cpumask_of_node(cpu_to_node(q_num)); 1406 1407 num_channels = 0; 1408 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1409 if (cpumask_test_cpu(tgt_cpu, node_mask)) 1410 num_channels++; 1411 } 1412 if (num_channels == 0) { 1413 stor_device->stor_chns[q_num] = stor_device->device->channel; 1414 return stor_device->device->channel; 1415 } 1416 1417 hash_qnum = q_num; 1418 while (hash_qnum >= num_channels) 1419 hash_qnum -= num_channels; 1420 1421 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1422 if (!cpumask_test_cpu(tgt_cpu, node_mask)) 1423 continue; 1424 if (slot == hash_qnum) 1425 break; 1426 slot++; 1427 } 1428 1429 stor_device->stor_chns[q_num] = stor_device->stor_chns[tgt_cpu]; 1430 1431 return stor_device->stor_chns[q_num]; 1432 } 1433 1434 1435 static int storvsc_do_io(struct hv_device *device, 1436 struct storvsc_cmd_request *request, u16 q_num) 1437 { 1438 struct storvsc_device *stor_device; 1439 struct vstor_packet *vstor_packet; 1440 struct vmbus_channel *outgoing_channel, *channel; 1441 unsigned long flags; 1442 int ret = 0; 1443 const struct cpumask *node_mask; 1444 int tgt_cpu; 1445 1446 vstor_packet = &request->vstor_packet; 1447 stor_device = get_out_stor_device(device); 1448 1449 if (!stor_device) 1450 return -ENODEV; 1451 1452 1453 request->device = device; 1454 /* 1455 * Select an appropriate channel to send the request out. 1456 */ 1457 /* See storvsc_change_target_cpu(). */ 1458 outgoing_channel = READ_ONCE(stor_device->stor_chns[q_num]); 1459 if (outgoing_channel != NULL) { 1460 if (outgoing_channel->target_cpu == q_num) { 1461 /* 1462 * Ideally, we want to pick a different channel if 1463 * available on the same NUMA node. 1464 */ 1465 node_mask = cpumask_of_node(cpu_to_node(q_num)); 1466 for_each_cpu_wrap(tgt_cpu, 1467 &stor_device->alloced_cpus, q_num + 1) { 1468 if (!cpumask_test_cpu(tgt_cpu, node_mask)) 1469 continue; 1470 if (tgt_cpu == q_num) 1471 continue; 1472 channel = READ_ONCE( 1473 stor_device->stor_chns[tgt_cpu]); 1474 if (channel == NULL) 1475 continue; 1476 if (hv_get_avail_to_write_percent( 1477 &channel->outbound) 1478 > ring_avail_percent_lowater) { 1479 outgoing_channel = channel; 1480 goto found_channel; 1481 } 1482 } 1483 1484 /* 1485 * All the other channels on the same NUMA node are 1486 * busy. Try to use the channel on the current CPU 1487 */ 1488 if (hv_get_avail_to_write_percent( 1489 &outgoing_channel->outbound) 1490 > ring_avail_percent_lowater) 1491 goto found_channel; 1492 1493 /* 1494 * If we reach here, all the channels on the current 1495 * NUMA node are busy. Try to find a channel in 1496 * other NUMA nodes 1497 */ 1498 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1499 if (cpumask_test_cpu(tgt_cpu, node_mask)) 1500 continue; 1501 channel = READ_ONCE( 1502 stor_device->stor_chns[tgt_cpu]); 1503 if (channel == NULL) 1504 continue; 1505 if (hv_get_avail_to_write_percent( 1506 &channel->outbound) 1507 > ring_avail_percent_lowater) { 1508 outgoing_channel = channel; 1509 goto found_channel; 1510 } 1511 } 1512 } 1513 } else { 1514 spin_lock_irqsave(&stor_device->lock, flags); 1515 outgoing_channel = stor_device->stor_chns[q_num]; 1516 if (outgoing_channel != NULL) { 1517 spin_unlock_irqrestore(&stor_device->lock, flags); 1518 goto found_channel; 1519 } 1520 outgoing_channel = get_og_chn(stor_device, q_num); 1521 spin_unlock_irqrestore(&stor_device->lock, flags); 1522 } 1523 1524 found_channel: 1525 vstor_packet->flags |= REQUEST_COMPLETION_FLAG; 1526 1527 vstor_packet->vm_srb.length = sizeof(struct vmscsi_request); 1528 1529 1530 vstor_packet->vm_srb.sense_info_length = STORVSC_SENSE_BUFFER_SIZE; 1531 1532 1533 vstor_packet->vm_srb.data_transfer_length = 1534 request->payload->range.len; 1535 1536 vstor_packet->operation = VSTOR_OPERATION_EXECUTE_SRB; 1537 1538 if (request->payload->range.len) { 1539 1540 ret = vmbus_sendpacket_mpb_desc(outgoing_channel, 1541 request->payload, request->payload_sz, 1542 vstor_packet, 1543 sizeof(struct vstor_packet), 1544 (unsigned long)request); 1545 } else { 1546 ret = vmbus_sendpacket(outgoing_channel, vstor_packet, 1547 sizeof(struct vstor_packet), 1548 (unsigned long)request, 1549 VM_PKT_DATA_INBAND, 1550 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1551 } 1552 1553 if (ret != 0) 1554 return ret; 1555 1556 atomic_inc(&stor_device->num_outstanding_req); 1557 1558 return ret; 1559 } 1560 1561 static int storvsc_device_alloc(struct scsi_device *sdevice) 1562 { 1563 /* 1564 * Set blist flag to permit the reading of the VPD pages even when 1565 * the target may claim SPC-2 compliance. MSFT targets currently 1566 * claim SPC-2 compliance while they implement post SPC-2 features. 1567 * With this flag we can correctly handle WRITE_SAME_16 issues. 1568 * 1569 * Hypervisor reports SCSI_UNKNOWN type for DVD ROM device but 1570 * still supports REPORT LUN. 1571 */ 1572 sdevice->sdev_bflags = BLIST_REPORTLUN2 | BLIST_TRY_VPD_PAGES; 1573 1574 return 0; 1575 } 1576 1577 static int storvsc_device_configure(struct scsi_device *sdevice) 1578 { 1579 blk_queue_rq_timeout(sdevice->request_queue, (storvsc_timeout * HZ)); 1580 1581 /* storvsc devices don't support MAINTENANCE_IN SCSI cmd */ 1582 sdevice->no_report_opcodes = 1; 1583 sdevice->no_write_same = 1; 1584 1585 /* 1586 * If the host is WIN8 or WIN8 R2, claim conformance to SPC-3 1587 * if the device is a MSFT virtual device. If the host is 1588 * WIN10 or newer, allow write_same. 1589 */ 1590 if (!strncmp(sdevice->vendor, "Msft", 4)) { 1591 switch (vmstor_proto_version) { 1592 case VMSTOR_PROTO_VERSION_WIN8: 1593 case VMSTOR_PROTO_VERSION_WIN8_1: 1594 sdevice->scsi_level = SCSI_SPC_3; 1595 break; 1596 } 1597 1598 if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN10) 1599 sdevice->no_write_same = 0; 1600 } 1601 1602 return 0; 1603 } 1604 1605 static int storvsc_get_chs(struct scsi_device *sdev, struct block_device * bdev, 1606 sector_t capacity, int *info) 1607 { 1608 sector_t nsect = capacity; 1609 sector_t cylinders = nsect; 1610 int heads, sectors_pt; 1611 1612 /* 1613 * We are making up these values; let us keep it simple. 1614 */ 1615 heads = 0xff; 1616 sectors_pt = 0x3f; /* Sectors per track */ 1617 sector_div(cylinders, heads * sectors_pt); 1618 if ((sector_t)(cylinders + 1) * heads * sectors_pt < nsect) 1619 cylinders = 0xffff; 1620 1621 info[0] = heads; 1622 info[1] = sectors_pt; 1623 info[2] = (int)cylinders; 1624 1625 return 0; 1626 } 1627 1628 static int storvsc_host_reset_handler(struct scsi_cmnd *scmnd) 1629 { 1630 struct hv_host_device *host_dev = shost_priv(scmnd->device->host); 1631 struct hv_device *device = host_dev->dev; 1632 1633 struct storvsc_device *stor_device; 1634 struct storvsc_cmd_request *request; 1635 struct vstor_packet *vstor_packet; 1636 int ret, t; 1637 1638 stor_device = get_out_stor_device(device); 1639 if (!stor_device) 1640 return FAILED; 1641 1642 request = &stor_device->reset_request; 1643 vstor_packet = &request->vstor_packet; 1644 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 1645 1646 init_completion(&request->wait_event); 1647 1648 vstor_packet->operation = VSTOR_OPERATION_RESET_BUS; 1649 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 1650 vstor_packet->vm_srb.path_id = stor_device->path_id; 1651 1652 ret = vmbus_sendpacket(device->channel, vstor_packet, 1653 sizeof(struct vstor_packet), 1654 VMBUS_RQST_RESET, 1655 VM_PKT_DATA_INBAND, 1656 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1657 if (ret != 0) 1658 return FAILED; 1659 1660 t = wait_for_completion_timeout(&request->wait_event, 5*HZ); 1661 if (t == 0) 1662 return TIMEOUT_ERROR; 1663 1664 1665 /* 1666 * At this point, all outstanding requests in the adapter 1667 * should have been flushed out and return to us 1668 * There is a potential race here where the host may be in 1669 * the process of responding when we return from here. 1670 * Just wait for all in-transit packets to be accounted for 1671 * before we return from here. 1672 */ 1673 storvsc_wait_to_drain(stor_device); 1674 1675 return SUCCESS; 1676 } 1677 1678 /* 1679 * The host guarantees to respond to each command, although I/O latencies might 1680 * be unbounded on Azure. Reset the timer unconditionally to give the host a 1681 * chance to perform EH. 1682 */ 1683 static enum scsi_timeout_action storvsc_eh_timed_out(struct scsi_cmnd *scmnd) 1684 { 1685 return SCSI_EH_RESET_TIMER; 1686 } 1687 1688 static bool storvsc_scsi_cmd_ok(struct scsi_cmnd *scmnd) 1689 { 1690 bool allowed = true; 1691 u8 scsi_op = scmnd->cmnd[0]; 1692 1693 switch (scsi_op) { 1694 /* the host does not handle WRITE_SAME, log accident usage */ 1695 case WRITE_SAME: 1696 /* 1697 * smartd sends this command and the host does not handle 1698 * this. So, don't send it. 1699 */ 1700 case SET_WINDOW: 1701 set_host_byte(scmnd, DID_ERROR); 1702 allowed = false; 1703 break; 1704 default: 1705 break; 1706 } 1707 return allowed; 1708 } 1709 1710 static int storvsc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scmnd) 1711 { 1712 int ret; 1713 struct hv_host_device *host_dev = shost_priv(host); 1714 struct hv_device *dev = host_dev->dev; 1715 struct storvsc_cmd_request *cmd_request = scsi_cmd_priv(scmnd); 1716 struct scatterlist *sgl; 1717 struct vmscsi_request *vm_srb; 1718 struct vmbus_packet_mpb_array *payload; 1719 u32 payload_sz; 1720 u32 length; 1721 1722 if (vmstor_proto_version <= VMSTOR_PROTO_VERSION_WIN8) { 1723 /* 1724 * On legacy hosts filter unimplemented commands. 1725 * Future hosts are expected to correctly handle 1726 * unsupported commands. Furthermore, it is 1727 * possible that some of the currently 1728 * unsupported commands maybe supported in 1729 * future versions of the host. 1730 */ 1731 if (!storvsc_scsi_cmd_ok(scmnd)) { 1732 scsi_done(scmnd); 1733 return 0; 1734 } 1735 } 1736 1737 /* Setup the cmd request */ 1738 cmd_request->cmd = scmnd; 1739 1740 memset(&cmd_request->vstor_packet, 0, sizeof(struct vstor_packet)); 1741 vm_srb = &cmd_request->vstor_packet.vm_srb; 1742 vm_srb->time_out_value = 60; 1743 1744 vm_srb->srb_flags |= 1745 SRB_FLAGS_DISABLE_SYNCH_TRANSFER; 1746 1747 if (scmnd->device->tagged_supported) { 1748 vm_srb->srb_flags |= 1749 (SRB_FLAGS_QUEUE_ACTION_ENABLE | SRB_FLAGS_NO_QUEUE_FREEZE); 1750 vm_srb->queue_tag = SP_UNTAGGED; 1751 vm_srb->queue_action = SRB_SIMPLE_TAG_REQUEST; 1752 } 1753 1754 /* Build the SRB */ 1755 switch (scmnd->sc_data_direction) { 1756 case DMA_TO_DEVICE: 1757 vm_srb->data_in = WRITE_TYPE; 1758 vm_srb->srb_flags |= SRB_FLAGS_DATA_OUT; 1759 break; 1760 case DMA_FROM_DEVICE: 1761 vm_srb->data_in = READ_TYPE; 1762 vm_srb->srb_flags |= SRB_FLAGS_DATA_IN; 1763 break; 1764 case DMA_NONE: 1765 vm_srb->data_in = UNKNOWN_TYPE; 1766 vm_srb->srb_flags |= SRB_FLAGS_NO_DATA_TRANSFER; 1767 break; 1768 default: 1769 /* 1770 * This is DMA_BIDIRECTIONAL or something else we are never 1771 * supposed to see here. 1772 */ 1773 WARN(1, "Unexpected data direction: %d\n", 1774 scmnd->sc_data_direction); 1775 return -EINVAL; 1776 } 1777 1778 1779 vm_srb->port_number = host_dev->port; 1780 vm_srb->path_id = scmnd->device->channel; 1781 vm_srb->target_id = scmnd->device->id; 1782 vm_srb->lun = scmnd->device->lun; 1783 1784 vm_srb->cdb_length = scmnd->cmd_len; 1785 1786 memcpy(vm_srb->cdb, scmnd->cmnd, vm_srb->cdb_length); 1787 1788 sgl = (struct scatterlist *)scsi_sglist(scmnd); 1789 1790 length = scsi_bufflen(scmnd); 1791 payload = (struct vmbus_packet_mpb_array *)&cmd_request->mpb; 1792 payload_sz = 0; 1793 1794 if (scsi_sg_count(scmnd)) { 1795 unsigned long offset_in_hvpg = offset_in_hvpage(sgl->offset); 1796 unsigned int hvpg_count = HVPFN_UP(offset_in_hvpg + length); 1797 struct scatterlist *sg; 1798 unsigned long hvpfn, hvpfns_to_add; 1799 int j, i = 0, sg_count; 1800 1801 payload_sz = (hvpg_count * sizeof(u64) + 1802 sizeof(struct vmbus_packet_mpb_array)); 1803 1804 if (hvpg_count > MAX_PAGE_BUFFER_COUNT) { 1805 payload = kzalloc(payload_sz, GFP_ATOMIC); 1806 if (!payload) 1807 return SCSI_MLQUEUE_DEVICE_BUSY; 1808 } 1809 1810 payload->range.len = length; 1811 payload->range.offset = offset_in_hvpg; 1812 1813 sg_count = scsi_dma_map(scmnd); 1814 if (sg_count < 0) { 1815 ret = SCSI_MLQUEUE_DEVICE_BUSY; 1816 goto err_free_payload; 1817 } 1818 1819 for_each_sg(sgl, sg, sg_count, j) { 1820 /* 1821 * Init values for the current sgl entry. hvpfns_to_add 1822 * is in units of Hyper-V size pages. Handling the 1823 * PAGE_SIZE != HV_HYP_PAGE_SIZE case also handles 1824 * values of sgl->offset that are larger than PAGE_SIZE. 1825 * Such offsets are handled even on other than the first 1826 * sgl entry, provided they are a multiple of PAGE_SIZE. 1827 */ 1828 hvpfn = HVPFN_DOWN(sg_dma_address(sg)); 1829 hvpfns_to_add = HVPFN_UP(sg_dma_address(sg) + 1830 sg_dma_len(sg)) - hvpfn; 1831 1832 /* 1833 * Fill the next portion of the PFN array with 1834 * sequential Hyper-V PFNs for the continguous physical 1835 * memory described by the sgl entry. The end of the 1836 * last sgl should be reached at the same time that 1837 * the PFN array is filled. 1838 */ 1839 while (hvpfns_to_add--) 1840 payload->range.pfn_array[i++] = hvpfn++; 1841 } 1842 } 1843 1844 cmd_request->payload = payload; 1845 cmd_request->payload_sz = payload_sz; 1846 1847 /* Invokes the vsc to start an IO */ 1848 ret = storvsc_do_io(dev, cmd_request, get_cpu()); 1849 put_cpu(); 1850 1851 if (ret) 1852 scsi_dma_unmap(scmnd); 1853 1854 if (ret == -EAGAIN) { 1855 /* no more space */ 1856 ret = SCSI_MLQUEUE_DEVICE_BUSY; 1857 goto err_free_payload; 1858 } 1859 1860 return 0; 1861 1862 err_free_payload: 1863 if (payload_sz > sizeof(cmd_request->mpb)) 1864 kfree(payload); 1865 1866 return ret; 1867 } 1868 1869 static struct scsi_host_template scsi_driver = { 1870 .module = THIS_MODULE, 1871 .name = "storvsc_host_t", 1872 .cmd_size = sizeof(struct storvsc_cmd_request), 1873 .bios_param = storvsc_get_chs, 1874 .queuecommand = storvsc_queuecommand, 1875 .eh_host_reset_handler = storvsc_host_reset_handler, 1876 .proc_name = "storvsc_host", 1877 .eh_timed_out = storvsc_eh_timed_out, 1878 .slave_alloc = storvsc_device_alloc, 1879 .slave_configure = storvsc_device_configure, 1880 .cmd_per_lun = 2048, 1881 .this_id = -1, 1882 /* Ensure there are no gaps in presented sgls */ 1883 .virt_boundary_mask = HV_HYP_PAGE_SIZE - 1, 1884 .no_write_same = 1, 1885 .track_queue_depth = 1, 1886 .change_queue_depth = storvsc_change_queue_depth, 1887 }; 1888 1889 enum { 1890 SCSI_GUID, 1891 IDE_GUID, 1892 SFC_GUID, 1893 }; 1894 1895 static const struct hv_vmbus_device_id id_table[] = { 1896 /* SCSI guid */ 1897 { HV_SCSI_GUID, 1898 .driver_data = SCSI_GUID 1899 }, 1900 /* IDE guid */ 1901 { HV_IDE_GUID, 1902 .driver_data = IDE_GUID 1903 }, 1904 /* Fibre Channel GUID */ 1905 { 1906 HV_SYNTHFC_GUID, 1907 .driver_data = SFC_GUID 1908 }, 1909 { }, 1910 }; 1911 1912 MODULE_DEVICE_TABLE(vmbus, id_table); 1913 1914 static const struct { guid_t guid; } fc_guid = { HV_SYNTHFC_GUID }; 1915 1916 static bool hv_dev_is_fc(struct hv_device *hv_dev) 1917 { 1918 return guid_equal(&fc_guid.guid, &hv_dev->dev_type); 1919 } 1920 1921 static int storvsc_probe(struct hv_device *device, 1922 const struct hv_vmbus_device_id *dev_id) 1923 { 1924 int ret; 1925 int num_cpus = num_online_cpus(); 1926 int num_present_cpus = num_present_cpus(); 1927 struct Scsi_Host *host; 1928 struct hv_host_device *host_dev; 1929 bool dev_is_ide = ((dev_id->driver_data == IDE_GUID) ? true : false); 1930 bool is_fc = ((dev_id->driver_data == SFC_GUID) ? true : false); 1931 int target = 0; 1932 struct storvsc_device *stor_device; 1933 int max_sub_channels = 0; 1934 u32 max_xfer_bytes; 1935 1936 /* 1937 * We support sub-channels for storage on SCSI and FC controllers. 1938 * The number of sub-channels offerred is based on the number of 1939 * VCPUs in the guest. 1940 */ 1941 if (!dev_is_ide) 1942 max_sub_channels = 1943 (num_cpus - 1) / storvsc_vcpus_per_sub_channel; 1944 1945 scsi_driver.can_queue = max_outstanding_req_per_channel * 1946 (max_sub_channels + 1) * 1947 (100 - ring_avail_percent_lowater) / 100; 1948 1949 host = scsi_host_alloc(&scsi_driver, 1950 sizeof(struct hv_host_device)); 1951 if (!host) 1952 return -ENOMEM; 1953 1954 host_dev = shost_priv(host); 1955 memset(host_dev, 0, sizeof(struct hv_host_device)); 1956 1957 host_dev->port = host->host_no; 1958 host_dev->dev = device; 1959 host_dev->host = host; 1960 1961 1962 stor_device = kzalloc(sizeof(struct storvsc_device), GFP_KERNEL); 1963 if (!stor_device) { 1964 ret = -ENOMEM; 1965 goto err_out0; 1966 } 1967 1968 stor_device->destroy = false; 1969 init_waitqueue_head(&stor_device->waiting_to_drain); 1970 stor_device->device = device; 1971 stor_device->host = host; 1972 spin_lock_init(&stor_device->lock); 1973 hv_set_drvdata(device, stor_device); 1974 dma_set_min_align_mask(&device->device, HV_HYP_PAGE_SIZE - 1); 1975 1976 stor_device->port_number = host->host_no; 1977 ret = storvsc_connect_to_vsp(device, aligned_ringbuffer_size, is_fc); 1978 if (ret) 1979 goto err_out1; 1980 1981 host_dev->path = stor_device->path_id; 1982 host_dev->target = stor_device->target_id; 1983 1984 switch (dev_id->driver_data) { 1985 case SFC_GUID: 1986 host->max_lun = STORVSC_FC_MAX_LUNS_PER_TARGET; 1987 host->max_id = STORVSC_FC_MAX_TARGETS; 1988 host->max_channel = STORVSC_FC_MAX_CHANNELS - 1; 1989 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1990 host->transportt = fc_transport_template; 1991 #endif 1992 break; 1993 1994 case SCSI_GUID: 1995 host->max_lun = STORVSC_MAX_LUNS_PER_TARGET; 1996 host->max_id = STORVSC_MAX_TARGETS; 1997 host->max_channel = STORVSC_MAX_CHANNELS - 1; 1998 break; 1999 2000 default: 2001 host->max_lun = STORVSC_IDE_MAX_LUNS_PER_TARGET; 2002 host->max_id = STORVSC_IDE_MAX_TARGETS; 2003 host->max_channel = STORVSC_IDE_MAX_CHANNELS - 1; 2004 break; 2005 } 2006 /* max cmd length */ 2007 host->max_cmd_len = STORVSC_MAX_CMD_LEN; 2008 /* 2009 * Any reasonable Hyper-V configuration should provide 2010 * max_transfer_bytes value aligning to HV_HYP_PAGE_SIZE, 2011 * protecting it from any weird value. 2012 */ 2013 max_xfer_bytes = round_down(stor_device->max_transfer_bytes, HV_HYP_PAGE_SIZE); 2014 if (is_fc) 2015 max_xfer_bytes = min(max_xfer_bytes, STORVSC_FC_MAX_XFER_SIZE); 2016 2017 /* max_hw_sectors_kb */ 2018 host->max_sectors = max_xfer_bytes >> 9; 2019 /* 2020 * There are 2 requirements for Hyper-V storvsc sgl segments, 2021 * based on which the below calculation for max segments is 2022 * done: 2023 * 2024 * 1. Except for the first and last sgl segment, all sgl segments 2025 * should be align to HV_HYP_PAGE_SIZE, that also means the 2026 * maximum number of segments in a sgl can be calculated by 2027 * dividing the total max transfer length by HV_HYP_PAGE_SIZE. 2028 * 2029 * 2. Except for the first and last, each entry in the SGL must 2030 * have an offset that is a multiple of HV_HYP_PAGE_SIZE. 2031 */ 2032 host->sg_tablesize = (max_xfer_bytes >> HV_HYP_PAGE_SHIFT) + 1; 2033 /* 2034 * For non-IDE disks, the host supports multiple channels. 2035 * Set the number of HW queues we are supporting. 2036 */ 2037 if (!dev_is_ide) { 2038 if (storvsc_max_hw_queues > num_present_cpus) { 2039 storvsc_max_hw_queues = 0; 2040 storvsc_log(device, STORVSC_LOGGING_WARN, 2041 "Resetting invalid storvsc_max_hw_queues value to default.\n"); 2042 } 2043 if (storvsc_max_hw_queues) 2044 host->nr_hw_queues = storvsc_max_hw_queues; 2045 else 2046 host->nr_hw_queues = num_present_cpus; 2047 } 2048 2049 /* 2050 * Set the error handler work queue. 2051 */ 2052 host_dev->handle_error_wq = 2053 alloc_ordered_workqueue("storvsc_error_wq_%d", 2054 0, 2055 host->host_no); 2056 if (!host_dev->handle_error_wq) { 2057 ret = -ENOMEM; 2058 goto err_out2; 2059 } 2060 INIT_WORK(&host_dev->host_scan_work, storvsc_host_scan); 2061 /* Register the HBA and start the scsi bus scan */ 2062 ret = scsi_add_host(host, &device->device); 2063 if (ret != 0) 2064 goto err_out3; 2065 2066 if (!dev_is_ide) { 2067 scsi_scan_host(host); 2068 } else { 2069 target = (device->dev_instance.b[5] << 8 | 2070 device->dev_instance.b[4]); 2071 ret = scsi_add_device(host, 0, target, 0); 2072 if (ret) 2073 goto err_out4; 2074 } 2075 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2076 if (host->transportt == fc_transport_template) { 2077 struct fc_rport_identifiers ids = { 2078 .roles = FC_PORT_ROLE_FCP_DUMMY_INITIATOR, 2079 }; 2080 2081 fc_host_node_name(host) = stor_device->node_name; 2082 fc_host_port_name(host) = stor_device->port_name; 2083 stor_device->rport = fc_remote_port_add(host, 0, &ids); 2084 if (!stor_device->rport) { 2085 ret = -ENOMEM; 2086 goto err_out4; 2087 } 2088 } 2089 #endif 2090 return 0; 2091 2092 err_out4: 2093 scsi_remove_host(host); 2094 2095 err_out3: 2096 destroy_workqueue(host_dev->handle_error_wq); 2097 2098 err_out2: 2099 /* 2100 * Once we have connected with the host, we would need to 2101 * invoke storvsc_dev_remove() to rollback this state and 2102 * this call also frees up the stor_device; hence the jump around 2103 * err_out1 label. 2104 */ 2105 storvsc_dev_remove(device); 2106 goto err_out0; 2107 2108 err_out1: 2109 kfree(stor_device->stor_chns); 2110 kfree(stor_device); 2111 2112 err_out0: 2113 scsi_host_put(host); 2114 return ret; 2115 } 2116 2117 /* Change a scsi target's queue depth */ 2118 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth) 2119 { 2120 if (queue_depth > scsi_driver.can_queue) 2121 queue_depth = scsi_driver.can_queue; 2122 2123 return scsi_change_queue_depth(sdev, queue_depth); 2124 } 2125 2126 static void storvsc_remove(struct hv_device *dev) 2127 { 2128 struct storvsc_device *stor_device = hv_get_drvdata(dev); 2129 struct Scsi_Host *host = stor_device->host; 2130 struct hv_host_device *host_dev = shost_priv(host); 2131 2132 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2133 if (host->transportt == fc_transport_template) { 2134 fc_remote_port_delete(stor_device->rport); 2135 fc_remove_host(host); 2136 } 2137 #endif 2138 destroy_workqueue(host_dev->handle_error_wq); 2139 scsi_remove_host(host); 2140 storvsc_dev_remove(dev); 2141 scsi_host_put(host); 2142 } 2143 2144 static int storvsc_suspend(struct hv_device *hv_dev) 2145 { 2146 struct storvsc_device *stor_device = hv_get_drvdata(hv_dev); 2147 struct Scsi_Host *host = stor_device->host; 2148 struct hv_host_device *host_dev = shost_priv(host); 2149 2150 storvsc_wait_to_drain(stor_device); 2151 2152 drain_workqueue(host_dev->handle_error_wq); 2153 2154 vmbus_close(hv_dev->channel); 2155 2156 kfree(stor_device->stor_chns); 2157 stor_device->stor_chns = NULL; 2158 2159 cpumask_clear(&stor_device->alloced_cpus); 2160 2161 return 0; 2162 } 2163 2164 static int storvsc_resume(struct hv_device *hv_dev) 2165 { 2166 int ret; 2167 2168 ret = storvsc_connect_to_vsp(hv_dev, aligned_ringbuffer_size, 2169 hv_dev_is_fc(hv_dev)); 2170 return ret; 2171 } 2172 2173 static struct hv_driver storvsc_drv = { 2174 .name = KBUILD_MODNAME, 2175 .id_table = id_table, 2176 .probe = storvsc_probe, 2177 .remove = storvsc_remove, 2178 .suspend = storvsc_suspend, 2179 .resume = storvsc_resume, 2180 .driver = { 2181 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 2182 }, 2183 }; 2184 2185 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2186 static struct fc_function_template fc_transport_functions = { 2187 .show_host_node_name = 1, 2188 .show_host_port_name = 1, 2189 }; 2190 #endif 2191 2192 static int __init storvsc_drv_init(void) 2193 { 2194 int ret; 2195 2196 /* 2197 * Divide the ring buffer data size (which is 1 page less 2198 * than the ring buffer size since that page is reserved for 2199 * the ring buffer indices) by the max request size (which is 2200 * vmbus_channel_packet_multipage_buffer + struct vstor_packet + u64) 2201 */ 2202 aligned_ringbuffer_size = VMBUS_RING_SIZE(storvsc_ringbuffer_size); 2203 max_outstanding_req_per_channel = 2204 ((aligned_ringbuffer_size - PAGE_SIZE) / 2205 ALIGN(MAX_MULTIPAGE_BUFFER_PACKET + 2206 sizeof(struct vstor_packet) + sizeof(u64), 2207 sizeof(u64))); 2208 2209 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2210 fc_transport_template = fc_attach_transport(&fc_transport_functions); 2211 if (!fc_transport_template) 2212 return -ENODEV; 2213 #endif 2214 2215 ret = vmbus_driver_register(&storvsc_drv); 2216 2217 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2218 if (ret) 2219 fc_release_transport(fc_transport_template); 2220 #endif 2221 2222 return ret; 2223 } 2224 2225 static void __exit storvsc_drv_exit(void) 2226 { 2227 vmbus_driver_unregister(&storvsc_drv); 2228 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2229 fc_release_transport(fc_transport_template); 2230 #endif 2231 } 2232 2233 MODULE_LICENSE("GPL"); 2234 MODULE_DESCRIPTION("Microsoft Hyper-V virtual storage driver"); 2235 module_init(storvsc_drv_init); 2236 module_exit(storvsc_drv_exit); 2237