1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 * K. Y. Srinivasan <kys@microsoft.com> 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/wait.h> 13 #include <linux/sched.h> 14 #include <linux/completion.h> 15 #include <linux/string.h> 16 #include <linux/mm.h> 17 #include <linux/delay.h> 18 #include <linux/init.h> 19 #include <linux/slab.h> 20 #include <linux/module.h> 21 #include <linux/device.h> 22 #include <linux/hyperv.h> 23 #include <linux/blkdev.h> 24 #include <linux/dma-mapping.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_host.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_tcq.h> 31 #include <scsi/scsi_eh.h> 32 #include <scsi/scsi_devinfo.h> 33 #include <scsi/scsi_dbg.h> 34 #include <scsi/scsi_transport_fc.h> 35 #include <scsi/scsi_transport.h> 36 37 /* 38 * All wire protocol details (storage protocol between the guest and the host) 39 * are consolidated here. 40 * 41 * Begin protocol definitions. 42 */ 43 44 /* 45 * Version history: 46 * V1 Beta: 0.1 47 * V1 RC < 2008/1/31: 1.0 48 * V1 RC > 2008/1/31: 2.0 49 * Win7: 4.2 50 * Win8: 5.1 51 * Win8.1: 6.0 52 * Win10: 6.2 53 */ 54 55 #define VMSTOR_PROTO_VERSION(MAJOR_, MINOR_) ((((MAJOR_) & 0xff) << 8) | \ 56 (((MINOR_) & 0xff))) 57 #define VMSTOR_PROTO_VERSION_WIN6 VMSTOR_PROTO_VERSION(2, 0) 58 #define VMSTOR_PROTO_VERSION_WIN7 VMSTOR_PROTO_VERSION(4, 2) 59 #define VMSTOR_PROTO_VERSION_WIN8 VMSTOR_PROTO_VERSION(5, 1) 60 #define VMSTOR_PROTO_VERSION_WIN8_1 VMSTOR_PROTO_VERSION(6, 0) 61 #define VMSTOR_PROTO_VERSION_WIN10 VMSTOR_PROTO_VERSION(6, 2) 62 63 /* Packet structure describing virtual storage requests. */ 64 enum vstor_packet_operation { 65 VSTOR_OPERATION_COMPLETE_IO = 1, 66 VSTOR_OPERATION_REMOVE_DEVICE = 2, 67 VSTOR_OPERATION_EXECUTE_SRB = 3, 68 VSTOR_OPERATION_RESET_LUN = 4, 69 VSTOR_OPERATION_RESET_ADAPTER = 5, 70 VSTOR_OPERATION_RESET_BUS = 6, 71 VSTOR_OPERATION_BEGIN_INITIALIZATION = 7, 72 VSTOR_OPERATION_END_INITIALIZATION = 8, 73 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION = 9, 74 VSTOR_OPERATION_QUERY_PROPERTIES = 10, 75 VSTOR_OPERATION_ENUMERATE_BUS = 11, 76 VSTOR_OPERATION_FCHBA_DATA = 12, 77 VSTOR_OPERATION_CREATE_SUB_CHANNELS = 13, 78 VSTOR_OPERATION_MAXIMUM = 13 79 }; 80 81 /* 82 * WWN packet for Fibre Channel HBA 83 */ 84 85 struct hv_fc_wwn_packet { 86 u8 primary_active; 87 u8 reserved1[3]; 88 u8 primary_port_wwn[8]; 89 u8 primary_node_wwn[8]; 90 u8 secondary_port_wwn[8]; 91 u8 secondary_node_wwn[8]; 92 }; 93 94 95 96 /* 97 * SRB Flag Bits 98 */ 99 100 #define SRB_FLAGS_QUEUE_ACTION_ENABLE 0x00000002 101 #define SRB_FLAGS_DISABLE_DISCONNECT 0x00000004 102 #define SRB_FLAGS_DISABLE_SYNCH_TRANSFER 0x00000008 103 #define SRB_FLAGS_BYPASS_FROZEN_QUEUE 0x00000010 104 #define SRB_FLAGS_DISABLE_AUTOSENSE 0x00000020 105 #define SRB_FLAGS_DATA_IN 0x00000040 106 #define SRB_FLAGS_DATA_OUT 0x00000080 107 #define SRB_FLAGS_NO_DATA_TRANSFER 0x00000000 108 #define SRB_FLAGS_UNSPECIFIED_DIRECTION (SRB_FLAGS_DATA_IN | SRB_FLAGS_DATA_OUT) 109 #define SRB_FLAGS_NO_QUEUE_FREEZE 0x00000100 110 #define SRB_FLAGS_ADAPTER_CACHE_ENABLE 0x00000200 111 #define SRB_FLAGS_FREE_SENSE_BUFFER 0x00000400 112 113 /* 114 * This flag indicates the request is part of the workflow for processing a D3. 115 */ 116 #define SRB_FLAGS_D3_PROCESSING 0x00000800 117 #define SRB_FLAGS_IS_ACTIVE 0x00010000 118 #define SRB_FLAGS_ALLOCATED_FROM_ZONE 0x00020000 119 #define SRB_FLAGS_SGLIST_FROM_POOL 0x00040000 120 #define SRB_FLAGS_BYPASS_LOCKED_QUEUE 0x00080000 121 #define SRB_FLAGS_NO_KEEP_AWAKE 0x00100000 122 #define SRB_FLAGS_PORT_DRIVER_ALLOCSENSE 0x00200000 123 #define SRB_FLAGS_PORT_DRIVER_SENSEHASPORT 0x00400000 124 #define SRB_FLAGS_DONT_START_NEXT_PACKET 0x00800000 125 #define SRB_FLAGS_PORT_DRIVER_RESERVED 0x0F000000 126 #define SRB_FLAGS_CLASS_DRIVER_RESERVED 0xF0000000 127 128 #define SP_UNTAGGED ((unsigned char) ~0) 129 #define SRB_SIMPLE_TAG_REQUEST 0x20 130 131 /* 132 * Platform neutral description of a scsi request - 133 * this remains the same across the write regardless of 32/64 bit 134 * note: it's patterned off the SCSI_PASS_THROUGH structure 135 */ 136 #define STORVSC_MAX_CMD_LEN 0x10 137 138 /* Sense buffer size is the same for all versions since Windows 8 */ 139 #define STORVSC_SENSE_BUFFER_SIZE 0x14 140 #define STORVSC_MAX_BUF_LEN_WITH_PADDING 0x14 141 142 /* 143 * The storage protocol version is determined during the 144 * initial exchange with the host. It will indicate which 145 * storage functionality is available in the host. 146 */ 147 static int vmstor_proto_version; 148 149 #define STORVSC_LOGGING_NONE 0 150 #define STORVSC_LOGGING_ERROR 1 151 #define STORVSC_LOGGING_WARN 2 152 153 static int logging_level = STORVSC_LOGGING_ERROR; 154 module_param(logging_level, int, S_IRUGO|S_IWUSR); 155 MODULE_PARM_DESC(logging_level, 156 "Logging level, 0 - None, 1 - Error (default), 2 - Warning."); 157 158 static inline bool do_logging(int level) 159 { 160 return logging_level >= level; 161 } 162 163 #define storvsc_log(dev, level, fmt, ...) \ 164 do { \ 165 if (do_logging(level)) \ 166 dev_warn(&(dev)->device, fmt, ##__VA_ARGS__); \ 167 } while (0) 168 169 struct vmscsi_request { 170 u16 length; 171 u8 srb_status; 172 u8 scsi_status; 173 174 u8 port_number; 175 u8 path_id; 176 u8 target_id; 177 u8 lun; 178 179 u8 cdb_length; 180 u8 sense_info_length; 181 u8 data_in; 182 u8 reserved; 183 184 u32 data_transfer_length; 185 186 union { 187 u8 cdb[STORVSC_MAX_CMD_LEN]; 188 u8 sense_data[STORVSC_SENSE_BUFFER_SIZE]; 189 u8 reserved_array[STORVSC_MAX_BUF_LEN_WITH_PADDING]; 190 }; 191 /* 192 * The following was added in win8. 193 */ 194 u16 reserve; 195 u8 queue_tag; 196 u8 queue_action; 197 u32 srb_flags; 198 u32 time_out_value; 199 u32 queue_sort_ey; 200 201 } __attribute((packed)); 202 203 /* 204 * The list of windows version in order of preference. 205 */ 206 207 static const int protocol_version[] = { 208 VMSTOR_PROTO_VERSION_WIN10, 209 VMSTOR_PROTO_VERSION_WIN8_1, 210 VMSTOR_PROTO_VERSION_WIN8, 211 }; 212 213 214 /* 215 * This structure is sent during the initialization phase to get the different 216 * properties of the channel. 217 */ 218 219 #define STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL 0x1 220 221 struct vmstorage_channel_properties { 222 u32 reserved; 223 u16 max_channel_cnt; 224 u16 reserved1; 225 226 u32 flags; 227 u32 max_transfer_bytes; 228 229 u64 reserved2; 230 } __packed; 231 232 /* This structure is sent during the storage protocol negotiations. */ 233 struct vmstorage_protocol_version { 234 /* Major (MSW) and minor (LSW) version numbers. */ 235 u16 major_minor; 236 237 /* 238 * Revision number is auto-incremented whenever this file is changed 239 * (See FILL_VMSTOR_REVISION macro above). Mismatch does not 240 * definitely indicate incompatibility--but it does indicate mismatched 241 * builds. 242 * This is only used on the windows side. Just set it to 0. 243 */ 244 u16 revision; 245 } __packed; 246 247 /* Channel Property Flags */ 248 #define STORAGE_CHANNEL_REMOVABLE_FLAG 0x1 249 #define STORAGE_CHANNEL_EMULATED_IDE_FLAG 0x2 250 251 struct vstor_packet { 252 /* Requested operation type */ 253 enum vstor_packet_operation operation; 254 255 /* Flags - see below for values */ 256 u32 flags; 257 258 /* Status of the request returned from the server side. */ 259 u32 status; 260 261 /* Data payload area */ 262 union { 263 /* 264 * Structure used to forward SCSI commands from the 265 * client to the server. 266 */ 267 struct vmscsi_request vm_srb; 268 269 /* Structure used to query channel properties. */ 270 struct vmstorage_channel_properties storage_channel_properties; 271 272 /* Used during version negotiations. */ 273 struct vmstorage_protocol_version version; 274 275 /* Fibre channel address packet */ 276 struct hv_fc_wwn_packet wwn_packet; 277 278 /* Number of sub-channels to create */ 279 u16 sub_channel_count; 280 281 /* This will be the maximum of the union members */ 282 u8 buffer[0x34]; 283 }; 284 } __packed; 285 286 /* 287 * Packet Flags: 288 * 289 * This flag indicates that the server should send back a completion for this 290 * packet. 291 */ 292 293 #define REQUEST_COMPLETION_FLAG 0x1 294 295 /* Matches Windows-end */ 296 enum storvsc_request_type { 297 WRITE_TYPE = 0, 298 READ_TYPE, 299 UNKNOWN_TYPE, 300 }; 301 302 /* 303 * SRB status codes and masks; a subset of the codes used here. 304 */ 305 306 #define SRB_STATUS_AUTOSENSE_VALID 0x80 307 #define SRB_STATUS_QUEUE_FROZEN 0x40 308 #define SRB_STATUS_INVALID_LUN 0x20 309 #define SRB_STATUS_SUCCESS 0x01 310 #define SRB_STATUS_ABORTED 0x02 311 #define SRB_STATUS_ERROR 0x04 312 #define SRB_STATUS_DATA_OVERRUN 0x12 313 314 #define SRB_STATUS(status) \ 315 (status & ~(SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_QUEUE_FROZEN)) 316 /* 317 * This is the end of Protocol specific defines. 318 */ 319 320 static int storvsc_ringbuffer_size = (128 * 1024); 321 static u32 max_outstanding_req_per_channel; 322 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth); 323 324 static int storvsc_vcpus_per_sub_channel = 4; 325 static unsigned int storvsc_max_hw_queues; 326 327 module_param(storvsc_ringbuffer_size, int, S_IRUGO); 328 MODULE_PARM_DESC(storvsc_ringbuffer_size, "Ring buffer size (bytes)"); 329 330 module_param(storvsc_max_hw_queues, uint, 0644); 331 MODULE_PARM_DESC(storvsc_max_hw_queues, "Maximum number of hardware queues"); 332 333 module_param(storvsc_vcpus_per_sub_channel, int, S_IRUGO); 334 MODULE_PARM_DESC(storvsc_vcpus_per_sub_channel, "Ratio of VCPUs to subchannels"); 335 336 static int ring_avail_percent_lowater = 10; 337 module_param(ring_avail_percent_lowater, int, S_IRUGO); 338 MODULE_PARM_DESC(ring_avail_percent_lowater, 339 "Select a channel if available ring size > this in percent"); 340 341 /* 342 * Timeout in seconds for all devices managed by this driver. 343 */ 344 static int storvsc_timeout = 180; 345 346 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 347 static struct scsi_transport_template *fc_transport_template; 348 #endif 349 350 static struct scsi_host_template scsi_driver; 351 static void storvsc_on_channel_callback(void *context); 352 353 #define STORVSC_MAX_LUNS_PER_TARGET 255 354 #define STORVSC_MAX_TARGETS 2 355 #define STORVSC_MAX_CHANNELS 8 356 357 #define STORVSC_FC_MAX_LUNS_PER_TARGET 255 358 #define STORVSC_FC_MAX_TARGETS 128 359 #define STORVSC_FC_MAX_CHANNELS 8 360 361 #define STORVSC_IDE_MAX_LUNS_PER_TARGET 64 362 #define STORVSC_IDE_MAX_TARGETS 1 363 #define STORVSC_IDE_MAX_CHANNELS 1 364 365 /* 366 * Upper bound on the size of a storvsc packet. 367 */ 368 #define STORVSC_MAX_PKT_SIZE (sizeof(struct vmpacket_descriptor) +\ 369 sizeof(struct vstor_packet)) 370 371 struct storvsc_cmd_request { 372 struct scsi_cmnd *cmd; 373 374 struct hv_device *device; 375 376 /* Synchronize the request/response if needed */ 377 struct completion wait_event; 378 379 struct vmbus_channel_packet_multipage_buffer mpb; 380 struct vmbus_packet_mpb_array *payload; 381 u32 payload_sz; 382 383 struct vstor_packet vstor_packet; 384 }; 385 386 387 /* A storvsc device is a device object that contains a vmbus channel */ 388 struct storvsc_device { 389 struct hv_device *device; 390 391 bool destroy; 392 bool drain_notify; 393 atomic_t num_outstanding_req; 394 struct Scsi_Host *host; 395 396 wait_queue_head_t waiting_to_drain; 397 398 /* 399 * Each unique Port/Path/Target represents 1 channel ie scsi 400 * controller. In reality, the pathid, targetid is always 0 401 * and the port is set by us 402 */ 403 unsigned int port_number; 404 unsigned char path_id; 405 unsigned char target_id; 406 407 /* 408 * Max I/O, the device can support. 409 */ 410 u32 max_transfer_bytes; 411 /* 412 * Number of sub-channels we will open. 413 */ 414 u16 num_sc; 415 struct vmbus_channel **stor_chns; 416 /* 417 * Mask of CPUs bound to subchannels. 418 */ 419 struct cpumask alloced_cpus; 420 /* 421 * Serializes modifications of stor_chns[] from storvsc_do_io() 422 * and storvsc_change_target_cpu(). 423 */ 424 spinlock_t lock; 425 /* Used for vsc/vsp channel reset process */ 426 struct storvsc_cmd_request init_request; 427 struct storvsc_cmd_request reset_request; 428 /* 429 * Currently active port and node names for FC devices. 430 */ 431 u64 node_name; 432 u64 port_name; 433 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 434 struct fc_rport *rport; 435 #endif 436 }; 437 438 struct hv_host_device { 439 struct hv_device *dev; 440 unsigned int port; 441 unsigned char path; 442 unsigned char target; 443 struct workqueue_struct *handle_error_wq; 444 struct work_struct host_scan_work; 445 struct Scsi_Host *host; 446 }; 447 448 struct storvsc_scan_work { 449 struct work_struct work; 450 struct Scsi_Host *host; 451 u8 lun; 452 u8 tgt_id; 453 }; 454 455 static void storvsc_device_scan(struct work_struct *work) 456 { 457 struct storvsc_scan_work *wrk; 458 struct scsi_device *sdev; 459 460 wrk = container_of(work, struct storvsc_scan_work, work); 461 462 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun); 463 if (!sdev) 464 goto done; 465 scsi_rescan_device(&sdev->sdev_gendev); 466 scsi_device_put(sdev); 467 468 done: 469 kfree(wrk); 470 } 471 472 static void storvsc_host_scan(struct work_struct *work) 473 { 474 struct Scsi_Host *host; 475 struct scsi_device *sdev; 476 struct hv_host_device *host_device = 477 container_of(work, struct hv_host_device, host_scan_work); 478 479 host = host_device->host; 480 /* 481 * Before scanning the host, first check to see if any of the 482 * currently known devices have been hot removed. We issue a 483 * "unit ready" command against all currently known devices. 484 * This I/O will result in an error for devices that have been 485 * removed. As part of handling the I/O error, we remove the device. 486 * 487 * When a LUN is added or removed, the host sends us a signal to 488 * scan the host. Thus we are forced to discover the LUNs that 489 * may have been removed this way. 490 */ 491 mutex_lock(&host->scan_mutex); 492 shost_for_each_device(sdev, host) 493 scsi_test_unit_ready(sdev, 1, 1, NULL); 494 mutex_unlock(&host->scan_mutex); 495 /* 496 * Now scan the host to discover LUNs that may have been added. 497 */ 498 scsi_scan_host(host); 499 } 500 501 static void storvsc_remove_lun(struct work_struct *work) 502 { 503 struct storvsc_scan_work *wrk; 504 struct scsi_device *sdev; 505 506 wrk = container_of(work, struct storvsc_scan_work, work); 507 if (!scsi_host_get(wrk->host)) 508 goto done; 509 510 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun); 511 512 if (sdev) { 513 scsi_remove_device(sdev); 514 scsi_device_put(sdev); 515 } 516 scsi_host_put(wrk->host); 517 518 done: 519 kfree(wrk); 520 } 521 522 523 /* 524 * We can get incoming messages from the host that are not in response to 525 * messages that we have sent out. An example of this would be messages 526 * received by the guest to notify dynamic addition/removal of LUNs. To 527 * deal with potential race conditions where the driver may be in the 528 * midst of being unloaded when we might receive an unsolicited message 529 * from the host, we have implemented a mechanism to gurantee sequential 530 * consistency: 531 * 532 * 1) Once the device is marked as being destroyed, we will fail all 533 * outgoing messages. 534 * 2) We permit incoming messages when the device is being destroyed, 535 * only to properly account for messages already sent out. 536 */ 537 538 static inline struct storvsc_device *get_out_stor_device( 539 struct hv_device *device) 540 { 541 struct storvsc_device *stor_device; 542 543 stor_device = hv_get_drvdata(device); 544 545 if (stor_device && stor_device->destroy) 546 stor_device = NULL; 547 548 return stor_device; 549 } 550 551 552 static inline void storvsc_wait_to_drain(struct storvsc_device *dev) 553 { 554 dev->drain_notify = true; 555 wait_event(dev->waiting_to_drain, 556 atomic_read(&dev->num_outstanding_req) == 0); 557 dev->drain_notify = false; 558 } 559 560 static inline struct storvsc_device *get_in_stor_device( 561 struct hv_device *device) 562 { 563 struct storvsc_device *stor_device; 564 565 stor_device = hv_get_drvdata(device); 566 567 if (!stor_device) 568 goto get_in_err; 569 570 /* 571 * If the device is being destroyed; allow incoming 572 * traffic only to cleanup outstanding requests. 573 */ 574 575 if (stor_device->destroy && 576 (atomic_read(&stor_device->num_outstanding_req) == 0)) 577 stor_device = NULL; 578 579 get_in_err: 580 return stor_device; 581 582 } 583 584 static void storvsc_change_target_cpu(struct vmbus_channel *channel, u32 old, 585 u32 new) 586 { 587 struct storvsc_device *stor_device; 588 struct vmbus_channel *cur_chn; 589 bool old_is_alloced = false; 590 struct hv_device *device; 591 unsigned long flags; 592 int cpu; 593 594 device = channel->primary_channel ? 595 channel->primary_channel->device_obj 596 : channel->device_obj; 597 stor_device = get_out_stor_device(device); 598 if (!stor_device) 599 return; 600 601 /* See storvsc_do_io() -> get_og_chn(). */ 602 spin_lock_irqsave(&stor_device->lock, flags); 603 604 /* 605 * Determines if the storvsc device has other channels assigned to 606 * the "old" CPU to update the alloced_cpus mask and the stor_chns 607 * array. 608 */ 609 if (device->channel != channel && device->channel->target_cpu == old) { 610 cur_chn = device->channel; 611 old_is_alloced = true; 612 goto old_is_alloced; 613 } 614 list_for_each_entry(cur_chn, &device->channel->sc_list, sc_list) { 615 if (cur_chn == channel) 616 continue; 617 if (cur_chn->target_cpu == old) { 618 old_is_alloced = true; 619 goto old_is_alloced; 620 } 621 } 622 623 old_is_alloced: 624 if (old_is_alloced) 625 WRITE_ONCE(stor_device->stor_chns[old], cur_chn); 626 else 627 cpumask_clear_cpu(old, &stor_device->alloced_cpus); 628 629 /* "Flush" the stor_chns array. */ 630 for_each_possible_cpu(cpu) { 631 if (stor_device->stor_chns[cpu] && !cpumask_test_cpu( 632 cpu, &stor_device->alloced_cpus)) 633 WRITE_ONCE(stor_device->stor_chns[cpu], NULL); 634 } 635 636 WRITE_ONCE(stor_device->stor_chns[new], channel); 637 cpumask_set_cpu(new, &stor_device->alloced_cpus); 638 639 spin_unlock_irqrestore(&stor_device->lock, flags); 640 } 641 642 static u64 storvsc_next_request_id(struct vmbus_channel *channel, u64 rqst_addr) 643 { 644 struct storvsc_cmd_request *request = 645 (struct storvsc_cmd_request *)(unsigned long)rqst_addr; 646 647 if (rqst_addr == VMBUS_RQST_INIT) 648 return VMBUS_RQST_INIT; 649 if (rqst_addr == VMBUS_RQST_RESET) 650 return VMBUS_RQST_RESET; 651 652 /* 653 * Cannot return an ID of 0, which is reserved for an unsolicited 654 * message from Hyper-V. 655 */ 656 return (u64)blk_mq_unique_tag(scsi_cmd_to_rq(request->cmd)) + 1; 657 } 658 659 static void handle_sc_creation(struct vmbus_channel *new_sc) 660 { 661 struct hv_device *device = new_sc->primary_channel->device_obj; 662 struct device *dev = &device->device; 663 struct storvsc_device *stor_device; 664 struct vmstorage_channel_properties props; 665 int ret; 666 667 stor_device = get_out_stor_device(device); 668 if (!stor_device) 669 return; 670 671 memset(&props, 0, sizeof(struct vmstorage_channel_properties)); 672 new_sc->max_pkt_size = STORVSC_MAX_PKT_SIZE; 673 674 new_sc->next_request_id_callback = storvsc_next_request_id; 675 676 ret = vmbus_open(new_sc, 677 storvsc_ringbuffer_size, 678 storvsc_ringbuffer_size, 679 (void *)&props, 680 sizeof(struct vmstorage_channel_properties), 681 storvsc_on_channel_callback, new_sc); 682 683 /* In case vmbus_open() fails, we don't use the sub-channel. */ 684 if (ret != 0) { 685 dev_err(dev, "Failed to open sub-channel: err=%d\n", ret); 686 return; 687 } 688 689 new_sc->change_target_cpu_callback = storvsc_change_target_cpu; 690 691 /* Add the sub-channel to the array of available channels. */ 692 stor_device->stor_chns[new_sc->target_cpu] = new_sc; 693 cpumask_set_cpu(new_sc->target_cpu, &stor_device->alloced_cpus); 694 } 695 696 static void handle_multichannel_storage(struct hv_device *device, int max_chns) 697 { 698 struct device *dev = &device->device; 699 struct storvsc_device *stor_device; 700 int num_sc; 701 struct storvsc_cmd_request *request; 702 struct vstor_packet *vstor_packet; 703 int ret, t; 704 705 /* 706 * If the number of CPUs is artificially restricted, such as 707 * with maxcpus=1 on the kernel boot line, Hyper-V could offer 708 * sub-channels >= the number of CPUs. These sub-channels 709 * should not be created. The primary channel is already created 710 * and assigned to one CPU, so check against # CPUs - 1. 711 */ 712 num_sc = min((int)(num_online_cpus() - 1), max_chns); 713 if (!num_sc) 714 return; 715 716 stor_device = get_out_stor_device(device); 717 if (!stor_device) 718 return; 719 720 stor_device->num_sc = num_sc; 721 request = &stor_device->init_request; 722 vstor_packet = &request->vstor_packet; 723 724 /* 725 * Establish a handler for dealing with subchannels. 726 */ 727 vmbus_set_sc_create_callback(device->channel, handle_sc_creation); 728 729 /* 730 * Request the host to create sub-channels. 731 */ 732 memset(request, 0, sizeof(struct storvsc_cmd_request)); 733 init_completion(&request->wait_event); 734 vstor_packet->operation = VSTOR_OPERATION_CREATE_SUB_CHANNELS; 735 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 736 vstor_packet->sub_channel_count = num_sc; 737 738 ret = vmbus_sendpacket(device->channel, vstor_packet, 739 sizeof(struct vstor_packet), 740 VMBUS_RQST_INIT, 741 VM_PKT_DATA_INBAND, 742 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 743 744 if (ret != 0) { 745 dev_err(dev, "Failed to create sub-channel: err=%d\n", ret); 746 return; 747 } 748 749 t = wait_for_completion_timeout(&request->wait_event, 10*HZ); 750 if (t == 0) { 751 dev_err(dev, "Failed to create sub-channel: timed out\n"); 752 return; 753 } 754 755 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || 756 vstor_packet->status != 0) { 757 dev_err(dev, "Failed to create sub-channel: op=%d, sts=%d\n", 758 vstor_packet->operation, vstor_packet->status); 759 return; 760 } 761 762 /* 763 * We need to do nothing here, because vmbus_process_offer() 764 * invokes channel->sc_creation_callback, which will open and use 765 * the sub-channel(s). 766 */ 767 } 768 769 static void cache_wwn(struct storvsc_device *stor_device, 770 struct vstor_packet *vstor_packet) 771 { 772 /* 773 * Cache the currently active port and node ww names. 774 */ 775 if (vstor_packet->wwn_packet.primary_active) { 776 stor_device->node_name = 777 wwn_to_u64(vstor_packet->wwn_packet.primary_node_wwn); 778 stor_device->port_name = 779 wwn_to_u64(vstor_packet->wwn_packet.primary_port_wwn); 780 } else { 781 stor_device->node_name = 782 wwn_to_u64(vstor_packet->wwn_packet.secondary_node_wwn); 783 stor_device->port_name = 784 wwn_to_u64(vstor_packet->wwn_packet.secondary_port_wwn); 785 } 786 } 787 788 789 static int storvsc_execute_vstor_op(struct hv_device *device, 790 struct storvsc_cmd_request *request, 791 bool status_check) 792 { 793 struct storvsc_device *stor_device; 794 struct vstor_packet *vstor_packet; 795 int ret, t; 796 797 stor_device = get_out_stor_device(device); 798 if (!stor_device) 799 return -ENODEV; 800 801 vstor_packet = &request->vstor_packet; 802 803 init_completion(&request->wait_event); 804 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 805 806 ret = vmbus_sendpacket(device->channel, vstor_packet, 807 sizeof(struct vstor_packet), 808 VMBUS_RQST_INIT, 809 VM_PKT_DATA_INBAND, 810 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 811 if (ret != 0) 812 return ret; 813 814 t = wait_for_completion_timeout(&request->wait_event, 5*HZ); 815 if (t == 0) 816 return -ETIMEDOUT; 817 818 if (!status_check) 819 return ret; 820 821 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || 822 vstor_packet->status != 0) 823 return -EINVAL; 824 825 return ret; 826 } 827 828 static int storvsc_channel_init(struct hv_device *device, bool is_fc) 829 { 830 struct storvsc_device *stor_device; 831 struct storvsc_cmd_request *request; 832 struct vstor_packet *vstor_packet; 833 int ret, i; 834 int max_chns; 835 bool process_sub_channels = false; 836 837 stor_device = get_out_stor_device(device); 838 if (!stor_device) 839 return -ENODEV; 840 841 request = &stor_device->init_request; 842 vstor_packet = &request->vstor_packet; 843 844 /* 845 * Now, initiate the vsc/vsp initialization protocol on the open 846 * channel 847 */ 848 memset(request, 0, sizeof(struct storvsc_cmd_request)); 849 vstor_packet->operation = VSTOR_OPERATION_BEGIN_INITIALIZATION; 850 ret = storvsc_execute_vstor_op(device, request, true); 851 if (ret) 852 return ret; 853 /* 854 * Query host supported protocol version. 855 */ 856 857 for (i = 0; i < ARRAY_SIZE(protocol_version); i++) { 858 /* reuse the packet for version range supported */ 859 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 860 vstor_packet->operation = 861 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION; 862 863 vstor_packet->version.major_minor = protocol_version[i]; 864 865 /* 866 * The revision number is only used in Windows; set it to 0. 867 */ 868 vstor_packet->version.revision = 0; 869 ret = storvsc_execute_vstor_op(device, request, false); 870 if (ret != 0) 871 return ret; 872 873 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO) 874 return -EINVAL; 875 876 if (vstor_packet->status == 0) { 877 vmstor_proto_version = protocol_version[i]; 878 879 break; 880 } 881 } 882 883 if (vstor_packet->status != 0) { 884 dev_err(&device->device, "Obsolete Hyper-V version\n"); 885 return -EINVAL; 886 } 887 888 889 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 890 vstor_packet->operation = VSTOR_OPERATION_QUERY_PROPERTIES; 891 ret = storvsc_execute_vstor_op(device, request, true); 892 if (ret != 0) 893 return ret; 894 895 /* 896 * Check to see if multi-channel support is there. 897 * Hosts that implement protocol version of 5.1 and above 898 * support multi-channel. 899 */ 900 max_chns = vstor_packet->storage_channel_properties.max_channel_cnt; 901 902 /* 903 * Allocate state to manage the sub-channels. 904 * We allocate an array based on the numbers of possible CPUs 905 * (Hyper-V does not support cpu online/offline). 906 * This Array will be sparseley populated with unique 907 * channels - primary + sub-channels. 908 * We will however populate all the slots to evenly distribute 909 * the load. 910 */ 911 stor_device->stor_chns = kcalloc(num_possible_cpus(), sizeof(void *), 912 GFP_KERNEL); 913 if (stor_device->stor_chns == NULL) 914 return -ENOMEM; 915 916 device->channel->change_target_cpu_callback = storvsc_change_target_cpu; 917 918 stor_device->stor_chns[device->channel->target_cpu] = device->channel; 919 cpumask_set_cpu(device->channel->target_cpu, 920 &stor_device->alloced_cpus); 921 922 if (vstor_packet->storage_channel_properties.flags & 923 STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL) 924 process_sub_channels = true; 925 926 stor_device->max_transfer_bytes = 927 vstor_packet->storage_channel_properties.max_transfer_bytes; 928 929 if (!is_fc) 930 goto done; 931 932 /* 933 * For FC devices retrieve FC HBA data. 934 */ 935 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 936 vstor_packet->operation = VSTOR_OPERATION_FCHBA_DATA; 937 ret = storvsc_execute_vstor_op(device, request, true); 938 if (ret != 0) 939 return ret; 940 941 /* 942 * Cache the currently active port and node ww names. 943 */ 944 cache_wwn(stor_device, vstor_packet); 945 946 done: 947 948 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 949 vstor_packet->operation = VSTOR_OPERATION_END_INITIALIZATION; 950 ret = storvsc_execute_vstor_op(device, request, true); 951 if (ret != 0) 952 return ret; 953 954 if (process_sub_channels) 955 handle_multichannel_storage(device, max_chns); 956 957 return ret; 958 } 959 960 static void storvsc_handle_error(struct vmscsi_request *vm_srb, 961 struct scsi_cmnd *scmnd, 962 struct Scsi_Host *host, 963 u8 asc, u8 ascq) 964 { 965 struct storvsc_scan_work *wrk; 966 void (*process_err_fn)(struct work_struct *work); 967 struct hv_host_device *host_dev = shost_priv(host); 968 969 /* 970 * In some situations, Hyper-V sets multiple bits in the 971 * srb_status, such as ABORTED and ERROR. So process them 972 * individually, with the most specific bits first. 973 */ 974 975 if (vm_srb->srb_status & SRB_STATUS_INVALID_LUN) { 976 set_host_byte(scmnd, DID_NO_CONNECT); 977 process_err_fn = storvsc_remove_lun; 978 goto do_work; 979 } 980 981 if (vm_srb->srb_status & SRB_STATUS_ABORTED) { 982 if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID && 983 /* Capacity data has changed */ 984 (asc == 0x2a) && (ascq == 0x9)) { 985 process_err_fn = storvsc_device_scan; 986 /* 987 * Retry the I/O that triggered this. 988 */ 989 set_host_byte(scmnd, DID_REQUEUE); 990 goto do_work; 991 } 992 } 993 994 if (vm_srb->srb_status & SRB_STATUS_ERROR) { 995 /* 996 * Let upper layer deal with error when 997 * sense message is present. 998 */ 999 if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID) 1000 return; 1001 1002 /* 1003 * If there is an error; offline the device since all 1004 * error recovery strategies would have already been 1005 * deployed on the host side. However, if the command 1006 * were a pass-through command deal with it appropriately. 1007 */ 1008 switch (scmnd->cmnd[0]) { 1009 case ATA_16: 1010 case ATA_12: 1011 set_host_byte(scmnd, DID_PASSTHROUGH); 1012 break; 1013 /* 1014 * On some Hyper-V hosts TEST_UNIT_READY command can 1015 * return SRB_STATUS_ERROR. Let the upper level code 1016 * deal with it based on the sense information. 1017 */ 1018 case TEST_UNIT_READY: 1019 break; 1020 default: 1021 set_host_byte(scmnd, DID_ERROR); 1022 } 1023 } 1024 return; 1025 1026 do_work: 1027 /* 1028 * We need to schedule work to process this error; schedule it. 1029 */ 1030 wrk = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC); 1031 if (!wrk) { 1032 set_host_byte(scmnd, DID_TARGET_FAILURE); 1033 return; 1034 } 1035 1036 wrk->host = host; 1037 wrk->lun = vm_srb->lun; 1038 wrk->tgt_id = vm_srb->target_id; 1039 INIT_WORK(&wrk->work, process_err_fn); 1040 queue_work(host_dev->handle_error_wq, &wrk->work); 1041 } 1042 1043 1044 static void storvsc_command_completion(struct storvsc_cmd_request *cmd_request, 1045 struct storvsc_device *stor_dev) 1046 { 1047 struct scsi_cmnd *scmnd = cmd_request->cmd; 1048 struct scsi_sense_hdr sense_hdr; 1049 struct vmscsi_request *vm_srb; 1050 u32 data_transfer_length; 1051 struct Scsi_Host *host; 1052 u32 payload_sz = cmd_request->payload_sz; 1053 void *payload = cmd_request->payload; 1054 bool sense_ok; 1055 1056 host = stor_dev->host; 1057 1058 vm_srb = &cmd_request->vstor_packet.vm_srb; 1059 data_transfer_length = vm_srb->data_transfer_length; 1060 1061 scmnd->result = vm_srb->scsi_status; 1062 1063 if (scmnd->result) { 1064 sense_ok = scsi_normalize_sense(scmnd->sense_buffer, 1065 SCSI_SENSE_BUFFERSIZE, &sense_hdr); 1066 1067 if (sense_ok && do_logging(STORVSC_LOGGING_WARN)) 1068 scsi_print_sense_hdr(scmnd->device, "storvsc", 1069 &sense_hdr); 1070 } 1071 1072 if (vm_srb->srb_status != SRB_STATUS_SUCCESS) { 1073 storvsc_handle_error(vm_srb, scmnd, host, sense_hdr.asc, 1074 sense_hdr.ascq); 1075 /* 1076 * The Windows driver set data_transfer_length on 1077 * SRB_STATUS_DATA_OVERRUN. On other errors, this value 1078 * is untouched. In these cases we set it to 0. 1079 */ 1080 if (vm_srb->srb_status != SRB_STATUS_DATA_OVERRUN) 1081 data_transfer_length = 0; 1082 } 1083 1084 /* Validate data_transfer_length (from Hyper-V) */ 1085 if (data_transfer_length > cmd_request->payload->range.len) 1086 data_transfer_length = cmd_request->payload->range.len; 1087 1088 scsi_set_resid(scmnd, 1089 cmd_request->payload->range.len - data_transfer_length); 1090 1091 scsi_done(scmnd); 1092 1093 if (payload_sz > 1094 sizeof(struct vmbus_channel_packet_multipage_buffer)) 1095 kfree(payload); 1096 } 1097 1098 static void storvsc_on_io_completion(struct storvsc_device *stor_device, 1099 struct vstor_packet *vstor_packet, 1100 struct storvsc_cmd_request *request) 1101 { 1102 struct vstor_packet *stor_pkt; 1103 struct hv_device *device = stor_device->device; 1104 1105 stor_pkt = &request->vstor_packet; 1106 1107 /* 1108 * The current SCSI handling on the host side does 1109 * not correctly handle: 1110 * INQUIRY command with page code parameter set to 0x80 1111 * MODE_SENSE command with cmd[2] == 0x1c 1112 * 1113 * Setup srb and scsi status so this won't be fatal. 1114 * We do this so we can distinguish truly fatal failues 1115 * (srb status == 0x4) and off-line the device in that case. 1116 */ 1117 1118 if ((stor_pkt->vm_srb.cdb[0] == INQUIRY) || 1119 (stor_pkt->vm_srb.cdb[0] == MODE_SENSE)) { 1120 vstor_packet->vm_srb.scsi_status = 0; 1121 vstor_packet->vm_srb.srb_status = SRB_STATUS_SUCCESS; 1122 } 1123 1124 /* Copy over the status...etc */ 1125 stor_pkt->vm_srb.scsi_status = vstor_packet->vm_srb.scsi_status; 1126 stor_pkt->vm_srb.srb_status = vstor_packet->vm_srb.srb_status; 1127 1128 /* 1129 * Copy over the sense_info_length, but limit to the known max 1130 * size if Hyper-V returns a bad value. 1131 */ 1132 stor_pkt->vm_srb.sense_info_length = min_t(u8, STORVSC_SENSE_BUFFER_SIZE, 1133 vstor_packet->vm_srb.sense_info_length); 1134 1135 if (vstor_packet->vm_srb.scsi_status != 0 || 1136 vstor_packet->vm_srb.srb_status != SRB_STATUS_SUCCESS) { 1137 1138 /* 1139 * Log TEST_UNIT_READY errors only as warnings. Hyper-V can 1140 * return errors when detecting devices using TEST_UNIT_READY, 1141 * and logging these as errors produces unhelpful noise. 1142 */ 1143 int loglevel = (stor_pkt->vm_srb.cdb[0] == TEST_UNIT_READY) ? 1144 STORVSC_LOGGING_WARN : STORVSC_LOGGING_ERROR; 1145 1146 storvsc_log(device, loglevel, 1147 "tag#%d cmd 0x%x status: scsi 0x%x srb 0x%x hv 0x%x\n", 1148 scsi_cmd_to_rq(request->cmd)->tag, 1149 stor_pkt->vm_srb.cdb[0], 1150 vstor_packet->vm_srb.scsi_status, 1151 vstor_packet->vm_srb.srb_status, 1152 vstor_packet->status); 1153 } 1154 1155 if (vstor_packet->vm_srb.scsi_status == SAM_STAT_CHECK_CONDITION && 1156 (vstor_packet->vm_srb.srb_status & SRB_STATUS_AUTOSENSE_VALID)) 1157 memcpy(request->cmd->sense_buffer, 1158 vstor_packet->vm_srb.sense_data, 1159 stor_pkt->vm_srb.sense_info_length); 1160 1161 stor_pkt->vm_srb.data_transfer_length = 1162 vstor_packet->vm_srb.data_transfer_length; 1163 1164 storvsc_command_completion(request, stor_device); 1165 1166 if (atomic_dec_and_test(&stor_device->num_outstanding_req) && 1167 stor_device->drain_notify) 1168 wake_up(&stor_device->waiting_to_drain); 1169 } 1170 1171 static void storvsc_on_receive(struct storvsc_device *stor_device, 1172 struct vstor_packet *vstor_packet, 1173 struct storvsc_cmd_request *request) 1174 { 1175 struct hv_host_device *host_dev; 1176 switch (vstor_packet->operation) { 1177 case VSTOR_OPERATION_COMPLETE_IO: 1178 storvsc_on_io_completion(stor_device, vstor_packet, request); 1179 break; 1180 1181 case VSTOR_OPERATION_REMOVE_DEVICE: 1182 case VSTOR_OPERATION_ENUMERATE_BUS: 1183 host_dev = shost_priv(stor_device->host); 1184 queue_work( 1185 host_dev->handle_error_wq, &host_dev->host_scan_work); 1186 break; 1187 1188 case VSTOR_OPERATION_FCHBA_DATA: 1189 cache_wwn(stor_device, vstor_packet); 1190 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1191 fc_host_node_name(stor_device->host) = stor_device->node_name; 1192 fc_host_port_name(stor_device->host) = stor_device->port_name; 1193 #endif 1194 break; 1195 default: 1196 break; 1197 } 1198 } 1199 1200 static void storvsc_on_channel_callback(void *context) 1201 { 1202 struct vmbus_channel *channel = (struct vmbus_channel *)context; 1203 const struct vmpacket_descriptor *desc; 1204 struct hv_device *device; 1205 struct storvsc_device *stor_device; 1206 struct Scsi_Host *shost; 1207 1208 if (channel->primary_channel != NULL) 1209 device = channel->primary_channel->device_obj; 1210 else 1211 device = channel->device_obj; 1212 1213 stor_device = get_in_stor_device(device); 1214 if (!stor_device) 1215 return; 1216 1217 shost = stor_device->host; 1218 1219 foreach_vmbus_pkt(desc, channel) { 1220 struct vstor_packet *packet = hv_pkt_data(desc); 1221 struct storvsc_cmd_request *request = NULL; 1222 u32 pktlen = hv_pkt_datalen(desc); 1223 u64 rqst_id = desc->trans_id; 1224 u32 minlen = rqst_id ? sizeof(struct vstor_packet) : 1225 sizeof(enum vstor_packet_operation); 1226 1227 if (pktlen < minlen) { 1228 dev_err(&device->device, 1229 "Invalid pkt: id=%llu, len=%u, minlen=%u\n", 1230 rqst_id, pktlen, minlen); 1231 continue; 1232 } 1233 1234 if (rqst_id == VMBUS_RQST_INIT) { 1235 request = &stor_device->init_request; 1236 } else if (rqst_id == VMBUS_RQST_RESET) { 1237 request = &stor_device->reset_request; 1238 } else { 1239 /* Hyper-V can send an unsolicited message with ID of 0 */ 1240 if (rqst_id == 0) { 1241 /* 1242 * storvsc_on_receive() looks at the vstor_packet in the message 1243 * from the ring buffer. 1244 * 1245 * - If the operation in the vstor_packet is COMPLETE_IO, then 1246 * we call storvsc_on_io_completion(), and dereference the 1247 * guest memory address. Make sure we don't call 1248 * storvsc_on_io_completion() with a guest memory address 1249 * that is zero if Hyper-V were to construct and send such 1250 * a bogus packet. 1251 * 1252 * - If the operation in the vstor_packet is FCHBA_DATA, then 1253 * we call cache_wwn(), and access the data payload area of 1254 * the packet (wwn_packet); however, there is no guarantee 1255 * that the packet is big enough to contain such area. 1256 * Future-proof the code by rejecting such a bogus packet. 1257 */ 1258 if (packet->operation == VSTOR_OPERATION_COMPLETE_IO || 1259 packet->operation == VSTOR_OPERATION_FCHBA_DATA) { 1260 dev_err(&device->device, "Invalid packet with ID of 0\n"); 1261 continue; 1262 } 1263 } else { 1264 struct scsi_cmnd *scmnd; 1265 1266 /* Transaction 'rqst_id' corresponds to tag 'rqst_id - 1' */ 1267 scmnd = scsi_host_find_tag(shost, rqst_id - 1); 1268 if (scmnd == NULL) { 1269 dev_err(&device->device, "Incorrect transaction ID\n"); 1270 continue; 1271 } 1272 request = (struct storvsc_cmd_request *)scsi_cmd_priv(scmnd); 1273 scsi_dma_unmap(scmnd); 1274 } 1275 1276 storvsc_on_receive(stor_device, packet, request); 1277 continue; 1278 } 1279 1280 memcpy(&request->vstor_packet, packet, 1281 sizeof(struct vstor_packet)); 1282 complete(&request->wait_event); 1283 } 1284 } 1285 1286 static int storvsc_connect_to_vsp(struct hv_device *device, u32 ring_size, 1287 bool is_fc) 1288 { 1289 struct vmstorage_channel_properties props; 1290 int ret; 1291 1292 memset(&props, 0, sizeof(struct vmstorage_channel_properties)); 1293 1294 device->channel->max_pkt_size = STORVSC_MAX_PKT_SIZE; 1295 device->channel->next_request_id_callback = storvsc_next_request_id; 1296 1297 ret = vmbus_open(device->channel, 1298 ring_size, 1299 ring_size, 1300 (void *)&props, 1301 sizeof(struct vmstorage_channel_properties), 1302 storvsc_on_channel_callback, device->channel); 1303 1304 if (ret != 0) 1305 return ret; 1306 1307 ret = storvsc_channel_init(device, is_fc); 1308 1309 return ret; 1310 } 1311 1312 static int storvsc_dev_remove(struct hv_device *device) 1313 { 1314 struct storvsc_device *stor_device; 1315 1316 stor_device = hv_get_drvdata(device); 1317 1318 stor_device->destroy = true; 1319 1320 /* Make sure flag is set before waiting */ 1321 wmb(); 1322 1323 /* 1324 * At this point, all outbound traffic should be disable. We 1325 * only allow inbound traffic (responses) to proceed so that 1326 * outstanding requests can be completed. 1327 */ 1328 1329 storvsc_wait_to_drain(stor_device); 1330 1331 /* 1332 * Since we have already drained, we don't need to busy wait 1333 * as was done in final_release_stor_device() 1334 * Note that we cannot set the ext pointer to NULL until 1335 * we have drained - to drain the outgoing packets, we need to 1336 * allow incoming packets. 1337 */ 1338 hv_set_drvdata(device, NULL); 1339 1340 /* Close the channel */ 1341 vmbus_close(device->channel); 1342 1343 kfree(stor_device->stor_chns); 1344 kfree(stor_device); 1345 return 0; 1346 } 1347 1348 static struct vmbus_channel *get_og_chn(struct storvsc_device *stor_device, 1349 u16 q_num) 1350 { 1351 u16 slot = 0; 1352 u16 hash_qnum; 1353 const struct cpumask *node_mask; 1354 int num_channels, tgt_cpu; 1355 1356 if (stor_device->num_sc == 0) { 1357 stor_device->stor_chns[q_num] = stor_device->device->channel; 1358 return stor_device->device->channel; 1359 } 1360 1361 /* 1362 * Our channel array is sparsley populated and we 1363 * initiated I/O on a processor/hw-q that does not 1364 * currently have a designated channel. Fix this. 1365 * The strategy is simple: 1366 * I. Ensure NUMA locality 1367 * II. Distribute evenly (best effort) 1368 */ 1369 1370 node_mask = cpumask_of_node(cpu_to_node(q_num)); 1371 1372 num_channels = 0; 1373 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1374 if (cpumask_test_cpu(tgt_cpu, node_mask)) 1375 num_channels++; 1376 } 1377 if (num_channels == 0) { 1378 stor_device->stor_chns[q_num] = stor_device->device->channel; 1379 return stor_device->device->channel; 1380 } 1381 1382 hash_qnum = q_num; 1383 while (hash_qnum >= num_channels) 1384 hash_qnum -= num_channels; 1385 1386 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1387 if (!cpumask_test_cpu(tgt_cpu, node_mask)) 1388 continue; 1389 if (slot == hash_qnum) 1390 break; 1391 slot++; 1392 } 1393 1394 stor_device->stor_chns[q_num] = stor_device->stor_chns[tgt_cpu]; 1395 1396 return stor_device->stor_chns[q_num]; 1397 } 1398 1399 1400 static int storvsc_do_io(struct hv_device *device, 1401 struct storvsc_cmd_request *request, u16 q_num) 1402 { 1403 struct storvsc_device *stor_device; 1404 struct vstor_packet *vstor_packet; 1405 struct vmbus_channel *outgoing_channel, *channel; 1406 unsigned long flags; 1407 int ret = 0; 1408 const struct cpumask *node_mask; 1409 int tgt_cpu; 1410 1411 vstor_packet = &request->vstor_packet; 1412 stor_device = get_out_stor_device(device); 1413 1414 if (!stor_device) 1415 return -ENODEV; 1416 1417 1418 request->device = device; 1419 /* 1420 * Select an appropriate channel to send the request out. 1421 */ 1422 /* See storvsc_change_target_cpu(). */ 1423 outgoing_channel = READ_ONCE(stor_device->stor_chns[q_num]); 1424 if (outgoing_channel != NULL) { 1425 if (outgoing_channel->target_cpu == q_num) { 1426 /* 1427 * Ideally, we want to pick a different channel if 1428 * available on the same NUMA node. 1429 */ 1430 node_mask = cpumask_of_node(cpu_to_node(q_num)); 1431 for_each_cpu_wrap(tgt_cpu, 1432 &stor_device->alloced_cpus, q_num + 1) { 1433 if (!cpumask_test_cpu(tgt_cpu, node_mask)) 1434 continue; 1435 if (tgt_cpu == q_num) 1436 continue; 1437 channel = READ_ONCE( 1438 stor_device->stor_chns[tgt_cpu]); 1439 if (channel == NULL) 1440 continue; 1441 if (hv_get_avail_to_write_percent( 1442 &channel->outbound) 1443 > ring_avail_percent_lowater) { 1444 outgoing_channel = channel; 1445 goto found_channel; 1446 } 1447 } 1448 1449 /* 1450 * All the other channels on the same NUMA node are 1451 * busy. Try to use the channel on the current CPU 1452 */ 1453 if (hv_get_avail_to_write_percent( 1454 &outgoing_channel->outbound) 1455 > ring_avail_percent_lowater) 1456 goto found_channel; 1457 1458 /* 1459 * If we reach here, all the channels on the current 1460 * NUMA node are busy. Try to find a channel in 1461 * other NUMA nodes 1462 */ 1463 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1464 if (cpumask_test_cpu(tgt_cpu, node_mask)) 1465 continue; 1466 channel = READ_ONCE( 1467 stor_device->stor_chns[tgt_cpu]); 1468 if (channel == NULL) 1469 continue; 1470 if (hv_get_avail_to_write_percent( 1471 &channel->outbound) 1472 > ring_avail_percent_lowater) { 1473 outgoing_channel = channel; 1474 goto found_channel; 1475 } 1476 } 1477 } 1478 } else { 1479 spin_lock_irqsave(&stor_device->lock, flags); 1480 outgoing_channel = stor_device->stor_chns[q_num]; 1481 if (outgoing_channel != NULL) { 1482 spin_unlock_irqrestore(&stor_device->lock, flags); 1483 goto found_channel; 1484 } 1485 outgoing_channel = get_og_chn(stor_device, q_num); 1486 spin_unlock_irqrestore(&stor_device->lock, flags); 1487 } 1488 1489 found_channel: 1490 vstor_packet->flags |= REQUEST_COMPLETION_FLAG; 1491 1492 vstor_packet->vm_srb.length = sizeof(struct vmscsi_request); 1493 1494 1495 vstor_packet->vm_srb.sense_info_length = STORVSC_SENSE_BUFFER_SIZE; 1496 1497 1498 vstor_packet->vm_srb.data_transfer_length = 1499 request->payload->range.len; 1500 1501 vstor_packet->operation = VSTOR_OPERATION_EXECUTE_SRB; 1502 1503 if (request->payload->range.len) { 1504 1505 ret = vmbus_sendpacket_mpb_desc(outgoing_channel, 1506 request->payload, request->payload_sz, 1507 vstor_packet, 1508 sizeof(struct vstor_packet), 1509 (unsigned long)request); 1510 } else { 1511 ret = vmbus_sendpacket(outgoing_channel, vstor_packet, 1512 sizeof(struct vstor_packet), 1513 (unsigned long)request, 1514 VM_PKT_DATA_INBAND, 1515 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1516 } 1517 1518 if (ret != 0) 1519 return ret; 1520 1521 atomic_inc(&stor_device->num_outstanding_req); 1522 1523 return ret; 1524 } 1525 1526 static int storvsc_device_alloc(struct scsi_device *sdevice) 1527 { 1528 /* 1529 * Set blist flag to permit the reading of the VPD pages even when 1530 * the target may claim SPC-2 compliance. MSFT targets currently 1531 * claim SPC-2 compliance while they implement post SPC-2 features. 1532 * With this flag we can correctly handle WRITE_SAME_16 issues. 1533 * 1534 * Hypervisor reports SCSI_UNKNOWN type for DVD ROM device but 1535 * still supports REPORT LUN. 1536 */ 1537 sdevice->sdev_bflags = BLIST_REPORTLUN2 | BLIST_TRY_VPD_PAGES; 1538 1539 return 0; 1540 } 1541 1542 static int storvsc_device_configure(struct scsi_device *sdevice) 1543 { 1544 blk_queue_rq_timeout(sdevice->request_queue, (storvsc_timeout * HZ)); 1545 1546 sdevice->no_write_same = 1; 1547 1548 /* 1549 * If the host is WIN8 or WIN8 R2, claim conformance to SPC-3 1550 * if the device is a MSFT virtual device. If the host is 1551 * WIN10 or newer, allow write_same. 1552 */ 1553 if (!strncmp(sdevice->vendor, "Msft", 4)) { 1554 switch (vmstor_proto_version) { 1555 case VMSTOR_PROTO_VERSION_WIN8: 1556 case VMSTOR_PROTO_VERSION_WIN8_1: 1557 sdevice->scsi_level = SCSI_SPC_3; 1558 break; 1559 } 1560 1561 if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN10) 1562 sdevice->no_write_same = 0; 1563 } 1564 1565 return 0; 1566 } 1567 1568 static int storvsc_get_chs(struct scsi_device *sdev, struct block_device * bdev, 1569 sector_t capacity, int *info) 1570 { 1571 sector_t nsect = capacity; 1572 sector_t cylinders = nsect; 1573 int heads, sectors_pt; 1574 1575 /* 1576 * We are making up these values; let us keep it simple. 1577 */ 1578 heads = 0xff; 1579 sectors_pt = 0x3f; /* Sectors per track */ 1580 sector_div(cylinders, heads * sectors_pt); 1581 if ((sector_t)(cylinders + 1) * heads * sectors_pt < nsect) 1582 cylinders = 0xffff; 1583 1584 info[0] = heads; 1585 info[1] = sectors_pt; 1586 info[2] = (int)cylinders; 1587 1588 return 0; 1589 } 1590 1591 static int storvsc_host_reset_handler(struct scsi_cmnd *scmnd) 1592 { 1593 struct hv_host_device *host_dev = shost_priv(scmnd->device->host); 1594 struct hv_device *device = host_dev->dev; 1595 1596 struct storvsc_device *stor_device; 1597 struct storvsc_cmd_request *request; 1598 struct vstor_packet *vstor_packet; 1599 int ret, t; 1600 1601 stor_device = get_out_stor_device(device); 1602 if (!stor_device) 1603 return FAILED; 1604 1605 request = &stor_device->reset_request; 1606 vstor_packet = &request->vstor_packet; 1607 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 1608 1609 init_completion(&request->wait_event); 1610 1611 vstor_packet->operation = VSTOR_OPERATION_RESET_BUS; 1612 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 1613 vstor_packet->vm_srb.path_id = stor_device->path_id; 1614 1615 ret = vmbus_sendpacket(device->channel, vstor_packet, 1616 sizeof(struct vstor_packet), 1617 VMBUS_RQST_RESET, 1618 VM_PKT_DATA_INBAND, 1619 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1620 if (ret != 0) 1621 return FAILED; 1622 1623 t = wait_for_completion_timeout(&request->wait_event, 5*HZ); 1624 if (t == 0) 1625 return TIMEOUT_ERROR; 1626 1627 1628 /* 1629 * At this point, all outstanding requests in the adapter 1630 * should have been flushed out and return to us 1631 * There is a potential race here where the host may be in 1632 * the process of responding when we return from here. 1633 * Just wait for all in-transit packets to be accounted for 1634 * before we return from here. 1635 */ 1636 storvsc_wait_to_drain(stor_device); 1637 1638 return SUCCESS; 1639 } 1640 1641 /* 1642 * The host guarantees to respond to each command, although I/O latencies might 1643 * be unbounded on Azure. Reset the timer unconditionally to give the host a 1644 * chance to perform EH. 1645 */ 1646 static enum blk_eh_timer_return storvsc_eh_timed_out(struct scsi_cmnd *scmnd) 1647 { 1648 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1649 if (scmnd->device->host->transportt == fc_transport_template) 1650 return fc_eh_timed_out(scmnd); 1651 #endif 1652 return BLK_EH_RESET_TIMER; 1653 } 1654 1655 static bool storvsc_scsi_cmd_ok(struct scsi_cmnd *scmnd) 1656 { 1657 bool allowed = true; 1658 u8 scsi_op = scmnd->cmnd[0]; 1659 1660 switch (scsi_op) { 1661 /* the host does not handle WRITE_SAME, log accident usage */ 1662 case WRITE_SAME: 1663 /* 1664 * smartd sends this command and the host does not handle 1665 * this. So, don't send it. 1666 */ 1667 case SET_WINDOW: 1668 set_host_byte(scmnd, DID_ERROR); 1669 allowed = false; 1670 break; 1671 default: 1672 break; 1673 } 1674 return allowed; 1675 } 1676 1677 static int storvsc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scmnd) 1678 { 1679 int ret; 1680 struct hv_host_device *host_dev = shost_priv(host); 1681 struct hv_device *dev = host_dev->dev; 1682 struct storvsc_cmd_request *cmd_request = scsi_cmd_priv(scmnd); 1683 struct scatterlist *sgl; 1684 struct vmscsi_request *vm_srb; 1685 struct vmbus_packet_mpb_array *payload; 1686 u32 payload_sz; 1687 u32 length; 1688 1689 if (vmstor_proto_version <= VMSTOR_PROTO_VERSION_WIN8) { 1690 /* 1691 * On legacy hosts filter unimplemented commands. 1692 * Future hosts are expected to correctly handle 1693 * unsupported commands. Furthermore, it is 1694 * possible that some of the currently 1695 * unsupported commands maybe supported in 1696 * future versions of the host. 1697 */ 1698 if (!storvsc_scsi_cmd_ok(scmnd)) { 1699 scsi_done(scmnd); 1700 return 0; 1701 } 1702 } 1703 1704 /* Setup the cmd request */ 1705 cmd_request->cmd = scmnd; 1706 1707 memset(&cmd_request->vstor_packet, 0, sizeof(struct vstor_packet)); 1708 vm_srb = &cmd_request->vstor_packet.vm_srb; 1709 vm_srb->time_out_value = 60; 1710 1711 vm_srb->srb_flags |= 1712 SRB_FLAGS_DISABLE_SYNCH_TRANSFER; 1713 1714 if (scmnd->device->tagged_supported) { 1715 vm_srb->srb_flags |= 1716 (SRB_FLAGS_QUEUE_ACTION_ENABLE | SRB_FLAGS_NO_QUEUE_FREEZE); 1717 vm_srb->queue_tag = SP_UNTAGGED; 1718 vm_srb->queue_action = SRB_SIMPLE_TAG_REQUEST; 1719 } 1720 1721 /* Build the SRB */ 1722 switch (scmnd->sc_data_direction) { 1723 case DMA_TO_DEVICE: 1724 vm_srb->data_in = WRITE_TYPE; 1725 vm_srb->srb_flags |= SRB_FLAGS_DATA_OUT; 1726 break; 1727 case DMA_FROM_DEVICE: 1728 vm_srb->data_in = READ_TYPE; 1729 vm_srb->srb_flags |= SRB_FLAGS_DATA_IN; 1730 break; 1731 case DMA_NONE: 1732 vm_srb->data_in = UNKNOWN_TYPE; 1733 vm_srb->srb_flags |= SRB_FLAGS_NO_DATA_TRANSFER; 1734 break; 1735 default: 1736 /* 1737 * This is DMA_BIDIRECTIONAL or something else we are never 1738 * supposed to see here. 1739 */ 1740 WARN(1, "Unexpected data direction: %d\n", 1741 scmnd->sc_data_direction); 1742 return -EINVAL; 1743 } 1744 1745 1746 vm_srb->port_number = host_dev->port; 1747 vm_srb->path_id = scmnd->device->channel; 1748 vm_srb->target_id = scmnd->device->id; 1749 vm_srb->lun = scmnd->device->lun; 1750 1751 vm_srb->cdb_length = scmnd->cmd_len; 1752 1753 memcpy(vm_srb->cdb, scmnd->cmnd, vm_srb->cdb_length); 1754 1755 sgl = (struct scatterlist *)scsi_sglist(scmnd); 1756 1757 length = scsi_bufflen(scmnd); 1758 payload = (struct vmbus_packet_mpb_array *)&cmd_request->mpb; 1759 payload_sz = sizeof(cmd_request->mpb); 1760 1761 if (scsi_sg_count(scmnd)) { 1762 unsigned long offset_in_hvpg = offset_in_hvpage(sgl->offset); 1763 unsigned int hvpg_count = HVPFN_UP(offset_in_hvpg + length); 1764 struct scatterlist *sg; 1765 unsigned long hvpfn, hvpfns_to_add; 1766 int j, i = 0, sg_count; 1767 1768 if (hvpg_count > MAX_PAGE_BUFFER_COUNT) { 1769 1770 payload_sz = (hvpg_count * sizeof(u64) + 1771 sizeof(struct vmbus_packet_mpb_array)); 1772 payload = kzalloc(payload_sz, GFP_ATOMIC); 1773 if (!payload) 1774 return SCSI_MLQUEUE_DEVICE_BUSY; 1775 } 1776 1777 payload->range.len = length; 1778 payload->range.offset = offset_in_hvpg; 1779 1780 sg_count = scsi_dma_map(scmnd); 1781 if (sg_count < 0) { 1782 ret = SCSI_MLQUEUE_DEVICE_BUSY; 1783 goto err_free_payload; 1784 } 1785 1786 for_each_sg(sgl, sg, sg_count, j) { 1787 /* 1788 * Init values for the current sgl entry. hvpfns_to_add 1789 * is in units of Hyper-V size pages. Handling the 1790 * PAGE_SIZE != HV_HYP_PAGE_SIZE case also handles 1791 * values of sgl->offset that are larger than PAGE_SIZE. 1792 * Such offsets are handled even on other than the first 1793 * sgl entry, provided they are a multiple of PAGE_SIZE. 1794 */ 1795 hvpfn = HVPFN_DOWN(sg_dma_address(sg)); 1796 hvpfns_to_add = HVPFN_UP(sg_dma_address(sg) + 1797 sg_dma_len(sg)) - hvpfn; 1798 1799 /* 1800 * Fill the next portion of the PFN array with 1801 * sequential Hyper-V PFNs for the continguous physical 1802 * memory described by the sgl entry. The end of the 1803 * last sgl should be reached at the same time that 1804 * the PFN array is filled. 1805 */ 1806 while (hvpfns_to_add--) 1807 payload->range.pfn_array[i++] = hvpfn++; 1808 } 1809 } 1810 1811 cmd_request->payload = payload; 1812 cmd_request->payload_sz = payload_sz; 1813 1814 /* Invokes the vsc to start an IO */ 1815 ret = storvsc_do_io(dev, cmd_request, get_cpu()); 1816 put_cpu(); 1817 1818 if (ret == -EAGAIN) { 1819 /* no more space */ 1820 ret = SCSI_MLQUEUE_DEVICE_BUSY; 1821 goto err_free_payload; 1822 } 1823 1824 return 0; 1825 1826 err_free_payload: 1827 if (payload_sz > sizeof(cmd_request->mpb)) 1828 kfree(payload); 1829 1830 return ret; 1831 } 1832 1833 static struct scsi_host_template scsi_driver = { 1834 .module = THIS_MODULE, 1835 .name = "storvsc_host_t", 1836 .cmd_size = sizeof(struct storvsc_cmd_request), 1837 .bios_param = storvsc_get_chs, 1838 .queuecommand = storvsc_queuecommand, 1839 .eh_host_reset_handler = storvsc_host_reset_handler, 1840 .proc_name = "storvsc_host", 1841 .eh_timed_out = storvsc_eh_timed_out, 1842 .slave_alloc = storvsc_device_alloc, 1843 .slave_configure = storvsc_device_configure, 1844 .cmd_per_lun = 2048, 1845 .this_id = -1, 1846 /* Ensure there are no gaps in presented sgls */ 1847 .virt_boundary_mask = HV_HYP_PAGE_SIZE - 1, 1848 .no_write_same = 1, 1849 .track_queue_depth = 1, 1850 .change_queue_depth = storvsc_change_queue_depth, 1851 }; 1852 1853 enum { 1854 SCSI_GUID, 1855 IDE_GUID, 1856 SFC_GUID, 1857 }; 1858 1859 static const struct hv_vmbus_device_id id_table[] = { 1860 /* SCSI guid */ 1861 { HV_SCSI_GUID, 1862 .driver_data = SCSI_GUID 1863 }, 1864 /* IDE guid */ 1865 { HV_IDE_GUID, 1866 .driver_data = IDE_GUID 1867 }, 1868 /* Fibre Channel GUID */ 1869 { 1870 HV_SYNTHFC_GUID, 1871 .driver_data = SFC_GUID 1872 }, 1873 { }, 1874 }; 1875 1876 MODULE_DEVICE_TABLE(vmbus, id_table); 1877 1878 static const struct { guid_t guid; } fc_guid = { HV_SYNTHFC_GUID }; 1879 1880 static bool hv_dev_is_fc(struct hv_device *hv_dev) 1881 { 1882 return guid_equal(&fc_guid.guid, &hv_dev->dev_type); 1883 } 1884 1885 static int storvsc_probe(struct hv_device *device, 1886 const struct hv_vmbus_device_id *dev_id) 1887 { 1888 int ret; 1889 int num_cpus = num_online_cpus(); 1890 int num_present_cpus = num_present_cpus(); 1891 struct Scsi_Host *host; 1892 struct hv_host_device *host_dev; 1893 bool dev_is_ide = ((dev_id->driver_data == IDE_GUID) ? true : false); 1894 bool is_fc = ((dev_id->driver_data == SFC_GUID) ? true : false); 1895 int target = 0; 1896 struct storvsc_device *stor_device; 1897 int max_sub_channels = 0; 1898 u32 max_xfer_bytes; 1899 1900 /* 1901 * We support sub-channels for storage on SCSI and FC controllers. 1902 * The number of sub-channels offerred is based on the number of 1903 * VCPUs in the guest. 1904 */ 1905 if (!dev_is_ide) 1906 max_sub_channels = 1907 (num_cpus - 1) / storvsc_vcpus_per_sub_channel; 1908 1909 scsi_driver.can_queue = max_outstanding_req_per_channel * 1910 (max_sub_channels + 1) * 1911 (100 - ring_avail_percent_lowater) / 100; 1912 1913 host = scsi_host_alloc(&scsi_driver, 1914 sizeof(struct hv_host_device)); 1915 if (!host) 1916 return -ENOMEM; 1917 1918 host_dev = shost_priv(host); 1919 memset(host_dev, 0, sizeof(struct hv_host_device)); 1920 1921 host_dev->port = host->host_no; 1922 host_dev->dev = device; 1923 host_dev->host = host; 1924 1925 1926 stor_device = kzalloc(sizeof(struct storvsc_device), GFP_KERNEL); 1927 if (!stor_device) { 1928 ret = -ENOMEM; 1929 goto err_out0; 1930 } 1931 1932 stor_device->destroy = false; 1933 init_waitqueue_head(&stor_device->waiting_to_drain); 1934 stor_device->device = device; 1935 stor_device->host = host; 1936 spin_lock_init(&stor_device->lock); 1937 hv_set_drvdata(device, stor_device); 1938 dma_set_min_align_mask(&device->device, HV_HYP_PAGE_SIZE - 1); 1939 1940 stor_device->port_number = host->host_no; 1941 ret = storvsc_connect_to_vsp(device, storvsc_ringbuffer_size, is_fc); 1942 if (ret) 1943 goto err_out1; 1944 1945 host_dev->path = stor_device->path_id; 1946 host_dev->target = stor_device->target_id; 1947 1948 switch (dev_id->driver_data) { 1949 case SFC_GUID: 1950 host->max_lun = STORVSC_FC_MAX_LUNS_PER_TARGET; 1951 host->max_id = STORVSC_FC_MAX_TARGETS; 1952 host->max_channel = STORVSC_FC_MAX_CHANNELS - 1; 1953 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1954 host->transportt = fc_transport_template; 1955 #endif 1956 break; 1957 1958 case SCSI_GUID: 1959 host->max_lun = STORVSC_MAX_LUNS_PER_TARGET; 1960 host->max_id = STORVSC_MAX_TARGETS; 1961 host->max_channel = STORVSC_MAX_CHANNELS - 1; 1962 break; 1963 1964 default: 1965 host->max_lun = STORVSC_IDE_MAX_LUNS_PER_TARGET; 1966 host->max_id = STORVSC_IDE_MAX_TARGETS; 1967 host->max_channel = STORVSC_IDE_MAX_CHANNELS - 1; 1968 break; 1969 } 1970 /* max cmd length */ 1971 host->max_cmd_len = STORVSC_MAX_CMD_LEN; 1972 /* 1973 * Any reasonable Hyper-V configuration should provide 1974 * max_transfer_bytes value aligning to HV_HYP_PAGE_SIZE, 1975 * protecting it from any weird value. 1976 */ 1977 max_xfer_bytes = round_down(stor_device->max_transfer_bytes, HV_HYP_PAGE_SIZE); 1978 /* max_hw_sectors_kb */ 1979 host->max_sectors = max_xfer_bytes >> 9; 1980 /* 1981 * There are 2 requirements for Hyper-V storvsc sgl segments, 1982 * based on which the below calculation for max segments is 1983 * done: 1984 * 1985 * 1. Except for the first and last sgl segment, all sgl segments 1986 * should be align to HV_HYP_PAGE_SIZE, that also means the 1987 * maximum number of segments in a sgl can be calculated by 1988 * dividing the total max transfer length by HV_HYP_PAGE_SIZE. 1989 * 1990 * 2. Except for the first and last, each entry in the SGL must 1991 * have an offset that is a multiple of HV_HYP_PAGE_SIZE. 1992 */ 1993 host->sg_tablesize = (max_xfer_bytes >> HV_HYP_PAGE_SHIFT) + 1; 1994 /* 1995 * For non-IDE disks, the host supports multiple channels. 1996 * Set the number of HW queues we are supporting. 1997 */ 1998 if (!dev_is_ide) { 1999 if (storvsc_max_hw_queues > num_present_cpus) { 2000 storvsc_max_hw_queues = 0; 2001 storvsc_log(device, STORVSC_LOGGING_WARN, 2002 "Resetting invalid storvsc_max_hw_queues value to default.\n"); 2003 } 2004 if (storvsc_max_hw_queues) 2005 host->nr_hw_queues = storvsc_max_hw_queues; 2006 else 2007 host->nr_hw_queues = num_present_cpus; 2008 } 2009 2010 /* 2011 * Set the error handler work queue. 2012 */ 2013 host_dev->handle_error_wq = 2014 alloc_ordered_workqueue("storvsc_error_wq_%d", 2015 0, 2016 host->host_no); 2017 if (!host_dev->handle_error_wq) { 2018 ret = -ENOMEM; 2019 goto err_out2; 2020 } 2021 INIT_WORK(&host_dev->host_scan_work, storvsc_host_scan); 2022 /* Register the HBA and start the scsi bus scan */ 2023 ret = scsi_add_host(host, &device->device); 2024 if (ret != 0) 2025 goto err_out3; 2026 2027 if (!dev_is_ide) { 2028 scsi_scan_host(host); 2029 } else { 2030 target = (device->dev_instance.b[5] << 8 | 2031 device->dev_instance.b[4]); 2032 ret = scsi_add_device(host, 0, target, 0); 2033 if (ret) 2034 goto err_out4; 2035 } 2036 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2037 if (host->transportt == fc_transport_template) { 2038 struct fc_rport_identifiers ids = { 2039 .roles = FC_PORT_ROLE_FCP_DUMMY_INITIATOR, 2040 }; 2041 2042 fc_host_node_name(host) = stor_device->node_name; 2043 fc_host_port_name(host) = stor_device->port_name; 2044 stor_device->rport = fc_remote_port_add(host, 0, &ids); 2045 if (!stor_device->rport) { 2046 ret = -ENOMEM; 2047 goto err_out4; 2048 } 2049 } 2050 #endif 2051 return 0; 2052 2053 err_out4: 2054 scsi_remove_host(host); 2055 2056 err_out3: 2057 destroy_workqueue(host_dev->handle_error_wq); 2058 2059 err_out2: 2060 /* 2061 * Once we have connected with the host, we would need to 2062 * to invoke storvsc_dev_remove() to rollback this state and 2063 * this call also frees up the stor_device; hence the jump around 2064 * err_out1 label. 2065 */ 2066 storvsc_dev_remove(device); 2067 goto err_out0; 2068 2069 err_out1: 2070 kfree(stor_device->stor_chns); 2071 kfree(stor_device); 2072 2073 err_out0: 2074 scsi_host_put(host); 2075 return ret; 2076 } 2077 2078 /* Change a scsi target's queue depth */ 2079 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth) 2080 { 2081 if (queue_depth > scsi_driver.can_queue) 2082 queue_depth = scsi_driver.can_queue; 2083 2084 return scsi_change_queue_depth(sdev, queue_depth); 2085 } 2086 2087 static int storvsc_remove(struct hv_device *dev) 2088 { 2089 struct storvsc_device *stor_device = hv_get_drvdata(dev); 2090 struct Scsi_Host *host = stor_device->host; 2091 struct hv_host_device *host_dev = shost_priv(host); 2092 2093 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2094 if (host->transportt == fc_transport_template) { 2095 fc_remote_port_delete(stor_device->rport); 2096 fc_remove_host(host); 2097 } 2098 #endif 2099 destroy_workqueue(host_dev->handle_error_wq); 2100 scsi_remove_host(host); 2101 storvsc_dev_remove(dev); 2102 scsi_host_put(host); 2103 2104 return 0; 2105 } 2106 2107 static int storvsc_suspend(struct hv_device *hv_dev) 2108 { 2109 struct storvsc_device *stor_device = hv_get_drvdata(hv_dev); 2110 struct Scsi_Host *host = stor_device->host; 2111 struct hv_host_device *host_dev = shost_priv(host); 2112 2113 storvsc_wait_to_drain(stor_device); 2114 2115 drain_workqueue(host_dev->handle_error_wq); 2116 2117 vmbus_close(hv_dev->channel); 2118 2119 kfree(stor_device->stor_chns); 2120 stor_device->stor_chns = NULL; 2121 2122 cpumask_clear(&stor_device->alloced_cpus); 2123 2124 return 0; 2125 } 2126 2127 static int storvsc_resume(struct hv_device *hv_dev) 2128 { 2129 int ret; 2130 2131 ret = storvsc_connect_to_vsp(hv_dev, storvsc_ringbuffer_size, 2132 hv_dev_is_fc(hv_dev)); 2133 return ret; 2134 } 2135 2136 static struct hv_driver storvsc_drv = { 2137 .name = KBUILD_MODNAME, 2138 .id_table = id_table, 2139 .probe = storvsc_probe, 2140 .remove = storvsc_remove, 2141 .suspend = storvsc_suspend, 2142 .resume = storvsc_resume, 2143 .driver = { 2144 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 2145 }, 2146 }; 2147 2148 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2149 static struct fc_function_template fc_transport_functions = { 2150 .show_host_node_name = 1, 2151 .show_host_port_name = 1, 2152 }; 2153 #endif 2154 2155 static int __init storvsc_drv_init(void) 2156 { 2157 int ret; 2158 2159 /* 2160 * Divide the ring buffer data size (which is 1 page less 2161 * than the ring buffer size since that page is reserved for 2162 * the ring buffer indices) by the max request size (which is 2163 * vmbus_channel_packet_multipage_buffer + struct vstor_packet + u64) 2164 */ 2165 max_outstanding_req_per_channel = 2166 ((storvsc_ringbuffer_size - PAGE_SIZE) / 2167 ALIGN(MAX_MULTIPAGE_BUFFER_PACKET + 2168 sizeof(struct vstor_packet) + sizeof(u64), 2169 sizeof(u64))); 2170 2171 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2172 fc_transport_template = fc_attach_transport(&fc_transport_functions); 2173 if (!fc_transport_template) 2174 return -ENODEV; 2175 #endif 2176 2177 ret = vmbus_driver_register(&storvsc_drv); 2178 2179 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2180 if (ret) 2181 fc_release_transport(fc_transport_template); 2182 #endif 2183 2184 return ret; 2185 } 2186 2187 static void __exit storvsc_drv_exit(void) 2188 { 2189 vmbus_driver_unregister(&storvsc_drv); 2190 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2191 fc_release_transport(fc_transport_template); 2192 #endif 2193 } 2194 2195 MODULE_LICENSE("GPL"); 2196 MODULE_DESCRIPTION("Microsoft Hyper-V virtual storage driver"); 2197 module_init(storvsc_drv_init); 2198 module_exit(storvsc_drv_exit); 2199