1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 * K. Y. Srinivasan <kys@microsoft.com> 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/wait.h> 13 #include <linux/sched.h> 14 #include <linux/completion.h> 15 #include <linux/string.h> 16 #include <linux/mm.h> 17 #include <linux/delay.h> 18 #include <linux/init.h> 19 #include <linux/slab.h> 20 #include <linux/module.h> 21 #include <linux/device.h> 22 #include <linux/hyperv.h> 23 #include <linux/blkdev.h> 24 #include <linux/dma-mapping.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_host.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_tcq.h> 31 #include <scsi/scsi_eh.h> 32 #include <scsi/scsi_devinfo.h> 33 #include <scsi/scsi_dbg.h> 34 #include <scsi/scsi_transport_fc.h> 35 #include <scsi/scsi_transport.h> 36 37 /* 38 * All wire protocol details (storage protocol between the guest and the host) 39 * are consolidated here. 40 * 41 * Begin protocol definitions. 42 */ 43 44 /* 45 * Version history: 46 * V1 Beta: 0.1 47 * V1 RC < 2008/1/31: 1.0 48 * V1 RC > 2008/1/31: 2.0 49 * Win7: 4.2 50 * Win8: 5.1 51 * Win8.1: 6.0 52 * Win10: 6.2 53 */ 54 55 #define VMSTOR_PROTO_VERSION(MAJOR_, MINOR_) ((((MAJOR_) & 0xff) << 8) | \ 56 (((MINOR_) & 0xff))) 57 #define VMSTOR_PROTO_VERSION_WIN6 VMSTOR_PROTO_VERSION(2, 0) 58 #define VMSTOR_PROTO_VERSION_WIN7 VMSTOR_PROTO_VERSION(4, 2) 59 #define VMSTOR_PROTO_VERSION_WIN8 VMSTOR_PROTO_VERSION(5, 1) 60 #define VMSTOR_PROTO_VERSION_WIN8_1 VMSTOR_PROTO_VERSION(6, 0) 61 #define VMSTOR_PROTO_VERSION_WIN10 VMSTOR_PROTO_VERSION(6, 2) 62 63 /* channel callback timeout in ms */ 64 #define CALLBACK_TIMEOUT 2 65 66 /* Packet structure describing virtual storage requests. */ 67 enum vstor_packet_operation { 68 VSTOR_OPERATION_COMPLETE_IO = 1, 69 VSTOR_OPERATION_REMOVE_DEVICE = 2, 70 VSTOR_OPERATION_EXECUTE_SRB = 3, 71 VSTOR_OPERATION_RESET_LUN = 4, 72 VSTOR_OPERATION_RESET_ADAPTER = 5, 73 VSTOR_OPERATION_RESET_BUS = 6, 74 VSTOR_OPERATION_BEGIN_INITIALIZATION = 7, 75 VSTOR_OPERATION_END_INITIALIZATION = 8, 76 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION = 9, 77 VSTOR_OPERATION_QUERY_PROPERTIES = 10, 78 VSTOR_OPERATION_ENUMERATE_BUS = 11, 79 VSTOR_OPERATION_FCHBA_DATA = 12, 80 VSTOR_OPERATION_CREATE_SUB_CHANNELS = 13, 81 VSTOR_OPERATION_MAXIMUM = 13 82 }; 83 84 /* 85 * WWN packet for Fibre Channel HBA 86 */ 87 88 struct hv_fc_wwn_packet { 89 u8 primary_active; 90 u8 reserved1[3]; 91 u8 primary_port_wwn[8]; 92 u8 primary_node_wwn[8]; 93 u8 secondary_port_wwn[8]; 94 u8 secondary_node_wwn[8]; 95 }; 96 97 98 99 /* 100 * SRB Flag Bits 101 */ 102 103 #define SRB_FLAGS_QUEUE_ACTION_ENABLE 0x00000002 104 #define SRB_FLAGS_DISABLE_DISCONNECT 0x00000004 105 #define SRB_FLAGS_DISABLE_SYNCH_TRANSFER 0x00000008 106 #define SRB_FLAGS_BYPASS_FROZEN_QUEUE 0x00000010 107 #define SRB_FLAGS_DISABLE_AUTOSENSE 0x00000020 108 #define SRB_FLAGS_DATA_IN 0x00000040 109 #define SRB_FLAGS_DATA_OUT 0x00000080 110 #define SRB_FLAGS_NO_DATA_TRANSFER 0x00000000 111 #define SRB_FLAGS_UNSPECIFIED_DIRECTION (SRB_FLAGS_DATA_IN | SRB_FLAGS_DATA_OUT) 112 #define SRB_FLAGS_NO_QUEUE_FREEZE 0x00000100 113 #define SRB_FLAGS_ADAPTER_CACHE_ENABLE 0x00000200 114 #define SRB_FLAGS_FREE_SENSE_BUFFER 0x00000400 115 116 /* 117 * This flag indicates the request is part of the workflow for processing a D3. 118 */ 119 #define SRB_FLAGS_D3_PROCESSING 0x00000800 120 #define SRB_FLAGS_IS_ACTIVE 0x00010000 121 #define SRB_FLAGS_ALLOCATED_FROM_ZONE 0x00020000 122 #define SRB_FLAGS_SGLIST_FROM_POOL 0x00040000 123 #define SRB_FLAGS_BYPASS_LOCKED_QUEUE 0x00080000 124 #define SRB_FLAGS_NO_KEEP_AWAKE 0x00100000 125 #define SRB_FLAGS_PORT_DRIVER_ALLOCSENSE 0x00200000 126 #define SRB_FLAGS_PORT_DRIVER_SENSEHASPORT 0x00400000 127 #define SRB_FLAGS_DONT_START_NEXT_PACKET 0x00800000 128 #define SRB_FLAGS_PORT_DRIVER_RESERVED 0x0F000000 129 #define SRB_FLAGS_CLASS_DRIVER_RESERVED 0xF0000000 130 131 #define SP_UNTAGGED ((unsigned char) ~0) 132 #define SRB_SIMPLE_TAG_REQUEST 0x20 133 134 /* 135 * Platform neutral description of a scsi request - 136 * this remains the same across the write regardless of 32/64 bit 137 * note: it's patterned off the SCSI_PASS_THROUGH structure 138 */ 139 #define STORVSC_MAX_CMD_LEN 0x10 140 141 /* Sense buffer size is the same for all versions since Windows 8 */ 142 #define STORVSC_SENSE_BUFFER_SIZE 0x14 143 #define STORVSC_MAX_BUF_LEN_WITH_PADDING 0x14 144 145 /* 146 * The storage protocol version is determined during the 147 * initial exchange with the host. It will indicate which 148 * storage functionality is available in the host. 149 */ 150 static int vmstor_proto_version; 151 152 static bool hv_dev_is_fc(struct hv_device *hv_dev); 153 154 #define STORVSC_LOGGING_NONE 0 155 #define STORVSC_LOGGING_ERROR 1 156 #define STORVSC_LOGGING_WARN 2 157 158 static int logging_level = STORVSC_LOGGING_ERROR; 159 module_param(logging_level, int, S_IRUGO|S_IWUSR); 160 MODULE_PARM_DESC(logging_level, 161 "Logging level, 0 - None, 1 - Error (default), 2 - Warning."); 162 163 static inline bool do_logging(int level) 164 { 165 return logging_level >= level; 166 } 167 168 #define storvsc_log(dev, level, fmt, ...) \ 169 do { \ 170 if (do_logging(level)) \ 171 dev_warn(&(dev)->device, fmt, ##__VA_ARGS__); \ 172 } while (0) 173 174 struct vmscsi_request { 175 u16 length; 176 u8 srb_status; 177 u8 scsi_status; 178 179 u8 port_number; 180 u8 path_id; 181 u8 target_id; 182 u8 lun; 183 184 u8 cdb_length; 185 u8 sense_info_length; 186 u8 data_in; 187 u8 reserved; 188 189 u32 data_transfer_length; 190 191 union { 192 u8 cdb[STORVSC_MAX_CMD_LEN]; 193 u8 sense_data[STORVSC_SENSE_BUFFER_SIZE]; 194 u8 reserved_array[STORVSC_MAX_BUF_LEN_WITH_PADDING]; 195 }; 196 /* 197 * The following was added in win8. 198 */ 199 u16 reserve; 200 u8 queue_tag; 201 u8 queue_action; 202 u32 srb_flags; 203 u32 time_out_value; 204 u32 queue_sort_ey; 205 206 } __attribute((packed)); 207 208 /* 209 * The list of windows version in order of preference. 210 */ 211 212 static const int protocol_version[] = { 213 VMSTOR_PROTO_VERSION_WIN10, 214 VMSTOR_PROTO_VERSION_WIN8_1, 215 VMSTOR_PROTO_VERSION_WIN8, 216 }; 217 218 219 /* 220 * This structure is sent during the initialization phase to get the different 221 * properties of the channel. 222 */ 223 224 #define STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL 0x1 225 226 struct vmstorage_channel_properties { 227 u32 reserved; 228 u16 max_channel_cnt; 229 u16 reserved1; 230 231 u32 flags; 232 u32 max_transfer_bytes; 233 234 u64 reserved2; 235 } __packed; 236 237 /* This structure is sent during the storage protocol negotiations. */ 238 struct vmstorage_protocol_version { 239 /* Major (MSW) and minor (LSW) version numbers. */ 240 u16 major_minor; 241 242 /* 243 * Revision number is auto-incremented whenever this file is changed 244 * (See FILL_VMSTOR_REVISION macro above). Mismatch does not 245 * definitely indicate incompatibility--but it does indicate mismatched 246 * builds. 247 * This is only used on the windows side. Just set it to 0. 248 */ 249 u16 revision; 250 } __packed; 251 252 /* Channel Property Flags */ 253 #define STORAGE_CHANNEL_REMOVABLE_FLAG 0x1 254 #define STORAGE_CHANNEL_EMULATED_IDE_FLAG 0x2 255 256 struct vstor_packet { 257 /* Requested operation type */ 258 enum vstor_packet_operation operation; 259 260 /* Flags - see below for values */ 261 u32 flags; 262 263 /* Status of the request returned from the server side. */ 264 u32 status; 265 266 /* Data payload area */ 267 union { 268 /* 269 * Structure used to forward SCSI commands from the 270 * client to the server. 271 */ 272 struct vmscsi_request vm_srb; 273 274 /* Structure used to query channel properties. */ 275 struct vmstorage_channel_properties storage_channel_properties; 276 277 /* Used during version negotiations. */ 278 struct vmstorage_protocol_version version; 279 280 /* Fibre channel address packet */ 281 struct hv_fc_wwn_packet wwn_packet; 282 283 /* Number of sub-channels to create */ 284 u16 sub_channel_count; 285 286 /* This will be the maximum of the union members */ 287 u8 buffer[0x34]; 288 }; 289 } __packed; 290 291 /* 292 * Packet Flags: 293 * 294 * This flag indicates that the server should send back a completion for this 295 * packet. 296 */ 297 298 #define REQUEST_COMPLETION_FLAG 0x1 299 300 /* Matches Windows-end */ 301 enum storvsc_request_type { 302 WRITE_TYPE = 0, 303 READ_TYPE, 304 UNKNOWN_TYPE, 305 }; 306 307 /* 308 * SRB status codes and masks. In the 8-bit field, the two high order bits 309 * are flags, while the remaining 6 bits are an integer status code. The 310 * definitions here include only the subset of the integer status codes that 311 * are tested for in this driver. 312 */ 313 #define SRB_STATUS_AUTOSENSE_VALID 0x80 314 #define SRB_STATUS_QUEUE_FROZEN 0x40 315 316 /* SRB status integer codes */ 317 #define SRB_STATUS_SUCCESS 0x01 318 #define SRB_STATUS_ABORTED 0x02 319 #define SRB_STATUS_ERROR 0x04 320 #define SRB_STATUS_INVALID_REQUEST 0x06 321 #define SRB_STATUS_TIMEOUT 0x09 322 #define SRB_STATUS_SELECTION_TIMEOUT 0x0A 323 #define SRB_STATUS_BUS_RESET 0x0E 324 #define SRB_STATUS_DATA_OVERRUN 0x12 325 #define SRB_STATUS_INVALID_LUN 0x20 326 #define SRB_STATUS_INTERNAL_ERROR 0x30 327 328 #define SRB_STATUS(status) \ 329 (status & ~(SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_QUEUE_FROZEN)) 330 /* 331 * This is the end of Protocol specific defines. 332 */ 333 334 static int storvsc_ringbuffer_size = (128 * 1024); 335 static int aligned_ringbuffer_size; 336 static u32 max_outstanding_req_per_channel; 337 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth); 338 339 static int storvsc_vcpus_per_sub_channel = 4; 340 static unsigned int storvsc_max_hw_queues; 341 342 module_param(storvsc_ringbuffer_size, int, S_IRUGO); 343 MODULE_PARM_DESC(storvsc_ringbuffer_size, "Ring buffer size (bytes)"); 344 345 module_param(storvsc_max_hw_queues, uint, 0644); 346 MODULE_PARM_DESC(storvsc_max_hw_queues, "Maximum number of hardware queues"); 347 348 module_param(storvsc_vcpus_per_sub_channel, int, S_IRUGO); 349 MODULE_PARM_DESC(storvsc_vcpus_per_sub_channel, "Ratio of VCPUs to subchannels"); 350 351 static int ring_avail_percent_lowater = 10; 352 module_param(ring_avail_percent_lowater, int, S_IRUGO); 353 MODULE_PARM_DESC(ring_avail_percent_lowater, 354 "Select a channel if available ring size > this in percent"); 355 356 /* 357 * Timeout in seconds for all devices managed by this driver. 358 */ 359 static int storvsc_timeout = 180; 360 361 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 362 static struct scsi_transport_template *fc_transport_template; 363 #endif 364 365 static struct scsi_host_template scsi_driver; 366 static void storvsc_on_channel_callback(void *context); 367 368 #define STORVSC_MAX_LUNS_PER_TARGET 255 369 #define STORVSC_MAX_TARGETS 2 370 #define STORVSC_MAX_CHANNELS 8 371 372 #define STORVSC_FC_MAX_LUNS_PER_TARGET 255 373 #define STORVSC_FC_MAX_TARGETS 128 374 #define STORVSC_FC_MAX_CHANNELS 8 375 #define STORVSC_FC_MAX_XFER_SIZE ((u32)(512 * 1024)) 376 377 #define STORVSC_IDE_MAX_LUNS_PER_TARGET 64 378 #define STORVSC_IDE_MAX_TARGETS 1 379 #define STORVSC_IDE_MAX_CHANNELS 1 380 381 /* 382 * Upper bound on the size of a storvsc packet. 383 */ 384 #define STORVSC_MAX_PKT_SIZE (sizeof(struct vmpacket_descriptor) +\ 385 sizeof(struct vstor_packet)) 386 387 struct storvsc_cmd_request { 388 struct scsi_cmnd *cmd; 389 390 struct hv_device *device; 391 392 /* Synchronize the request/response if needed */ 393 struct completion wait_event; 394 395 struct vmbus_channel_packet_multipage_buffer mpb; 396 struct vmbus_packet_mpb_array *payload; 397 u32 payload_sz; 398 399 struct vstor_packet vstor_packet; 400 }; 401 402 403 /* A storvsc device is a device object that contains a vmbus channel */ 404 struct storvsc_device { 405 struct hv_device *device; 406 407 bool destroy; 408 bool drain_notify; 409 atomic_t num_outstanding_req; 410 struct Scsi_Host *host; 411 412 wait_queue_head_t waiting_to_drain; 413 414 /* 415 * Each unique Port/Path/Target represents 1 channel ie scsi 416 * controller. In reality, the pathid, targetid is always 0 417 * and the port is set by us 418 */ 419 unsigned int port_number; 420 unsigned char path_id; 421 unsigned char target_id; 422 423 /* 424 * Max I/O, the device can support. 425 */ 426 u32 max_transfer_bytes; 427 /* 428 * Number of sub-channels we will open. 429 */ 430 u16 num_sc; 431 struct vmbus_channel **stor_chns; 432 /* 433 * Mask of CPUs bound to subchannels. 434 */ 435 struct cpumask alloced_cpus; 436 /* 437 * Serializes modifications of stor_chns[] from storvsc_do_io() 438 * and storvsc_change_target_cpu(). 439 */ 440 spinlock_t lock; 441 /* Used for vsc/vsp channel reset process */ 442 struct storvsc_cmd_request init_request; 443 struct storvsc_cmd_request reset_request; 444 /* 445 * Currently active port and node names for FC devices. 446 */ 447 u64 node_name; 448 u64 port_name; 449 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 450 struct fc_rport *rport; 451 #endif 452 }; 453 454 struct hv_host_device { 455 struct hv_device *dev; 456 unsigned int port; 457 unsigned char path; 458 unsigned char target; 459 struct workqueue_struct *handle_error_wq; 460 struct work_struct host_scan_work; 461 struct Scsi_Host *host; 462 }; 463 464 struct storvsc_scan_work { 465 struct work_struct work; 466 struct Scsi_Host *host; 467 u8 lun; 468 u8 tgt_id; 469 }; 470 471 static void storvsc_device_scan(struct work_struct *work) 472 { 473 struct storvsc_scan_work *wrk; 474 struct scsi_device *sdev; 475 476 wrk = container_of(work, struct storvsc_scan_work, work); 477 478 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun); 479 if (!sdev) 480 goto done; 481 scsi_rescan_device(sdev); 482 scsi_device_put(sdev); 483 484 done: 485 kfree(wrk); 486 } 487 488 static void storvsc_host_scan(struct work_struct *work) 489 { 490 struct Scsi_Host *host; 491 struct scsi_device *sdev; 492 struct hv_host_device *host_device = 493 container_of(work, struct hv_host_device, host_scan_work); 494 495 host = host_device->host; 496 /* 497 * Before scanning the host, first check to see if any of the 498 * currently known devices have been hot removed. We issue a 499 * "unit ready" command against all currently known devices. 500 * This I/O will result in an error for devices that have been 501 * removed. As part of handling the I/O error, we remove the device. 502 * 503 * When a LUN is added or removed, the host sends us a signal to 504 * scan the host. Thus we are forced to discover the LUNs that 505 * may have been removed this way. 506 */ 507 mutex_lock(&host->scan_mutex); 508 shost_for_each_device(sdev, host) 509 scsi_test_unit_ready(sdev, 1, 1, NULL); 510 mutex_unlock(&host->scan_mutex); 511 /* 512 * Now scan the host to discover LUNs that may have been added. 513 */ 514 scsi_scan_host(host); 515 } 516 517 static void storvsc_remove_lun(struct work_struct *work) 518 { 519 struct storvsc_scan_work *wrk; 520 struct scsi_device *sdev; 521 522 wrk = container_of(work, struct storvsc_scan_work, work); 523 if (!scsi_host_get(wrk->host)) 524 goto done; 525 526 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun); 527 528 if (sdev) { 529 scsi_remove_device(sdev); 530 scsi_device_put(sdev); 531 } 532 scsi_host_put(wrk->host); 533 534 done: 535 kfree(wrk); 536 } 537 538 539 /* 540 * We can get incoming messages from the host that are not in response to 541 * messages that we have sent out. An example of this would be messages 542 * received by the guest to notify dynamic addition/removal of LUNs. To 543 * deal with potential race conditions where the driver may be in the 544 * midst of being unloaded when we might receive an unsolicited message 545 * from the host, we have implemented a mechanism to gurantee sequential 546 * consistency: 547 * 548 * 1) Once the device is marked as being destroyed, we will fail all 549 * outgoing messages. 550 * 2) We permit incoming messages when the device is being destroyed, 551 * only to properly account for messages already sent out. 552 */ 553 554 static inline struct storvsc_device *get_out_stor_device( 555 struct hv_device *device) 556 { 557 struct storvsc_device *stor_device; 558 559 stor_device = hv_get_drvdata(device); 560 561 if (stor_device && stor_device->destroy) 562 stor_device = NULL; 563 564 return stor_device; 565 } 566 567 568 static inline void storvsc_wait_to_drain(struct storvsc_device *dev) 569 { 570 dev->drain_notify = true; 571 wait_event(dev->waiting_to_drain, 572 atomic_read(&dev->num_outstanding_req) == 0); 573 dev->drain_notify = false; 574 } 575 576 static inline struct storvsc_device *get_in_stor_device( 577 struct hv_device *device) 578 { 579 struct storvsc_device *stor_device; 580 581 stor_device = hv_get_drvdata(device); 582 583 if (!stor_device) 584 goto get_in_err; 585 586 /* 587 * If the device is being destroyed; allow incoming 588 * traffic only to cleanup outstanding requests. 589 */ 590 591 if (stor_device->destroy && 592 (atomic_read(&stor_device->num_outstanding_req) == 0)) 593 stor_device = NULL; 594 595 get_in_err: 596 return stor_device; 597 598 } 599 600 static void storvsc_change_target_cpu(struct vmbus_channel *channel, u32 old, 601 u32 new) 602 { 603 struct storvsc_device *stor_device; 604 struct vmbus_channel *cur_chn; 605 bool old_is_alloced = false; 606 struct hv_device *device; 607 unsigned long flags; 608 int cpu; 609 610 device = channel->primary_channel ? 611 channel->primary_channel->device_obj 612 : channel->device_obj; 613 stor_device = get_out_stor_device(device); 614 if (!stor_device) 615 return; 616 617 /* See storvsc_do_io() -> get_og_chn(). */ 618 spin_lock_irqsave(&stor_device->lock, flags); 619 620 /* 621 * Determines if the storvsc device has other channels assigned to 622 * the "old" CPU to update the alloced_cpus mask and the stor_chns 623 * array. 624 */ 625 if (device->channel != channel && device->channel->target_cpu == old) { 626 cur_chn = device->channel; 627 old_is_alloced = true; 628 goto old_is_alloced; 629 } 630 list_for_each_entry(cur_chn, &device->channel->sc_list, sc_list) { 631 if (cur_chn == channel) 632 continue; 633 if (cur_chn->target_cpu == old) { 634 old_is_alloced = true; 635 goto old_is_alloced; 636 } 637 } 638 639 old_is_alloced: 640 if (old_is_alloced) 641 WRITE_ONCE(stor_device->stor_chns[old], cur_chn); 642 else 643 cpumask_clear_cpu(old, &stor_device->alloced_cpus); 644 645 /* "Flush" the stor_chns array. */ 646 for_each_possible_cpu(cpu) { 647 if (stor_device->stor_chns[cpu] && !cpumask_test_cpu( 648 cpu, &stor_device->alloced_cpus)) 649 WRITE_ONCE(stor_device->stor_chns[cpu], NULL); 650 } 651 652 WRITE_ONCE(stor_device->stor_chns[new], channel); 653 cpumask_set_cpu(new, &stor_device->alloced_cpus); 654 655 spin_unlock_irqrestore(&stor_device->lock, flags); 656 } 657 658 static u64 storvsc_next_request_id(struct vmbus_channel *channel, u64 rqst_addr) 659 { 660 struct storvsc_cmd_request *request = 661 (struct storvsc_cmd_request *)(unsigned long)rqst_addr; 662 663 if (rqst_addr == VMBUS_RQST_INIT) 664 return VMBUS_RQST_INIT; 665 if (rqst_addr == VMBUS_RQST_RESET) 666 return VMBUS_RQST_RESET; 667 668 /* 669 * Cannot return an ID of 0, which is reserved for an unsolicited 670 * message from Hyper-V. 671 */ 672 return (u64)blk_mq_unique_tag(scsi_cmd_to_rq(request->cmd)) + 1; 673 } 674 675 static void handle_sc_creation(struct vmbus_channel *new_sc) 676 { 677 struct hv_device *device = new_sc->primary_channel->device_obj; 678 struct device *dev = &device->device; 679 struct storvsc_device *stor_device; 680 struct vmstorage_channel_properties props; 681 int ret; 682 683 stor_device = get_out_stor_device(device); 684 if (!stor_device) 685 return; 686 687 memset(&props, 0, sizeof(struct vmstorage_channel_properties)); 688 new_sc->max_pkt_size = STORVSC_MAX_PKT_SIZE; 689 690 new_sc->next_request_id_callback = storvsc_next_request_id; 691 692 ret = vmbus_open(new_sc, 693 aligned_ringbuffer_size, 694 aligned_ringbuffer_size, 695 (void *)&props, 696 sizeof(struct vmstorage_channel_properties), 697 storvsc_on_channel_callback, new_sc); 698 699 /* In case vmbus_open() fails, we don't use the sub-channel. */ 700 if (ret != 0) { 701 dev_err(dev, "Failed to open sub-channel: err=%d\n", ret); 702 return; 703 } 704 705 new_sc->change_target_cpu_callback = storvsc_change_target_cpu; 706 707 /* Add the sub-channel to the array of available channels. */ 708 stor_device->stor_chns[new_sc->target_cpu] = new_sc; 709 cpumask_set_cpu(new_sc->target_cpu, &stor_device->alloced_cpus); 710 } 711 712 static void handle_multichannel_storage(struct hv_device *device, int max_chns) 713 { 714 struct device *dev = &device->device; 715 struct storvsc_device *stor_device; 716 int num_sc; 717 struct storvsc_cmd_request *request; 718 struct vstor_packet *vstor_packet; 719 int ret, t; 720 721 /* 722 * If the number of CPUs is artificially restricted, such as 723 * with maxcpus=1 on the kernel boot line, Hyper-V could offer 724 * sub-channels >= the number of CPUs. These sub-channels 725 * should not be created. The primary channel is already created 726 * and assigned to one CPU, so check against # CPUs - 1. 727 */ 728 num_sc = min((int)(num_online_cpus() - 1), max_chns); 729 if (!num_sc) 730 return; 731 732 stor_device = get_out_stor_device(device); 733 if (!stor_device) 734 return; 735 736 stor_device->num_sc = num_sc; 737 request = &stor_device->init_request; 738 vstor_packet = &request->vstor_packet; 739 740 /* 741 * Establish a handler for dealing with subchannels. 742 */ 743 vmbus_set_sc_create_callback(device->channel, handle_sc_creation); 744 745 /* 746 * Request the host to create sub-channels. 747 */ 748 memset(request, 0, sizeof(struct storvsc_cmd_request)); 749 init_completion(&request->wait_event); 750 vstor_packet->operation = VSTOR_OPERATION_CREATE_SUB_CHANNELS; 751 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 752 vstor_packet->sub_channel_count = num_sc; 753 754 ret = vmbus_sendpacket(device->channel, vstor_packet, 755 sizeof(struct vstor_packet), 756 VMBUS_RQST_INIT, 757 VM_PKT_DATA_INBAND, 758 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 759 760 if (ret != 0) { 761 dev_err(dev, "Failed to create sub-channel: err=%d\n", ret); 762 return; 763 } 764 765 t = wait_for_completion_timeout(&request->wait_event, 10*HZ); 766 if (t == 0) { 767 dev_err(dev, "Failed to create sub-channel: timed out\n"); 768 return; 769 } 770 771 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || 772 vstor_packet->status != 0) { 773 dev_err(dev, "Failed to create sub-channel: op=%d, sts=%d\n", 774 vstor_packet->operation, vstor_packet->status); 775 return; 776 } 777 778 /* 779 * We need to do nothing here, because vmbus_process_offer() 780 * invokes channel->sc_creation_callback, which will open and use 781 * the sub-channel(s). 782 */ 783 } 784 785 static void cache_wwn(struct storvsc_device *stor_device, 786 struct vstor_packet *vstor_packet) 787 { 788 /* 789 * Cache the currently active port and node ww names. 790 */ 791 if (vstor_packet->wwn_packet.primary_active) { 792 stor_device->node_name = 793 wwn_to_u64(vstor_packet->wwn_packet.primary_node_wwn); 794 stor_device->port_name = 795 wwn_to_u64(vstor_packet->wwn_packet.primary_port_wwn); 796 } else { 797 stor_device->node_name = 798 wwn_to_u64(vstor_packet->wwn_packet.secondary_node_wwn); 799 stor_device->port_name = 800 wwn_to_u64(vstor_packet->wwn_packet.secondary_port_wwn); 801 } 802 } 803 804 805 static int storvsc_execute_vstor_op(struct hv_device *device, 806 struct storvsc_cmd_request *request, 807 bool status_check) 808 { 809 struct storvsc_device *stor_device; 810 struct vstor_packet *vstor_packet; 811 int ret, t; 812 813 stor_device = get_out_stor_device(device); 814 if (!stor_device) 815 return -ENODEV; 816 817 vstor_packet = &request->vstor_packet; 818 819 init_completion(&request->wait_event); 820 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 821 822 ret = vmbus_sendpacket(device->channel, vstor_packet, 823 sizeof(struct vstor_packet), 824 VMBUS_RQST_INIT, 825 VM_PKT_DATA_INBAND, 826 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 827 if (ret != 0) 828 return ret; 829 830 t = wait_for_completion_timeout(&request->wait_event, 5*HZ); 831 if (t == 0) 832 return -ETIMEDOUT; 833 834 if (!status_check) 835 return ret; 836 837 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || 838 vstor_packet->status != 0) 839 return -EINVAL; 840 841 return ret; 842 } 843 844 static int storvsc_channel_init(struct hv_device *device, bool is_fc) 845 { 846 struct storvsc_device *stor_device; 847 struct storvsc_cmd_request *request; 848 struct vstor_packet *vstor_packet; 849 int ret, i; 850 int max_chns; 851 bool process_sub_channels = false; 852 853 stor_device = get_out_stor_device(device); 854 if (!stor_device) 855 return -ENODEV; 856 857 request = &stor_device->init_request; 858 vstor_packet = &request->vstor_packet; 859 860 /* 861 * Now, initiate the vsc/vsp initialization protocol on the open 862 * channel 863 */ 864 memset(request, 0, sizeof(struct storvsc_cmd_request)); 865 vstor_packet->operation = VSTOR_OPERATION_BEGIN_INITIALIZATION; 866 ret = storvsc_execute_vstor_op(device, request, true); 867 if (ret) 868 return ret; 869 /* 870 * Query host supported protocol version. 871 */ 872 873 for (i = 0; i < ARRAY_SIZE(protocol_version); i++) { 874 /* reuse the packet for version range supported */ 875 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 876 vstor_packet->operation = 877 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION; 878 879 vstor_packet->version.major_minor = protocol_version[i]; 880 881 /* 882 * The revision number is only used in Windows; set it to 0. 883 */ 884 vstor_packet->version.revision = 0; 885 ret = storvsc_execute_vstor_op(device, request, false); 886 if (ret != 0) 887 return ret; 888 889 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO) 890 return -EINVAL; 891 892 if (vstor_packet->status == 0) { 893 vmstor_proto_version = protocol_version[i]; 894 895 break; 896 } 897 } 898 899 if (vstor_packet->status != 0) { 900 dev_err(&device->device, "Obsolete Hyper-V version\n"); 901 return -EINVAL; 902 } 903 904 905 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 906 vstor_packet->operation = VSTOR_OPERATION_QUERY_PROPERTIES; 907 ret = storvsc_execute_vstor_op(device, request, true); 908 if (ret != 0) 909 return ret; 910 911 /* 912 * Check to see if multi-channel support is there. 913 * Hosts that implement protocol version of 5.1 and above 914 * support multi-channel. 915 */ 916 max_chns = vstor_packet->storage_channel_properties.max_channel_cnt; 917 918 /* 919 * Allocate state to manage the sub-channels. 920 * We allocate an array based on the numbers of possible CPUs 921 * (Hyper-V does not support cpu online/offline). 922 * This Array will be sparseley populated with unique 923 * channels - primary + sub-channels. 924 * We will however populate all the slots to evenly distribute 925 * the load. 926 */ 927 stor_device->stor_chns = kcalloc(num_possible_cpus(), sizeof(void *), 928 GFP_KERNEL); 929 if (stor_device->stor_chns == NULL) 930 return -ENOMEM; 931 932 device->channel->change_target_cpu_callback = storvsc_change_target_cpu; 933 934 stor_device->stor_chns[device->channel->target_cpu] = device->channel; 935 cpumask_set_cpu(device->channel->target_cpu, 936 &stor_device->alloced_cpus); 937 938 if (vstor_packet->storage_channel_properties.flags & 939 STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL) 940 process_sub_channels = true; 941 942 stor_device->max_transfer_bytes = 943 vstor_packet->storage_channel_properties.max_transfer_bytes; 944 945 if (!is_fc) 946 goto done; 947 948 /* 949 * For FC devices retrieve FC HBA data. 950 */ 951 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 952 vstor_packet->operation = VSTOR_OPERATION_FCHBA_DATA; 953 ret = storvsc_execute_vstor_op(device, request, true); 954 if (ret != 0) 955 return ret; 956 957 /* 958 * Cache the currently active port and node ww names. 959 */ 960 cache_wwn(stor_device, vstor_packet); 961 962 done: 963 964 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 965 vstor_packet->operation = VSTOR_OPERATION_END_INITIALIZATION; 966 ret = storvsc_execute_vstor_op(device, request, true); 967 if (ret != 0) 968 return ret; 969 970 if (process_sub_channels) 971 handle_multichannel_storage(device, max_chns); 972 973 return ret; 974 } 975 976 static void storvsc_handle_error(struct vmscsi_request *vm_srb, 977 struct scsi_cmnd *scmnd, 978 struct Scsi_Host *host, 979 u8 asc, u8 ascq) 980 { 981 struct storvsc_scan_work *wrk; 982 void (*process_err_fn)(struct work_struct *work); 983 struct hv_host_device *host_dev = shost_priv(host); 984 985 switch (SRB_STATUS(vm_srb->srb_status)) { 986 case SRB_STATUS_ERROR: 987 case SRB_STATUS_ABORTED: 988 case SRB_STATUS_INVALID_REQUEST: 989 case SRB_STATUS_INTERNAL_ERROR: 990 case SRB_STATUS_TIMEOUT: 991 case SRB_STATUS_SELECTION_TIMEOUT: 992 case SRB_STATUS_BUS_RESET: 993 case SRB_STATUS_DATA_OVERRUN: 994 if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID) { 995 /* Check for capacity change */ 996 if ((asc == 0x2a) && (ascq == 0x9)) { 997 process_err_fn = storvsc_device_scan; 998 /* Retry the I/O that triggered this. */ 999 set_host_byte(scmnd, DID_REQUEUE); 1000 goto do_work; 1001 } 1002 1003 /* 1004 * Check for "Operating parameters have changed" 1005 * due to Hyper-V changing the VHD/VHDX BlockSize 1006 * when adding/removing a differencing disk. This 1007 * causes discard_granularity to change, so do a 1008 * rescan to pick up the new granularity. We don't 1009 * want scsi_report_sense() to output a message 1010 * that a sysadmin wouldn't know what to do with. 1011 */ 1012 if ((asc == 0x3f) && (ascq != 0x03) && 1013 (ascq != 0x0e)) { 1014 process_err_fn = storvsc_device_scan; 1015 set_host_byte(scmnd, DID_REQUEUE); 1016 goto do_work; 1017 } 1018 1019 /* 1020 * Otherwise, let upper layer deal with the 1021 * error when sense message is present 1022 */ 1023 return; 1024 } 1025 1026 /* 1027 * If there is an error; offline the device since all 1028 * error recovery strategies would have already been 1029 * deployed on the host side. However, if the command 1030 * were a pass-through command deal with it appropriately. 1031 */ 1032 switch (scmnd->cmnd[0]) { 1033 case ATA_16: 1034 case ATA_12: 1035 set_host_byte(scmnd, DID_PASSTHROUGH); 1036 break; 1037 /* 1038 * On some Hyper-V hosts TEST_UNIT_READY command can 1039 * return SRB_STATUS_ERROR. Let the upper level code 1040 * deal with it based on the sense information. 1041 */ 1042 case TEST_UNIT_READY: 1043 break; 1044 default: 1045 set_host_byte(scmnd, DID_ERROR); 1046 } 1047 return; 1048 1049 case SRB_STATUS_INVALID_LUN: 1050 set_host_byte(scmnd, DID_NO_CONNECT); 1051 process_err_fn = storvsc_remove_lun; 1052 goto do_work; 1053 1054 } 1055 return; 1056 1057 do_work: 1058 /* 1059 * We need to schedule work to process this error; schedule it. 1060 */ 1061 wrk = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC); 1062 if (!wrk) { 1063 set_host_byte(scmnd, DID_BAD_TARGET); 1064 return; 1065 } 1066 1067 wrk->host = host; 1068 wrk->lun = vm_srb->lun; 1069 wrk->tgt_id = vm_srb->target_id; 1070 INIT_WORK(&wrk->work, process_err_fn); 1071 queue_work(host_dev->handle_error_wq, &wrk->work); 1072 } 1073 1074 1075 static void storvsc_command_completion(struct storvsc_cmd_request *cmd_request, 1076 struct storvsc_device *stor_dev) 1077 { 1078 struct scsi_cmnd *scmnd = cmd_request->cmd; 1079 struct scsi_sense_hdr sense_hdr; 1080 struct vmscsi_request *vm_srb; 1081 u32 data_transfer_length; 1082 struct Scsi_Host *host; 1083 u32 payload_sz = cmd_request->payload_sz; 1084 void *payload = cmd_request->payload; 1085 bool sense_ok; 1086 1087 host = stor_dev->host; 1088 1089 vm_srb = &cmd_request->vstor_packet.vm_srb; 1090 data_transfer_length = vm_srb->data_transfer_length; 1091 1092 scmnd->result = vm_srb->scsi_status; 1093 1094 if (scmnd->result) { 1095 sense_ok = scsi_normalize_sense(scmnd->sense_buffer, 1096 SCSI_SENSE_BUFFERSIZE, &sense_hdr); 1097 1098 if (sense_ok && do_logging(STORVSC_LOGGING_WARN)) 1099 scsi_print_sense_hdr(scmnd->device, "storvsc", 1100 &sense_hdr); 1101 } 1102 1103 if (vm_srb->srb_status != SRB_STATUS_SUCCESS) { 1104 storvsc_handle_error(vm_srb, scmnd, host, sense_hdr.asc, 1105 sense_hdr.ascq); 1106 /* 1107 * The Windows driver set data_transfer_length on 1108 * SRB_STATUS_DATA_OVERRUN. On other errors, this value 1109 * is untouched. In these cases we set it to 0. 1110 */ 1111 if (vm_srb->srb_status != SRB_STATUS_DATA_OVERRUN) 1112 data_transfer_length = 0; 1113 } 1114 1115 /* Validate data_transfer_length (from Hyper-V) */ 1116 if (data_transfer_length > cmd_request->payload->range.len) 1117 data_transfer_length = cmd_request->payload->range.len; 1118 1119 scsi_set_resid(scmnd, 1120 cmd_request->payload->range.len - data_transfer_length); 1121 1122 scsi_done(scmnd); 1123 1124 if (payload_sz > 1125 sizeof(struct vmbus_channel_packet_multipage_buffer)) 1126 kfree(payload); 1127 } 1128 1129 static void storvsc_on_io_completion(struct storvsc_device *stor_device, 1130 struct vstor_packet *vstor_packet, 1131 struct storvsc_cmd_request *request) 1132 { 1133 struct vstor_packet *stor_pkt; 1134 struct hv_device *device = stor_device->device; 1135 1136 stor_pkt = &request->vstor_packet; 1137 1138 /* 1139 * The current SCSI handling on the host side does 1140 * not correctly handle: 1141 * INQUIRY command with page code parameter set to 0x80 1142 * MODE_SENSE command with cmd[2] == 0x1c 1143 * MAINTENANCE_IN is not supported by HyperV FC passthrough 1144 * 1145 * Setup srb and scsi status so this won't be fatal. 1146 * We do this so we can distinguish truly fatal failues 1147 * (srb status == 0x4) and off-line the device in that case. 1148 */ 1149 1150 if ((stor_pkt->vm_srb.cdb[0] == INQUIRY) || 1151 (stor_pkt->vm_srb.cdb[0] == MODE_SENSE) || 1152 (stor_pkt->vm_srb.cdb[0] == MAINTENANCE_IN && 1153 hv_dev_is_fc(device))) { 1154 vstor_packet->vm_srb.scsi_status = 0; 1155 vstor_packet->vm_srb.srb_status = SRB_STATUS_SUCCESS; 1156 } 1157 1158 /* Copy over the status...etc */ 1159 stor_pkt->vm_srb.scsi_status = vstor_packet->vm_srb.scsi_status; 1160 stor_pkt->vm_srb.srb_status = vstor_packet->vm_srb.srb_status; 1161 1162 /* 1163 * Copy over the sense_info_length, but limit to the known max 1164 * size if Hyper-V returns a bad value. 1165 */ 1166 stor_pkt->vm_srb.sense_info_length = min_t(u8, STORVSC_SENSE_BUFFER_SIZE, 1167 vstor_packet->vm_srb.sense_info_length); 1168 1169 if (vstor_packet->vm_srb.scsi_status != 0 || 1170 vstor_packet->vm_srb.srb_status != SRB_STATUS_SUCCESS) { 1171 1172 /* 1173 * Log TEST_UNIT_READY errors only as warnings. Hyper-V can 1174 * return errors when detecting devices using TEST_UNIT_READY, 1175 * and logging these as errors produces unhelpful noise. 1176 */ 1177 int loglevel = (stor_pkt->vm_srb.cdb[0] == TEST_UNIT_READY) ? 1178 STORVSC_LOGGING_WARN : STORVSC_LOGGING_ERROR; 1179 1180 storvsc_log(device, loglevel, 1181 "tag#%d cmd 0x%x status: scsi 0x%x srb 0x%x hv 0x%x\n", 1182 scsi_cmd_to_rq(request->cmd)->tag, 1183 stor_pkt->vm_srb.cdb[0], 1184 vstor_packet->vm_srb.scsi_status, 1185 vstor_packet->vm_srb.srb_status, 1186 vstor_packet->status); 1187 } 1188 1189 if (vstor_packet->vm_srb.scsi_status == SAM_STAT_CHECK_CONDITION && 1190 (vstor_packet->vm_srb.srb_status & SRB_STATUS_AUTOSENSE_VALID)) 1191 memcpy(request->cmd->sense_buffer, 1192 vstor_packet->vm_srb.sense_data, 1193 stor_pkt->vm_srb.sense_info_length); 1194 1195 stor_pkt->vm_srb.data_transfer_length = 1196 vstor_packet->vm_srb.data_transfer_length; 1197 1198 storvsc_command_completion(request, stor_device); 1199 1200 if (atomic_dec_and_test(&stor_device->num_outstanding_req) && 1201 stor_device->drain_notify) 1202 wake_up(&stor_device->waiting_to_drain); 1203 } 1204 1205 static void storvsc_on_receive(struct storvsc_device *stor_device, 1206 struct vstor_packet *vstor_packet, 1207 struct storvsc_cmd_request *request) 1208 { 1209 struct hv_host_device *host_dev; 1210 switch (vstor_packet->operation) { 1211 case VSTOR_OPERATION_COMPLETE_IO: 1212 storvsc_on_io_completion(stor_device, vstor_packet, request); 1213 break; 1214 1215 case VSTOR_OPERATION_REMOVE_DEVICE: 1216 case VSTOR_OPERATION_ENUMERATE_BUS: 1217 host_dev = shost_priv(stor_device->host); 1218 queue_work( 1219 host_dev->handle_error_wq, &host_dev->host_scan_work); 1220 break; 1221 1222 case VSTOR_OPERATION_FCHBA_DATA: 1223 cache_wwn(stor_device, vstor_packet); 1224 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1225 fc_host_node_name(stor_device->host) = stor_device->node_name; 1226 fc_host_port_name(stor_device->host) = stor_device->port_name; 1227 #endif 1228 break; 1229 default: 1230 break; 1231 } 1232 } 1233 1234 static void storvsc_on_channel_callback(void *context) 1235 { 1236 struct vmbus_channel *channel = (struct vmbus_channel *)context; 1237 const struct vmpacket_descriptor *desc; 1238 struct hv_device *device; 1239 struct storvsc_device *stor_device; 1240 struct Scsi_Host *shost; 1241 unsigned long time_limit = jiffies + msecs_to_jiffies(CALLBACK_TIMEOUT); 1242 1243 if (channel->primary_channel != NULL) 1244 device = channel->primary_channel->device_obj; 1245 else 1246 device = channel->device_obj; 1247 1248 stor_device = get_in_stor_device(device); 1249 if (!stor_device) 1250 return; 1251 1252 shost = stor_device->host; 1253 1254 foreach_vmbus_pkt(desc, channel) { 1255 struct vstor_packet *packet = hv_pkt_data(desc); 1256 struct storvsc_cmd_request *request = NULL; 1257 u32 pktlen = hv_pkt_datalen(desc); 1258 u64 rqst_id = desc->trans_id; 1259 u32 minlen = rqst_id ? sizeof(struct vstor_packet) : 1260 sizeof(enum vstor_packet_operation); 1261 1262 if (unlikely(time_after(jiffies, time_limit))) { 1263 hv_pkt_iter_close(channel); 1264 return; 1265 } 1266 1267 if (pktlen < minlen) { 1268 dev_err(&device->device, 1269 "Invalid pkt: id=%llu, len=%u, minlen=%u\n", 1270 rqst_id, pktlen, minlen); 1271 continue; 1272 } 1273 1274 if (rqst_id == VMBUS_RQST_INIT) { 1275 request = &stor_device->init_request; 1276 } else if (rqst_id == VMBUS_RQST_RESET) { 1277 request = &stor_device->reset_request; 1278 } else { 1279 /* Hyper-V can send an unsolicited message with ID of 0 */ 1280 if (rqst_id == 0) { 1281 /* 1282 * storvsc_on_receive() looks at the vstor_packet in the message 1283 * from the ring buffer. 1284 * 1285 * - If the operation in the vstor_packet is COMPLETE_IO, then 1286 * we call storvsc_on_io_completion(), and dereference the 1287 * guest memory address. Make sure we don't call 1288 * storvsc_on_io_completion() with a guest memory address 1289 * that is zero if Hyper-V were to construct and send such 1290 * a bogus packet. 1291 * 1292 * - If the operation in the vstor_packet is FCHBA_DATA, then 1293 * we call cache_wwn(), and access the data payload area of 1294 * the packet (wwn_packet); however, there is no guarantee 1295 * that the packet is big enough to contain such area. 1296 * Future-proof the code by rejecting such a bogus packet. 1297 */ 1298 if (packet->operation == VSTOR_OPERATION_COMPLETE_IO || 1299 packet->operation == VSTOR_OPERATION_FCHBA_DATA) { 1300 dev_err(&device->device, "Invalid packet with ID of 0\n"); 1301 continue; 1302 } 1303 } else { 1304 struct scsi_cmnd *scmnd; 1305 1306 /* Transaction 'rqst_id' corresponds to tag 'rqst_id - 1' */ 1307 scmnd = scsi_host_find_tag(shost, rqst_id - 1); 1308 if (scmnd == NULL) { 1309 dev_err(&device->device, "Incorrect transaction ID\n"); 1310 continue; 1311 } 1312 request = (struct storvsc_cmd_request *)scsi_cmd_priv(scmnd); 1313 scsi_dma_unmap(scmnd); 1314 } 1315 1316 storvsc_on_receive(stor_device, packet, request); 1317 continue; 1318 } 1319 1320 memcpy(&request->vstor_packet, packet, 1321 sizeof(struct vstor_packet)); 1322 complete(&request->wait_event); 1323 } 1324 } 1325 1326 static int storvsc_connect_to_vsp(struct hv_device *device, u32 ring_size, 1327 bool is_fc) 1328 { 1329 struct vmstorage_channel_properties props; 1330 int ret; 1331 1332 memset(&props, 0, sizeof(struct vmstorage_channel_properties)); 1333 1334 device->channel->max_pkt_size = STORVSC_MAX_PKT_SIZE; 1335 device->channel->next_request_id_callback = storvsc_next_request_id; 1336 1337 ret = vmbus_open(device->channel, 1338 ring_size, 1339 ring_size, 1340 (void *)&props, 1341 sizeof(struct vmstorage_channel_properties), 1342 storvsc_on_channel_callback, device->channel); 1343 1344 if (ret != 0) 1345 return ret; 1346 1347 ret = storvsc_channel_init(device, is_fc); 1348 1349 return ret; 1350 } 1351 1352 static int storvsc_dev_remove(struct hv_device *device) 1353 { 1354 struct storvsc_device *stor_device; 1355 1356 stor_device = hv_get_drvdata(device); 1357 1358 stor_device->destroy = true; 1359 1360 /* Make sure flag is set before waiting */ 1361 wmb(); 1362 1363 /* 1364 * At this point, all outbound traffic should be disable. We 1365 * only allow inbound traffic (responses) to proceed so that 1366 * outstanding requests can be completed. 1367 */ 1368 1369 storvsc_wait_to_drain(stor_device); 1370 1371 /* 1372 * Since we have already drained, we don't need to busy wait 1373 * as was done in final_release_stor_device() 1374 * Note that we cannot set the ext pointer to NULL until 1375 * we have drained - to drain the outgoing packets, we need to 1376 * allow incoming packets. 1377 */ 1378 hv_set_drvdata(device, NULL); 1379 1380 /* Close the channel */ 1381 vmbus_close(device->channel); 1382 1383 kfree(stor_device->stor_chns); 1384 kfree(stor_device); 1385 return 0; 1386 } 1387 1388 static struct vmbus_channel *get_og_chn(struct storvsc_device *stor_device, 1389 u16 q_num) 1390 { 1391 u16 slot = 0; 1392 u16 hash_qnum; 1393 const struct cpumask *node_mask; 1394 int num_channels, tgt_cpu; 1395 1396 if (stor_device->num_sc == 0) { 1397 stor_device->stor_chns[q_num] = stor_device->device->channel; 1398 return stor_device->device->channel; 1399 } 1400 1401 /* 1402 * Our channel array is sparsley populated and we 1403 * initiated I/O on a processor/hw-q that does not 1404 * currently have a designated channel. Fix this. 1405 * The strategy is simple: 1406 * I. Ensure NUMA locality 1407 * II. Distribute evenly (best effort) 1408 */ 1409 1410 node_mask = cpumask_of_node(cpu_to_node(q_num)); 1411 1412 num_channels = 0; 1413 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1414 if (cpumask_test_cpu(tgt_cpu, node_mask)) 1415 num_channels++; 1416 } 1417 if (num_channels == 0) { 1418 stor_device->stor_chns[q_num] = stor_device->device->channel; 1419 return stor_device->device->channel; 1420 } 1421 1422 hash_qnum = q_num; 1423 while (hash_qnum >= num_channels) 1424 hash_qnum -= num_channels; 1425 1426 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1427 if (!cpumask_test_cpu(tgt_cpu, node_mask)) 1428 continue; 1429 if (slot == hash_qnum) 1430 break; 1431 slot++; 1432 } 1433 1434 stor_device->stor_chns[q_num] = stor_device->stor_chns[tgt_cpu]; 1435 1436 return stor_device->stor_chns[q_num]; 1437 } 1438 1439 1440 static int storvsc_do_io(struct hv_device *device, 1441 struct storvsc_cmd_request *request, u16 q_num) 1442 { 1443 struct storvsc_device *stor_device; 1444 struct vstor_packet *vstor_packet; 1445 struct vmbus_channel *outgoing_channel, *channel; 1446 unsigned long flags; 1447 int ret = 0; 1448 const struct cpumask *node_mask; 1449 int tgt_cpu; 1450 1451 vstor_packet = &request->vstor_packet; 1452 stor_device = get_out_stor_device(device); 1453 1454 if (!stor_device) 1455 return -ENODEV; 1456 1457 1458 request->device = device; 1459 /* 1460 * Select an appropriate channel to send the request out. 1461 */ 1462 /* See storvsc_change_target_cpu(). */ 1463 outgoing_channel = READ_ONCE(stor_device->stor_chns[q_num]); 1464 if (outgoing_channel != NULL) { 1465 if (outgoing_channel->target_cpu == q_num) { 1466 /* 1467 * Ideally, we want to pick a different channel if 1468 * available on the same NUMA node. 1469 */ 1470 node_mask = cpumask_of_node(cpu_to_node(q_num)); 1471 for_each_cpu_wrap(tgt_cpu, 1472 &stor_device->alloced_cpus, q_num + 1) { 1473 if (!cpumask_test_cpu(tgt_cpu, node_mask)) 1474 continue; 1475 if (tgt_cpu == q_num) 1476 continue; 1477 channel = READ_ONCE( 1478 stor_device->stor_chns[tgt_cpu]); 1479 if (channel == NULL) 1480 continue; 1481 if (hv_get_avail_to_write_percent( 1482 &channel->outbound) 1483 > ring_avail_percent_lowater) { 1484 outgoing_channel = channel; 1485 goto found_channel; 1486 } 1487 } 1488 1489 /* 1490 * All the other channels on the same NUMA node are 1491 * busy. Try to use the channel on the current CPU 1492 */ 1493 if (hv_get_avail_to_write_percent( 1494 &outgoing_channel->outbound) 1495 > ring_avail_percent_lowater) 1496 goto found_channel; 1497 1498 /* 1499 * If we reach here, all the channels on the current 1500 * NUMA node are busy. Try to find a channel in 1501 * other NUMA nodes 1502 */ 1503 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1504 if (cpumask_test_cpu(tgt_cpu, node_mask)) 1505 continue; 1506 channel = READ_ONCE( 1507 stor_device->stor_chns[tgt_cpu]); 1508 if (channel == NULL) 1509 continue; 1510 if (hv_get_avail_to_write_percent( 1511 &channel->outbound) 1512 > ring_avail_percent_lowater) { 1513 outgoing_channel = channel; 1514 goto found_channel; 1515 } 1516 } 1517 } 1518 } else { 1519 spin_lock_irqsave(&stor_device->lock, flags); 1520 outgoing_channel = stor_device->stor_chns[q_num]; 1521 if (outgoing_channel != NULL) { 1522 spin_unlock_irqrestore(&stor_device->lock, flags); 1523 goto found_channel; 1524 } 1525 outgoing_channel = get_og_chn(stor_device, q_num); 1526 spin_unlock_irqrestore(&stor_device->lock, flags); 1527 } 1528 1529 found_channel: 1530 vstor_packet->flags |= REQUEST_COMPLETION_FLAG; 1531 1532 vstor_packet->vm_srb.length = sizeof(struct vmscsi_request); 1533 1534 1535 vstor_packet->vm_srb.sense_info_length = STORVSC_SENSE_BUFFER_SIZE; 1536 1537 1538 vstor_packet->vm_srb.data_transfer_length = 1539 request->payload->range.len; 1540 1541 vstor_packet->operation = VSTOR_OPERATION_EXECUTE_SRB; 1542 1543 if (request->payload->range.len) { 1544 1545 ret = vmbus_sendpacket_mpb_desc(outgoing_channel, 1546 request->payload, request->payload_sz, 1547 vstor_packet, 1548 sizeof(struct vstor_packet), 1549 (unsigned long)request); 1550 } else { 1551 ret = vmbus_sendpacket(outgoing_channel, vstor_packet, 1552 sizeof(struct vstor_packet), 1553 (unsigned long)request, 1554 VM_PKT_DATA_INBAND, 1555 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1556 } 1557 1558 if (ret != 0) 1559 return ret; 1560 1561 atomic_inc(&stor_device->num_outstanding_req); 1562 1563 return ret; 1564 } 1565 1566 static int storvsc_device_alloc(struct scsi_device *sdevice) 1567 { 1568 /* 1569 * Set blist flag to permit the reading of the VPD pages even when 1570 * the target may claim SPC-2 compliance. MSFT targets currently 1571 * claim SPC-2 compliance while they implement post SPC-2 features. 1572 * With this flag we can correctly handle WRITE_SAME_16 issues. 1573 * 1574 * Hypervisor reports SCSI_UNKNOWN type for DVD ROM device but 1575 * still supports REPORT LUN. 1576 */ 1577 sdevice->sdev_bflags = BLIST_REPORTLUN2 | BLIST_TRY_VPD_PAGES; 1578 1579 return 0; 1580 } 1581 1582 static int storvsc_device_configure(struct scsi_device *sdevice) 1583 { 1584 blk_queue_rq_timeout(sdevice->request_queue, (storvsc_timeout * HZ)); 1585 1586 /* storvsc devices don't support MAINTENANCE_IN SCSI cmd */ 1587 sdevice->no_report_opcodes = 1; 1588 sdevice->no_write_same = 1; 1589 1590 /* 1591 * If the host is WIN8 or WIN8 R2, claim conformance to SPC-3 1592 * if the device is a MSFT virtual device. If the host is 1593 * WIN10 or newer, allow write_same. 1594 */ 1595 if (!strncmp(sdevice->vendor, "Msft", 4)) { 1596 switch (vmstor_proto_version) { 1597 case VMSTOR_PROTO_VERSION_WIN8: 1598 case VMSTOR_PROTO_VERSION_WIN8_1: 1599 sdevice->scsi_level = SCSI_SPC_3; 1600 break; 1601 } 1602 1603 if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN10) 1604 sdevice->no_write_same = 0; 1605 } 1606 1607 return 0; 1608 } 1609 1610 static int storvsc_get_chs(struct scsi_device *sdev, struct block_device * bdev, 1611 sector_t capacity, int *info) 1612 { 1613 sector_t nsect = capacity; 1614 sector_t cylinders = nsect; 1615 int heads, sectors_pt; 1616 1617 /* 1618 * We are making up these values; let us keep it simple. 1619 */ 1620 heads = 0xff; 1621 sectors_pt = 0x3f; /* Sectors per track */ 1622 sector_div(cylinders, heads * sectors_pt); 1623 if ((sector_t)(cylinders + 1) * heads * sectors_pt < nsect) 1624 cylinders = 0xffff; 1625 1626 info[0] = heads; 1627 info[1] = sectors_pt; 1628 info[2] = (int)cylinders; 1629 1630 return 0; 1631 } 1632 1633 static int storvsc_host_reset_handler(struct scsi_cmnd *scmnd) 1634 { 1635 struct hv_host_device *host_dev = shost_priv(scmnd->device->host); 1636 struct hv_device *device = host_dev->dev; 1637 1638 struct storvsc_device *stor_device; 1639 struct storvsc_cmd_request *request; 1640 struct vstor_packet *vstor_packet; 1641 int ret, t; 1642 1643 stor_device = get_out_stor_device(device); 1644 if (!stor_device) 1645 return FAILED; 1646 1647 request = &stor_device->reset_request; 1648 vstor_packet = &request->vstor_packet; 1649 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 1650 1651 init_completion(&request->wait_event); 1652 1653 vstor_packet->operation = VSTOR_OPERATION_RESET_BUS; 1654 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 1655 vstor_packet->vm_srb.path_id = stor_device->path_id; 1656 1657 ret = vmbus_sendpacket(device->channel, vstor_packet, 1658 sizeof(struct vstor_packet), 1659 VMBUS_RQST_RESET, 1660 VM_PKT_DATA_INBAND, 1661 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1662 if (ret != 0) 1663 return FAILED; 1664 1665 t = wait_for_completion_timeout(&request->wait_event, 5*HZ); 1666 if (t == 0) 1667 return TIMEOUT_ERROR; 1668 1669 1670 /* 1671 * At this point, all outstanding requests in the adapter 1672 * should have been flushed out and return to us 1673 * There is a potential race here where the host may be in 1674 * the process of responding when we return from here. 1675 * Just wait for all in-transit packets to be accounted for 1676 * before we return from here. 1677 */ 1678 storvsc_wait_to_drain(stor_device); 1679 1680 return SUCCESS; 1681 } 1682 1683 /* 1684 * The host guarantees to respond to each command, although I/O latencies might 1685 * be unbounded on Azure. Reset the timer unconditionally to give the host a 1686 * chance to perform EH. 1687 */ 1688 static enum scsi_timeout_action storvsc_eh_timed_out(struct scsi_cmnd *scmnd) 1689 { 1690 return SCSI_EH_RESET_TIMER; 1691 } 1692 1693 static bool storvsc_scsi_cmd_ok(struct scsi_cmnd *scmnd) 1694 { 1695 bool allowed = true; 1696 u8 scsi_op = scmnd->cmnd[0]; 1697 1698 switch (scsi_op) { 1699 /* the host does not handle WRITE_SAME, log accident usage */ 1700 case WRITE_SAME: 1701 /* 1702 * smartd sends this command and the host does not handle 1703 * this. So, don't send it. 1704 */ 1705 case SET_WINDOW: 1706 set_host_byte(scmnd, DID_ERROR); 1707 allowed = false; 1708 break; 1709 default: 1710 break; 1711 } 1712 return allowed; 1713 } 1714 1715 static int storvsc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scmnd) 1716 { 1717 int ret; 1718 struct hv_host_device *host_dev = shost_priv(host); 1719 struct hv_device *dev = host_dev->dev; 1720 struct storvsc_cmd_request *cmd_request = scsi_cmd_priv(scmnd); 1721 struct scatterlist *sgl; 1722 struct vmscsi_request *vm_srb; 1723 struct vmbus_packet_mpb_array *payload; 1724 u32 payload_sz; 1725 u32 length; 1726 1727 if (vmstor_proto_version <= VMSTOR_PROTO_VERSION_WIN8) { 1728 /* 1729 * On legacy hosts filter unimplemented commands. 1730 * Future hosts are expected to correctly handle 1731 * unsupported commands. Furthermore, it is 1732 * possible that some of the currently 1733 * unsupported commands maybe supported in 1734 * future versions of the host. 1735 */ 1736 if (!storvsc_scsi_cmd_ok(scmnd)) { 1737 scsi_done(scmnd); 1738 return 0; 1739 } 1740 } 1741 1742 /* Setup the cmd request */ 1743 cmd_request->cmd = scmnd; 1744 1745 memset(&cmd_request->vstor_packet, 0, sizeof(struct vstor_packet)); 1746 vm_srb = &cmd_request->vstor_packet.vm_srb; 1747 vm_srb->time_out_value = 60; 1748 1749 vm_srb->srb_flags |= 1750 SRB_FLAGS_DISABLE_SYNCH_TRANSFER; 1751 1752 if (scmnd->device->tagged_supported) { 1753 vm_srb->srb_flags |= 1754 (SRB_FLAGS_QUEUE_ACTION_ENABLE | SRB_FLAGS_NO_QUEUE_FREEZE); 1755 vm_srb->queue_tag = SP_UNTAGGED; 1756 vm_srb->queue_action = SRB_SIMPLE_TAG_REQUEST; 1757 } 1758 1759 /* Build the SRB */ 1760 switch (scmnd->sc_data_direction) { 1761 case DMA_TO_DEVICE: 1762 vm_srb->data_in = WRITE_TYPE; 1763 vm_srb->srb_flags |= SRB_FLAGS_DATA_OUT; 1764 break; 1765 case DMA_FROM_DEVICE: 1766 vm_srb->data_in = READ_TYPE; 1767 vm_srb->srb_flags |= SRB_FLAGS_DATA_IN; 1768 break; 1769 case DMA_NONE: 1770 vm_srb->data_in = UNKNOWN_TYPE; 1771 vm_srb->srb_flags |= SRB_FLAGS_NO_DATA_TRANSFER; 1772 break; 1773 default: 1774 /* 1775 * This is DMA_BIDIRECTIONAL or something else we are never 1776 * supposed to see here. 1777 */ 1778 WARN(1, "Unexpected data direction: %d\n", 1779 scmnd->sc_data_direction); 1780 return -EINVAL; 1781 } 1782 1783 1784 vm_srb->port_number = host_dev->port; 1785 vm_srb->path_id = scmnd->device->channel; 1786 vm_srb->target_id = scmnd->device->id; 1787 vm_srb->lun = scmnd->device->lun; 1788 1789 vm_srb->cdb_length = scmnd->cmd_len; 1790 1791 memcpy(vm_srb->cdb, scmnd->cmnd, vm_srb->cdb_length); 1792 1793 sgl = (struct scatterlist *)scsi_sglist(scmnd); 1794 1795 length = scsi_bufflen(scmnd); 1796 payload = (struct vmbus_packet_mpb_array *)&cmd_request->mpb; 1797 payload_sz = 0; 1798 1799 if (scsi_sg_count(scmnd)) { 1800 unsigned long offset_in_hvpg = offset_in_hvpage(sgl->offset); 1801 unsigned int hvpg_count = HVPFN_UP(offset_in_hvpg + length); 1802 struct scatterlist *sg; 1803 unsigned long hvpfn, hvpfns_to_add; 1804 int j, i = 0, sg_count; 1805 1806 payload_sz = (hvpg_count * sizeof(u64) + 1807 sizeof(struct vmbus_packet_mpb_array)); 1808 1809 if (hvpg_count > MAX_PAGE_BUFFER_COUNT) { 1810 payload = kzalloc(payload_sz, GFP_ATOMIC); 1811 if (!payload) 1812 return SCSI_MLQUEUE_DEVICE_BUSY; 1813 } 1814 1815 payload->range.len = length; 1816 payload->range.offset = offset_in_hvpg; 1817 1818 sg_count = scsi_dma_map(scmnd); 1819 if (sg_count < 0) { 1820 ret = SCSI_MLQUEUE_DEVICE_BUSY; 1821 goto err_free_payload; 1822 } 1823 1824 for_each_sg(sgl, sg, sg_count, j) { 1825 /* 1826 * Init values for the current sgl entry. hvpfns_to_add 1827 * is in units of Hyper-V size pages. Handling the 1828 * PAGE_SIZE != HV_HYP_PAGE_SIZE case also handles 1829 * values of sgl->offset that are larger than PAGE_SIZE. 1830 * Such offsets are handled even on other than the first 1831 * sgl entry, provided they are a multiple of PAGE_SIZE. 1832 */ 1833 hvpfn = HVPFN_DOWN(sg_dma_address(sg)); 1834 hvpfns_to_add = HVPFN_UP(sg_dma_address(sg) + 1835 sg_dma_len(sg)) - hvpfn; 1836 1837 /* 1838 * Fill the next portion of the PFN array with 1839 * sequential Hyper-V PFNs for the continguous physical 1840 * memory described by the sgl entry. The end of the 1841 * last sgl should be reached at the same time that 1842 * the PFN array is filled. 1843 */ 1844 while (hvpfns_to_add--) 1845 payload->range.pfn_array[i++] = hvpfn++; 1846 } 1847 } 1848 1849 cmd_request->payload = payload; 1850 cmd_request->payload_sz = payload_sz; 1851 1852 /* Invokes the vsc to start an IO */ 1853 ret = storvsc_do_io(dev, cmd_request, get_cpu()); 1854 put_cpu(); 1855 1856 if (ret) 1857 scsi_dma_unmap(scmnd); 1858 1859 if (ret == -EAGAIN) { 1860 /* no more space */ 1861 ret = SCSI_MLQUEUE_DEVICE_BUSY; 1862 goto err_free_payload; 1863 } 1864 1865 return 0; 1866 1867 err_free_payload: 1868 if (payload_sz > sizeof(cmd_request->mpb)) 1869 kfree(payload); 1870 1871 return ret; 1872 } 1873 1874 static struct scsi_host_template scsi_driver = { 1875 .module = THIS_MODULE, 1876 .name = "storvsc_host_t", 1877 .cmd_size = sizeof(struct storvsc_cmd_request), 1878 .bios_param = storvsc_get_chs, 1879 .queuecommand = storvsc_queuecommand, 1880 .eh_host_reset_handler = storvsc_host_reset_handler, 1881 .proc_name = "storvsc_host", 1882 .eh_timed_out = storvsc_eh_timed_out, 1883 .slave_alloc = storvsc_device_alloc, 1884 .slave_configure = storvsc_device_configure, 1885 .cmd_per_lun = 2048, 1886 .this_id = -1, 1887 /* Ensure there are no gaps in presented sgls */ 1888 .virt_boundary_mask = HV_HYP_PAGE_SIZE - 1, 1889 .no_write_same = 1, 1890 .track_queue_depth = 1, 1891 .change_queue_depth = storvsc_change_queue_depth, 1892 }; 1893 1894 enum { 1895 SCSI_GUID, 1896 IDE_GUID, 1897 SFC_GUID, 1898 }; 1899 1900 static const struct hv_vmbus_device_id id_table[] = { 1901 /* SCSI guid */ 1902 { HV_SCSI_GUID, 1903 .driver_data = SCSI_GUID 1904 }, 1905 /* IDE guid */ 1906 { HV_IDE_GUID, 1907 .driver_data = IDE_GUID 1908 }, 1909 /* Fibre Channel GUID */ 1910 { 1911 HV_SYNTHFC_GUID, 1912 .driver_data = SFC_GUID 1913 }, 1914 { }, 1915 }; 1916 1917 MODULE_DEVICE_TABLE(vmbus, id_table); 1918 1919 static const struct { guid_t guid; } fc_guid = { HV_SYNTHFC_GUID }; 1920 1921 static bool hv_dev_is_fc(struct hv_device *hv_dev) 1922 { 1923 return guid_equal(&fc_guid.guid, &hv_dev->dev_type); 1924 } 1925 1926 static int storvsc_probe(struct hv_device *device, 1927 const struct hv_vmbus_device_id *dev_id) 1928 { 1929 int ret; 1930 int num_cpus = num_online_cpus(); 1931 int num_present_cpus = num_present_cpus(); 1932 struct Scsi_Host *host; 1933 struct hv_host_device *host_dev; 1934 bool dev_is_ide = ((dev_id->driver_data == IDE_GUID) ? true : false); 1935 bool is_fc = ((dev_id->driver_data == SFC_GUID) ? true : false); 1936 int target = 0; 1937 struct storvsc_device *stor_device; 1938 int max_sub_channels = 0; 1939 u32 max_xfer_bytes; 1940 1941 /* 1942 * We support sub-channels for storage on SCSI and FC controllers. 1943 * The number of sub-channels offerred is based on the number of 1944 * VCPUs in the guest. 1945 */ 1946 if (!dev_is_ide) 1947 max_sub_channels = 1948 (num_cpus - 1) / storvsc_vcpus_per_sub_channel; 1949 1950 scsi_driver.can_queue = max_outstanding_req_per_channel * 1951 (max_sub_channels + 1) * 1952 (100 - ring_avail_percent_lowater) / 100; 1953 1954 host = scsi_host_alloc(&scsi_driver, 1955 sizeof(struct hv_host_device)); 1956 if (!host) 1957 return -ENOMEM; 1958 1959 host_dev = shost_priv(host); 1960 memset(host_dev, 0, sizeof(struct hv_host_device)); 1961 1962 host_dev->port = host->host_no; 1963 host_dev->dev = device; 1964 host_dev->host = host; 1965 1966 1967 stor_device = kzalloc(sizeof(struct storvsc_device), GFP_KERNEL); 1968 if (!stor_device) { 1969 ret = -ENOMEM; 1970 goto err_out0; 1971 } 1972 1973 stor_device->destroy = false; 1974 init_waitqueue_head(&stor_device->waiting_to_drain); 1975 stor_device->device = device; 1976 stor_device->host = host; 1977 spin_lock_init(&stor_device->lock); 1978 hv_set_drvdata(device, stor_device); 1979 dma_set_min_align_mask(&device->device, HV_HYP_PAGE_SIZE - 1); 1980 1981 stor_device->port_number = host->host_no; 1982 ret = storvsc_connect_to_vsp(device, aligned_ringbuffer_size, is_fc); 1983 if (ret) 1984 goto err_out1; 1985 1986 host_dev->path = stor_device->path_id; 1987 host_dev->target = stor_device->target_id; 1988 1989 switch (dev_id->driver_data) { 1990 case SFC_GUID: 1991 host->max_lun = STORVSC_FC_MAX_LUNS_PER_TARGET; 1992 host->max_id = STORVSC_FC_MAX_TARGETS; 1993 host->max_channel = STORVSC_FC_MAX_CHANNELS - 1; 1994 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1995 host->transportt = fc_transport_template; 1996 #endif 1997 break; 1998 1999 case SCSI_GUID: 2000 host->max_lun = STORVSC_MAX_LUNS_PER_TARGET; 2001 host->max_id = STORVSC_MAX_TARGETS; 2002 host->max_channel = STORVSC_MAX_CHANNELS - 1; 2003 break; 2004 2005 default: 2006 host->max_lun = STORVSC_IDE_MAX_LUNS_PER_TARGET; 2007 host->max_id = STORVSC_IDE_MAX_TARGETS; 2008 host->max_channel = STORVSC_IDE_MAX_CHANNELS - 1; 2009 break; 2010 } 2011 /* max cmd length */ 2012 host->max_cmd_len = STORVSC_MAX_CMD_LEN; 2013 /* 2014 * Any reasonable Hyper-V configuration should provide 2015 * max_transfer_bytes value aligning to HV_HYP_PAGE_SIZE, 2016 * protecting it from any weird value. 2017 */ 2018 max_xfer_bytes = round_down(stor_device->max_transfer_bytes, HV_HYP_PAGE_SIZE); 2019 if (is_fc) 2020 max_xfer_bytes = min(max_xfer_bytes, STORVSC_FC_MAX_XFER_SIZE); 2021 2022 /* max_hw_sectors_kb */ 2023 host->max_sectors = max_xfer_bytes >> 9; 2024 /* 2025 * There are 2 requirements for Hyper-V storvsc sgl segments, 2026 * based on which the below calculation for max segments is 2027 * done: 2028 * 2029 * 1. Except for the first and last sgl segment, all sgl segments 2030 * should be align to HV_HYP_PAGE_SIZE, that also means the 2031 * maximum number of segments in a sgl can be calculated by 2032 * dividing the total max transfer length by HV_HYP_PAGE_SIZE. 2033 * 2034 * 2. Except for the first and last, each entry in the SGL must 2035 * have an offset that is a multiple of HV_HYP_PAGE_SIZE. 2036 */ 2037 host->sg_tablesize = (max_xfer_bytes >> HV_HYP_PAGE_SHIFT) + 1; 2038 /* 2039 * For non-IDE disks, the host supports multiple channels. 2040 * Set the number of HW queues we are supporting. 2041 */ 2042 if (!dev_is_ide) { 2043 if (storvsc_max_hw_queues > num_present_cpus) { 2044 storvsc_max_hw_queues = 0; 2045 storvsc_log(device, STORVSC_LOGGING_WARN, 2046 "Resetting invalid storvsc_max_hw_queues value to default.\n"); 2047 } 2048 if (storvsc_max_hw_queues) 2049 host->nr_hw_queues = storvsc_max_hw_queues; 2050 else 2051 host->nr_hw_queues = num_present_cpus; 2052 } 2053 2054 /* 2055 * Set the error handler work queue. 2056 */ 2057 host_dev->handle_error_wq = 2058 alloc_ordered_workqueue("storvsc_error_wq_%d", 2059 0, 2060 host->host_no); 2061 if (!host_dev->handle_error_wq) { 2062 ret = -ENOMEM; 2063 goto err_out2; 2064 } 2065 INIT_WORK(&host_dev->host_scan_work, storvsc_host_scan); 2066 /* Register the HBA and start the scsi bus scan */ 2067 ret = scsi_add_host(host, &device->device); 2068 if (ret != 0) 2069 goto err_out3; 2070 2071 if (!dev_is_ide) { 2072 scsi_scan_host(host); 2073 } else { 2074 target = (device->dev_instance.b[5] << 8 | 2075 device->dev_instance.b[4]); 2076 ret = scsi_add_device(host, 0, target, 0); 2077 if (ret) 2078 goto err_out4; 2079 } 2080 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2081 if (host->transportt == fc_transport_template) { 2082 struct fc_rport_identifiers ids = { 2083 .roles = FC_PORT_ROLE_FCP_DUMMY_INITIATOR, 2084 }; 2085 2086 fc_host_node_name(host) = stor_device->node_name; 2087 fc_host_port_name(host) = stor_device->port_name; 2088 stor_device->rport = fc_remote_port_add(host, 0, &ids); 2089 if (!stor_device->rport) { 2090 ret = -ENOMEM; 2091 goto err_out4; 2092 } 2093 } 2094 #endif 2095 return 0; 2096 2097 err_out4: 2098 scsi_remove_host(host); 2099 2100 err_out3: 2101 destroy_workqueue(host_dev->handle_error_wq); 2102 2103 err_out2: 2104 /* 2105 * Once we have connected with the host, we would need to 2106 * invoke storvsc_dev_remove() to rollback this state and 2107 * this call also frees up the stor_device; hence the jump around 2108 * err_out1 label. 2109 */ 2110 storvsc_dev_remove(device); 2111 goto err_out0; 2112 2113 err_out1: 2114 kfree(stor_device->stor_chns); 2115 kfree(stor_device); 2116 2117 err_out0: 2118 scsi_host_put(host); 2119 return ret; 2120 } 2121 2122 /* Change a scsi target's queue depth */ 2123 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth) 2124 { 2125 if (queue_depth > scsi_driver.can_queue) 2126 queue_depth = scsi_driver.can_queue; 2127 2128 return scsi_change_queue_depth(sdev, queue_depth); 2129 } 2130 2131 static void storvsc_remove(struct hv_device *dev) 2132 { 2133 struct storvsc_device *stor_device = hv_get_drvdata(dev); 2134 struct Scsi_Host *host = stor_device->host; 2135 struct hv_host_device *host_dev = shost_priv(host); 2136 2137 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2138 if (host->transportt == fc_transport_template) { 2139 fc_remote_port_delete(stor_device->rport); 2140 fc_remove_host(host); 2141 } 2142 #endif 2143 destroy_workqueue(host_dev->handle_error_wq); 2144 scsi_remove_host(host); 2145 storvsc_dev_remove(dev); 2146 scsi_host_put(host); 2147 } 2148 2149 static int storvsc_suspend(struct hv_device *hv_dev) 2150 { 2151 struct storvsc_device *stor_device = hv_get_drvdata(hv_dev); 2152 struct Scsi_Host *host = stor_device->host; 2153 struct hv_host_device *host_dev = shost_priv(host); 2154 2155 storvsc_wait_to_drain(stor_device); 2156 2157 drain_workqueue(host_dev->handle_error_wq); 2158 2159 vmbus_close(hv_dev->channel); 2160 2161 kfree(stor_device->stor_chns); 2162 stor_device->stor_chns = NULL; 2163 2164 cpumask_clear(&stor_device->alloced_cpus); 2165 2166 return 0; 2167 } 2168 2169 static int storvsc_resume(struct hv_device *hv_dev) 2170 { 2171 int ret; 2172 2173 ret = storvsc_connect_to_vsp(hv_dev, aligned_ringbuffer_size, 2174 hv_dev_is_fc(hv_dev)); 2175 return ret; 2176 } 2177 2178 static struct hv_driver storvsc_drv = { 2179 .name = KBUILD_MODNAME, 2180 .id_table = id_table, 2181 .probe = storvsc_probe, 2182 .remove = storvsc_remove, 2183 .suspend = storvsc_suspend, 2184 .resume = storvsc_resume, 2185 .driver = { 2186 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 2187 }, 2188 }; 2189 2190 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2191 static struct fc_function_template fc_transport_functions = { 2192 .show_host_node_name = 1, 2193 .show_host_port_name = 1, 2194 }; 2195 #endif 2196 2197 static int __init storvsc_drv_init(void) 2198 { 2199 int ret; 2200 2201 /* 2202 * Divide the ring buffer data size (which is 1 page less 2203 * than the ring buffer size since that page is reserved for 2204 * the ring buffer indices) by the max request size (which is 2205 * vmbus_channel_packet_multipage_buffer + struct vstor_packet + u64) 2206 */ 2207 aligned_ringbuffer_size = VMBUS_RING_SIZE(storvsc_ringbuffer_size); 2208 max_outstanding_req_per_channel = 2209 ((aligned_ringbuffer_size - PAGE_SIZE) / 2210 ALIGN(MAX_MULTIPAGE_BUFFER_PACKET + 2211 sizeof(struct vstor_packet) + sizeof(u64), 2212 sizeof(u64))); 2213 2214 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2215 fc_transport_template = fc_attach_transport(&fc_transport_functions); 2216 if (!fc_transport_template) 2217 return -ENODEV; 2218 #endif 2219 2220 ret = vmbus_driver_register(&storvsc_drv); 2221 2222 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2223 if (ret) 2224 fc_release_transport(fc_transport_template); 2225 #endif 2226 2227 return ret; 2228 } 2229 2230 static void __exit storvsc_drv_exit(void) 2231 { 2232 vmbus_driver_unregister(&storvsc_drv); 2233 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2234 fc_release_transport(fc_transport_template); 2235 #endif 2236 } 2237 2238 MODULE_LICENSE("GPL"); 2239 MODULE_DESCRIPTION("Microsoft Hyper-V virtual storage driver"); 2240 module_init(storvsc_drv_init); 2241 module_exit(storvsc_drv_exit); 2242