1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/blk-pm.h> 49 #include <linux/delay.h> 50 #include <linux/major.h> 51 #include <linux/mutex.h> 52 #include <linux/string_helpers.h> 53 #include <linux/slab.h> 54 #include <linux/sed-opal.h> 55 #include <linux/pm_runtime.h> 56 #include <linux/pr.h> 57 #include <linux/t10-pi.h> 58 #include <linux/uaccess.h> 59 #include <asm/unaligned.h> 60 61 #include <scsi/scsi.h> 62 #include <scsi/scsi_cmnd.h> 63 #include <scsi/scsi_dbg.h> 64 #include <scsi/scsi_device.h> 65 #include <scsi/scsi_driver.h> 66 #include <scsi/scsi_eh.h> 67 #include <scsi/scsi_host.h> 68 #include <scsi/scsi_ioctl.h> 69 #include <scsi/scsicam.h> 70 71 #include "sd.h" 72 #include "scsi_priv.h" 73 #include "scsi_logging.h" 74 75 MODULE_AUTHOR("Eric Youngdale"); 76 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 77 MODULE_LICENSE("GPL"); 78 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 99 100 #define SD_MINORS 16 101 102 static void sd_config_discard(struct scsi_disk *, unsigned int); 103 static void sd_config_write_same(struct scsi_disk *); 104 static int sd_revalidate_disk(struct gendisk *); 105 static void sd_unlock_native_capacity(struct gendisk *disk); 106 static int sd_probe(struct device *); 107 static int sd_remove(struct device *); 108 static void sd_shutdown(struct device *); 109 static int sd_suspend_system(struct device *); 110 static int sd_suspend_runtime(struct device *); 111 static int sd_resume_system(struct device *); 112 static int sd_resume_runtime(struct device *); 113 static void sd_rescan(struct device *); 114 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 115 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 116 static int sd_done(struct scsi_cmnd *); 117 static void sd_eh_reset(struct scsi_cmnd *); 118 static int sd_eh_action(struct scsi_cmnd *, int); 119 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 120 static void scsi_disk_release(struct device *cdev); 121 122 static DEFINE_IDA(sd_index_ida); 123 124 static struct kmem_cache *sd_cdb_cache; 125 static mempool_t *sd_page_pool; 126 static struct lock_class_key sd_bio_compl_lkclass; 127 128 static const char *sd_cache_types[] = { 129 "write through", "none", "write back", 130 "write back, no read (daft)" 131 }; 132 133 static void sd_set_flush_flag(struct scsi_disk *sdkp) 134 { 135 bool wc = false, fua = false; 136 137 if (sdkp->WCE) { 138 wc = true; 139 if (sdkp->DPOFUA) 140 fua = true; 141 } 142 143 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 144 } 145 146 static ssize_t 147 cache_type_store(struct device *dev, struct device_attribute *attr, 148 const char *buf, size_t count) 149 { 150 int ct, rcd, wce, sp; 151 struct scsi_disk *sdkp = to_scsi_disk(dev); 152 struct scsi_device *sdp = sdkp->device; 153 char buffer[64]; 154 char *buffer_data; 155 struct scsi_mode_data data; 156 struct scsi_sense_hdr sshdr; 157 static const char temp[] = "temporary "; 158 int len; 159 160 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 161 /* no cache control on RBC devices; theoretically they 162 * can do it, but there's probably so many exceptions 163 * it's not worth the risk */ 164 return -EINVAL; 165 166 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 167 buf += sizeof(temp) - 1; 168 sdkp->cache_override = 1; 169 } else { 170 sdkp->cache_override = 0; 171 } 172 173 ct = sysfs_match_string(sd_cache_types, buf); 174 if (ct < 0) 175 return -EINVAL; 176 177 rcd = ct & 0x01 ? 1 : 0; 178 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 179 180 if (sdkp->cache_override) { 181 sdkp->WCE = wce; 182 sdkp->RCD = rcd; 183 sd_set_flush_flag(sdkp); 184 return count; 185 } 186 187 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 188 sdkp->max_retries, &data, NULL)) 189 return -EINVAL; 190 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 191 data.block_descriptor_length); 192 buffer_data = buffer + data.header_length + 193 data.block_descriptor_length; 194 buffer_data[2] &= ~0x05; 195 buffer_data[2] |= wce << 2 | rcd; 196 sp = buffer_data[0] & 0x80 ? 1 : 0; 197 buffer_data[0] &= ~0x80; 198 199 /* 200 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 201 * received mode parameter buffer before doing MODE SELECT. 202 */ 203 data.device_specific = 0; 204 205 if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT, 206 sdkp->max_retries, &data, &sshdr)) { 207 if (scsi_sense_valid(&sshdr)) 208 sd_print_sense_hdr(sdkp, &sshdr); 209 return -EINVAL; 210 } 211 sd_revalidate_disk(sdkp->disk); 212 return count; 213 } 214 215 static ssize_t 216 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 217 char *buf) 218 { 219 struct scsi_disk *sdkp = to_scsi_disk(dev); 220 struct scsi_device *sdp = sdkp->device; 221 222 return sprintf(buf, "%u\n", sdp->manage_start_stop); 223 } 224 225 static ssize_t 226 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 227 const char *buf, size_t count) 228 { 229 struct scsi_disk *sdkp = to_scsi_disk(dev); 230 struct scsi_device *sdp = sdkp->device; 231 bool v; 232 233 if (!capable(CAP_SYS_ADMIN)) 234 return -EACCES; 235 236 if (kstrtobool(buf, &v)) 237 return -EINVAL; 238 239 sdp->manage_start_stop = v; 240 241 return count; 242 } 243 static DEVICE_ATTR_RW(manage_start_stop); 244 245 static ssize_t 246 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 247 { 248 struct scsi_disk *sdkp = to_scsi_disk(dev); 249 250 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 251 } 252 253 static ssize_t 254 allow_restart_store(struct device *dev, struct device_attribute *attr, 255 const char *buf, size_t count) 256 { 257 bool v; 258 struct scsi_disk *sdkp = to_scsi_disk(dev); 259 struct scsi_device *sdp = sdkp->device; 260 261 if (!capable(CAP_SYS_ADMIN)) 262 return -EACCES; 263 264 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 265 return -EINVAL; 266 267 if (kstrtobool(buf, &v)) 268 return -EINVAL; 269 270 sdp->allow_restart = v; 271 272 return count; 273 } 274 static DEVICE_ATTR_RW(allow_restart); 275 276 static ssize_t 277 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 278 { 279 struct scsi_disk *sdkp = to_scsi_disk(dev); 280 int ct = sdkp->RCD + 2*sdkp->WCE; 281 282 return sprintf(buf, "%s\n", sd_cache_types[ct]); 283 } 284 static DEVICE_ATTR_RW(cache_type); 285 286 static ssize_t 287 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 288 { 289 struct scsi_disk *sdkp = to_scsi_disk(dev); 290 291 return sprintf(buf, "%u\n", sdkp->DPOFUA); 292 } 293 static DEVICE_ATTR_RO(FUA); 294 295 static ssize_t 296 protection_type_show(struct device *dev, struct device_attribute *attr, 297 char *buf) 298 { 299 struct scsi_disk *sdkp = to_scsi_disk(dev); 300 301 return sprintf(buf, "%u\n", sdkp->protection_type); 302 } 303 304 static ssize_t 305 protection_type_store(struct device *dev, struct device_attribute *attr, 306 const char *buf, size_t count) 307 { 308 struct scsi_disk *sdkp = to_scsi_disk(dev); 309 unsigned int val; 310 int err; 311 312 if (!capable(CAP_SYS_ADMIN)) 313 return -EACCES; 314 315 err = kstrtouint(buf, 10, &val); 316 317 if (err) 318 return err; 319 320 if (val <= T10_PI_TYPE3_PROTECTION) 321 sdkp->protection_type = val; 322 323 return count; 324 } 325 static DEVICE_ATTR_RW(protection_type); 326 327 static ssize_t 328 protection_mode_show(struct device *dev, struct device_attribute *attr, 329 char *buf) 330 { 331 struct scsi_disk *sdkp = to_scsi_disk(dev); 332 struct scsi_device *sdp = sdkp->device; 333 unsigned int dif, dix; 334 335 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 336 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 337 338 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 339 dif = 0; 340 dix = 1; 341 } 342 343 if (!dif && !dix) 344 return sprintf(buf, "none\n"); 345 346 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 347 } 348 static DEVICE_ATTR_RO(protection_mode); 349 350 static ssize_t 351 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 352 { 353 struct scsi_disk *sdkp = to_scsi_disk(dev); 354 355 return sprintf(buf, "%u\n", sdkp->ATO); 356 } 357 static DEVICE_ATTR_RO(app_tag_own); 358 359 static ssize_t 360 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 361 char *buf) 362 { 363 struct scsi_disk *sdkp = to_scsi_disk(dev); 364 365 return sprintf(buf, "%u\n", sdkp->lbpme); 366 } 367 static DEVICE_ATTR_RO(thin_provisioning); 368 369 /* sysfs_match_string() requires dense arrays */ 370 static const char *lbp_mode[] = { 371 [SD_LBP_FULL] = "full", 372 [SD_LBP_UNMAP] = "unmap", 373 [SD_LBP_WS16] = "writesame_16", 374 [SD_LBP_WS10] = "writesame_10", 375 [SD_LBP_ZERO] = "writesame_zero", 376 [SD_LBP_DISABLE] = "disabled", 377 }; 378 379 static ssize_t 380 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 381 char *buf) 382 { 383 struct scsi_disk *sdkp = to_scsi_disk(dev); 384 385 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 386 } 387 388 static ssize_t 389 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 390 const char *buf, size_t count) 391 { 392 struct scsi_disk *sdkp = to_scsi_disk(dev); 393 struct scsi_device *sdp = sdkp->device; 394 int mode; 395 396 if (!capable(CAP_SYS_ADMIN)) 397 return -EACCES; 398 399 if (sd_is_zoned(sdkp)) { 400 sd_config_discard(sdkp, SD_LBP_DISABLE); 401 return count; 402 } 403 404 if (sdp->type != TYPE_DISK) 405 return -EINVAL; 406 407 mode = sysfs_match_string(lbp_mode, buf); 408 if (mode < 0) 409 return -EINVAL; 410 411 sd_config_discard(sdkp, mode); 412 413 return count; 414 } 415 static DEVICE_ATTR_RW(provisioning_mode); 416 417 /* sysfs_match_string() requires dense arrays */ 418 static const char *zeroing_mode[] = { 419 [SD_ZERO_WRITE] = "write", 420 [SD_ZERO_WS] = "writesame", 421 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 422 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 423 }; 424 425 static ssize_t 426 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 427 char *buf) 428 { 429 struct scsi_disk *sdkp = to_scsi_disk(dev); 430 431 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 432 } 433 434 static ssize_t 435 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 436 const char *buf, size_t count) 437 { 438 struct scsi_disk *sdkp = to_scsi_disk(dev); 439 int mode; 440 441 if (!capable(CAP_SYS_ADMIN)) 442 return -EACCES; 443 444 mode = sysfs_match_string(zeroing_mode, buf); 445 if (mode < 0) 446 return -EINVAL; 447 448 sdkp->zeroing_mode = mode; 449 450 return count; 451 } 452 static DEVICE_ATTR_RW(zeroing_mode); 453 454 static ssize_t 455 max_medium_access_timeouts_show(struct device *dev, 456 struct device_attribute *attr, char *buf) 457 { 458 struct scsi_disk *sdkp = to_scsi_disk(dev); 459 460 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 461 } 462 463 static ssize_t 464 max_medium_access_timeouts_store(struct device *dev, 465 struct device_attribute *attr, const char *buf, 466 size_t count) 467 { 468 struct scsi_disk *sdkp = to_scsi_disk(dev); 469 int err; 470 471 if (!capable(CAP_SYS_ADMIN)) 472 return -EACCES; 473 474 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 475 476 return err ? err : count; 477 } 478 static DEVICE_ATTR_RW(max_medium_access_timeouts); 479 480 static ssize_t 481 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 482 char *buf) 483 { 484 struct scsi_disk *sdkp = to_scsi_disk(dev); 485 486 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 487 } 488 489 static ssize_t 490 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 491 const char *buf, size_t count) 492 { 493 struct scsi_disk *sdkp = to_scsi_disk(dev); 494 struct scsi_device *sdp = sdkp->device; 495 unsigned long max; 496 int err; 497 498 if (!capable(CAP_SYS_ADMIN)) 499 return -EACCES; 500 501 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 502 return -EINVAL; 503 504 err = kstrtoul(buf, 10, &max); 505 506 if (err) 507 return err; 508 509 if (max == 0) 510 sdp->no_write_same = 1; 511 else if (max <= SD_MAX_WS16_BLOCKS) { 512 sdp->no_write_same = 0; 513 sdkp->max_ws_blocks = max; 514 } 515 516 sd_config_write_same(sdkp); 517 518 return count; 519 } 520 static DEVICE_ATTR_RW(max_write_same_blocks); 521 522 static ssize_t 523 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 524 { 525 struct scsi_disk *sdkp = to_scsi_disk(dev); 526 527 if (sdkp->device->type == TYPE_ZBC) 528 return sprintf(buf, "host-managed\n"); 529 if (sdkp->zoned == 1) 530 return sprintf(buf, "host-aware\n"); 531 if (sdkp->zoned == 2) 532 return sprintf(buf, "drive-managed\n"); 533 return sprintf(buf, "none\n"); 534 } 535 static DEVICE_ATTR_RO(zoned_cap); 536 537 static ssize_t 538 max_retries_store(struct device *dev, struct device_attribute *attr, 539 const char *buf, size_t count) 540 { 541 struct scsi_disk *sdkp = to_scsi_disk(dev); 542 struct scsi_device *sdev = sdkp->device; 543 int retries, err; 544 545 err = kstrtoint(buf, 10, &retries); 546 if (err) 547 return err; 548 549 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 550 sdkp->max_retries = retries; 551 return count; 552 } 553 554 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 555 SD_MAX_RETRIES); 556 return -EINVAL; 557 } 558 559 static ssize_t 560 max_retries_show(struct device *dev, struct device_attribute *attr, 561 char *buf) 562 { 563 struct scsi_disk *sdkp = to_scsi_disk(dev); 564 565 return sprintf(buf, "%d\n", sdkp->max_retries); 566 } 567 568 static DEVICE_ATTR_RW(max_retries); 569 570 static struct attribute *sd_disk_attrs[] = { 571 &dev_attr_cache_type.attr, 572 &dev_attr_FUA.attr, 573 &dev_attr_allow_restart.attr, 574 &dev_attr_manage_start_stop.attr, 575 &dev_attr_protection_type.attr, 576 &dev_attr_protection_mode.attr, 577 &dev_attr_app_tag_own.attr, 578 &dev_attr_thin_provisioning.attr, 579 &dev_attr_provisioning_mode.attr, 580 &dev_attr_zeroing_mode.attr, 581 &dev_attr_max_write_same_blocks.attr, 582 &dev_attr_max_medium_access_timeouts.attr, 583 &dev_attr_zoned_cap.attr, 584 &dev_attr_max_retries.attr, 585 NULL, 586 }; 587 ATTRIBUTE_GROUPS(sd_disk); 588 589 static struct class sd_disk_class = { 590 .name = "scsi_disk", 591 .owner = THIS_MODULE, 592 .dev_release = scsi_disk_release, 593 .dev_groups = sd_disk_groups, 594 }; 595 596 static const struct dev_pm_ops sd_pm_ops = { 597 .suspend = sd_suspend_system, 598 .resume = sd_resume_system, 599 .poweroff = sd_suspend_system, 600 .restore = sd_resume_system, 601 .runtime_suspend = sd_suspend_runtime, 602 .runtime_resume = sd_resume_runtime, 603 }; 604 605 static struct scsi_driver sd_template = { 606 .gendrv = { 607 .name = "sd", 608 .owner = THIS_MODULE, 609 .probe = sd_probe, 610 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 611 .remove = sd_remove, 612 .shutdown = sd_shutdown, 613 .pm = &sd_pm_ops, 614 }, 615 .rescan = sd_rescan, 616 .init_command = sd_init_command, 617 .uninit_command = sd_uninit_command, 618 .done = sd_done, 619 .eh_action = sd_eh_action, 620 .eh_reset = sd_eh_reset, 621 }; 622 623 /* 624 * Don't request a new module, as that could deadlock in multipath 625 * environment. 626 */ 627 static void sd_default_probe(dev_t devt) 628 { 629 } 630 631 /* 632 * Device no to disk mapping: 633 * 634 * major disc2 disc p1 635 * |............|.............|....|....| <- dev_t 636 * 31 20 19 8 7 4 3 0 637 * 638 * Inside a major, we have 16k disks, however mapped non- 639 * contiguously. The first 16 disks are for major0, the next 640 * ones with major1, ... Disk 256 is for major0 again, disk 272 641 * for major1, ... 642 * As we stay compatible with our numbering scheme, we can reuse 643 * the well-know SCSI majors 8, 65--71, 136--143. 644 */ 645 static int sd_major(int major_idx) 646 { 647 switch (major_idx) { 648 case 0: 649 return SCSI_DISK0_MAJOR; 650 case 1 ... 7: 651 return SCSI_DISK1_MAJOR + major_idx - 1; 652 case 8 ... 15: 653 return SCSI_DISK8_MAJOR + major_idx - 8; 654 default: 655 BUG(); 656 return 0; /* shut up gcc */ 657 } 658 } 659 660 #ifdef CONFIG_BLK_SED_OPAL 661 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 662 size_t len, bool send) 663 { 664 struct scsi_disk *sdkp = data; 665 struct scsi_device *sdev = sdkp->device; 666 u8 cdb[12] = { 0, }; 667 int ret; 668 669 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 670 cdb[1] = secp; 671 put_unaligned_be16(spsp, &cdb[2]); 672 put_unaligned_be32(len, &cdb[6]); 673 674 ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE, 675 buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0, 676 RQF_PM, NULL); 677 return ret <= 0 ? ret : -EIO; 678 } 679 #endif /* CONFIG_BLK_SED_OPAL */ 680 681 /* 682 * Look up the DIX operation based on whether the command is read or 683 * write and whether dix and dif are enabled. 684 */ 685 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 686 { 687 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 688 static const unsigned int ops[] = { /* wrt dix dif */ 689 SCSI_PROT_NORMAL, /* 0 0 0 */ 690 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 691 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 692 SCSI_PROT_READ_PASS, /* 0 1 1 */ 693 SCSI_PROT_NORMAL, /* 1 0 0 */ 694 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 695 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 696 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 697 }; 698 699 return ops[write << 2 | dix << 1 | dif]; 700 } 701 702 /* 703 * Returns a mask of the protection flags that are valid for a given DIX 704 * operation. 705 */ 706 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 707 { 708 static const unsigned int flag_mask[] = { 709 [SCSI_PROT_NORMAL] = 0, 710 711 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 712 SCSI_PROT_GUARD_CHECK | 713 SCSI_PROT_REF_CHECK | 714 SCSI_PROT_REF_INCREMENT, 715 716 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 717 SCSI_PROT_IP_CHECKSUM, 718 719 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 720 SCSI_PROT_GUARD_CHECK | 721 SCSI_PROT_REF_CHECK | 722 SCSI_PROT_REF_INCREMENT | 723 SCSI_PROT_IP_CHECKSUM, 724 725 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 726 SCSI_PROT_REF_INCREMENT, 727 728 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 729 SCSI_PROT_REF_CHECK | 730 SCSI_PROT_REF_INCREMENT | 731 SCSI_PROT_IP_CHECKSUM, 732 733 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 734 SCSI_PROT_GUARD_CHECK | 735 SCSI_PROT_REF_CHECK | 736 SCSI_PROT_REF_INCREMENT | 737 SCSI_PROT_IP_CHECKSUM, 738 }; 739 740 return flag_mask[prot_op]; 741 } 742 743 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 744 unsigned int dix, unsigned int dif) 745 { 746 struct request *rq = scsi_cmd_to_rq(scmd); 747 struct bio *bio = rq->bio; 748 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif); 749 unsigned int protect = 0; 750 751 if (dix) { /* DIX Type 0, 1, 2, 3 */ 752 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 753 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 754 755 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 756 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 757 } 758 759 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 760 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 761 762 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 763 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 764 } 765 766 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 767 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 768 769 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 770 protect = 3 << 5; /* Disable target PI checking */ 771 else 772 protect = 1 << 5; /* Enable target PI checking */ 773 } 774 775 scsi_set_prot_op(scmd, prot_op); 776 scsi_set_prot_type(scmd, dif); 777 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 778 779 return protect; 780 } 781 782 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 783 { 784 struct request_queue *q = sdkp->disk->queue; 785 unsigned int logical_block_size = sdkp->device->sector_size; 786 unsigned int max_blocks = 0; 787 788 q->limits.discard_alignment = 789 sdkp->unmap_alignment * logical_block_size; 790 q->limits.discard_granularity = 791 max(sdkp->physical_block_size, 792 sdkp->unmap_granularity * logical_block_size); 793 sdkp->provisioning_mode = mode; 794 795 switch (mode) { 796 797 case SD_LBP_FULL: 798 case SD_LBP_DISABLE: 799 blk_queue_max_discard_sectors(q, 0); 800 return; 801 802 case SD_LBP_UNMAP: 803 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 804 (u32)SD_MAX_WS16_BLOCKS); 805 break; 806 807 case SD_LBP_WS16: 808 if (sdkp->device->unmap_limit_for_ws) 809 max_blocks = sdkp->max_unmap_blocks; 810 else 811 max_blocks = sdkp->max_ws_blocks; 812 813 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 814 break; 815 816 case SD_LBP_WS10: 817 if (sdkp->device->unmap_limit_for_ws) 818 max_blocks = sdkp->max_unmap_blocks; 819 else 820 max_blocks = sdkp->max_ws_blocks; 821 822 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 823 break; 824 825 case SD_LBP_ZERO: 826 max_blocks = min_not_zero(sdkp->max_ws_blocks, 827 (u32)SD_MAX_WS10_BLOCKS); 828 break; 829 } 830 831 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 832 } 833 834 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 835 { 836 struct scsi_device *sdp = cmd->device; 837 struct request *rq = scsi_cmd_to_rq(cmd); 838 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 839 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 840 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 841 unsigned int data_len = 24; 842 char *buf; 843 844 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 845 if (!rq->special_vec.bv_page) 846 return BLK_STS_RESOURCE; 847 clear_highpage(rq->special_vec.bv_page); 848 rq->special_vec.bv_offset = 0; 849 rq->special_vec.bv_len = data_len; 850 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 851 852 cmd->cmd_len = 10; 853 cmd->cmnd[0] = UNMAP; 854 cmd->cmnd[8] = 24; 855 856 buf = bvec_virt(&rq->special_vec); 857 put_unaligned_be16(6 + 16, &buf[0]); 858 put_unaligned_be16(16, &buf[2]); 859 put_unaligned_be64(lba, &buf[8]); 860 put_unaligned_be32(nr_blocks, &buf[16]); 861 862 cmd->allowed = sdkp->max_retries; 863 cmd->transfersize = data_len; 864 rq->timeout = SD_TIMEOUT; 865 866 return scsi_alloc_sgtables(cmd); 867 } 868 869 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 870 bool unmap) 871 { 872 struct scsi_device *sdp = cmd->device; 873 struct request *rq = scsi_cmd_to_rq(cmd); 874 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 875 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 876 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 877 u32 data_len = sdp->sector_size; 878 879 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 880 if (!rq->special_vec.bv_page) 881 return BLK_STS_RESOURCE; 882 clear_highpage(rq->special_vec.bv_page); 883 rq->special_vec.bv_offset = 0; 884 rq->special_vec.bv_len = data_len; 885 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 886 887 cmd->cmd_len = 16; 888 cmd->cmnd[0] = WRITE_SAME_16; 889 if (unmap) 890 cmd->cmnd[1] = 0x8; /* UNMAP */ 891 put_unaligned_be64(lba, &cmd->cmnd[2]); 892 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 893 894 cmd->allowed = sdkp->max_retries; 895 cmd->transfersize = data_len; 896 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 897 898 return scsi_alloc_sgtables(cmd); 899 } 900 901 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 902 bool unmap) 903 { 904 struct scsi_device *sdp = cmd->device; 905 struct request *rq = scsi_cmd_to_rq(cmd); 906 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 907 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 908 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 909 u32 data_len = sdp->sector_size; 910 911 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 912 if (!rq->special_vec.bv_page) 913 return BLK_STS_RESOURCE; 914 clear_highpage(rq->special_vec.bv_page); 915 rq->special_vec.bv_offset = 0; 916 rq->special_vec.bv_len = data_len; 917 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 918 919 cmd->cmd_len = 10; 920 cmd->cmnd[0] = WRITE_SAME; 921 if (unmap) 922 cmd->cmnd[1] = 0x8; /* UNMAP */ 923 put_unaligned_be32(lba, &cmd->cmnd[2]); 924 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 925 926 cmd->allowed = sdkp->max_retries; 927 cmd->transfersize = data_len; 928 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 929 930 return scsi_alloc_sgtables(cmd); 931 } 932 933 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 934 { 935 struct request *rq = scsi_cmd_to_rq(cmd); 936 struct scsi_device *sdp = cmd->device; 937 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 938 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 939 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 940 941 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 942 switch (sdkp->zeroing_mode) { 943 case SD_ZERO_WS16_UNMAP: 944 return sd_setup_write_same16_cmnd(cmd, true); 945 case SD_ZERO_WS10_UNMAP: 946 return sd_setup_write_same10_cmnd(cmd, true); 947 } 948 } 949 950 if (sdp->no_write_same) { 951 rq->rq_flags |= RQF_QUIET; 952 return BLK_STS_TARGET; 953 } 954 955 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 956 return sd_setup_write_same16_cmnd(cmd, false); 957 958 return sd_setup_write_same10_cmnd(cmd, false); 959 } 960 961 static void sd_config_write_same(struct scsi_disk *sdkp) 962 { 963 struct request_queue *q = sdkp->disk->queue; 964 unsigned int logical_block_size = sdkp->device->sector_size; 965 966 if (sdkp->device->no_write_same) { 967 sdkp->max_ws_blocks = 0; 968 goto out; 969 } 970 971 /* Some devices can not handle block counts above 0xffff despite 972 * supporting WRITE SAME(16). Consequently we default to 64k 973 * blocks per I/O unless the device explicitly advertises a 974 * bigger limit. 975 */ 976 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 977 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 978 (u32)SD_MAX_WS16_BLOCKS); 979 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 980 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 981 (u32)SD_MAX_WS10_BLOCKS); 982 else { 983 sdkp->device->no_write_same = 1; 984 sdkp->max_ws_blocks = 0; 985 } 986 987 if (sdkp->lbprz && sdkp->lbpws) 988 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 989 else if (sdkp->lbprz && sdkp->lbpws10) 990 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 991 else if (sdkp->max_ws_blocks) 992 sdkp->zeroing_mode = SD_ZERO_WS; 993 else 994 sdkp->zeroing_mode = SD_ZERO_WRITE; 995 996 if (sdkp->max_ws_blocks && 997 sdkp->physical_block_size > logical_block_size) { 998 /* 999 * Reporting a maximum number of blocks that is not aligned 1000 * on the device physical size would cause a large write same 1001 * request to be split into physically unaligned chunks by 1002 * __blkdev_issue_write_zeroes() even if the caller of this 1003 * functions took care to align the large request. So make sure 1004 * the maximum reported is aligned to the device physical block 1005 * size. This is only an optional optimization for regular 1006 * disks, but this is mandatory to avoid failure of large write 1007 * same requests directed at sequential write required zones of 1008 * host-managed ZBC disks. 1009 */ 1010 sdkp->max_ws_blocks = 1011 round_down(sdkp->max_ws_blocks, 1012 bytes_to_logical(sdkp->device, 1013 sdkp->physical_block_size)); 1014 } 1015 1016 out: 1017 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1018 (logical_block_size >> 9)); 1019 } 1020 1021 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1022 { 1023 struct request *rq = scsi_cmd_to_rq(cmd); 1024 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1025 1026 /* flush requests don't perform I/O, zero the S/G table */ 1027 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1028 1029 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1030 cmd->cmd_len = 10; 1031 cmd->transfersize = 0; 1032 cmd->allowed = sdkp->max_retries; 1033 1034 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1035 return BLK_STS_OK; 1036 } 1037 1038 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1039 sector_t lba, unsigned int nr_blocks, 1040 unsigned char flags) 1041 { 1042 cmd->cmd_len = SD_EXT_CDB_SIZE; 1043 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1044 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1045 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1046 cmd->cmnd[10] = flags; 1047 put_unaligned_be64(lba, &cmd->cmnd[12]); 1048 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1049 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1050 1051 return BLK_STS_OK; 1052 } 1053 1054 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1055 sector_t lba, unsigned int nr_blocks, 1056 unsigned char flags) 1057 { 1058 cmd->cmd_len = 16; 1059 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1060 cmd->cmnd[1] = flags; 1061 cmd->cmnd[14] = 0; 1062 cmd->cmnd[15] = 0; 1063 put_unaligned_be64(lba, &cmd->cmnd[2]); 1064 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1065 1066 return BLK_STS_OK; 1067 } 1068 1069 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1070 sector_t lba, unsigned int nr_blocks, 1071 unsigned char flags) 1072 { 1073 cmd->cmd_len = 10; 1074 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1075 cmd->cmnd[1] = flags; 1076 cmd->cmnd[6] = 0; 1077 cmd->cmnd[9] = 0; 1078 put_unaligned_be32(lba, &cmd->cmnd[2]); 1079 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1080 1081 return BLK_STS_OK; 1082 } 1083 1084 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1085 sector_t lba, unsigned int nr_blocks, 1086 unsigned char flags) 1087 { 1088 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1089 if (WARN_ON_ONCE(nr_blocks == 0)) 1090 return BLK_STS_IOERR; 1091 1092 if (unlikely(flags & 0x8)) { 1093 /* 1094 * This happens only if this drive failed 10byte rw 1095 * command with ILLEGAL_REQUEST during operation and 1096 * thus turned off use_10_for_rw. 1097 */ 1098 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1099 return BLK_STS_IOERR; 1100 } 1101 1102 cmd->cmd_len = 6; 1103 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1104 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1105 cmd->cmnd[2] = (lba >> 8) & 0xff; 1106 cmd->cmnd[3] = lba & 0xff; 1107 cmd->cmnd[4] = nr_blocks; 1108 cmd->cmnd[5] = 0; 1109 1110 return BLK_STS_OK; 1111 } 1112 1113 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1114 { 1115 struct request *rq = scsi_cmd_to_rq(cmd); 1116 struct scsi_device *sdp = cmd->device; 1117 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1118 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1119 sector_t threshold; 1120 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1121 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1122 bool write = rq_data_dir(rq) == WRITE; 1123 unsigned char protect, fua; 1124 blk_status_t ret; 1125 unsigned int dif; 1126 bool dix; 1127 1128 ret = scsi_alloc_sgtables(cmd); 1129 if (ret != BLK_STS_OK) 1130 return ret; 1131 1132 ret = BLK_STS_IOERR; 1133 if (!scsi_device_online(sdp) || sdp->changed) { 1134 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1135 goto fail; 1136 } 1137 1138 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) { 1139 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1140 goto fail; 1141 } 1142 1143 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1144 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1145 goto fail; 1146 } 1147 1148 /* 1149 * Some SD card readers can't handle accesses which touch the 1150 * last one or two logical blocks. Split accesses as needed. 1151 */ 1152 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1153 1154 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1155 if (lba < threshold) { 1156 /* Access up to the threshold but not beyond */ 1157 nr_blocks = threshold - lba; 1158 } else { 1159 /* Access only a single logical block */ 1160 nr_blocks = 1; 1161 } 1162 } 1163 1164 if (req_op(rq) == REQ_OP_ZONE_APPEND) { 1165 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks); 1166 if (ret) 1167 goto fail; 1168 } 1169 1170 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1171 dix = scsi_prot_sg_count(cmd); 1172 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1173 1174 if (dif || dix) 1175 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1176 else 1177 protect = 0; 1178 1179 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1180 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1181 protect | fua); 1182 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1183 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1184 protect | fua); 1185 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1186 sdp->use_10_for_rw || protect) { 1187 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1188 protect | fua); 1189 } else { 1190 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1191 protect | fua); 1192 } 1193 1194 if (unlikely(ret != BLK_STS_OK)) 1195 goto fail; 1196 1197 /* 1198 * We shouldn't disconnect in the middle of a sector, so with a dumb 1199 * host adapter, it's safe to assume that we can at least transfer 1200 * this many bytes between each connect / disconnect. 1201 */ 1202 cmd->transfersize = sdp->sector_size; 1203 cmd->underflow = nr_blocks << 9; 1204 cmd->allowed = sdkp->max_retries; 1205 cmd->sdb.length = nr_blocks * sdp->sector_size; 1206 1207 SCSI_LOG_HLQUEUE(1, 1208 scmd_printk(KERN_INFO, cmd, 1209 "%s: block=%llu, count=%d\n", __func__, 1210 (unsigned long long)blk_rq_pos(rq), 1211 blk_rq_sectors(rq))); 1212 SCSI_LOG_HLQUEUE(2, 1213 scmd_printk(KERN_INFO, cmd, 1214 "%s %d/%u 512 byte blocks.\n", 1215 write ? "writing" : "reading", nr_blocks, 1216 blk_rq_sectors(rq))); 1217 1218 /* 1219 * This indicates that the command is ready from our end to be queued. 1220 */ 1221 return BLK_STS_OK; 1222 fail: 1223 scsi_free_sgtables(cmd); 1224 return ret; 1225 } 1226 1227 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1228 { 1229 struct request *rq = scsi_cmd_to_rq(cmd); 1230 1231 switch (req_op(rq)) { 1232 case REQ_OP_DISCARD: 1233 switch (scsi_disk(rq->q->disk)->provisioning_mode) { 1234 case SD_LBP_UNMAP: 1235 return sd_setup_unmap_cmnd(cmd); 1236 case SD_LBP_WS16: 1237 return sd_setup_write_same16_cmnd(cmd, true); 1238 case SD_LBP_WS10: 1239 return sd_setup_write_same10_cmnd(cmd, true); 1240 case SD_LBP_ZERO: 1241 return sd_setup_write_same10_cmnd(cmd, false); 1242 default: 1243 return BLK_STS_TARGET; 1244 } 1245 case REQ_OP_WRITE_ZEROES: 1246 return sd_setup_write_zeroes_cmnd(cmd); 1247 case REQ_OP_FLUSH: 1248 return sd_setup_flush_cmnd(cmd); 1249 case REQ_OP_READ: 1250 case REQ_OP_WRITE: 1251 case REQ_OP_ZONE_APPEND: 1252 return sd_setup_read_write_cmnd(cmd); 1253 case REQ_OP_ZONE_RESET: 1254 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1255 false); 1256 case REQ_OP_ZONE_RESET_ALL: 1257 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1258 true); 1259 case REQ_OP_ZONE_OPEN: 1260 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1261 case REQ_OP_ZONE_CLOSE: 1262 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1263 case REQ_OP_ZONE_FINISH: 1264 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1265 default: 1266 WARN_ON_ONCE(1); 1267 return BLK_STS_NOTSUPP; 1268 } 1269 } 1270 1271 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1272 { 1273 struct request *rq = scsi_cmd_to_rq(SCpnt); 1274 1275 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1276 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1277 } 1278 1279 static bool sd_need_revalidate(struct block_device *bdev, 1280 struct scsi_disk *sdkp) 1281 { 1282 if (sdkp->device->removable || sdkp->write_prot) { 1283 if (bdev_check_media_change(bdev)) 1284 return true; 1285 } 1286 1287 /* 1288 * Force a full rescan after ioctl(BLKRRPART). While the disk state has 1289 * nothing to do with partitions, BLKRRPART is used to force a full 1290 * revalidate after things like a format for historical reasons. 1291 */ 1292 return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state); 1293 } 1294 1295 /** 1296 * sd_open - open a scsi disk device 1297 * @bdev: Block device of the scsi disk to open 1298 * @mode: FMODE_* mask 1299 * 1300 * Returns 0 if successful. Returns a negated errno value in case 1301 * of error. 1302 * 1303 * Note: This can be called from a user context (e.g. fsck(1) ) 1304 * or from within the kernel (e.g. as a result of a mount(1) ). 1305 * In the latter case @inode and @filp carry an abridged amount 1306 * of information as noted above. 1307 * 1308 * Locking: called with bdev->bd_disk->open_mutex held. 1309 **/ 1310 static int sd_open(struct block_device *bdev, fmode_t mode) 1311 { 1312 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1313 struct scsi_device *sdev = sdkp->device; 1314 int retval; 1315 1316 if (scsi_device_get(sdev)) 1317 return -ENXIO; 1318 1319 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1320 1321 /* 1322 * If the device is in error recovery, wait until it is done. 1323 * If the device is offline, then disallow any access to it. 1324 */ 1325 retval = -ENXIO; 1326 if (!scsi_block_when_processing_errors(sdev)) 1327 goto error_out; 1328 1329 if (sd_need_revalidate(bdev, sdkp)) 1330 sd_revalidate_disk(bdev->bd_disk); 1331 1332 /* 1333 * If the drive is empty, just let the open fail. 1334 */ 1335 retval = -ENOMEDIUM; 1336 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1337 goto error_out; 1338 1339 /* 1340 * If the device has the write protect tab set, have the open fail 1341 * if the user expects to be able to write to the thing. 1342 */ 1343 retval = -EROFS; 1344 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1345 goto error_out; 1346 1347 /* 1348 * It is possible that the disk changing stuff resulted in 1349 * the device being taken offline. If this is the case, 1350 * report this to the user, and don't pretend that the 1351 * open actually succeeded. 1352 */ 1353 retval = -ENXIO; 1354 if (!scsi_device_online(sdev)) 1355 goto error_out; 1356 1357 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1358 if (scsi_block_when_processing_errors(sdev)) 1359 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1360 } 1361 1362 return 0; 1363 1364 error_out: 1365 scsi_device_put(sdev); 1366 return retval; 1367 } 1368 1369 /** 1370 * sd_release - invoked when the (last) close(2) is called on this 1371 * scsi disk. 1372 * @disk: disk to release 1373 * @mode: FMODE_* mask 1374 * 1375 * Returns 0. 1376 * 1377 * Note: may block (uninterruptible) if error recovery is underway 1378 * on this disk. 1379 * 1380 * Locking: called with bdev->bd_disk->open_mutex held. 1381 **/ 1382 static void sd_release(struct gendisk *disk, fmode_t mode) 1383 { 1384 struct scsi_disk *sdkp = scsi_disk(disk); 1385 struct scsi_device *sdev = sdkp->device; 1386 1387 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1388 1389 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1390 if (scsi_block_when_processing_errors(sdev)) 1391 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1392 } 1393 1394 scsi_device_put(sdev); 1395 } 1396 1397 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1398 { 1399 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1400 struct scsi_device *sdp = sdkp->device; 1401 struct Scsi_Host *host = sdp->host; 1402 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1403 int diskinfo[4]; 1404 1405 /* default to most commonly used values */ 1406 diskinfo[0] = 0x40; /* 1 << 6 */ 1407 diskinfo[1] = 0x20; /* 1 << 5 */ 1408 diskinfo[2] = capacity >> 11; 1409 1410 /* override with calculated, extended default, or driver values */ 1411 if (host->hostt->bios_param) 1412 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1413 else 1414 scsicam_bios_param(bdev, capacity, diskinfo); 1415 1416 geo->heads = diskinfo[0]; 1417 geo->sectors = diskinfo[1]; 1418 geo->cylinders = diskinfo[2]; 1419 return 0; 1420 } 1421 1422 /** 1423 * sd_ioctl - process an ioctl 1424 * @bdev: target block device 1425 * @mode: FMODE_* mask 1426 * @cmd: ioctl command number 1427 * @arg: this is third argument given to ioctl(2) system call. 1428 * Often contains a pointer. 1429 * 1430 * Returns 0 if successful (some ioctls return positive numbers on 1431 * success as well). Returns a negated errno value in case of error. 1432 * 1433 * Note: most ioctls are forward onto the block subsystem or further 1434 * down in the scsi subsystem. 1435 **/ 1436 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1437 unsigned int cmd, unsigned long arg) 1438 { 1439 struct gendisk *disk = bdev->bd_disk; 1440 struct scsi_disk *sdkp = scsi_disk(disk); 1441 struct scsi_device *sdp = sdkp->device; 1442 void __user *p = (void __user *)arg; 1443 int error; 1444 1445 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1446 "cmd=0x%x\n", disk->disk_name, cmd)); 1447 1448 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO)) 1449 return -ENOIOCTLCMD; 1450 1451 /* 1452 * If we are in the middle of error recovery, don't let anyone 1453 * else try and use this device. Also, if error recovery fails, it 1454 * may try and take the device offline, in which case all further 1455 * access to the device is prohibited. 1456 */ 1457 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1458 (mode & FMODE_NDELAY) != 0); 1459 if (error) 1460 return error; 1461 1462 if (is_sed_ioctl(cmd)) 1463 return sed_ioctl(sdkp->opal_dev, cmd, p); 1464 return scsi_ioctl(sdp, mode, cmd, p); 1465 } 1466 1467 static void set_media_not_present(struct scsi_disk *sdkp) 1468 { 1469 if (sdkp->media_present) 1470 sdkp->device->changed = 1; 1471 1472 if (sdkp->device->removable) { 1473 sdkp->media_present = 0; 1474 sdkp->capacity = 0; 1475 } 1476 } 1477 1478 static int media_not_present(struct scsi_disk *sdkp, 1479 struct scsi_sense_hdr *sshdr) 1480 { 1481 if (!scsi_sense_valid(sshdr)) 1482 return 0; 1483 1484 /* not invoked for commands that could return deferred errors */ 1485 switch (sshdr->sense_key) { 1486 case UNIT_ATTENTION: 1487 case NOT_READY: 1488 /* medium not present */ 1489 if (sshdr->asc == 0x3A) { 1490 set_media_not_present(sdkp); 1491 return 1; 1492 } 1493 } 1494 return 0; 1495 } 1496 1497 /** 1498 * sd_check_events - check media events 1499 * @disk: kernel device descriptor 1500 * @clearing: disk events currently being cleared 1501 * 1502 * Returns mask of DISK_EVENT_*. 1503 * 1504 * Note: this function is invoked from the block subsystem. 1505 **/ 1506 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1507 { 1508 struct scsi_disk *sdkp = disk->private_data; 1509 struct scsi_device *sdp; 1510 int retval; 1511 bool disk_changed; 1512 1513 if (!sdkp) 1514 return 0; 1515 1516 sdp = sdkp->device; 1517 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1518 1519 /* 1520 * If the device is offline, don't send any commands - just pretend as 1521 * if the command failed. If the device ever comes back online, we 1522 * can deal with it then. It is only because of unrecoverable errors 1523 * that we would ever take a device offline in the first place. 1524 */ 1525 if (!scsi_device_online(sdp)) { 1526 set_media_not_present(sdkp); 1527 goto out; 1528 } 1529 1530 /* 1531 * Using TEST_UNIT_READY enables differentiation between drive with 1532 * no cartridge loaded - NOT READY, drive with changed cartridge - 1533 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1534 * 1535 * Drives that auto spin down. eg iomega jaz 1G, will be started 1536 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1537 * sd_revalidate() is called. 1538 */ 1539 if (scsi_block_when_processing_errors(sdp)) { 1540 struct scsi_sense_hdr sshdr = { 0, }; 1541 1542 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1543 &sshdr); 1544 1545 /* failed to execute TUR, assume media not present */ 1546 if (retval < 0 || host_byte(retval)) { 1547 set_media_not_present(sdkp); 1548 goto out; 1549 } 1550 1551 if (media_not_present(sdkp, &sshdr)) 1552 goto out; 1553 } 1554 1555 /* 1556 * For removable scsi disk we have to recognise the presence 1557 * of a disk in the drive. 1558 */ 1559 if (!sdkp->media_present) 1560 sdp->changed = 1; 1561 sdkp->media_present = 1; 1562 out: 1563 /* 1564 * sdp->changed is set under the following conditions: 1565 * 1566 * Medium present state has changed in either direction. 1567 * Device has indicated UNIT_ATTENTION. 1568 */ 1569 disk_changed = sdp->changed; 1570 sdp->changed = 0; 1571 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1572 } 1573 1574 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1575 { 1576 int retries, res; 1577 struct scsi_device *sdp = sdkp->device; 1578 const int timeout = sdp->request_queue->rq_timeout 1579 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1580 struct scsi_sense_hdr my_sshdr; 1581 1582 if (!scsi_device_online(sdp)) 1583 return -ENODEV; 1584 1585 /* caller might not be interested in sense, but we need it */ 1586 if (!sshdr) 1587 sshdr = &my_sshdr; 1588 1589 for (retries = 3; retries > 0; --retries) { 1590 unsigned char cmd[10] = { 0 }; 1591 1592 cmd[0] = SYNCHRONIZE_CACHE; 1593 /* 1594 * Leave the rest of the command zero to indicate 1595 * flush everything. 1596 */ 1597 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr, 1598 timeout, sdkp->max_retries, 0, RQF_PM, NULL); 1599 if (res == 0) 1600 break; 1601 } 1602 1603 if (res) { 1604 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1605 1606 if (res < 0) 1607 return res; 1608 1609 if (scsi_status_is_check_condition(res) && 1610 scsi_sense_valid(sshdr)) { 1611 sd_print_sense_hdr(sdkp, sshdr); 1612 1613 /* we need to evaluate the error return */ 1614 if (sshdr->asc == 0x3a || /* medium not present */ 1615 sshdr->asc == 0x20 || /* invalid command */ 1616 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */ 1617 /* this is no error here */ 1618 return 0; 1619 } 1620 1621 switch (host_byte(res)) { 1622 /* ignore errors due to racing a disconnection */ 1623 case DID_BAD_TARGET: 1624 case DID_NO_CONNECT: 1625 return 0; 1626 /* signal the upper layer it might try again */ 1627 case DID_BUS_BUSY: 1628 case DID_IMM_RETRY: 1629 case DID_REQUEUE: 1630 case DID_SOFT_ERROR: 1631 return -EBUSY; 1632 default: 1633 return -EIO; 1634 } 1635 } 1636 return 0; 1637 } 1638 1639 static void sd_rescan(struct device *dev) 1640 { 1641 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1642 1643 sd_revalidate_disk(sdkp->disk); 1644 } 1645 1646 static int sd_get_unique_id(struct gendisk *disk, u8 id[16], 1647 enum blk_unique_id type) 1648 { 1649 struct scsi_device *sdev = scsi_disk(disk)->device; 1650 const struct scsi_vpd *vpd; 1651 const unsigned char *d; 1652 int ret = -ENXIO, len; 1653 1654 rcu_read_lock(); 1655 vpd = rcu_dereference(sdev->vpd_pg83); 1656 if (!vpd) 1657 goto out_unlock; 1658 1659 ret = -EINVAL; 1660 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) { 1661 /* we only care about designators with LU association */ 1662 if (((d[1] >> 4) & 0x3) != 0x00) 1663 continue; 1664 if ((d[1] & 0xf) != type) 1665 continue; 1666 1667 /* 1668 * Only exit early if a 16-byte descriptor was found. Otherwise 1669 * keep looking as one with more entropy might still show up. 1670 */ 1671 len = d[3]; 1672 if (len != 8 && len != 12 && len != 16) 1673 continue; 1674 ret = len; 1675 memcpy(id, d + 4, len); 1676 if (len == 16) 1677 break; 1678 } 1679 out_unlock: 1680 rcu_read_unlock(); 1681 return ret; 1682 } 1683 1684 static char sd_pr_type(enum pr_type type) 1685 { 1686 switch (type) { 1687 case PR_WRITE_EXCLUSIVE: 1688 return 0x01; 1689 case PR_EXCLUSIVE_ACCESS: 1690 return 0x03; 1691 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1692 return 0x05; 1693 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1694 return 0x06; 1695 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1696 return 0x07; 1697 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1698 return 0x08; 1699 default: 1700 return 0; 1701 } 1702 }; 1703 1704 static int sd_pr_command(struct block_device *bdev, u8 sa, 1705 u64 key, u64 sa_key, u8 type, u8 flags) 1706 { 1707 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1708 struct scsi_device *sdev = sdkp->device; 1709 struct scsi_sense_hdr sshdr; 1710 int result; 1711 u8 cmd[16] = { 0, }; 1712 u8 data[24] = { 0, }; 1713 1714 cmd[0] = PERSISTENT_RESERVE_OUT; 1715 cmd[1] = sa; 1716 cmd[2] = type; 1717 put_unaligned_be32(sizeof(data), &cmd[5]); 1718 1719 put_unaligned_be64(key, &data[0]); 1720 put_unaligned_be64(sa_key, &data[8]); 1721 data[20] = flags; 1722 1723 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1724 &sshdr, SD_TIMEOUT, sdkp->max_retries, NULL); 1725 1726 if (scsi_status_is_check_condition(result) && 1727 scsi_sense_valid(&sshdr)) { 1728 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1729 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1730 } 1731 1732 return result; 1733 } 1734 1735 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1736 u32 flags) 1737 { 1738 if (flags & ~PR_FL_IGNORE_KEY) 1739 return -EOPNOTSUPP; 1740 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1741 old_key, new_key, 0, 1742 (1 << 0) /* APTPL */); 1743 } 1744 1745 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1746 u32 flags) 1747 { 1748 if (flags) 1749 return -EOPNOTSUPP; 1750 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1751 } 1752 1753 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1754 { 1755 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1756 } 1757 1758 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1759 enum pr_type type, bool abort) 1760 { 1761 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1762 sd_pr_type(type), 0); 1763 } 1764 1765 static int sd_pr_clear(struct block_device *bdev, u64 key) 1766 { 1767 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1768 } 1769 1770 static const struct pr_ops sd_pr_ops = { 1771 .pr_register = sd_pr_register, 1772 .pr_reserve = sd_pr_reserve, 1773 .pr_release = sd_pr_release, 1774 .pr_preempt = sd_pr_preempt, 1775 .pr_clear = sd_pr_clear, 1776 }; 1777 1778 static void scsi_disk_free_disk(struct gendisk *disk) 1779 { 1780 struct scsi_disk *sdkp = scsi_disk(disk); 1781 1782 put_device(&sdkp->disk_dev); 1783 } 1784 1785 static const struct block_device_operations sd_fops = { 1786 .owner = THIS_MODULE, 1787 .open = sd_open, 1788 .release = sd_release, 1789 .ioctl = sd_ioctl, 1790 .getgeo = sd_getgeo, 1791 .compat_ioctl = blkdev_compat_ptr_ioctl, 1792 .check_events = sd_check_events, 1793 .unlock_native_capacity = sd_unlock_native_capacity, 1794 .report_zones = sd_zbc_report_zones, 1795 .get_unique_id = sd_get_unique_id, 1796 .free_disk = scsi_disk_free_disk, 1797 .pr_ops = &sd_pr_ops, 1798 }; 1799 1800 /** 1801 * sd_eh_reset - reset error handling callback 1802 * @scmd: sd-issued command that has failed 1803 * 1804 * This function is called by the SCSI midlayer before starting 1805 * SCSI EH. When counting medium access failures we have to be 1806 * careful to register it only only once per device and SCSI EH run; 1807 * there might be several timed out commands which will cause the 1808 * 'max_medium_access_timeouts' counter to trigger after the first 1809 * SCSI EH run already and set the device to offline. 1810 * So this function resets the internal counter before starting SCSI EH. 1811 **/ 1812 static void sd_eh_reset(struct scsi_cmnd *scmd) 1813 { 1814 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1815 1816 /* New SCSI EH run, reset gate variable */ 1817 sdkp->ignore_medium_access_errors = false; 1818 } 1819 1820 /** 1821 * sd_eh_action - error handling callback 1822 * @scmd: sd-issued command that has failed 1823 * @eh_disp: The recovery disposition suggested by the midlayer 1824 * 1825 * This function is called by the SCSI midlayer upon completion of an 1826 * error test command (currently TEST UNIT READY). The result of sending 1827 * the eh command is passed in eh_disp. We're looking for devices that 1828 * fail medium access commands but are OK with non access commands like 1829 * test unit ready (so wrongly see the device as having a successful 1830 * recovery) 1831 **/ 1832 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1833 { 1834 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1835 struct scsi_device *sdev = scmd->device; 1836 1837 if (!scsi_device_online(sdev) || 1838 !scsi_medium_access_command(scmd) || 1839 host_byte(scmd->result) != DID_TIME_OUT || 1840 eh_disp != SUCCESS) 1841 return eh_disp; 1842 1843 /* 1844 * The device has timed out executing a medium access command. 1845 * However, the TEST UNIT READY command sent during error 1846 * handling completed successfully. Either the device is in the 1847 * process of recovering or has it suffered an internal failure 1848 * that prevents access to the storage medium. 1849 */ 1850 if (!sdkp->ignore_medium_access_errors) { 1851 sdkp->medium_access_timed_out++; 1852 sdkp->ignore_medium_access_errors = true; 1853 } 1854 1855 /* 1856 * If the device keeps failing read/write commands but TEST UNIT 1857 * READY always completes successfully we assume that medium 1858 * access is no longer possible and take the device offline. 1859 */ 1860 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1861 scmd_printk(KERN_ERR, scmd, 1862 "Medium access timeout failure. Offlining disk!\n"); 1863 mutex_lock(&sdev->state_mutex); 1864 scsi_device_set_state(sdev, SDEV_OFFLINE); 1865 mutex_unlock(&sdev->state_mutex); 1866 1867 return SUCCESS; 1868 } 1869 1870 return eh_disp; 1871 } 1872 1873 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1874 { 1875 struct request *req = scsi_cmd_to_rq(scmd); 1876 struct scsi_device *sdev = scmd->device; 1877 unsigned int transferred, good_bytes; 1878 u64 start_lba, end_lba, bad_lba; 1879 1880 /* 1881 * Some commands have a payload smaller than the device logical 1882 * block size (e.g. INQUIRY on a 4K disk). 1883 */ 1884 if (scsi_bufflen(scmd) <= sdev->sector_size) 1885 return 0; 1886 1887 /* Check if we have a 'bad_lba' information */ 1888 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1889 SCSI_SENSE_BUFFERSIZE, 1890 &bad_lba)) 1891 return 0; 1892 1893 /* 1894 * If the bad lba was reported incorrectly, we have no idea where 1895 * the error is. 1896 */ 1897 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1898 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1899 if (bad_lba < start_lba || bad_lba >= end_lba) 1900 return 0; 1901 1902 /* 1903 * resid is optional but mostly filled in. When it's unused, 1904 * its value is zero, so we assume the whole buffer transferred 1905 */ 1906 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1907 1908 /* This computation should always be done in terms of the 1909 * resolution of the device's medium. 1910 */ 1911 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 1912 1913 return min(good_bytes, transferred); 1914 } 1915 1916 /** 1917 * sd_done - bottom half handler: called when the lower level 1918 * driver has completed (successfully or otherwise) a scsi command. 1919 * @SCpnt: mid-level's per command structure. 1920 * 1921 * Note: potentially run from within an ISR. Must not block. 1922 **/ 1923 static int sd_done(struct scsi_cmnd *SCpnt) 1924 { 1925 int result = SCpnt->result; 1926 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1927 unsigned int sector_size = SCpnt->device->sector_size; 1928 unsigned int resid; 1929 struct scsi_sense_hdr sshdr; 1930 struct request *req = scsi_cmd_to_rq(SCpnt); 1931 struct scsi_disk *sdkp = scsi_disk(req->q->disk); 1932 int sense_valid = 0; 1933 int sense_deferred = 0; 1934 1935 switch (req_op(req)) { 1936 case REQ_OP_DISCARD: 1937 case REQ_OP_WRITE_ZEROES: 1938 case REQ_OP_ZONE_RESET: 1939 case REQ_OP_ZONE_RESET_ALL: 1940 case REQ_OP_ZONE_OPEN: 1941 case REQ_OP_ZONE_CLOSE: 1942 case REQ_OP_ZONE_FINISH: 1943 if (!result) { 1944 good_bytes = blk_rq_bytes(req); 1945 scsi_set_resid(SCpnt, 0); 1946 } else { 1947 good_bytes = 0; 1948 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1949 } 1950 break; 1951 default: 1952 /* 1953 * In case of bogus fw or device, we could end up having 1954 * an unaligned partial completion. Check this here and force 1955 * alignment. 1956 */ 1957 resid = scsi_get_resid(SCpnt); 1958 if (resid & (sector_size - 1)) { 1959 sd_printk(KERN_INFO, sdkp, 1960 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 1961 resid, sector_size); 1962 scsi_print_command(SCpnt); 1963 resid = min(scsi_bufflen(SCpnt), 1964 round_up(resid, sector_size)); 1965 scsi_set_resid(SCpnt, resid); 1966 } 1967 } 1968 1969 if (result) { 1970 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 1971 if (sense_valid) 1972 sense_deferred = scsi_sense_is_deferred(&sshdr); 1973 } 1974 sdkp->medium_access_timed_out = 0; 1975 1976 if (!scsi_status_is_check_condition(result) && 1977 (!sense_valid || sense_deferred)) 1978 goto out; 1979 1980 switch (sshdr.sense_key) { 1981 case HARDWARE_ERROR: 1982 case MEDIUM_ERROR: 1983 good_bytes = sd_completed_bytes(SCpnt); 1984 break; 1985 case RECOVERED_ERROR: 1986 good_bytes = scsi_bufflen(SCpnt); 1987 break; 1988 case NO_SENSE: 1989 /* This indicates a false check condition, so ignore it. An 1990 * unknown amount of data was transferred so treat it as an 1991 * error. 1992 */ 1993 SCpnt->result = 0; 1994 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1995 break; 1996 case ABORTED_COMMAND: 1997 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 1998 good_bytes = sd_completed_bytes(SCpnt); 1999 break; 2000 case ILLEGAL_REQUEST: 2001 switch (sshdr.asc) { 2002 case 0x10: /* DIX: Host detected corruption */ 2003 good_bytes = sd_completed_bytes(SCpnt); 2004 break; 2005 case 0x20: /* INVALID COMMAND OPCODE */ 2006 case 0x24: /* INVALID FIELD IN CDB */ 2007 switch (SCpnt->cmnd[0]) { 2008 case UNMAP: 2009 sd_config_discard(sdkp, SD_LBP_DISABLE); 2010 break; 2011 case WRITE_SAME_16: 2012 case WRITE_SAME: 2013 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2014 sd_config_discard(sdkp, SD_LBP_DISABLE); 2015 } else { 2016 sdkp->device->no_write_same = 1; 2017 sd_config_write_same(sdkp); 2018 req->rq_flags |= RQF_QUIET; 2019 } 2020 break; 2021 } 2022 } 2023 break; 2024 default: 2025 break; 2026 } 2027 2028 out: 2029 if (sd_is_zoned(sdkp)) 2030 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2031 2032 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2033 "sd_done: completed %d of %d bytes\n", 2034 good_bytes, scsi_bufflen(SCpnt))); 2035 2036 return good_bytes; 2037 } 2038 2039 /* 2040 * spinup disk - called only in sd_revalidate_disk() 2041 */ 2042 static void 2043 sd_spinup_disk(struct scsi_disk *sdkp) 2044 { 2045 unsigned char cmd[10]; 2046 unsigned long spintime_expire = 0; 2047 int retries, spintime; 2048 unsigned int the_result; 2049 struct scsi_sense_hdr sshdr; 2050 int sense_valid = 0; 2051 2052 spintime = 0; 2053 2054 /* Spin up drives, as required. Only do this at boot time */ 2055 /* Spinup needs to be done for module loads too. */ 2056 do { 2057 retries = 0; 2058 2059 do { 2060 bool media_was_present = sdkp->media_present; 2061 2062 cmd[0] = TEST_UNIT_READY; 2063 memset((void *) &cmd[1], 0, 9); 2064 2065 the_result = scsi_execute_req(sdkp->device, cmd, 2066 DMA_NONE, NULL, 0, 2067 &sshdr, SD_TIMEOUT, 2068 sdkp->max_retries, NULL); 2069 2070 /* 2071 * If the drive has indicated to us that it 2072 * doesn't have any media in it, don't bother 2073 * with any more polling. 2074 */ 2075 if (media_not_present(sdkp, &sshdr)) { 2076 if (media_was_present) 2077 sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n"); 2078 return; 2079 } 2080 2081 if (the_result) 2082 sense_valid = scsi_sense_valid(&sshdr); 2083 retries++; 2084 } while (retries < 3 && 2085 (!scsi_status_is_good(the_result) || 2086 (scsi_status_is_check_condition(the_result) && 2087 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2088 2089 if (!scsi_status_is_check_condition(the_result)) { 2090 /* no sense, TUR either succeeded or failed 2091 * with a status error */ 2092 if(!spintime && !scsi_status_is_good(the_result)) { 2093 sd_print_result(sdkp, "Test Unit Ready failed", 2094 the_result); 2095 } 2096 break; 2097 } 2098 2099 /* 2100 * The device does not want the automatic start to be issued. 2101 */ 2102 if (sdkp->device->no_start_on_add) 2103 break; 2104 2105 if (sense_valid && sshdr.sense_key == NOT_READY) { 2106 if (sshdr.asc == 4 && sshdr.ascq == 3) 2107 break; /* manual intervention required */ 2108 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2109 break; /* standby */ 2110 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2111 break; /* unavailable */ 2112 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2113 break; /* sanitize in progress */ 2114 /* 2115 * Issue command to spin up drive when not ready 2116 */ 2117 if (!spintime) { 2118 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2119 cmd[0] = START_STOP; 2120 cmd[1] = 1; /* Return immediately */ 2121 memset((void *) &cmd[2], 0, 8); 2122 cmd[4] = 1; /* Start spin cycle */ 2123 if (sdkp->device->start_stop_pwr_cond) 2124 cmd[4] |= 1 << 4; 2125 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2126 NULL, 0, &sshdr, 2127 SD_TIMEOUT, sdkp->max_retries, 2128 NULL); 2129 spintime_expire = jiffies + 100 * HZ; 2130 spintime = 1; 2131 } 2132 /* Wait 1 second for next try */ 2133 msleep(1000); 2134 printk(KERN_CONT "."); 2135 2136 /* 2137 * Wait for USB flash devices with slow firmware. 2138 * Yes, this sense key/ASC combination shouldn't 2139 * occur here. It's characteristic of these devices. 2140 */ 2141 } else if (sense_valid && 2142 sshdr.sense_key == UNIT_ATTENTION && 2143 sshdr.asc == 0x28) { 2144 if (!spintime) { 2145 spintime_expire = jiffies + 5 * HZ; 2146 spintime = 1; 2147 } 2148 /* Wait 1 second for next try */ 2149 msleep(1000); 2150 } else { 2151 /* we don't understand the sense code, so it's 2152 * probably pointless to loop */ 2153 if(!spintime) { 2154 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2155 sd_print_sense_hdr(sdkp, &sshdr); 2156 } 2157 break; 2158 } 2159 2160 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2161 2162 if (spintime) { 2163 if (scsi_status_is_good(the_result)) 2164 printk(KERN_CONT "ready\n"); 2165 else 2166 printk(KERN_CONT "not responding...\n"); 2167 } 2168 } 2169 2170 /* 2171 * Determine whether disk supports Data Integrity Field. 2172 */ 2173 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2174 { 2175 struct scsi_device *sdp = sdkp->device; 2176 u8 type; 2177 int ret = 0; 2178 2179 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2180 sdkp->protection_type = 0; 2181 return ret; 2182 } 2183 2184 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2185 2186 if (type > T10_PI_TYPE3_PROTECTION) 2187 ret = -ENODEV; 2188 else if (scsi_host_dif_capable(sdp->host, type)) 2189 ret = 1; 2190 2191 if (sdkp->first_scan || type != sdkp->protection_type) 2192 switch (ret) { 2193 case -ENODEV: 2194 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2195 " protection type %u. Disabling disk!\n", 2196 type); 2197 break; 2198 case 1: 2199 sd_printk(KERN_NOTICE, sdkp, 2200 "Enabling DIF Type %u protection\n", type); 2201 break; 2202 case 0: 2203 sd_printk(KERN_NOTICE, sdkp, 2204 "Disabling DIF Type %u protection\n", type); 2205 break; 2206 } 2207 2208 sdkp->protection_type = type; 2209 2210 return ret; 2211 } 2212 2213 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2214 struct scsi_sense_hdr *sshdr, int sense_valid, 2215 int the_result) 2216 { 2217 if (sense_valid) 2218 sd_print_sense_hdr(sdkp, sshdr); 2219 else 2220 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2221 2222 /* 2223 * Set dirty bit for removable devices if not ready - 2224 * sometimes drives will not report this properly. 2225 */ 2226 if (sdp->removable && 2227 sense_valid && sshdr->sense_key == NOT_READY) 2228 set_media_not_present(sdkp); 2229 2230 /* 2231 * We used to set media_present to 0 here to indicate no media 2232 * in the drive, but some drives fail read capacity even with 2233 * media present, so we can't do that. 2234 */ 2235 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2236 } 2237 2238 #define RC16_LEN 32 2239 #if RC16_LEN > SD_BUF_SIZE 2240 #error RC16_LEN must not be more than SD_BUF_SIZE 2241 #endif 2242 2243 #define READ_CAPACITY_RETRIES_ON_RESET 10 2244 2245 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2246 unsigned char *buffer) 2247 { 2248 unsigned char cmd[16]; 2249 struct scsi_sense_hdr sshdr; 2250 int sense_valid = 0; 2251 int the_result; 2252 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2253 unsigned int alignment; 2254 unsigned long long lba; 2255 unsigned sector_size; 2256 2257 if (sdp->no_read_capacity_16) 2258 return -EINVAL; 2259 2260 do { 2261 memset(cmd, 0, 16); 2262 cmd[0] = SERVICE_ACTION_IN_16; 2263 cmd[1] = SAI_READ_CAPACITY_16; 2264 cmd[13] = RC16_LEN; 2265 memset(buffer, 0, RC16_LEN); 2266 2267 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2268 buffer, RC16_LEN, &sshdr, 2269 SD_TIMEOUT, sdkp->max_retries, NULL); 2270 2271 if (media_not_present(sdkp, &sshdr)) 2272 return -ENODEV; 2273 2274 if (the_result > 0) { 2275 sense_valid = scsi_sense_valid(&sshdr); 2276 if (sense_valid && 2277 sshdr.sense_key == ILLEGAL_REQUEST && 2278 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2279 sshdr.ascq == 0x00) 2280 /* Invalid Command Operation Code or 2281 * Invalid Field in CDB, just retry 2282 * silently with RC10 */ 2283 return -EINVAL; 2284 if (sense_valid && 2285 sshdr.sense_key == UNIT_ATTENTION && 2286 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2287 /* Device reset might occur several times, 2288 * give it one more chance */ 2289 if (--reset_retries > 0) 2290 continue; 2291 } 2292 retries--; 2293 2294 } while (the_result && retries); 2295 2296 if (the_result) { 2297 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2298 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2299 return -EINVAL; 2300 } 2301 2302 sector_size = get_unaligned_be32(&buffer[8]); 2303 lba = get_unaligned_be64(&buffer[0]); 2304 2305 if (sd_read_protection_type(sdkp, buffer) < 0) { 2306 sdkp->capacity = 0; 2307 return -ENODEV; 2308 } 2309 2310 /* Logical blocks per physical block exponent */ 2311 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2312 2313 /* RC basis */ 2314 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2315 2316 /* Lowest aligned logical block */ 2317 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2318 blk_queue_alignment_offset(sdp->request_queue, alignment); 2319 if (alignment && sdkp->first_scan) 2320 sd_printk(KERN_NOTICE, sdkp, 2321 "physical block alignment offset: %u\n", alignment); 2322 2323 if (buffer[14] & 0x80) { /* LBPME */ 2324 sdkp->lbpme = 1; 2325 2326 if (buffer[14] & 0x40) /* LBPRZ */ 2327 sdkp->lbprz = 1; 2328 2329 sd_config_discard(sdkp, SD_LBP_WS16); 2330 } 2331 2332 sdkp->capacity = lba + 1; 2333 return sector_size; 2334 } 2335 2336 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2337 unsigned char *buffer) 2338 { 2339 unsigned char cmd[16]; 2340 struct scsi_sense_hdr sshdr; 2341 int sense_valid = 0; 2342 int the_result; 2343 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2344 sector_t lba; 2345 unsigned sector_size; 2346 2347 do { 2348 cmd[0] = READ_CAPACITY; 2349 memset(&cmd[1], 0, 9); 2350 memset(buffer, 0, 8); 2351 2352 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2353 buffer, 8, &sshdr, 2354 SD_TIMEOUT, sdkp->max_retries, NULL); 2355 2356 if (media_not_present(sdkp, &sshdr)) 2357 return -ENODEV; 2358 2359 if (the_result > 0) { 2360 sense_valid = scsi_sense_valid(&sshdr); 2361 if (sense_valid && 2362 sshdr.sense_key == UNIT_ATTENTION && 2363 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2364 /* Device reset might occur several times, 2365 * give it one more chance */ 2366 if (--reset_retries > 0) 2367 continue; 2368 } 2369 retries--; 2370 2371 } while (the_result && retries); 2372 2373 if (the_result) { 2374 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2375 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2376 return -EINVAL; 2377 } 2378 2379 sector_size = get_unaligned_be32(&buffer[4]); 2380 lba = get_unaligned_be32(&buffer[0]); 2381 2382 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2383 /* Some buggy (usb cardreader) devices return an lba of 2384 0xffffffff when the want to report a size of 0 (with 2385 which they really mean no media is present) */ 2386 sdkp->capacity = 0; 2387 sdkp->physical_block_size = sector_size; 2388 return sector_size; 2389 } 2390 2391 sdkp->capacity = lba + 1; 2392 sdkp->physical_block_size = sector_size; 2393 return sector_size; 2394 } 2395 2396 static int sd_try_rc16_first(struct scsi_device *sdp) 2397 { 2398 if (sdp->host->max_cmd_len < 16) 2399 return 0; 2400 if (sdp->try_rc_10_first) 2401 return 0; 2402 if (sdp->scsi_level > SCSI_SPC_2) 2403 return 1; 2404 if (scsi_device_protection(sdp)) 2405 return 1; 2406 return 0; 2407 } 2408 2409 /* 2410 * read disk capacity 2411 */ 2412 static void 2413 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2414 { 2415 int sector_size; 2416 struct scsi_device *sdp = sdkp->device; 2417 2418 if (sd_try_rc16_first(sdp)) { 2419 sector_size = read_capacity_16(sdkp, sdp, buffer); 2420 if (sector_size == -EOVERFLOW) 2421 goto got_data; 2422 if (sector_size == -ENODEV) 2423 return; 2424 if (sector_size < 0) 2425 sector_size = read_capacity_10(sdkp, sdp, buffer); 2426 if (sector_size < 0) 2427 return; 2428 } else { 2429 sector_size = read_capacity_10(sdkp, sdp, buffer); 2430 if (sector_size == -EOVERFLOW) 2431 goto got_data; 2432 if (sector_size < 0) 2433 return; 2434 if ((sizeof(sdkp->capacity) > 4) && 2435 (sdkp->capacity > 0xffffffffULL)) { 2436 int old_sector_size = sector_size; 2437 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2438 "Trying to use READ CAPACITY(16).\n"); 2439 sector_size = read_capacity_16(sdkp, sdp, buffer); 2440 if (sector_size < 0) { 2441 sd_printk(KERN_NOTICE, sdkp, 2442 "Using 0xffffffff as device size\n"); 2443 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2444 sector_size = old_sector_size; 2445 goto got_data; 2446 } 2447 /* Remember that READ CAPACITY(16) succeeded */ 2448 sdp->try_rc_10_first = 0; 2449 } 2450 } 2451 2452 /* Some devices are known to return the total number of blocks, 2453 * not the highest block number. Some devices have versions 2454 * which do this and others which do not. Some devices we might 2455 * suspect of doing this but we don't know for certain. 2456 * 2457 * If we know the reported capacity is wrong, decrement it. If 2458 * we can only guess, then assume the number of blocks is even 2459 * (usually true but not always) and err on the side of lowering 2460 * the capacity. 2461 */ 2462 if (sdp->fix_capacity || 2463 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2464 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2465 "from its reported value: %llu\n", 2466 (unsigned long long) sdkp->capacity); 2467 --sdkp->capacity; 2468 } 2469 2470 got_data: 2471 if (sector_size == 0) { 2472 sector_size = 512; 2473 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2474 "assuming 512.\n"); 2475 } 2476 2477 if (sector_size != 512 && 2478 sector_size != 1024 && 2479 sector_size != 2048 && 2480 sector_size != 4096) { 2481 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2482 sector_size); 2483 /* 2484 * The user might want to re-format the drive with 2485 * a supported sectorsize. Once this happens, it 2486 * would be relatively trivial to set the thing up. 2487 * For this reason, we leave the thing in the table. 2488 */ 2489 sdkp->capacity = 0; 2490 /* 2491 * set a bogus sector size so the normal read/write 2492 * logic in the block layer will eventually refuse any 2493 * request on this device without tripping over power 2494 * of two sector size assumptions 2495 */ 2496 sector_size = 512; 2497 } 2498 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2499 blk_queue_physical_block_size(sdp->request_queue, 2500 sdkp->physical_block_size); 2501 sdkp->device->sector_size = sector_size; 2502 2503 if (sdkp->capacity > 0xffffffff) 2504 sdp->use_16_for_rw = 1; 2505 2506 } 2507 2508 /* 2509 * Print disk capacity 2510 */ 2511 static void 2512 sd_print_capacity(struct scsi_disk *sdkp, 2513 sector_t old_capacity) 2514 { 2515 int sector_size = sdkp->device->sector_size; 2516 char cap_str_2[10], cap_str_10[10]; 2517 2518 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2519 return; 2520 2521 string_get_size(sdkp->capacity, sector_size, 2522 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2523 string_get_size(sdkp->capacity, sector_size, 2524 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2525 2526 sd_printk(KERN_NOTICE, sdkp, 2527 "%llu %d-byte logical blocks: (%s/%s)\n", 2528 (unsigned long long)sdkp->capacity, 2529 sector_size, cap_str_10, cap_str_2); 2530 2531 if (sdkp->physical_block_size != sector_size) 2532 sd_printk(KERN_NOTICE, sdkp, 2533 "%u-byte physical blocks\n", 2534 sdkp->physical_block_size); 2535 } 2536 2537 /* called with buffer of length 512 */ 2538 static inline int 2539 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2540 unsigned char *buffer, int len, struct scsi_mode_data *data, 2541 struct scsi_sense_hdr *sshdr) 2542 { 2543 /* 2544 * If we must use MODE SENSE(10), make sure that the buffer length 2545 * is at least 8 bytes so that the mode sense header fits. 2546 */ 2547 if (sdkp->device->use_10_for_ms && len < 8) 2548 len = 8; 2549 2550 return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len, 2551 SD_TIMEOUT, sdkp->max_retries, data, 2552 sshdr); 2553 } 2554 2555 /* 2556 * read write protect setting, if possible - called only in sd_revalidate_disk() 2557 * called with buffer of length SD_BUF_SIZE 2558 */ 2559 static void 2560 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2561 { 2562 int res; 2563 struct scsi_device *sdp = sdkp->device; 2564 struct scsi_mode_data data; 2565 int old_wp = sdkp->write_prot; 2566 2567 set_disk_ro(sdkp->disk, 0); 2568 if (sdp->skip_ms_page_3f) { 2569 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2570 return; 2571 } 2572 2573 if (sdp->use_192_bytes_for_3f) { 2574 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2575 } else { 2576 /* 2577 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2578 * We have to start carefully: some devices hang if we ask 2579 * for more than is available. 2580 */ 2581 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2582 2583 /* 2584 * Second attempt: ask for page 0 When only page 0 is 2585 * implemented, a request for page 3F may return Sense Key 2586 * 5: Illegal Request, Sense Code 24: Invalid field in 2587 * CDB. 2588 */ 2589 if (res < 0) 2590 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2591 2592 /* 2593 * Third attempt: ask 255 bytes, as we did earlier. 2594 */ 2595 if (res < 0) 2596 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2597 &data, NULL); 2598 } 2599 2600 if (res < 0) { 2601 sd_first_printk(KERN_WARNING, sdkp, 2602 "Test WP failed, assume Write Enabled\n"); 2603 } else { 2604 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2605 set_disk_ro(sdkp->disk, sdkp->write_prot); 2606 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2607 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2608 sdkp->write_prot ? "on" : "off"); 2609 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2610 } 2611 } 2612 } 2613 2614 /* 2615 * sd_read_cache_type - called only from sd_revalidate_disk() 2616 * called with buffer of length SD_BUF_SIZE 2617 */ 2618 static void 2619 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2620 { 2621 int len = 0, res; 2622 struct scsi_device *sdp = sdkp->device; 2623 2624 int dbd; 2625 int modepage; 2626 int first_len; 2627 struct scsi_mode_data data; 2628 struct scsi_sense_hdr sshdr; 2629 int old_wce = sdkp->WCE; 2630 int old_rcd = sdkp->RCD; 2631 int old_dpofua = sdkp->DPOFUA; 2632 2633 2634 if (sdkp->cache_override) 2635 return; 2636 2637 first_len = 4; 2638 if (sdp->skip_ms_page_8) { 2639 if (sdp->type == TYPE_RBC) 2640 goto defaults; 2641 else { 2642 if (sdp->skip_ms_page_3f) 2643 goto defaults; 2644 modepage = 0x3F; 2645 if (sdp->use_192_bytes_for_3f) 2646 first_len = 192; 2647 dbd = 0; 2648 } 2649 } else if (sdp->type == TYPE_RBC) { 2650 modepage = 6; 2651 dbd = 8; 2652 } else { 2653 modepage = 8; 2654 dbd = 0; 2655 } 2656 2657 /* cautiously ask */ 2658 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 2659 &data, &sshdr); 2660 2661 if (res < 0) 2662 goto bad_sense; 2663 2664 if (!data.header_length) { 2665 modepage = 6; 2666 first_len = 0; 2667 sd_first_printk(KERN_ERR, sdkp, 2668 "Missing header in MODE_SENSE response\n"); 2669 } 2670 2671 /* that went OK, now ask for the proper length */ 2672 len = data.length; 2673 2674 /* 2675 * We're only interested in the first three bytes, actually. 2676 * But the data cache page is defined for the first 20. 2677 */ 2678 if (len < 3) 2679 goto bad_sense; 2680 else if (len > SD_BUF_SIZE) { 2681 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2682 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2683 len = SD_BUF_SIZE; 2684 } 2685 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2686 len = 192; 2687 2688 /* Get the data */ 2689 if (len > first_len) 2690 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 2691 &data, &sshdr); 2692 2693 if (!res) { 2694 int offset = data.header_length + data.block_descriptor_length; 2695 2696 while (offset < len) { 2697 u8 page_code = buffer[offset] & 0x3F; 2698 u8 spf = buffer[offset] & 0x40; 2699 2700 if (page_code == 8 || page_code == 6) { 2701 /* We're interested only in the first 3 bytes. 2702 */ 2703 if (len - offset <= 2) { 2704 sd_first_printk(KERN_ERR, sdkp, 2705 "Incomplete mode parameter " 2706 "data\n"); 2707 goto defaults; 2708 } else { 2709 modepage = page_code; 2710 goto Page_found; 2711 } 2712 } else { 2713 /* Go to the next page */ 2714 if (spf && len - offset > 3) 2715 offset += 4 + (buffer[offset+2] << 8) + 2716 buffer[offset+3]; 2717 else if (!spf && len - offset > 1) 2718 offset += 2 + buffer[offset+1]; 2719 else { 2720 sd_first_printk(KERN_ERR, sdkp, 2721 "Incomplete mode " 2722 "parameter data\n"); 2723 goto defaults; 2724 } 2725 } 2726 } 2727 2728 sd_first_printk(KERN_WARNING, sdkp, 2729 "No Caching mode page found\n"); 2730 goto defaults; 2731 2732 Page_found: 2733 if (modepage == 8) { 2734 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2735 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2736 } else { 2737 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2738 sdkp->RCD = 0; 2739 } 2740 2741 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2742 if (sdp->broken_fua) { 2743 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2744 sdkp->DPOFUA = 0; 2745 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2746 !sdkp->device->use_16_for_rw) { 2747 sd_first_printk(KERN_NOTICE, sdkp, 2748 "Uses READ/WRITE(6), disabling FUA\n"); 2749 sdkp->DPOFUA = 0; 2750 } 2751 2752 /* No cache flush allowed for write protected devices */ 2753 if (sdkp->WCE && sdkp->write_prot) 2754 sdkp->WCE = 0; 2755 2756 if (sdkp->first_scan || old_wce != sdkp->WCE || 2757 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2758 sd_printk(KERN_NOTICE, sdkp, 2759 "Write cache: %s, read cache: %s, %s\n", 2760 sdkp->WCE ? "enabled" : "disabled", 2761 sdkp->RCD ? "disabled" : "enabled", 2762 sdkp->DPOFUA ? "supports DPO and FUA" 2763 : "doesn't support DPO or FUA"); 2764 2765 return; 2766 } 2767 2768 bad_sense: 2769 if (scsi_sense_valid(&sshdr) && 2770 sshdr.sense_key == ILLEGAL_REQUEST && 2771 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2772 /* Invalid field in CDB */ 2773 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2774 else 2775 sd_first_printk(KERN_ERR, sdkp, 2776 "Asking for cache data failed\n"); 2777 2778 defaults: 2779 if (sdp->wce_default_on) { 2780 sd_first_printk(KERN_NOTICE, sdkp, 2781 "Assuming drive cache: write back\n"); 2782 sdkp->WCE = 1; 2783 } else { 2784 sd_first_printk(KERN_WARNING, sdkp, 2785 "Assuming drive cache: write through\n"); 2786 sdkp->WCE = 0; 2787 } 2788 sdkp->RCD = 0; 2789 sdkp->DPOFUA = 0; 2790 } 2791 2792 /* 2793 * The ATO bit indicates whether the DIF application tag is available 2794 * for use by the operating system. 2795 */ 2796 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2797 { 2798 int res, offset; 2799 struct scsi_device *sdp = sdkp->device; 2800 struct scsi_mode_data data; 2801 struct scsi_sense_hdr sshdr; 2802 2803 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2804 return; 2805 2806 if (sdkp->protection_type == 0) 2807 return; 2808 2809 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2810 sdkp->max_retries, &data, &sshdr); 2811 2812 if (res < 0 || !data.header_length || 2813 data.length < 6) { 2814 sd_first_printk(KERN_WARNING, sdkp, 2815 "getting Control mode page failed, assume no ATO\n"); 2816 2817 if (scsi_sense_valid(&sshdr)) 2818 sd_print_sense_hdr(sdkp, &sshdr); 2819 2820 return; 2821 } 2822 2823 offset = data.header_length + data.block_descriptor_length; 2824 2825 if ((buffer[offset] & 0x3f) != 0x0a) { 2826 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2827 return; 2828 } 2829 2830 if ((buffer[offset + 5] & 0x80) == 0) 2831 return; 2832 2833 sdkp->ATO = 1; 2834 2835 return; 2836 } 2837 2838 /** 2839 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2840 * @sdkp: disk to query 2841 */ 2842 static void sd_read_block_limits(struct scsi_disk *sdkp) 2843 { 2844 unsigned int sector_sz = sdkp->device->sector_size; 2845 const int vpd_len = 64; 2846 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2847 2848 if (!buffer || 2849 /* Block Limits VPD */ 2850 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2851 goto out; 2852 2853 blk_queue_io_min(sdkp->disk->queue, 2854 get_unaligned_be16(&buffer[6]) * sector_sz); 2855 2856 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2857 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2858 2859 if (buffer[3] == 0x3c) { 2860 unsigned int lba_count, desc_count; 2861 2862 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2863 2864 if (!sdkp->lbpme) 2865 goto out; 2866 2867 lba_count = get_unaligned_be32(&buffer[20]); 2868 desc_count = get_unaligned_be32(&buffer[24]); 2869 2870 if (lba_count && desc_count) 2871 sdkp->max_unmap_blocks = lba_count; 2872 2873 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2874 2875 if (buffer[32] & 0x80) 2876 sdkp->unmap_alignment = 2877 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2878 2879 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2880 2881 if (sdkp->max_unmap_blocks) 2882 sd_config_discard(sdkp, SD_LBP_UNMAP); 2883 else 2884 sd_config_discard(sdkp, SD_LBP_WS16); 2885 2886 } else { /* LBP VPD page tells us what to use */ 2887 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2888 sd_config_discard(sdkp, SD_LBP_UNMAP); 2889 else if (sdkp->lbpws) 2890 sd_config_discard(sdkp, SD_LBP_WS16); 2891 else if (sdkp->lbpws10) 2892 sd_config_discard(sdkp, SD_LBP_WS10); 2893 else 2894 sd_config_discard(sdkp, SD_LBP_DISABLE); 2895 } 2896 } 2897 2898 out: 2899 kfree(buffer); 2900 } 2901 2902 /** 2903 * sd_read_block_characteristics - Query block dev. characteristics 2904 * @sdkp: disk to query 2905 */ 2906 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2907 { 2908 struct request_queue *q = sdkp->disk->queue; 2909 unsigned char *buffer; 2910 u16 rot; 2911 const int vpd_len = 64; 2912 2913 buffer = kmalloc(vpd_len, GFP_KERNEL); 2914 2915 if (!buffer || 2916 /* Block Device Characteristics VPD */ 2917 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 2918 goto out; 2919 2920 rot = get_unaligned_be16(&buffer[4]); 2921 2922 if (rot == 1) { 2923 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 2924 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 2925 } 2926 2927 if (sdkp->device->type == TYPE_ZBC) { 2928 /* Host-managed */ 2929 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM); 2930 } else { 2931 sdkp->zoned = (buffer[8] >> 4) & 3; 2932 if (sdkp->zoned == 1) { 2933 /* Host-aware */ 2934 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA); 2935 } else { 2936 /* Regular disk or drive managed disk */ 2937 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE); 2938 } 2939 } 2940 2941 if (!sdkp->first_scan) 2942 goto out; 2943 2944 if (blk_queue_is_zoned(q)) { 2945 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 2946 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 2947 } else { 2948 if (sdkp->zoned == 1) 2949 sd_printk(KERN_NOTICE, sdkp, 2950 "Host-aware SMR disk used as regular disk\n"); 2951 else if (sdkp->zoned == 2) 2952 sd_printk(KERN_NOTICE, sdkp, 2953 "Drive-managed SMR disk\n"); 2954 } 2955 2956 out: 2957 kfree(buffer); 2958 } 2959 2960 /** 2961 * sd_read_block_provisioning - Query provisioning VPD page 2962 * @sdkp: disk to query 2963 */ 2964 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 2965 { 2966 unsigned char *buffer; 2967 const int vpd_len = 8; 2968 2969 if (sdkp->lbpme == 0) 2970 return; 2971 2972 buffer = kmalloc(vpd_len, GFP_KERNEL); 2973 2974 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 2975 goto out; 2976 2977 sdkp->lbpvpd = 1; 2978 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 2979 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 2980 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 2981 2982 out: 2983 kfree(buffer); 2984 } 2985 2986 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 2987 { 2988 struct scsi_device *sdev = sdkp->device; 2989 2990 if (sdev->host->no_write_same) { 2991 sdev->no_write_same = 1; 2992 2993 return; 2994 } 2995 2996 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 2997 /* too large values might cause issues with arcmsr */ 2998 int vpd_buf_len = 64; 2999 3000 sdev->no_report_opcodes = 1; 3001 3002 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3003 * CODES is unsupported and the device has an ATA 3004 * Information VPD page (SAT). 3005 */ 3006 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 3007 sdev->no_write_same = 1; 3008 } 3009 3010 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3011 sdkp->ws16 = 1; 3012 3013 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3014 sdkp->ws10 = 1; 3015 } 3016 3017 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3018 { 3019 struct scsi_device *sdev = sdkp->device; 3020 3021 if (!sdev->security_supported) 3022 return; 3023 3024 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3025 SECURITY_PROTOCOL_IN) == 1 && 3026 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3027 SECURITY_PROTOCOL_OUT) == 1) 3028 sdkp->security = 1; 3029 } 3030 3031 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf) 3032 { 3033 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf)); 3034 } 3035 3036 /** 3037 * sd_read_cpr - Query concurrent positioning ranges 3038 * @sdkp: disk to query 3039 */ 3040 static void sd_read_cpr(struct scsi_disk *sdkp) 3041 { 3042 struct blk_independent_access_ranges *iars = NULL; 3043 unsigned char *buffer = NULL; 3044 unsigned int nr_cpr = 0; 3045 int i, vpd_len, buf_len = SD_BUF_SIZE; 3046 u8 *desc; 3047 3048 /* 3049 * We need to have the capacity set first for the block layer to be 3050 * able to check the ranges. 3051 */ 3052 if (sdkp->first_scan) 3053 return; 3054 3055 if (!sdkp->capacity) 3056 goto out; 3057 3058 /* 3059 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges, 3060 * leading to a maximum page size of 64 + 256*32 bytes. 3061 */ 3062 buf_len = 64 + 256*32; 3063 buffer = kmalloc(buf_len, GFP_KERNEL); 3064 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len)) 3065 goto out; 3066 3067 /* We must have at least a 64B header and one 32B range descriptor */ 3068 vpd_len = get_unaligned_be16(&buffer[2]) + 3; 3069 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) { 3070 sd_printk(KERN_ERR, sdkp, 3071 "Invalid Concurrent Positioning Ranges VPD page\n"); 3072 goto out; 3073 } 3074 3075 nr_cpr = (vpd_len - 64) / 32; 3076 if (nr_cpr == 1) { 3077 nr_cpr = 0; 3078 goto out; 3079 } 3080 3081 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr); 3082 if (!iars) { 3083 nr_cpr = 0; 3084 goto out; 3085 } 3086 3087 desc = &buffer[64]; 3088 for (i = 0; i < nr_cpr; i++, desc += 32) { 3089 if (desc[0] != i) { 3090 sd_printk(KERN_ERR, sdkp, 3091 "Invalid Concurrent Positioning Range number\n"); 3092 nr_cpr = 0; 3093 break; 3094 } 3095 3096 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8); 3097 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16); 3098 } 3099 3100 out: 3101 disk_set_independent_access_ranges(sdkp->disk, iars); 3102 if (nr_cpr && sdkp->nr_actuators != nr_cpr) { 3103 sd_printk(KERN_NOTICE, sdkp, 3104 "%u concurrent positioning ranges\n", nr_cpr); 3105 sdkp->nr_actuators = nr_cpr; 3106 } 3107 3108 kfree(buffer); 3109 } 3110 3111 /* 3112 * Determine the device's preferred I/O size for reads and writes 3113 * unless the reported value is unreasonably small, large, not a 3114 * multiple of the physical block size, or simply garbage. 3115 */ 3116 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3117 unsigned int dev_max) 3118 { 3119 struct scsi_device *sdp = sdkp->device; 3120 unsigned int opt_xfer_bytes = 3121 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3122 3123 if (sdkp->opt_xfer_blocks == 0) 3124 return false; 3125 3126 if (sdkp->opt_xfer_blocks > dev_max) { 3127 sd_first_printk(KERN_WARNING, sdkp, 3128 "Optimal transfer size %u logical blocks " \ 3129 "> dev_max (%u logical blocks)\n", 3130 sdkp->opt_xfer_blocks, dev_max); 3131 return false; 3132 } 3133 3134 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3135 sd_first_printk(KERN_WARNING, sdkp, 3136 "Optimal transfer size %u logical blocks " \ 3137 "> sd driver limit (%u logical blocks)\n", 3138 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3139 return false; 3140 } 3141 3142 if (opt_xfer_bytes < PAGE_SIZE) { 3143 sd_first_printk(KERN_WARNING, sdkp, 3144 "Optimal transfer size %u bytes < " \ 3145 "PAGE_SIZE (%u bytes)\n", 3146 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3147 return false; 3148 } 3149 3150 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3151 sd_first_printk(KERN_WARNING, sdkp, 3152 "Optimal transfer size %u bytes not a " \ 3153 "multiple of physical block size (%u bytes)\n", 3154 opt_xfer_bytes, sdkp->physical_block_size); 3155 return false; 3156 } 3157 3158 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3159 opt_xfer_bytes); 3160 return true; 3161 } 3162 3163 /** 3164 * sd_revalidate_disk - called the first time a new disk is seen, 3165 * performs disk spin up, read_capacity, etc. 3166 * @disk: struct gendisk we care about 3167 **/ 3168 static int sd_revalidate_disk(struct gendisk *disk) 3169 { 3170 struct scsi_disk *sdkp = scsi_disk(disk); 3171 struct scsi_device *sdp = sdkp->device; 3172 struct request_queue *q = sdkp->disk->queue; 3173 sector_t old_capacity = sdkp->capacity; 3174 unsigned char *buffer; 3175 unsigned int dev_max, rw_max; 3176 3177 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3178 "sd_revalidate_disk\n")); 3179 3180 /* 3181 * If the device is offline, don't try and read capacity or any 3182 * of the other niceties. 3183 */ 3184 if (!scsi_device_online(sdp)) 3185 goto out; 3186 3187 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3188 if (!buffer) { 3189 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3190 "allocation failure.\n"); 3191 goto out; 3192 } 3193 3194 sd_spinup_disk(sdkp); 3195 3196 /* 3197 * Without media there is no reason to ask; moreover, some devices 3198 * react badly if we do. 3199 */ 3200 if (sdkp->media_present) { 3201 sd_read_capacity(sdkp, buffer); 3202 3203 /* 3204 * set the default to rotational. All non-rotational devices 3205 * support the block characteristics VPD page, which will 3206 * cause this to be updated correctly and any device which 3207 * doesn't support it should be treated as rotational. 3208 */ 3209 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3210 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3211 3212 if (scsi_device_supports_vpd(sdp)) { 3213 sd_read_block_provisioning(sdkp); 3214 sd_read_block_limits(sdkp); 3215 sd_read_block_characteristics(sdkp); 3216 sd_zbc_read_zones(sdkp, buffer); 3217 sd_read_cpr(sdkp); 3218 } 3219 3220 sd_print_capacity(sdkp, old_capacity); 3221 3222 sd_read_write_protect_flag(sdkp, buffer); 3223 sd_read_cache_type(sdkp, buffer); 3224 sd_read_app_tag_own(sdkp, buffer); 3225 sd_read_write_same(sdkp, buffer); 3226 sd_read_security(sdkp, buffer); 3227 } 3228 3229 /* 3230 * We now have all cache related info, determine how we deal 3231 * with flush requests. 3232 */ 3233 sd_set_flush_flag(sdkp); 3234 3235 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3236 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3237 3238 /* Some devices report a maximum block count for READ/WRITE requests. */ 3239 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3240 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3241 3242 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3243 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3244 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3245 } else { 3246 q->limits.io_opt = 0; 3247 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3248 (sector_t)BLK_DEF_MAX_SECTORS); 3249 } 3250 3251 /* Do not exceed controller limit */ 3252 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3253 3254 /* 3255 * Only update max_sectors if previously unset or if the current value 3256 * exceeds the capabilities of the hardware. 3257 */ 3258 if (sdkp->first_scan || 3259 q->limits.max_sectors > q->limits.max_dev_sectors || 3260 q->limits.max_sectors > q->limits.max_hw_sectors) 3261 q->limits.max_sectors = rw_max; 3262 3263 sdkp->first_scan = 0; 3264 3265 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3266 sd_config_write_same(sdkp); 3267 kfree(buffer); 3268 3269 /* 3270 * For a zoned drive, revalidating the zones can be done only once 3271 * the gendisk capacity is set. So if this fails, set back the gendisk 3272 * capacity to 0. 3273 */ 3274 if (sd_zbc_revalidate_zones(sdkp)) 3275 set_capacity_and_notify(disk, 0); 3276 3277 out: 3278 return 0; 3279 } 3280 3281 /** 3282 * sd_unlock_native_capacity - unlock native capacity 3283 * @disk: struct gendisk to set capacity for 3284 * 3285 * Block layer calls this function if it detects that partitions 3286 * on @disk reach beyond the end of the device. If the SCSI host 3287 * implements ->unlock_native_capacity() method, it's invoked to 3288 * give it a chance to adjust the device capacity. 3289 * 3290 * CONTEXT: 3291 * Defined by block layer. Might sleep. 3292 */ 3293 static void sd_unlock_native_capacity(struct gendisk *disk) 3294 { 3295 struct scsi_device *sdev = scsi_disk(disk)->device; 3296 3297 if (sdev->host->hostt->unlock_native_capacity) 3298 sdev->host->hostt->unlock_native_capacity(sdev); 3299 } 3300 3301 /** 3302 * sd_format_disk_name - format disk name 3303 * @prefix: name prefix - ie. "sd" for SCSI disks 3304 * @index: index of the disk to format name for 3305 * @buf: output buffer 3306 * @buflen: length of the output buffer 3307 * 3308 * SCSI disk names starts at sda. The 26th device is sdz and the 3309 * 27th is sdaa. The last one for two lettered suffix is sdzz 3310 * which is followed by sdaaa. 3311 * 3312 * This is basically 26 base counting with one extra 'nil' entry 3313 * at the beginning from the second digit on and can be 3314 * determined using similar method as 26 base conversion with the 3315 * index shifted -1 after each digit is computed. 3316 * 3317 * CONTEXT: 3318 * Don't care. 3319 * 3320 * RETURNS: 3321 * 0 on success, -errno on failure. 3322 */ 3323 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3324 { 3325 const int base = 'z' - 'a' + 1; 3326 char *begin = buf + strlen(prefix); 3327 char *end = buf + buflen; 3328 char *p; 3329 int unit; 3330 3331 p = end - 1; 3332 *p = '\0'; 3333 unit = base; 3334 do { 3335 if (p == begin) 3336 return -EINVAL; 3337 *--p = 'a' + (index % unit); 3338 index = (index / unit) - 1; 3339 } while (index >= 0); 3340 3341 memmove(begin, p, end - p); 3342 memcpy(buf, prefix, strlen(prefix)); 3343 3344 return 0; 3345 } 3346 3347 /** 3348 * sd_probe - called during driver initialization and whenever a 3349 * new scsi device is attached to the system. It is called once 3350 * for each scsi device (not just disks) present. 3351 * @dev: pointer to device object 3352 * 3353 * Returns 0 if successful (or not interested in this scsi device 3354 * (e.g. scanner)); 1 when there is an error. 3355 * 3356 * Note: this function is invoked from the scsi mid-level. 3357 * This function sets up the mapping between a given 3358 * <host,channel,id,lun> (found in sdp) and new device name 3359 * (e.g. /dev/sda). More precisely it is the block device major 3360 * and minor number that is chosen here. 3361 * 3362 * Assume sd_probe is not re-entrant (for time being) 3363 * Also think about sd_probe() and sd_remove() running coincidentally. 3364 **/ 3365 static int sd_probe(struct device *dev) 3366 { 3367 struct scsi_device *sdp = to_scsi_device(dev); 3368 struct scsi_disk *sdkp; 3369 struct gendisk *gd; 3370 int index; 3371 int error; 3372 3373 scsi_autopm_get_device(sdp); 3374 error = -ENODEV; 3375 if (sdp->type != TYPE_DISK && 3376 sdp->type != TYPE_ZBC && 3377 sdp->type != TYPE_MOD && 3378 sdp->type != TYPE_RBC) 3379 goto out; 3380 3381 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3382 sdev_printk(KERN_WARNING, sdp, 3383 "Unsupported ZBC host-managed device.\n"); 3384 goto out; 3385 } 3386 3387 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3388 "sd_probe\n")); 3389 3390 error = -ENOMEM; 3391 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3392 if (!sdkp) 3393 goto out; 3394 3395 gd = __alloc_disk_node(sdp->request_queue, NUMA_NO_NODE, 3396 &sd_bio_compl_lkclass); 3397 if (!gd) 3398 goto out_free; 3399 3400 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3401 if (index < 0) { 3402 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3403 goto out_put; 3404 } 3405 3406 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3407 if (error) { 3408 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3409 goto out_free_index; 3410 } 3411 3412 sdkp->device = sdp; 3413 sdkp->disk = gd; 3414 sdkp->index = index; 3415 sdkp->max_retries = SD_MAX_RETRIES; 3416 atomic_set(&sdkp->openers, 0); 3417 atomic_set(&sdkp->device->ioerr_cnt, 0); 3418 3419 if (!sdp->request_queue->rq_timeout) { 3420 if (sdp->type != TYPE_MOD) 3421 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3422 else 3423 blk_queue_rq_timeout(sdp->request_queue, 3424 SD_MOD_TIMEOUT); 3425 } 3426 3427 device_initialize(&sdkp->disk_dev); 3428 sdkp->disk_dev.parent = get_device(dev); 3429 sdkp->disk_dev.class = &sd_disk_class; 3430 dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev)); 3431 3432 error = device_add(&sdkp->disk_dev); 3433 if (error) { 3434 put_device(&sdkp->disk_dev); 3435 goto out; 3436 } 3437 3438 dev_set_drvdata(dev, sdkp); 3439 3440 gd->major = sd_major((index & 0xf0) >> 4); 3441 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3442 gd->minors = SD_MINORS; 3443 3444 gd->fops = &sd_fops; 3445 gd->private_data = sdkp; 3446 3447 /* defaults, until the device tells us otherwise */ 3448 sdp->sector_size = 512; 3449 sdkp->capacity = 0; 3450 sdkp->media_present = 1; 3451 sdkp->write_prot = 0; 3452 sdkp->cache_override = 0; 3453 sdkp->WCE = 0; 3454 sdkp->RCD = 0; 3455 sdkp->ATO = 0; 3456 sdkp->first_scan = 1; 3457 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3458 3459 sd_revalidate_disk(gd); 3460 3461 if (sdp->removable) { 3462 gd->flags |= GENHD_FL_REMOVABLE; 3463 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3464 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3465 } 3466 3467 blk_pm_runtime_init(sdp->request_queue, dev); 3468 if (sdp->rpm_autosuspend) { 3469 pm_runtime_set_autosuspend_delay(dev, 3470 sdp->host->hostt->rpm_autosuspend_delay); 3471 } 3472 3473 error = device_add_disk(dev, gd, NULL); 3474 if (error) { 3475 put_device(&sdkp->disk_dev); 3476 blk_cleanup_disk(gd); 3477 goto out; 3478 } 3479 3480 if (sdkp->capacity) 3481 sd_dif_config_host(sdkp); 3482 3483 sd_revalidate_disk(gd); 3484 3485 if (sdkp->security) { 3486 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 3487 if (sdkp->opal_dev) 3488 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3489 } 3490 3491 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3492 sdp->removable ? "removable " : ""); 3493 scsi_autopm_put_device(sdp); 3494 3495 return 0; 3496 3497 out_free_index: 3498 ida_free(&sd_index_ida, index); 3499 out_put: 3500 put_disk(gd); 3501 out_free: 3502 sd_zbc_release_disk(sdkp); 3503 kfree(sdkp); 3504 out: 3505 scsi_autopm_put_device(sdp); 3506 return error; 3507 } 3508 3509 /** 3510 * sd_remove - called whenever a scsi disk (previously recognized by 3511 * sd_probe) is detached from the system. It is called (potentially 3512 * multiple times) during sd module unload. 3513 * @dev: pointer to device object 3514 * 3515 * Note: this function is invoked from the scsi mid-level. 3516 * This function potentially frees up a device name (e.g. /dev/sdc) 3517 * that could be re-used by a subsequent sd_probe(). 3518 * This function is not called when the built-in sd driver is "exit-ed". 3519 **/ 3520 static int sd_remove(struct device *dev) 3521 { 3522 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3523 3524 scsi_autopm_get_device(sdkp->device); 3525 3526 device_del(&sdkp->disk_dev); 3527 del_gendisk(sdkp->disk); 3528 sd_shutdown(dev); 3529 3530 put_disk(sdkp->disk); 3531 return 0; 3532 } 3533 3534 static void scsi_disk_release(struct device *dev) 3535 { 3536 struct scsi_disk *sdkp = to_scsi_disk(dev); 3537 3538 ida_free(&sd_index_ida, sdkp->index); 3539 sd_zbc_release_disk(sdkp); 3540 put_device(&sdkp->device->sdev_gendev); 3541 free_opal_dev(sdkp->opal_dev); 3542 3543 kfree(sdkp); 3544 } 3545 3546 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3547 { 3548 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3549 struct scsi_sense_hdr sshdr; 3550 struct scsi_device *sdp = sdkp->device; 3551 int res; 3552 3553 if (start) 3554 cmd[4] |= 1; /* START */ 3555 3556 if (sdp->start_stop_pwr_cond) 3557 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3558 3559 if (!scsi_device_online(sdp)) 3560 return -ENODEV; 3561 3562 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3563 SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL); 3564 if (res) { 3565 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3566 if (res > 0 && scsi_sense_valid(&sshdr)) { 3567 sd_print_sense_hdr(sdkp, &sshdr); 3568 /* 0x3a is medium not present */ 3569 if (sshdr.asc == 0x3a) 3570 res = 0; 3571 } 3572 } 3573 3574 /* SCSI error codes must not go to the generic layer */ 3575 if (res) 3576 return -EIO; 3577 3578 return 0; 3579 } 3580 3581 /* 3582 * Send a SYNCHRONIZE CACHE instruction down to the device through 3583 * the normal SCSI command structure. Wait for the command to 3584 * complete. 3585 */ 3586 static void sd_shutdown(struct device *dev) 3587 { 3588 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3589 3590 if (!sdkp) 3591 return; /* this can happen */ 3592 3593 if (pm_runtime_suspended(dev)) 3594 return; 3595 3596 if (sdkp->WCE && sdkp->media_present) { 3597 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3598 sd_sync_cache(sdkp, NULL); 3599 } 3600 3601 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3602 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3603 sd_start_stop_device(sdkp, 0); 3604 } 3605 } 3606 3607 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3608 { 3609 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3610 struct scsi_sense_hdr sshdr; 3611 int ret = 0; 3612 3613 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3614 return 0; 3615 3616 if (sdkp->WCE && sdkp->media_present) { 3617 if (!sdkp->device->silence_suspend) 3618 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3619 ret = sd_sync_cache(sdkp, &sshdr); 3620 3621 if (ret) { 3622 /* ignore OFFLINE device */ 3623 if (ret == -ENODEV) 3624 return 0; 3625 3626 if (!scsi_sense_valid(&sshdr) || 3627 sshdr.sense_key != ILLEGAL_REQUEST) 3628 return ret; 3629 3630 /* 3631 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3632 * doesn't support sync. There's not much to do and 3633 * suspend shouldn't fail. 3634 */ 3635 ret = 0; 3636 } 3637 } 3638 3639 if (sdkp->device->manage_start_stop) { 3640 if (!sdkp->device->silence_suspend) 3641 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3642 /* an error is not worth aborting a system sleep */ 3643 ret = sd_start_stop_device(sdkp, 0); 3644 if (ignore_stop_errors) 3645 ret = 0; 3646 } 3647 3648 return ret; 3649 } 3650 3651 static int sd_suspend_system(struct device *dev) 3652 { 3653 if (pm_runtime_suspended(dev)) 3654 return 0; 3655 3656 return sd_suspend_common(dev, true); 3657 } 3658 3659 static int sd_suspend_runtime(struct device *dev) 3660 { 3661 return sd_suspend_common(dev, false); 3662 } 3663 3664 static int sd_resume(struct device *dev) 3665 { 3666 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3667 int ret; 3668 3669 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3670 return 0; 3671 3672 if (!sdkp->device->manage_start_stop) 3673 return 0; 3674 3675 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3676 ret = sd_start_stop_device(sdkp, 1); 3677 if (!ret) 3678 opal_unlock_from_suspend(sdkp->opal_dev); 3679 return ret; 3680 } 3681 3682 static int sd_resume_system(struct device *dev) 3683 { 3684 if (pm_runtime_suspended(dev)) 3685 return 0; 3686 3687 return sd_resume(dev); 3688 } 3689 3690 static int sd_resume_runtime(struct device *dev) 3691 { 3692 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3693 struct scsi_device *sdp; 3694 3695 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3696 return 0; 3697 3698 sdp = sdkp->device; 3699 3700 if (sdp->ignore_media_change) { 3701 /* clear the device's sense data */ 3702 static const u8 cmd[10] = { REQUEST_SENSE }; 3703 3704 if (scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, 3705 NULL, sdp->request_queue->rq_timeout, 1, 0, 3706 RQF_PM, NULL)) 3707 sd_printk(KERN_NOTICE, sdkp, 3708 "Failed to clear sense data\n"); 3709 } 3710 3711 return sd_resume(dev); 3712 } 3713 3714 /** 3715 * init_sd - entry point for this driver (both when built in or when 3716 * a module). 3717 * 3718 * Note: this function registers this driver with the scsi mid-level. 3719 **/ 3720 static int __init init_sd(void) 3721 { 3722 int majors = 0, i, err; 3723 3724 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3725 3726 for (i = 0; i < SD_MAJORS; i++) { 3727 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 3728 continue; 3729 majors++; 3730 } 3731 3732 if (!majors) 3733 return -ENODEV; 3734 3735 err = class_register(&sd_disk_class); 3736 if (err) 3737 goto err_out; 3738 3739 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3740 0, 0, NULL); 3741 if (!sd_cdb_cache) { 3742 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3743 err = -ENOMEM; 3744 goto err_out_class; 3745 } 3746 3747 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3748 if (!sd_page_pool) { 3749 printk(KERN_ERR "sd: can't init discard page pool\n"); 3750 err = -ENOMEM; 3751 goto err_out_cache; 3752 } 3753 3754 err = scsi_register_driver(&sd_template.gendrv); 3755 if (err) 3756 goto err_out_driver; 3757 3758 return 0; 3759 3760 err_out_driver: 3761 mempool_destroy(sd_page_pool); 3762 3763 err_out_cache: 3764 kmem_cache_destroy(sd_cdb_cache); 3765 3766 err_out_class: 3767 class_unregister(&sd_disk_class); 3768 err_out: 3769 for (i = 0; i < SD_MAJORS; i++) 3770 unregister_blkdev(sd_major(i), "sd"); 3771 return err; 3772 } 3773 3774 /** 3775 * exit_sd - exit point for this driver (when it is a module). 3776 * 3777 * Note: this function unregisters this driver from the scsi mid-level. 3778 **/ 3779 static void __exit exit_sd(void) 3780 { 3781 int i; 3782 3783 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3784 3785 scsi_unregister_driver(&sd_template.gendrv); 3786 mempool_destroy(sd_page_pool); 3787 kmem_cache_destroy(sd_cdb_cache); 3788 3789 class_unregister(&sd_disk_class); 3790 3791 for (i = 0; i < SD_MAJORS; i++) 3792 unregister_blkdev(sd_major(i), "sd"); 3793 } 3794 3795 module_init(init_sd); 3796 module_exit(exit_sd); 3797 3798 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 3799 { 3800 scsi_print_sense_hdr(sdkp->device, 3801 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3802 } 3803 3804 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 3805 { 3806 const char *hb_string = scsi_hostbyte_string(result); 3807 3808 if (hb_string) 3809 sd_printk(KERN_INFO, sdkp, 3810 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3811 hb_string ? hb_string : "invalid", 3812 "DRIVER_OK"); 3813 else 3814 sd_printk(KERN_INFO, sdkp, 3815 "%s: Result: hostbyte=0x%02x driverbyte=%s\n", 3816 msg, host_byte(result), "DRIVER_OK"); 3817 } 3818